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Abstract

Analysis of D0 → K+π−π0 Decays:

Search for D0-D0 Mixing,

and Measurements

of the Doubly Cabibbo-Suppressed Decay Rate

and Resonance Contributions

by

Michael Galante Wilson

Analyzing D0 → K+π−π0 decays, herein are presented the methods and re-

sults of a search for D0-D0 mixing, a measurement of the branching ratio R ≡

Γ(D0 → K+π−π0)/Γ(D0 → K−π+π0), and measurements of the contributions from

D0 → K+ρ−, K∗+π−, K∗0π0; 230.4 fb−1 of data collected from the BABAR detec-

tor at the PEP-II collider during 2000–2004 (Runs 1–4) are analyzed. An event-

level tagging technique is developed, which facilitates the accurate determination

of doubly Cabibbo-suppressed resonance contributions by suppressing background

from Cabibbo-favored decays. The branching ratio is measured as R = (0.214 ±

0.008 (stat)±0.008 (syst))%, with (46.1±3.3 (stat)±2.9 (syst))% ofD0 → K+π−π0

decays proceeding through the channel D0 → K∗+π−. The data are consistent with

the null–D-mixing hypothesis at a confidence level of 10%, and the expected value



of ±
√
x2 + y2 is measured as −0.013± 0.010 (stat), indicating negative interference

between mixing and doubly Cabibbo-suppressed decay. The expected value of the

integrated mixing rate is (x2 + y2)/2 = (0.013 ± 0.013 (stat))%.
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Chapter 1

The Physics of D0-D0 Mixing

1.1 Introduction to D0-D0 Mixing

D0-D0 mixing is the quantum-mechanical oscillation between the two eigenstates

|D0〉 and |D0〉 of the Strong and Electromagnetic Interactions. Mixing occurs be-

cause these eigenstates are not identical to the eigenstates of the full Standard-Model

Hamiltonian. Specifically, these states are not eigenstates of the Weak Interaction.

The time evolution of this system is described by the Schrödinger equation

i
∂

∂t

⎛
⎜⎜⎝ D0(t)

D0(t)

⎞
⎟⎟⎠ =

(
M − i

2
Γ

)⎛⎜⎜⎝ D0(t)

D0(t)

⎞
⎟⎟⎠ , (1.1)
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where M and Γ are Hermitian matrices describing mixing and decay, respectively.

Expressing the mass eigenstates in terms of the above eigenstates,

|D1,2〉 = p|D0〉 ± q|D0〉, (1.2)

where p and q are complex numbers, we can diagonalize the Hamiltonian and calcu-

late the eigenvalues [1]. If CP is a conserved quantity in this system, then p = q.

The two mass eigenstates have different masses (m1, m2) and decay widths (Γ1,Γ2)

generated by the mixing dynamics, and we parameterize the mixing process with the

quantities x and y defined in terms of the differences in mass and width:

x ≡ 2
m2 −m1

Γ2 + Γ1
, y ≡ Γ2 − Γ1

Γ2 + Γ1
. (1.3)

There is an ambiguity at the time of writing because it is not known which state,

|D1〉 or |D2〉, is the more massive state. When a convention is needed, we identify

|D1,2〉 = |DL,H〉 so that x is positive by construction. Most of the formalism and

results presented herein are independent of this particular convention, and it is noted

when this convention is applied.

CP violation might be observed in an experimental search for D0-D0 mixing. As

in other cases, such as the B0-B0 or K0-K0 systems, it could appear in any of three

ways. The first way would be a modification of the mixing rate because p �= q in

Equation 1.2 above. The second and third ways would be modifications of either the

decay rates or the interference between mixing and decay for the particular decay
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channels chosen in an analysis. As explained below, an observation of CP violation

would be the most suggestive sign of new physics in this system.

1.2 Theoretical Predictions

In the Standard Model, the mixing rate in theD0-D0 system is expected on general

grounds to be very small, but it is difficult to calculate how small because of significant

contributions from long-distance effects. This theoretical uncertainty limits, but does

not eliminate, the potential for identifying signs of new physics.

At small distances, neutral-meson mixing proceeds via flavor-changing neutral

currents (FCNC). Since there are no tree-level FCNC contributions in the Standard

Model, processes such as mixing occur at the quark level primarily via box diagrams,

as shown in Figure 1.1. In the B0-B0 or K0-K0 systems, the mesons comprise down-

type quarks. In contrast, the D0-D0 system comprises up-type quarks. D mixing

is therefore sensitive to the contributions of virtual down-type quarks coupled to the

Weak Interaction, making it a process that might reveal physics not seen in the B or

K systems. One immediate result of this difference is that there is no contribution

from heavy quarks in the D-mixing box diagram. This particular type of contribution

breaks the Glashow-Iliopoulos-Maiani (GIM) cancellation in theB orK systems1 and

allows sizable mixing rates. The heaviest quark in the D-mixing box diagram is the
1In K mixing, it is m2

c − m2
u that is relevant; in B mixing, it is m2

t − m2
c .

3



�̄
b, s̄, d̄

W

b, s, d

W

ū
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Figure 1.1: Standard-Model box diagrams of flavor-changing neutral currents con-
tributing to D0-D0 mixing at the quark level

b-quark. Because the suppression from Cabibbo-Kobayashi-Maskawa (CKM) mixing

factors VcbV
∗
ub outweighs the potential contribution of the b-quark in the box, the b-

quark does not significantly affect the D-mixing rate [2]. Thus, the short-distance

contribution to x comes primarily from transitions to d- and s-quarks, and this is

estimated to be [1]

xbox ≈ O(10−6) – O(10−5). (1.4)

Short-distance contributions to y are further suppressed.

Long-distance contributions to D mixing are therefore expected to be dominant,

but these contributions are non-perturbative and cannot be calculated from first prin-

ciples. They come from transitions to final states |f〉 that are accessible to both |D0〉

and |D0〉. For example, Figure 1.2 illustrates a contribution to mixing from transitions

to two pseudoscalars. It has long been observed that D mixing is an effect of flavor-

SU(3) (SU(3)F ) breaking [3, 4], and there has been a continuing effort to estimate

the size of this symmetry breaking. It has also been shown that if SU(3)F breaking is
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Figure 1.2: A hadron-level diagram of a long-distance physics contribution to D0-D0

mixing

perturbative, it is at most a second-order effect [5]:

x, y ≈ sin2 θc × [SU(3)F breaking]2. (1.5)

If one parameterizes all SU(3)F breaking with the s-quark mass ms, then one can

estimate model independently

x, y ≈ sin2 θc ×
(
ms

Λhadr.

)2

� O(10−3), (1.6)

where Λhadr. ≈ O(1) GeV is a typical hadronic scale. Beyond this simple estimate,

there are two main approaches to estimating the long-distance contributions to mixing:

an inclusive approach using an operator product expansion (OPE), and an exclusive

approach that sums over intermediate hadronic states using experimental data. Neither

approach is completely satisfactory, and the resulting estimates of y differ by an order

of magnitude.

The inclusive approach applies Heavy-Quark Effective Theory (HQET) to calcu-

late contributions to D mixing, an approach first taken by Georgi [6] and later ex-
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tended by others [7, 8]. There are two main assumptions. The first is that the mass of

the c-quark is large, mc � Λhadr.. The second is that one can construct local quark-

level operators that can be applied to hadron-level processes (quark-hadron duality is

applicable). This leads to series expansions of x and y in terms of local operators with

powers of (Λ/mc). The result of this type of approach is [8]

x ≈ y ≈ O(10−3). (1.7)

The exclusive approach takes all of the known hadronic states common to both

|D0〉 and |D0〉, and groups them both according to their respective SU(3)F multiplets

and to the number of particles in the final state. An example of such a set would be

{π+π−, π+K−, K+K−, K+π−}. In the limit of a perfect SU(3)F symmetry, the

individual contributions within each of these groups would cancel, and there would

be no mixing. If one knows the relative amplitudes and strong phases for these states,

calculations of x and y can be done for each multiplet. For the example set above, this

calculation gives a small contribution due to cancellations, a reasonable result since

all of the states in the set are far from threshold and not affected as much by phase

space considerations. Contributions to x are not required to be on-shell, so in this case

there is no symmetry breaking caused by limited phase space. If one assumes that all

of the sets contribute incoherently in roughly the same amount, one concludes that [1]

x � O(10−3). (1.8)
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By contrast, contributions to y are due to on-shell states, so phase space is a signif-

icant source of symmetry breaking. Considering phase space as the only source of

symmetry breaking, one can calculate the contribution to y of each of the final-state

multiplets for which there is data using only the measured masses of the final-state

particles [5]. The largest calculable contribution comes from the final-state multi-

plet comprising four pseudoscalars, whose elements are either near the production

threshold with relatively large branching fractions, or are above threshold and entirely

absent. This method concludes that [5]

y � O(10−2). (1.9)

This is a good estimate if other sources of symmetry breaking do not cancel the effects

of limited phase space. However, quark-hadron duality, one of the critical assumptions

of the inclusive method, naturally produces such cancellations.

Traditionally, it has been argued that a measurement of x or y � O(10−2) would

be a sign of new physics, but the exclusive calculation outlined above calls this argu-

ment into question. It has also been shown that any CP violation coming from new

physics would be suppressed and most likely unobservable if y � x [9]. Despite

these limitations, the possibility of observing new physics remains. A measurement

of x� y would still be suggestive of new physics even for large values of y. Because

D mixing only involves the first two quark generations, CP violation from Standard-

Model sources is very small on general grounds. Observing CP violation in a search
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for D mixing would be a sign of new physics. Finally, in the absence of a clear signal

for new physics, it appears that the measured rate of D mixing could at least shed

light on the applicability of quark-hadron duality in the charm sector.

1.3 Current Experimental Status

D0-D0 mixing has not been observed at the time of writing, but many experiments

have conducted searches using a variety of techniques. The most stringent limits on

D mixing have been set by the the BABAR, Belle, and CLEO collaborations, analyzing

hadronic D0 decays.

The current benchmark for conducting a D mixing search is an analysis of the

decay-time distribution of D0 → K+π− decays. BABAR [10], Belle [11], and

CLEO [12] have all performed such analyses. The advantages of this analysis strategy

are, first, a clean signal from the relatively narrow (mD∗+ −mD0) peak; and second,

the ability to compare the signal distributions to the high statistics D0 → K−π+ sam-

ple, eliminating many sources of systematic bias. A disadvantage is that there is no

sensitivity to x or y individually, but only to x2 + y2 and y′Kπ, where y′Kπ is related

to y by an unknown strong phase. (It may be possible in the future to determine the

strong phase associated with y′Kπ at CLEO-c [13] by taking advantage of the quantum

coherence of ψ(3770) at production.)

Another analysis strategy involves measuring the ratio of lifetimes for D0 de-
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cays into states of specific CP . This technique has been used by E791 [14] and

FOCUS [15], and improved upon by BABAR [16] to include possible CP violating

effects. These analyses are only sensitive to y.

Finally, one can analyze semileptonic D0 decays to search for mixing. E791 [17]

and BABAR [18] have used this technique, among others. Unlike the hadronic lifetime

analyses, the semileptonic lifetime analysis does not have to contend with a possible

interference term between mixing and a doubly Cabibbo-suppressed decay. However,

it has worse signal resolution because of the unreconstructed neutrino in the event.

The combined world 95%-confidence limit on the time-integrated D-mixing rate

is (
x2 + y2

2

)
< 0.13%. (1.10)
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Chapter 2

Motivation and Strategy for

Analyzing D0 → K+π−π0 Decays

2.1 Searching for D0-D0 Mixing with a Lifetime

Analysis

A search for mixing attempts to identify the process1 |D0〉 → |D0〉 by analyzing

the decay products of a particle known to be created as a |D0〉. In practice, this means

reconstructing the state |f̄〉 in an attempt to observe

|D0〉 → |D0〉 → |f̄〉. (2.1)

1Charge conjugation is implied except where otherwise stated.
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The difficulty comes from the fact that for hadronic (i.e. nonleptonic) systems, the

decay

|D0〉 → |f̄〉 (2.2)

can occur directly, without any mixing at all. Distinguishing Process 2.1 from 2.2 is

the primary goal of this analysis, and it relies on the fact that the decay-time distri-

bution of the final state |f̄〉 is different for the two processes. The most sensitivity

to mixing will be found when the amplitude for Process 2.2 is as small as possible,

and therefore doubly Cabibbo-suppressed (DCS) decays are chosen for this type of

analysis. DCS decays have very small branching fractions, on the order of

| sin2(θC)|2 ≈ 0.0025 (2.3)

times the corresponding Cabibbo-favored (CF) decay branching fraction, where θC

is the Cabibbo angle. To the extent that Process 2.2 has a smaller amplitude for a

particular decay compared to others, it will yield more sensitivity to a sign of mixing.

Following from Equation 1.1, and ignoring the possibility of CP violation (for-

bidden in the Standard Model), one can derive the time-dependent equations:

|D0(t)〉 = a+(t)|D0〉 + a−(t)|D0〉 (2.4)

|D0(t)〉 = a−(t)|D0〉 + a+(t)|D0〉, (2.5)
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where

a+(t) =
1

2
(e−im1t− 1

2
Γ1t + e−im2t− 1

2
Γ2t) (2.6)

a−(t) =
1

2
(e−im1t− 1

2
Γ1t − e−im2t− 1

2
Γ2t). (2.7)

We are interested in the measurable, time-dependent rate:

Γf̄(t) = |〈f̄ |H|D0(t)〉|2

=
(
|Af̄ |2|a+(t)|2 + Af̄ Ā

∗̄
fa+(t)a∗−(t)

+ Āf̄A
∗̄
fa−(t)a∗+(t) + |Āf̄ |2|a−(t)|2

)
, (2.8)

where

Af̄ = 〈f̄ |H|D0〉 (2.9)

Āf̄ = 〈f̄ |H|D0〉. (2.10)

In general, there is a phase difference between Af̄ and Āf̄ arising from the Strong In-

teraction. To understand this, consider the set of strong eigenstates |n〉 that can scatter

into the final state |f̄〉. Similar to Equations 2.9–2.10, we can write the amplitudes for

decay into these eigenstates:

An = 〈n|H|D0〉 = bne
iδn (2.11)

Ān = 〈n|H|D0〉 = b̄ne
iδn , (2.12)
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where bn, b̄n are real numbers. In terms of these eigenstates,

Af̄ =
∑

n〈f̄ |n〉〈n|H|D0〉 =
∑

n cnbne
iδn (2.13)

Āf̄ =
∑

n〈f̄ |n〉〈n|H|D0〉 =
∑

n cnb̄ne
iδn . (2.14)

In the general case,

bn = knb̄n (2.15)

kn �= km for n �= m, (2.16)

where kn are constants. Unless there is a unique k such that kn = k for all n, then

there is a phase shift between Af̄ and Āf̄ . Therefore, we can write

Af̄ Ā
∗̄
f = |Af̄ ||Āf̄ |e−iδ, (2.17)

where δ is the strong phase difference. We can simplify Equation 2.8 under the as-

sumptions

|Af̄ | 	 |Āf̄ |, |x|, |y| 	 1 (2.18)
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and expressing

|Af̄ |2|a+(t)|2 = |Af̄ |2
e−Γt

2
[cosh(yΓt) + cos(xΓt)]

≈ |Af̄ |2e−Γt (2.19)

|Āf̄ |2|a−(t)|2 = |Āf̄ |2
e−Γt

2
[cosh(yΓt) − cos(xΓt)]

≈ |Āf̄ |2e−Γt

(
x2 + y2

4

)
(Γt)2 (2.20)

Af̄ Ā
∗̄
fa+(t)a∗−(t) + Āf̄A

∗̄
fa−(t)a∗+(t)

= |Af̄ ||Āf̄ |
e−Γt

2

(
e−iδ(sinh(yΓt) − i sin(xΓt)) + eiδ(sinh(yΓt) + i sin(xΓt))

)
≈ |Af̄ ||Āf̄ |e−Γt (y cos δ − x sin δ) (Γt) (2.21)

where Γ is the average decay width of Γ1 and Γ2. If we define

RD ≡ |Af̄ |2
|Āf̄ |2

(2.22)

y′ ≡ y cos δ − x sin δ (2.23)

we obtain the standard form for the time-dependent decay rate, including D mixing:

Γf̄(t) = |Āf̄ |2e−Γt

(
RD +

√
RDy

′(Γt) +
x2 + y2

4
(Γt)2

)
. (2.24)

As shown, D mixing is characterized in the decay rate by a deviation away from

a pure exponential. In order to have the most sensitivity to (x2 + y2), a decay channel
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for which RD is relatively small is desired. The analysis technique benefits from the

ability to compare the signal distribution, given by Equation 2.24, to the Cabibbo-

favored decay distribution, which may be treated as a pure exponential. In this way,

systematic bias is significantly limited.

2.2 Motivation for Analyzing D0 → K+π−π0 Decays

In choosing a decay mode with which to study D mixing, one must weigh the

advantageous physical properties of the system against the experimental difficulties

one will encounter. Hadronic D0 decays can be reconstructed relatively easily and

cleanly, especially the two-body D0 → K∓π± decays. The analyses of these de-

cays [10, 11, 12] have set the most stringent limits on the size of D mixing to date.

However, these analyses find that for this mode, RD = (0.362 ± 0.029)%, which is a

bit higher than the crude estimate given in Equation 2.3. One might expect that in the

limit of flavor-SU(3) symmetry, summing over all doubly Cabibbo-suppressed modes,

and the corresponding Cabibbo-favored modes, would yield a value of RD ≈ 0.25%.

By this reasoning, it makes sense to search for DCS decays for which RD < 0.25%,

for which one might have more sensitivity to a sign of mixing.

The wrong-sign decay D0 → K+π−π0 is intriguing for a number of reasons.

First, the corresponding CF decay D0 → K−π+π0 has the relatively high branching

fraction of 13%. By comparison, the branching fraction for D0 → K−π+ is 3.8%.
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Figure 2.1: Quark-level Feynman diagrams of the Cabibbo-favored (CF)
D0 → K−π+π0 decay (left) and the doubly Cabibbo-suppressed (DCS)
D0 → K+π−π0 decay (right). Possible final-state hadrons have been included
to demonstrate how one might expect the DCS Dalitz plot to differ from the CF
Dalitz plot. In particular, if one assumes that the W+ couples more strongly to a
spin-1 final-state particle, the main resonant contribution to the DCS decay might be
D0 → K∗+π−.

Thus, one expects to analyze a relatively large sample of wrong-sign decays. Second,

we gain sensitivity to mixing if the Dalitz-plot structure of the DCS decay differs from

that of the CF decay, and there is good reason to believe that the Dalitz plots are dif-

ferent by considering the relevant Feynman diagrams (see Figure 2.1). The sensitivity

may be increased by selecting regions of the Dalitz plot where the CF decay con-

tributes with a larger amplitude relative to the corresponding DCS amplitude, since

a mixing signal will have the CF Dalitz-plot structure. Third, the RD value for this

mode was poorly known when this analysis was begun [19], and there has since been

evidence [20] that RD = (0.229 ± 0.015 +0.013
−0.009)%.

There are significant experimental difficulties with the decay D0 → K+π−π0 as

compared to D0 → K+π−, however. All of these additional difficulties are due to

reconstruction of the π0 candidate. First, the efficiency for reconstructing π0 cancels
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any gain in statistics from the large branching fraction. The net effect is that we re-

construct about as manyD0 → K−π+π0 decays asD0 → K−π+ decays. Second, the

width of the D0-mass distribution is ≈ 60% greater than that of a decay mode com-

prising only charged tracks. The average measurement uncertainty is rather large,

and the shape of the distribution of measurement uncertainties is poorly known. This

makes harder the separation of signal from background in a maximum likelihood fit,

for which the signal and background shapes must be known precisely. Third, we have

found that the resolution of the D0 mass is so poor that significant correlations are

introduced with the distribution of δm = (mKππ0πs −mKππ0), which is also used to

separate signal from background. Fourth, and finally, the simulation of the BABAR

detector does not correctly reproduce the means and resolutions of the mass distribu-

tions of particles decaying to photons, such as π0. Thus, the simulated data cannot

be used for detailed determination of the distribution shapes; rather, the parameters

specifying these shapes must be fit from data.

Notwithstanding the experimental difficulties that must be overcome, the analysis

of D0 → K+π−π0 decays is compelling. With the same number of reconstructed CF

decays as for D0 → K−π+, but with a lower RD value and a Dalitz plot to take

advantage of, the analysis of D0 → K+π−π0 decays offers perhaps the best present

chance of observing D mixing.
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2.3 Lifetime Analysis of a Multi-Body D0 Decay

For a multi-body decay, the lifetime analysis is slightly different from what is

presented in Section 2.1, in order to account for resonance contributions. Consider a

decay for which the Dalitz plot is parameterized by the variables {m12, m23}. Equa-

tion 2.24 is true for any point in the Dalitz plot. However, it does not hold for a region

of the Dalitz plot. Specifically, both the strong-phase difference and the ratio of the

number of DCS decays to that of CF decays may vary as functions of {m12, m23}. If

they do, then the interference term is suppressed.

Starting from Equation 2.8, we note that Af̄ and Āf̄ vary as functions of

{m12, m23}:

Af̄ = Af̄(m12, m23) (2.25)

Āf̄ = Āf̄(m12, m23) (2.26)

Because Af̄ and Āf̄ are not time-dependent, we may integrate them over any region

of the Dalitz plot, for any value of t, and Equations 2.19–2.20 remain substantively

the same:

∫
|Af̄(m12, m23)|2|a+(t)|2 dm12 dm23 = A2

I

e−Γt

2
[cosh(yΓt) + cos(xΓt)] (2.27)

∫
|Āf̄(m12, m23)|2|a−(t)|2 dm12 dm23 = Ā2

I

e−Γt

2
[cosh(yΓt) − cos(xΓt)] (2.28)
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However, consider

∫
Af̄(m12, m23)Āf̄(m12, m23)

∗ dm12 dm23

=

∫
|Af̄ (m12, m23)||Āf̄(m12, m23)|e−iδ(m12,m23) dm12 dm23

= αAIĀIe
−iδI , 0 ≤ α ≤ 1 (2.29)

The result of integrating the strong-phase difference, which varies as a function of

{m12, m23}, is to reduce the interference term. Also, to the extent that the ratio

of |Af̄(m12, m23)| to |Āf̄ (m12, m23)| varies, the interference term is further reduced

compared to the other two terms in the rate equation (Equation 2.32 below). These

reductions are parameterized by the real coefficient α. Defining

RI ≡ A2
I

Ā2
I

(2.30)

y′I ≡ y cos δI − x sin δI (2.31)

we obtain a form for the time-dependent decay rate for a multi-body decay:

Γf̄ (t) = Ā2
Ie

−Γt

(
RI + α

√
RIy

′
I(Γt) +

x2 + y2

4
(Γt)2

)
, (2.32)

0 ≤ α ≤ 1.

It should be noted that while α, RI and y′I depend on the Dalitz plot region that has

been selected for analysis, the mixing term (x2 + y2) is independent of the Dalitz plot

variables, as it is independent of the decay mode chosen for analysis.

If a Dalitz plot region is chosen such that only one resonance contributes in that

region, then α ≈ 1. If a Dalitz plot region is chosen such that several non-overlapping
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resonances contribute, and those resonances contribute the same relative amounts to

the overall DCS and CF Dalitz plots, then again α ≈ 1.

2.4 An Analysis Strategy

The analysis of wrong-sign D0 → K+π−π0 and right-sign D0 → K−π+π0 de-

cays undertaken in this work proceeds in three sequential steps, with the ultimate goal

of searching for a signal of non-zero (x2+y2). First, we determine the overall branch-

ing ratio Γ(D0 → K+π−π0)/Γ(D0 → K−π+π0) using a maximum likelihood fit to

extract the number of signal events in the wrong-sign and right-sign samples. Second,

we examine the Dalitz structure of the DCS decays by analyzing the two-body mass

projections m(ππ0), m(Kπ0), and m(Kπ), fitting for the fraction of signal events

with contributions from Kρ, K∗π, and K∗0π0. With the new knowledge of the pop-

ulation of the DCS Dalitz plot, we conclude with a lifetime analysis on a sample of

the data selected to substantially reduce RI in Equation 2.32 and enhance sensitivity

to D mixing.
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Chapter 3

The BABAR Detector

The data used in this analysis were collected from the BABAR detector [21], a

particle detector operating on the PEP-II asymmetric storage ring at the Stanford Lin-

ear Accelerator Center (SLAC). At this facility, an electron beam of 9.0 GeV and a

positron beam of 3.1 GeV are collided. The BABAR detector has several component

systems; those that contribute to this analysis are discussed in some detail below. For

this work, there are three areas of interest: charged-track reconstruction (including at

low momentum), charged-particle identification (PID), and π0 reconstruction.

3.1 Track Reconstruction

Charged-track reconstruction (i.e. tracking) in BABAR proceeds through the tan-

dem contributions of its two inner-most sub-systems: the silicon vertex tracker (SVT)
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and the drift chamber (DCH). The SVT is designed to provide both vertexing capabil-

ities and independent tracking of low-momentum charged particles. Through careful

alignment and calibration, these two detectors support efficient high-precision track-

ing in BABAR over a broad momentum spectrum, detecting charged particles down

to transverse momenta of 50 MeV/c. The tracking system operates within a 1.5 T

solenoidal magnetic field supplied by superconducting electromagnets; the steel flux

return, making up the outermost layer of the BABAR detector, is instrumented to iden-

tify muons and detect neutral hadrons.

3.1.1 Silicon Vertex Tracker

The physics goals of BABAR require a single-vertex resolution of 80µm. In addi-

tion to vertex capabilities, the SVT must also provide stand-alone tracking of charged

particles with low transverse momentum (pt < 120 MeV/c) that will not travel far

enough from the beam axis to be accurately measured in the drift chamber.

The physical constraints at the PEP-II interaction region significantly affect the de-

sign of the SVT. Permanent dipole magnets are located at a distance of ±20 cm from

the interaction point, so the SVT must be mounted on them. The magnets limit the

acceptance angle of the detector to the range 17.2◦ < θ < 150◦. To achieve high lumi-

nosity, bunches are spaced only 4.2 ns apart, meaning hit information must be buffered

and the readout should be sparse. Finally, the anticipated radiation for the inner-most

22



580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Figure 3.1: Schematic view of the SVT: longitudinal section. The roman numerals
label the six different types of sensors.

layers is expected to be 250–400 kRad/yr on average and 1000–2000 kRad/yr in the

horizontal bending plane of the beams (caused by the permanent dipole magnets), so

the detector must be radiation hard.

The SVT consists of 5 layers of double-sided AC-coupled silicon sensors (Fig-

ure 3.1). The inner three layers are critical in providing vertex information, and we

require a single-hit resolution of 10–15µm. These sensors are arranged in a six-

sided cylindrical shape. The outer two layers provide tracking information and pat-

tern recognition that can be used with other sub-detectors or in a stand-alone manner.

These outer modules are designed in an arc shape in order to minimize the amount of

silicon required and to increase the crossing angle for detected particles near the edge

of the acceptance region. A single-hit resolution of 30–40µm is sufficient in these

modules.

The SVT has met or exceeded all of its performance design goals. Single hit reso-

lution for perpendicular tracks matches the design specifications: 10–15µm for layers
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Figure 3.2: SVT hit resolutions as a function of track incidence angle: along the beam
axis z (left) and perpendicular to the beam axis φ (right).

1–3 and 30–40µm for layers 4–5 (Figure 3.2). Hit reconstruction is typically better

than 98% for all functioning modules. Figure 3.3 (left) shows the resolution of the

reconstructed track parameters d0 and z0, which represent the distances between the

point of closest approach to the z-axis and the origin in the x-y plane and along the z-

axis, respectively. Figure 3.3 (right) shows the estimated error in the measurement of

the difference along the z-axis between the vertices of the two neutral B mesons, one

of which is fully reconstructed. The SVT provides tracking information for particles

with low transverse momentum pt � 50 MeV/c, which is important for tracking soft

pions, for example from D∗+ → D0π+.
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Figure 3.3: (Left) Resolution in the parameters d0 and z0 for tracks in multi-hadron
events as a function of the transverse momentum. (Right) Distribution of the error on
the difference ∆z between B meson vertices, one of which is fully reconstructed.

3.1.2 Drift Chamber

The primary role of the drift chamber (DCH) is to provide high-precision mo-

menta measurements for charged particles. This is important for low-background

reconstruction of exclusiveD-meson decays.

The DCH is composed of 40 layers of small hexagonal cells consisting of one

sense wire surrounded by six field wires. It is relatively small in diameter, and it

has a length of almost 3 m (Figure 3.4). With this geometry, charged particles with

transverse momenta above 180 GeV/c may have up to 40 spatial and ionization-loss

(dE/dx) measurements in this detector. The DCH also provides longitudinal spacial

measurements. This capability is due to the placement of wires in 24 of the 40 layers

at small angles relative to the primary axis.
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Figure 3.4: Schematic view of the DCH: longitudinal section.

To maximize the complementarity of devices, the DCH is designed with a thin

inner cylindrical wall so that tracks may be matched with the SVT. This consideration

applies to the outer wall as well so that performances of the outer subsystems are

not compromised. The gas used in the chamber is an 80:20 mixture of helium with

isobutane. This mixture yields an improvement in spatial resolution over past argon-

based designs. The calibrated conversion of drift time to drift distance is determined

from samples of electron and muon pairs. The effect of entrance angle has also been

studied and corrected.

The DCH has performed reasonably well, and its performance is stable. In partic-

ular, it has met its design goal for intrinsic position (140µm) and dE/dx resolution

(7%). Figure 3.5 shows dE/dx measurements as a function of track momenta in the

DCH.
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Figure 3.5: Measurement of dE/dx in the DCH as a function of track momenta. The
curves show the Bethe-Bloch predictions derived from selected control samples of
particles of different masses.

3.1.3 Tracking Performance

The tracking system reconstructs charged tracks with high efficiency and sufficient

resolution. The absolute DCH tracking efficiency is determined as the ratio of the

number of reconstructed DCH tracks to the number of tracks detected in the SVT, with

the requirement that the tracks fall within the acceptance region of the DCH. At the

design voltage of 1960 V, the efficiency averages 98%±1% per track above 200 MeV/c

and polar angle θ > 500 mrad. In particular, tracking efficiency remains high for low-

momentum tracks, and SVT-only tracking extends the track-finding capability down

to ≈ 50 MeV/c (Figure 3.6).

Charged tracks are defined by five parameters, (d0, φ0, ω, z0, tanλ), and their co-
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variance matrix. The parameters (d0, z0) have already been defined in Section 3.1.1.

The parameter φ0 is the azimuthal angle of the track, λ is the dip angle relative to

the transverse plane, and ω = 1/pt is the track curvature. The resolutions of these

parameters can be measured using cosmic-ray tracks that pass through the detector.

The cosmic-ray detector hits are fit as two separate tracks, one in each half of the de-

tector. The differences in track parameters for the two reconstructed tracks are shown

in Figure 3.7 for tracks with transverse momenta above 3 GeV/c. Based on the full

width at half maximum of these distributions, the resolutions for single tracks can be

parameterized as

σd0 = 23µm

σz0 = 29µm

σφ0 = 0.43 mrad

σtan λ = 0.53 × 10−3.

The transverse-momentum resolution is determined to be

σpt/pt = (0.13 ± 0.01)% · pt + (0.45 ± 0.03)%. (3.1)

3.2 Particle Identification

Good separation between kaons and pions is crucial for the analysis undertaken in

this work. The BABAR detector relies on ionization-loss (dE/dx) measurements in the
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tracking system for particle identification (PID) of low momentum tracks. For tracks

with transverse momentum above 700 MeV/c, BABAR has a dedicated PID system,

the detector of internally-reflected Cherenkov light (DIRC). The DIRC is a uniquely-

designed ring-imaging Cherenkov detector, and some details are given below.

3.2.1 dE/dx in the Tracking System

As noted above, the drift chamber can separate K from π with resolution of 7%

up to 700 MeV/c (Figure 3.5). In particular, for particles traveling in the extreme

backward or forward direction, this is the only discriminating information available.

Measurements of dE/dx are also available from the SVT, but in this area it plays

primarily a supporting role.

3.2.2 Detector of Internally-Reflected Cherenkov Light

Above 700 MeV/c, charged particles are identified in the dedicated PID system in

BABAR, known as the DIRC. This ring-imaging Cherenkov detector consists of 144

synthetic quartz bars oriented axially just beyond the drift chamber. Global design

requirements mandate that the PID system must be thin and uniform to minimize res-

olution degradation of the calorimeter, located just outside it. Moreover, the resolution

expectation of the DIRC is 4-σ separation between K and π.

A schematic of the important features of the DIRC is shown in Figure 3.8. The
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Figure 3.8: Schematic view of the DIRC fused silica radiator bar and imaging region.

device is designed on the principle that reflection from a flat surface preserves angular

magnitudes. The quartz bars of the DIRC serve both as radiators and as light pipes

for the portion of the light trapped by total internal reflection. The material chosen

for these bars has many important qualities, such as resistance to ionizing radiation,

long attenuation length, large index of refraction, and an excellent optical finish on the

bars themselves. These radiators are arranged in a 12-sided barrel. The asymmetry of

PEP-II produces particles in a preferentially-forward direction; therefore, the DIRC

photon detector is placed at the backward end where it does not compete for space

with front-end detecting components. Mirrors at the front end allow for this one-sided
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instrumentation.

The Cherenkov photons produced in the crystals are imaged by 11,000 conven-

tional photomultiplier tubes. These are in a standoff box that contains about 6 kilo-

liters of purified water. Water is an inexpensive material that reasonably minimizes

total internal reflection at the crystal interface. The water must be deionized and ex-

tremely pure to maintain good transparency for wavelengths down to 300 nm.

The DIRC also has a nitrogen gas system, using liquid nitrogen boil-off both to

prevent condensation on the radiators and to detect water leaks.

This clever and innovative PID device has proven to be robust and stable, and it

is well-matched to the hadronic-PID requirements of BABAR. One can appreciate the
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value of this system to physics analyses by considering Figure 3.9, which shows the

D0 → Kπ invariant mass distribution with and without K-identification information

from the DIRC. For what concerns this analysis, the K and π misidentification rates

are shown in Appendix A, Section A.3.

3.3 Reconstruction of π0

in the Electromagnetic Calorimeter

In addition to charged-particle tracks, this analysis is concerned with the recon-

struction of π0 → γγ. Neutral particles are reconstructed in BABAR by the electro-

magnetic calorimeter (EMC) that is located just outside the DIRC.

For reconstruction of π0s and other neutral particles that are not detected by the
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tracking system, the EMC is designed to efficiently measure electromagnetic showers

and to resolve energy and angles over the energy range from 20 MeV to 9 GeV.

The physics goals of the BABAR experiment demand energy resolution of the order

of 1–2%. This is the dominant contribution to the π0-mass resolution at energies

below 2 GeV. Above this energy, the angular resolution is dominant; it is therefore

required to be of the order of a few milliradians.

The EMC is a hermetic, total-absorption calorimeter, shown schematically in Fig-

ure 3.10. It consists of a fine array of thallium-doped cesium iodide (CsI(Tl)) crystals

that are read out with silicon photodiodes. The crystals are arranged in 56 rings,

and they are laid out to accommodate the asymmetry of the PEP-II facility. The

EMC crystals are calibrated at the low end of the energy spectrum with a radioactive

source, and at the high end with Bhabha events. The measured energy resolution is

σE/E = 1.9 ± 0.07% at 7.5 GeV. Figure 3.11 shows the energy resolution extracted

from a variety of processes as a function of energy. The measured angular resolution

is based on an analysis of π0 and η decays to two photons of approximately the same

energy, and it is shown in Figure 3.12. The γγ invariant mass spectrum near the π0

mass is shown in Figure 4.3 for this analysis.
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Chapter 4

Event Selection

4.1 Overview of the Selection Process

The size of the data set used for this analysis is 230.4 fb−1, collected during 2000–

2004 (Runs 1–4). The data set includes e+e− collisions at and slightly away from the

Υ (4S) resonance. The data set was always analyzed either in its entirety or randomly-

divided subsets. Specific studies of systematic variation of the data, for example stud-

ies of distributions as a function of run number or detector conditions, were not per-

formed for this analysis, although all data passed global quality measures established

by the BABAR Collaboration. Monte Carlo events were generated using detector con-

ditions sampled from characteristic periods representing the entire data set, and these

simulated events were processed with the same reconstruction and analysis software
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as the recorded data.

The selection of candidates for this analysis proceeds in two steps. The first step

is referred to as skimming, and the second step is referred to as reskimming. The

reskimming step is done separately from the skimming step so that systematic studies

of the selection criteria in the reskimming step can be performed. The skimming

step is applied to the entire recorded and simulated data sets, and it consists of a few

criteria that dramatically reduce the number of events under consideration. Because

the data sets are so large, skimming is performed in a production environment, and

the software applications are centrally organized and run by the BABAR computing

group. The reskimming step is applied to the skimmed events, and it consists of more

detailed selection criteria. In contrast to skimming, reskimming is managed by the

analyst.

Most of the selection criteria used in this analysis have been studied in detail

in related analyses performed previously by BABAR, and as standard techniques for

this sector of measurement, they are not scrutinized in detail for this work other than

for applicability. The exceptions are the criteria for selecting π0 candidates, which

were studied in some detail. The π0 selection criteria were determined by judiciously

considering the distributions in question to eliminate high-background regions.
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4.2 Skim Selection

The skimming application SkimMiniApp was run on all Run 1–4 recorded data

and simulated Monte Carlo events using the BABAR software releases 16.0.2e and

16.0.2f, producing the DmixD0ToKPiPi0 skim used for this analysis. Definitions

of the variables used in the skim selection may be found in Table 4.1. The skim

selection criteria are as follows:

• γ candidates are taken from the GoodPhotonLoose list (see Appendix A)

• 0.01 < EMC Lat < 0.8 for each γ candidate (see Figure 4.1)

• 100 MeV < Eγ for each γ candidate (see Figure 4.2)

• π0 candidates are taken from the pi0VeryLoose list (see Appendix A), re-

quiring the γ criteria above and fitting mγγ to the nominal π0 mass.

• 0.01 < π0 mass-fit p(χ2) (see Figure 4.4)

• K∓ candidates are taken from the KLHTight list (see Appendix A)

• π± candidates (from the D0) are taken from the piLHTight list (see Ap-

pendix A)

• The K∓ and π± tracks are fit to a common vertex using the FastVtx vertex

fitter
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• 1.70 < mKππ0 < 2.00 GeV/c2

• 2.2 GeV/c < p∗ (see Figure 4.5)

• 0.005 < D0 vertex-fit p(χ2) (see Figure 4.6)

• The π±
s candidates (from the D∗+) are taken from the

GoodTracksVeryLoose list (see Appendix A)

• The D0 and π±
s are fit to a common vertex at the measured beamspot using the

FastVtx vertex fitter

• 0.139 < ∆m < 0.160 GeV/c2

As one can see in Figures 4.1–4.3, the simulation of neutrals in the calorimeter

does not match the data very well. One of the dominant reasons for this is that the

γ energy scale was calibrated differently in the simulation compared to the recorded

data, and this mistake was corrected after the data was processed for this analysis.

This analysis is relatively insensitive to these Monte Carlo inaccuracies because the

two final states being compared are very similar. The only difference between the

decay modes is in the population of the Dalitz plot. It is possible that the number of

π0s selected in the two samples will have a different dependence on the π0 momentum,

but this question is addressed by determining a Dalitz-plot efficiency (Chapter 5).

The signal efficiency of this skim is estimated using cc-continuum Monte Carlo

and is listed in Table 4.2. This efficiency calculation is affected by the simulation
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Table 4.1: Definitions of skim variables

EMC Lat The lateral moment of the EMC cluster, defined as the ratio of a to b
where

a =
sum of energies of all but the two most energetic crystals
in the cluster, weighted by the square of the distance
to the cluster center

b =
sum of all cluster crystal energies weighted by r2;
r is the length scale of the crystal (5 cm)

Eγ The lab energy of a γ candidate

π0 p(χ2) The mass-fit χ2 probability from fitting mγγ to the nominal π0 mass

mKππ0 The invariant mass of the D0 → Kππ0 candidate

p∗ The center-of-mass momentum of the D0 candidate

D0 p(χ2) The vertex-fit χ2 probability from fitting the K and π tracks to a
common vertex

∆m mKππ0πs
− mKππ0 , the invariant mass difference between the D∗+

candidate and the D0 candidate

inaccuracies mentioned above, as well as a known inaccuracy in the simulated p∗

distribution; these uncertainties are not estimated or tabulated because the overall

efficiency is irrelevant for the results of this analysis. The efficiency numbers are

shown only to help understand the data sample in broad terms. The most significant

cuts made in the skim for reducing background are the p∗ requirement and the particle

identification requirements (the lists used for selecting K∓ and π±).
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Table 4.2: Estimated signal efficiency for skimming. The estimated error shown is
statistical only.

Monte Carlo
sample total events

total true
signal

candidates

reconstructed
true

signal
candidates

signal
efficiency

generic cc 13 650 000 591 700 75 661 12.79% ± 0.05%
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Figure 4.1: EMC cluster lateral moment distribution for approximately 5 fb−1 of data
and an equivalent number of weighted Monte Carlo events. All skim selection cuts
except those on the distribution above have been applied. Monte Carlo events are
shown as truth-matched distributions, in the case that the γ candidate originated from
a true π0, and in the case that it did not. A relatively large number of background
events have a value of 0.0 and are removed by requiring EMC Lat > 0.01.
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Figure 4.6: D0 vertex-fit χ2 probability distribution for approximately 5 fb−1 of data
and an equivalent number of weighted Monte Carlo events. The distribution is shown
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it is not.
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4.3 Reskim Selection

The reskimming application DmixKpipi0UserApp was run on all of the

skimmed data and Monte Carlo in the DmixD0ToKPiPi0 collections described

above using the BABAR software release 16.0.3-physics-1 (analysis-24). Definitions

of the variables used in the reskim selection can be found in Table 4.3. The reskim

selection criteria are as follows:

• Candidates are taken from the list produced in the skim, described above

• 350 MeV/c < pπ0 (see Figure 4.7)

• The K∓ candidate must be included in the KLHVeryTight list (see Ap-

pendix A)

• The π± candidate (from theD0) must be included in the piLHVeryTight list

(see Appendix A)

• The π±
s candidate (from theD∗+) is selected only if it has hits in the drift cham-

ber

• The entire decay chain is fit using the TreeFitter fitter

• 0.01 < p(χ2) (see Figure 4.8)

• 1.70 < mKππ0 < 2.00 GeV/c2 (value is obtained from the full decay chain fit)
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Table 4.3: Definitions of reskim variables

pπ0 The π0 lab-momentum magnitude

p(χ2) The χ2 probability of the fit to the entire decay chain: D∗+ → D0π+

(common vertex constrained to be at the measured beamspot),D0 →
Kππ0 (common vertex for the tracks), π0 → γγ (π0 mass con-
strained to the PDG value).

• 2.4 GeV/c < p∗ (see Figure 4.5)

• 0.139 < ∆m < 0.155 GeV/c2 (value is obtained from the full decay chain fit)

After the above selection criteria have been applied, often there remain two or

more candidates in an event. Those candidates that have a track or cluster in com-

mon are referred to as overlapping candidates. The following checks are applied to

overlapping candidates in an event to select a single candidate.

1. If two π0 candidates share a γ, the π0 in the decay with the higher p(χ2) value

is selected. Approximately 5% of events exhibit this.

2. If twoD0 candidates share a π0, theD0 in the decay with the higher p(χ2) value

is selected. Approximately 2% of events exhibit this.

3. Consider two D∗+ candidates reconstructed as follows:

D∗+ → D0π+
1 , D

0 → K−π+
2 π

0

D∗+ → D0π+
2 , D

0 → K−π+
1 π

0
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It is found that the ambiguity can be resolved correctly in 90% of these cases

by choosing the candidate that has mass values mKππ0 and ∆m closer to the

expected signal values. This ambiguity occurs in cases where the D0 decays

through the channel D0 → K−ρ+. If the ρ+ is emitted in the direction of the

D0 momentum, its consequent longitudinal decay will often produce a π+ that

is traveling with almost the same momentum magnitude and direction as the π+

from the D∗+ decay. Approximately 6% of events exhibit this.

4. If two D∗+ candidates share either a D0 or a π+
s candidate, the D∗+ with the

higher p(χ2) value is selected. Approximately 0.6% of events exhibit this.

5. If two D0 candidates share one track and one π0, the D0 with the higher p(χ2)

value is selected. Fewer than 0.1% of events exhibit this.

6. If two D0 candidates share both tracks, the D0 with the higher p(χ2) value is

selected. Fewer than 0.05% of events exhibit this.

Approximately 0.15% of events have two reconstructed D∗+ candidates with no

shared tracks or clusters. In these cases, both of the candidates are kept. This fraction

agrees generally with expectations, based on charm fragmentation and the branching

fractions involved.

An unusual selection criterion was considered for this analysis:

• If a D0 can be associated with either a π+ (right-sign) or a π− (wrong-sign),
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the right-sign combination is selected, as its prior probability is two orders of

magnitude higher. Approximately 7% of wrong-sign events exhibit this.

This selection, though not used, was studied to determine its potential bias on the

doubly Cabibbo-suppressed (DCS) D0 → K+π−π0 branching ratio measurement. It

was found that 0.5% of DCS signal events are eliminated, but 10% of background

events due to Cabibbo-favored D0 → K−π+π0 decays with an uncorrelated π∓
s are

also removed. If the mixing portion of this analysis is repeated in the future, it is

recommended that this selection be included. Since this work includes explicitly a

branching ratio measurement, this technique was omitted for clarity.

As with the skim, the reskim efficiency is estimated using cc-continuum Monte

Carlo and is listed in Table 4.4. Combining the efficiencies for the skim and the

reskim, the estimated overall signal efficiency for the event selection is

εskimεreskim = 6.26% ± 0.03%. (4.1)
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Table 4.4: Estimated signal efficiency for reskimming. The estimated error shown is
statistical only.

Monte Carlo
sample total events

total true
signal

candidates

reconstructed
true

signal
candidates

signal
efficiency

generic cc
(skimmed)

6 451 799 3 030 691 1 483 826 48.96% ± 0.04%
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Figure 4.7: π0 lab momentum distribution for all of the skimmed data and Monte
Carlo, where the Monte Carlo distributions have been rescaled to match the number
of events in data. The dotted vertical line shows the reskim cut on this distribution.
All skim selection cuts, and reskim selection cuts on p∗, p(χ2), mKππ0 , and ∆m, have
been applied. Monte Carlo events are shown as truth-matched distributions, in the
case that the π0 candidate is a true π0, and in the case that it is not.
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Chapter 5

Dalitz-Plot Efficiency

Reconstruction efficiencies for the doubly Cabibbo-suppressed (DCS)

D0 → K+π−π0 decay and the Cabibbo-favored (CF) D0 → K−π+π0 decay

are very similar, since in both cases the same basic decay tree is being reconstructed.

The only significant difference between the CF and DCS decays is the manner in

which they populate the Dalitz plot. In order to account for this difference when

determining final values, a Dalitz-plot efficiency correction is applied to the data.

This correction does not need to be correct on an absolute scale, since in all cases of

interest, final values involve only ratios of DCS values to CF values.

The Dalitz-plot efficiency is evaluated separately for

D∗+ → D0π+
s , D

0 → K−π+π0 (5.1)

D∗− → D0π−
s , D

0 → K+π−π0 (5.2)
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using 2.3× 106 simulated D∗+ events and 2.3× 106 simulated D∗− events, where the

D∗+ and D∗− are allowed to decay isotropically. For each of the two decays above,

two samples are collected: a generated sample, and a reconstructed sample.

The generated sample comprises all generated signal decays, identified using the

truth information stored with the simulated event. For this sample, the momenta of

the particles are generated values, not reconstructed values. Therefore, this sample

has a sharp, well-defined Dalitz-plot boundary.

The reconstructed sample comprises reconstructed candidates that have passed

all of the analysis selection criteria. Since the momenta of these candidates are the

reconstructed values, the Dalitz-plot boundary is smeared by the detector resolution.

In order to have a well-defined Dalitz-plot boundary, these candidates are fitted with a

D0-mass constraint after passing all of the normal selection criteria, and the momenta

of the K,π, and π0 after applying the mass constraint are used.

The Dalitz plot in m2(ππ0) and m2(Kπ0) is binned with 50 divisions on 0.0 <

m2(ππ0) < 2.0 and 75 divisions on 0.0 < m2(Kπ0) < 3.2 (where m2 is in units of

[GeV/c2]2). For each decay, this results in approximately 1200 generated events per

bin (Figure 5.1). Bins containing fewer than 1000 generated events are removed, so

that the low-statistics bins on the boundary do not affect the fit.

The Dalitz-plot efficiency is obtained by dividing the binned reconstructed sample
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by the binned generated sample. For each efficiency bin, the bin error is given by

σε =
1

N2
g

√
NgNr(Ng −Nr), (5.3)

where Ng is the number of generated events and Nr is the number of reconstructed

events in that bin. A two-dimensional, third-order polynomial is fit to the binned

efficiency by minimizing the χ2 value. The polynomial is parameterized as

ε(x, y) = a0

(
1 + a1x+ a2y + a3x

2 + a4y
2 + a5xy

+ a6x
3 + a7y

3 + a8xy
2 + a9x

2y
)

. (5.4)

For the D∗+ decay, χ2 = 2386 for 1932 bins; for the D∗− decay, χ2 = 2429 for

1928 bins. Both the raw binned efficiency and the fitted efficiency polynomial for the

D∗+ decay are shown in Figure 5.2, and the projections of the efficiency are shown in

Figure 5.3. Pull distributions for the fit are shown in Figure 5.4, and they confirm that

the polynomial describes the efficiency well.

There are a couple of aspects of this method for determining efficiency that may

cause concern. First, it is assumed that a simulated candidate will be reconstructed in

the same efficiency bin in which it was generated. This is believed to be an insignif-

icant effect because of the D0-mass constraint applied to the candidates considered

in this efficiency study. However, this assumption has not been explicitly verified.

Second, to the extent that the treatment of π0s in simulated events and in recorded

data is different, the binned efficiency may not accurately reflect the actual Dalitz-
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plot efficiency. The absolute π0 reconstruction efficiency in BABAR is only known

with an accuracy of (at best) ±5%. For the overall D0 → K+π−π0 branching ratio

measurement, it is expected that this uncertainty will cancel to a substantial extent.

This is because there is an approximate symmetry between the DCS and CF Dalitz

plots with respect to π0s. To see this, consider the simple case where the DCS Dalitz

plot is the same as the CF Dalitz plot after exchanging K with π. When applying an

efficiency correction, both the variation in the efficiency and the dominant uncertainty

are associated with the π0; therefore, in this simple case, the systematic uncertainties

in the efficiency correction will cancel when forming DCS-to-CF ratios. Indeed, an

approximate symmetry applies to the efficiency correction (Figure 5.3) as well as the

physical resonance structures observed in data (see Chapter 9). Furthermore, the effi-

ciency correction applied to the branching ratio in Chapter 8 amounts to a change of a

relative 3% in the final result, which demonstrates that the efficiency correction affects

the DCS and CF decays similarly. Thus, it is asserted that the uncertainty due to π0

reconstruction efficiency is effectively absorbed by the overly conservative systematic

uncertainty in the efficiency correction for the branching ratio measurement.
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Chapter 6

Maximum Likelihood Fit to mKππ0

and ∆m Distributions

6.1 Introduction

The final separation of candidates into signal and background categories is accom-

plished by means of an unbinned maximum likelihood fit. In addition to allowing the

shape parameters to vary during the minimization process, the numbers of candidates

in the various signal and background categories are also allowed to vary. The prob-

ability of obtaining a particular number of candidates in a certain category obeys a

Poisson distribution. The likelihood function is thus defined as

L(�x, �p, n1, ..., nm) =
exp(−∑m

j=1 nj)

N !

N∏
i=1

(
m∑

j=1

njPj(�x, �p)

)
, (6.1)
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where �x is the vector of observable dependent variables, �p is the vector of shape pa-

rameters, n1...nm are the numbers of candidates in the m signal and background cat-

egories, N is the total number of candidates, and Pj(�x, �p) are the probability density

functions (PDFs) of the m categories.

The two observables in the fit are

• mKππ0 , the mass of the reconstructed D0 candidate

• ∆m ≡ mKππ0πs
−mKππ0 , the mass difference between the D∗+ and D0 candi-

dates.

A two-dimensional fit is necessary because each distribution has a significant peaking

background in the signal region. These backgrounds are described below. In order

to reduce systematic uncertainties due to the shapes used in the fit, the same signal

shape is used for both the Cabibbo-favored right-sign sample and the doubly Cabibbo-

suppressed or mixed wrong-sign sample, and the two samples are fit simultaneously.

The ratio between the fitted numbers of signal candidates in the two samples is thus

not biased by imperfect knowledge of the exact signal shape. One might argue that

the signal shapes for right-sign and wrong-sign signal events may be slightly different

because the Dalitz plots are populated differently, and hence the π0 candidates in the

two samples have slightly different momentum distributions, which may affect the

signal shape. However, comparison of the fit projections in Figure 6.10 with those in

Figure 6.11 demonstrates that the signal shapes are in fact the same.
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6.2 Descriptions of Fit Categories and Probability

Density Functions

6.2.1 Signal

The signal category describes candidates that come from the decays

D∗+ → D0π+
s

D0 → K∓π±π0 (+ C.C.). (6.2)

The distributions of both mKππ0 and ∆m have significant peaks for these candidates.

The peak in the mKππ0 distribution is wider than the mass distribution obtained when

reconstructing a D0 candidate using only charged tracks, as in D0 → K−π+. This

broadened peak is due to the greater uncertainty in reconstructing the π0 momentum.

The ∆m peak is much narrower, as the uncertainty in the reconstruction of the D0

candidate is absent to first order. However, as shown in Figure 6.1, there is some

correlation between the mKππ0 and ∆m distributions. The width of the ∆m distribu-

tion depends on the distance from the mKππ0 distribution mean. The large number of

events in the right-sign sample makes this correlation statistically relevant.

The two-dimensional PDF used to describe the signal category is illustrated in

Figure 6.2 with projections onto the mKππ0 and ∆m axes. The shapes used as com-
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ponents of the PDF are

g(x; x, σ) = exp

(
−(x− x)2

2σ2

)
(6.3)

cbs(x; x, σ, α) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp
(
− (x−x)2

2σ2

)
if (x−x)

σ
< α

a
(
b+ (x−x)

σ

)−2

if (x−x)
σ

≥ α

(6.4)

α > 0, a = (2/α)2 exp(α2/2), b = (2/α) − α

s(x, y; x, σx, y, σy, c) =

exp

(
−(x− x)2

2σ2
x

)
exp

(
− (y − y)2

2 (σy + c((x− x)/σx)2)2

)
. (6.5)

Given the component shapes defined in Equations 6.3–6.5, the complete signal PDF

is

S(m,∆m) = fs1 · s1

+ (1 − fs1) · {fs2 · s2 + (1 − fs2) · [fs3 · s3 + (1 − fs3) · s4]} (6.6)
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with parameters fs1, fs2, fs3 , and where

s1 = s(m,∆m;m1, σm1,∆m1, σ∆m1, c1)

s2 = s(m,∆m;m2, σm2,∆m2, σ∆m2, c2)

s3 = s(m,∆m;m3, σm3,∆m3, σ∆m3, c3)

s4 = g(m;m4, σm4) × cbs(∆m; ∆m4, σ∆m4, α4).

6.2.2 Non-Peaking Background

The background category that does not peak in either the mKππ0 or ∆m distri-

butions, also referred to as the combinatoric category, describes uncorrelated tracks

and clusters that have been combined to make a candidate. The ∆m distribution is

described using

a(x; c) = x
√

(x/x0)2 − 1 exp
(−c ((x/x0)

2 − 1
))

, (6.7)

where x0 = 0.13957 GeV/c2 is the kinematic endpoint. Since the right-sign and

wrong-sign distributions have different contributions from non-peaking sources, the

two samples will in general have different values of c, which determines the specific

shape. The mKππ0 distribution is described by a straight line. The complete combina-

toric PDF is

C(m,∆m) = (1 + b1(m− 1.865 GeV/c2)) × a(∆m; c). (6.8)
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6.2.3 mKππ0 Peaking Background

The background category that peaks in the mKππ0 distribution, also referred to

as the bad-D∗+ category1, describes candidates with a signal D0 decay but with an

uncorrelated π±
s . The peaking shape is therefore the same as for the signal category,

and the shape used is a one-dimensional version of Equation 6.6. This background is

particularly problematic for the wrong-sign sample, since there are more candidates

in this category than in the signal category. Because this background consists of

real right-sign D0 decays, distributions with structure that are different between the

right-sign and wrong-sign samples are difficult to interpret. Two important examples

are the decay-time distributions and the Dalitz plots. A procedure for reducing this

background is discussed in Chapter 7. The complete bad-D∗+ PDF is

F(m,∆m) = fs1 · s1D,1 + (1 − fs1) · {fs2 · s1D,2

+ (1 − fs2) · [fs3 · s1D,3 + (1 − fs3) · s1D,4]} × a(∆m; c) (6.9)

1In previous D-mixing analyses, this category has also been called the fake slow π category.
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with parameters fs1, fs2, fs3 , and where

s1D,1 = g(m;m1, σm1)

s1D,2 = g(m;m2, σm2)

s1D,3 = g(m;m3, σm3)

s1D,4 = g(m;m4, σm4).

6.2.4 ∆m Peaking Background

The background category that peaks in the ∆m distribution, also referred to as the

bad-D0 category, describes candidates from several distinct sources. First, there are

candidates comprising a combinatoric D0 candidate and a π±
s that came from a real

D∗+ decay. This background does not peak sharply, and it can be described with an

Argus shape (Equation 6.7). As a practical matter, this background is absorbed into

the combinatoric category instead of introducing another Argus shape. Second, there

are candidates comprising a real D0 and a real π±
s , both from a D∗+ decay, but the

D0 has been reconstructed badly. An example of this would be D0 → K−π+π0π0

where one of the π0 candidates is missing. This background does not peak as sharply

as the signal category, but it is narrow enough to require a Gaussian-like shape instead

of an Argus shape. Finally, the wrong-sign sample contains a small level of doubly

65



misidentified tracks, where the K− has been called a π− and the π+ has been called a

K+.

The peaking ∆m shape is

cbb(x; x, σ, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
− (x−x)2

2σ2

)
if (x−x)

σ
< α

a
(
b+ (x−x)

σ

)−1

if (x−x)
σ

≥ α

(6.10)

α > 0, a = (1/α) exp(α2/2), b = (1/α) − α

and the complete bad-D0 PDF is

B(m,∆m) = (1 + b1(m− 1.865 GeV/c2)) × cbb(∆m; ∆m1, σB, αB). (6.11)

6.3 Fit Results

The final fit of the combined PDF described above is shown compared with the

data in Figures 6.3–6.14. In order to evaluate the quality of the fit, consider the quan-

tity, calculated for each bin in a histogram,

±
√
χ2

i ≡ Ni − PDFi√
Ni

(6.12)

where i spans the bins in the histogram, Ni is the number of events in the ith bin,

and PDFi is the integral of the probability density function over that bin. The PDF is

normalized to the total number of events in the data set. The fit quality is evaluated by

considering the histogram of ±√χ2 values. Such a histogram reveals any systematic
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variations between the fitted PDF and the data. A high-quality fit will have minimal

significant systematic variations.

The numbers of fitted signal events are found in Table 6.1.

Table 6.1: Results of the maximum likelihood fit to data.

wrong-sign signal events: (2.09 ± 0.08) × 103

right-sign signal events: (1.0023 ± 0.0011) × 106

R ≡ Γ(D0 → K+π−π0)

Γ(D0 → K−π+π0)
: (0.208 ± 0.008)%
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Figure 6.3: Projections of the maximum likelihood fit to all the right-sign data onto
mKππ0 (left) and ∆m (right).
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Figure 6.4: Projections of the maximum likelihood fit to all the right-sign data in
the signal region onto mKππ0 (left) and ∆m (right). The mKππ0 projection requires
0.145 < ∆m < 0.146 GeV/c2, and the ∆m projection requires 1.85 < mKππ0 <
1.88 GeV/c2.
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Figure 6.5: Projection of the maximum likelihood fit to all the right-sign data onto
mKππ0 in the far-sideband regions of the ∆m distribution. The left sideband (left)
requires 0.13957 < ∆m < 0.143 GeV/c2, and the right sideband (right) requires
0.149 < ∆m < 0.155 GeV/c2.
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Figure 6.6: Projection of the maximum likelihood fit to all the right-sign data onto
mKππ0 in the near-sideband regions of the ∆m distribution. The left sideband (left)
requires 0.143 < ∆m < 0.145 GeV/c2, and the right sideband (right) requires
0.146 < ∆m < 0.149 GeV/c2.
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Figure 6.7: Projection of the maximum likelihood fit to all the right-sign data onto
∆m in the far-sideband regions of the mKππ0 distribution. The left sideband (left)
requires 1.74 < mKππ0 < 1.81 GeV/c2, and the right sideband (right) requires 1.91 <
mKππ0 < 1.98 GeV/c2.

±√ χ
2

C
an

di
da

te
s

/1
00

ke
V
/c

2

0.14 0.145 0.15 0.155
-15

-2.5

10
0.14 0.145 0.15 0.155

0

5000

10000

15000

0.14 0.145 0.15 0.155
0

5000

10000

15000
Data
RS Signal
Bad D0
Bad D*+
Comb.

∆m [GeV/c2]

±√ χ
2

C
an

di
da

te
s

/1
00

ke
V
/c

2

0.14 0.145 0.15 0.155
-15

-2.5

10
0.14 0.145 0.15 0.155

0

5000

10000

15000

0.14 0.145 0.15 0.155
0

5000

10000

15000

Data
RS Signal
Bad D0
Bad D*+
Comb.

∆m [GeV/c2]

Figure 6.8: Projection of the maximum likelihood fit to all the right-sign data onto
∆m in the near-sideband regions of the mKππ0 distribution. The left sideband (left)
requires 1.81 < mKππ0 < 1.85 GeV/c2, and the right sideband (right) requires 1.88 <
mKππ0 < 1.91 GeV/c2.
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Figure 6.9: Projections of the maximum likelihood fit to all the wrong-sign data onto
mKππ0 (left) and ∆m (right).
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Figure 6.10: Projections of the maximum likelihood fit to all the wrong-sign data in
the signal region onto mKππ0 (left) and ∆m (right). The mKππ0 projection requires
0.145 < ∆m < 0.146 GeV/c2, and the ∆m projection requires 1.85 < mKππ0 <
1.88 GeV/c2.
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Figure 6.11: Projection of the maximum likelihood fit to all the wrong-sign data onto
mKππ0 in the far-sideband regions of the ∆m distribution. The left sideband (left)
requires 0.13957 < ∆m < 0.143 GeV/c2, and the right sideband (right) requires
0.149 < ∆m < 0.155 GeV/c2.
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Figure 6.12: Projection of the maximum likelihood fit to all the wrong-sign data
onto mKππ0 in the near-sideband regions of the ∆m distribution. The left sideband
(left) requires 0.143 < ∆m < 0.145 GeV/c2, and the right sideband (right) requires
0.146 < ∆m < 0.149 GeV/c2.
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Figure 6.13: Projection of the maximum likelihood fit to all the wrong-sign data
onto ∆m in the far-sideband regions of the mKππ0 distribution. The left sideband
(left) requires 1.74 < mKππ0 < 1.81 GeV/c2, and the right sideband (right) requires
1.91 < mKππ0 < 1.98 GeV/c2.
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Figure 6.14: Projection of the maximum likelihood fit to all the wrong-sign data
onto ∆m in the near-sideband regions of the mKππ0 distribution. The left sideband
(left) requires 1.81 < mKππ0 < 1.85 GeV/c2, and the right sideband (right) requires
1.88 < mKππ0 < 1.91 GeV/c2.
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Chapter 7

Event-Level Flavor Tagging

7.1 Motivation for a Second Flavor Tag

While the event-selection procedure described in Chapter 4 results in a clean sam-

ple of right-sign D0 → K−π+π0 decays, the wrong-sign D0 → K+π−π0 sample still

has a relatively small signal-to-background ratio. This does not pose a problem for

determining the wrong-sign decay rate since the maximum likelihood fit can accu-

rately separate the signal from the background. However, because the wrong-sign

background is predominantlyD0 → K−π+π0 decays associated with an uncorrelated

π∓, distributions that have structure become hard to interpret. Two classes of observ-

ables of particular interest for a D-mixing search are the decay-time distribution and

the resonance contributions. The wrong-sign decay-time distribution is largely popu-

74



lated with real D0 decays that tend to obscure the small deviation from an exponential

shape characteristic of mixing. The wrong-sign resonance contributions will show

significant structure from mis-tagged right-sign decays, and this structure is the same

as that from mixed events. Since a goal of this analysis is to use the Dalitz distri-

butions of the two decays to enhance the sensitivity to D mixing, it is important to

eliminate as much structured background due to right-sign decays as possible.

In the decay reconstruction, the charge of the (soft) π±
s from the D∗+ is used to

tag the D0 decay as either right-sign or wrong-sign. The following sections describe

methods for using information in the event hemisphere opposite to the one in which

the D∗+ is reconstructed to provide a second, event-level flavor tag. This second

tag provides a consistency check on the π±
s tag in order to remove mis-tagged right-

sign decays from the wrong-sign distributions. Because the wrong-sign sample has

relatively low statistics, an emphasis is placed on preserving signal efficiency at the

cost of keeping some level of tag impurity.

The various flavor-tag efficiencies described below were tuned and evaluated using

the standard measure S/
√
S +B on wrong-sign events in data. The signal (S) and

background (B) levels were extracted from maximum likelihood fits to the tagged data

sets. The background considered is only the bad-D∗+ category (see Section 6.2.3).

This is the category of background events that peaks in the mKππ0 distribution and

the suppression of which is the primary goal of using an event tag. Using wrong-sign
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data for tuning the flavor tags will not introduce a bias in an analysis that depends on

the decay-time or Dalitz distributions as long as those distributions are not considered

(even indirectly) during the tuning procedure. The final criteria were chosen to yield

a tagged data set with S/
√
S +B comparable to its value before tagging.

7.2 π∓opp Tag Selection

The π∓
opp tag assumes that given a reconstructedD∗+ candidate, the opposite hemi-

sphere of the event contains an unreconstructed D∗− candidate. A search is made

for the π− coming from that decay. Because half of the event has already been re-

constructed as containing a D∗+, we can make a good guess as to the direction and

magnitude of the expectedD∗−. Also, because we expect to make a better assumption

about the direction of the expected D∗− momentum, compared to the magnitude of

the D∗− momentum, the π∓
opp momentum in the assumed D∗− rest frame is projected

onto the axes parallel to and orthogonal to the D∗− momentum direction. The mo-

mentum of the π− in the D∗− rest frame should be near 40 MeV/c, a relatively low

value that we can use to constrain the search.

Variables used in the selection of a π∓
opp candidate are defined in Table 7.1. To

estimate the D∗− rest frame, �pest, the following method is used:

1. The reconstructed D∗+ candidate is boosted to the CM frame to get �preco.
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Table 7.1: Definitions of π∓
opp variables

�preco the momentum of the reconstructed D∗+ candidate in the center-of-
mass (CM) frame

�pest the estimated momentum of the assumed D∗− candidate in the CM
frame

xp (p/pmax), where in our specific case p = |�pest| and pmax =
4.89 GeV/c, the maximum possible momentum magnitude for a
D∗− in the BABAR detector.

p(χ2) the χ2 probability of the track fit to the D∗+ vertex

|�pDS| the momentum of the π∓
opp candidate in the D∗∓

est. rest frame

p shorthand for |�pDS|
p⊥ the magnitude of �pDS transverse to the �pest boost

p‖ the �pDS component parallel to the �pest boost

2. The direction of �pest is assumed to be opposite that of �preco (see Figure 7.1).

3. |�preco| is assumed to be near the average xp of the fragmentation function. We

use xp = 0.6.

4. Using the assumed direction and magnitude, we construct �pest.

A π∓
opp candidate is selected by iterating over a list of tracks. Each track is refit so

that it intersects the vertex of the reconstructed D∗+ candidate. The track is boosted

to the estimated D∗− rest frame. We define �pDS as the track momentum in the D∗−

rest frame. The following selection criteria are required:
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Figure 7.1: Angular difference between the estimated D∗− direction and the true D∗−

direction in Monte Carlo events, cos(∆θ) ≡ (�pest · �ptrue)/(|�pest||�ptrue|). This angular
difference indicates the accuracy of the assumption that the D∗− flies in the opposite
direction from the reconstructed D∗+ (in the center-of-mass frame) when searching
for π∓

opp candidates in the opposite hemisphere. Only events for which the π∓
opp candi-

date originated from a real D∗∓ are shown.

• Input candidates are selected from the GoodTracksVeryLoose list (see Ap-

pendix A)

• p(χ2) > 0.001

• p⊥ < 80 MeV/c (see Figure 7.2)

• −80 < p‖ < 75 MeV/c (see Figure 7.3)

• p < 90 MeV/c (see Figure 7.4)

If more than one candidate is selected by the above requirements, then the candidate

with momentum magnitude closest to the expected magnitude is chosen.
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Figure 7.2: π∓
opp p⊥ distribution in data and weighted Monte Carlo for events in

which a π∓
opp candidate is found in the opposite hemisphere. p⊥ is the magnitude

of �pDS transverse to the �pest boost. Monte Carlo truth-matched distributions illus-
trate events for which the π∓

opp candidate originated from a real D∗∓ (MC True
Tag) and those for which the candidate did not (MC False Tag). The vertical line
shows the cut on this distribution. The primary hemisphere contains decays re-
constructed as D∗+ → D0π+, D0 → K−π+π0, satisfying the mass requirements
1.81 < mKππ0 < 1.91 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.

7.3 K±
opp Tag Selection

A K±
opp candidate is found by looking for a high-momentum K± in the event

hemisphere opposite the one in which theD∗+ is reconstructed. TheK+ is assumed to

come from a Cabibbo-favored decay of aD0 or aD−. Because the rate of producing a

wrong-chargeK∓ from a charm decay is suppressed, and because theK identification

in the BABAR detector is both clean and efficient, this tag was expected to work well

without imposing additional constraints. Studies confirmed this expectation, and the

method for finding this candidate is simply to find the highest momentum candidate,
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Figure 7.3: π∓
opp p‖ distribution in data and weighted Monte Carlo for events in which

a π∓
opp candidate is found in the opposite hemisphere. p‖ is the �pDS component parallel

to the �pest boost. Monte Carlo truth-matched distributions illustrate events for which
the π∓

opp candidate originated from a real D∗∓ (MC True Tag) and those for which
the candidate did not (MC False Tag). The vertical lines show the cuts on this dis-
tribution. The primary hemisphere contains decays reconstructed as D∗+ → D0π+,
D0 → K−π+π0, satisfying the mass requirements 1.81 < mKππ0 < 1.91 GeV/c2 and
0.1444 < ∆m < 0.1464 GeV/c2.

if any, in the KLHVeryTight candidate list (see Appendix A). The center-of-mass

momentum spectrum is shown in Figure 7.5.

7.4 e∓opp Tag Selection

A e∓opp candidate is found by looking for a high-momentum e∓ in the event hemi-

sphere opposite the one in which theD∗+ is reconstructed. The e− is assumed to come

from a semileptonic decay of either a D0 or a D−. The following criteria are required

for selecting an e∓opp candidate:
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Figure 7.4: π∓
opp �pDS distribution in data and weighted Monte Carlo for events in which

a π∓
opp candidate is found in the opposite hemisphere. �pDS is the π∓

opp momentum in the
D∗∓

est. rest frame. Monte Carlo truth-matched distributions illustrate events for which
the π∓

opp candidate originated from a real D∗∓ (MC True Tag) and those for which
the candidate did not (MC False Tag). The vertical line shows the cut on this dis-
tribution. The primary hemisphere contains decays reconstructed as D∗+ → D0π+,
D0 → K−π+π0, satisfying the mass requirements 1.81 < mKππ0 < 1.91 GeV/c2 and
0.1444 < ∆m < 0.1464 GeV/c2.

• Input candidates are selected from the PidLHElectrons list

(see Appendix A)

• m2 > 0.01 [GeV/c2]2, where m2 is the squared mass when the 4-momentum of

the e∓ candidate is combined with that of another candidate on the list

If there is more than one candidate for which the above requirements are satisfied,

the candidate with the highest momentum is chosen. The center-of-mass momentum

spectrum is shown in Figure 7.6.
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Figure 7.5: K±
opp center-of-mass momentum distribution in data and weighted Monte

Carlo for events in which a K±
opp candidate is found in the opposite hemisphere.

Monte Carlo truth-matched distributions illustrate events for which the K+ can-
didate originated from a real D0 or D− (MC True Tag) and those for which the
candidate did not (MC False Tag). The primary hemisphere contains decays re-
constructed as D∗+ → D0π+, D0 → K−π+π0, satisfying the mass requirements
1.81 < mKππ0 < 1.91 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.

7.5 µ∓opp Tag Selection

The µ∓
opp candidate is found by looking for a high-momentum µ∓ in the event

hemisphere opposite the one in which the D∗+ is reconstructed. The µ− is assumed

to come from a semileptonic decay of either a D0 or a D−. The sample is made

reasonably clean by simply choosing the highest momentum candidate, if any, in the

muNNVeryTightFakeRate candidate list (see Appendix A). The center-of-mass

momentum spectrum is shown in Figure 7.7.
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Figure 7.6: e∓opp center-of-mass momentum distribution in data and weighted Monte
Carlo for events in which a e∓opp candidate is found in the opposite hemisphere.
Monte Carlo truth-matched distributions illustrate events for which the e− candi-
date originated from a real D0 or D− (MC True Tag) and those for which the
candidate did not (MC False Tag). The primary hemisphere contains decays re-
constructed as D∗+ → D0π+, D0 → K−π+π0, satisfying the mass requirements
1.81 < mKππ0 < 1.91 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.

7.6 Tag Efficiencies

In order to calculate the signal and background efficiencies in the wrong-sign sam-

ple for the various tags, a maximum likelihood fit is applied to the data sets using the

probability density functions described in Chapter 6. The fit returns the number of

events in the signal (S) category and the bad-D∗+ (B) category, and using these num-

bers, efficiencies and the metric S/
√
S +B are calculated. The fit is performed using

the ranges 1.74 < mKππ0 < 1.98 GeV/c2 and 0.13957 < ∆m < 0.155 GeV/c2. The

value of S/
√
S +B is obtained using the ranges 1.74 < mKππ0 < 1.98 GeV/c2 and

0.1444 < ∆m < 0.1464 GeV/c2 so that only the signal region in the ∆m distribution

83



C
an

di
da

te
s

/3
0

M
eV
/c

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

800

Data
Monte Carlo
MC True Tag
MC False Tag

µ∓ Center-of-Mass Momentum [GeV/c]

Figure 7.7: µ∓
opp center-of-mass momentum distribution in data and weighted Monte

Carlo for events in which a µ∓
opp candidate is found in the opposite hemisphere.

Monte Carlo truth-matched distributions illustrate events for which the µ− candi-
date originated from a real D0 or D− (MC True Tag) and those for which the
candidate did not (MC False Tag). The primary hemisphere contains decays re-
constructed as D∗+ → D0π+, D0 → K−π+π0, satisfying the mass requirements
1.81 < mKππ0 < 1.91 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.

is considered.

In addition to creating event tags that are consistent with the charge of the recon-

structed D∗+ candidate, the tagging methods described above can be used to create

tags that are inconsistent with the reconstructed candidate. These latter tags may be

used to veto events that would otherwise be accepted by one of the consistent-type

tags.

Tables 7.2–7.4 list the efficiencies for each of the tags by themselves and in con-

junction with various vetoes from inconsistent-type tags. Based on these findings, we

choose to use the following tag combination:
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• K±
opp tag with a K∓

opp veto (pveto > 1.0 GeV/c)

• π∓
opp tag, with a K∓

opp veto (pveto > 1.0 GeV/c) if there is only one K in the event

hemisphere

• e∓opp tag, with a K∓
opp veto (pveto > 1.0 GeV/c) if there is only one K in the event

hemisphere

• µ∓
opp tag, with a K∓

opp veto (pveto > 1.0 GeV/c) if there is only one K in the event

hemisphere

The above combination of tags corresponds to the last entry in Table 7.4. The overall

signal efficiency is 46.4% and the efficiency of the bad-D∗+ background category is

10.9%.

The sums of the individual rates do not add up to the overall rates because some

events contain more than one tag. The tagging does not provide any improvement in

the right-sign sample, but it eliminates a significant amount of background from the

wrong-sign sample. Figure 7.8 illustrates how this tagging method affects the mKππ0

distribution for the wrong-sign sample in data. Figure 7.9 illustrates the effect in the

∆m distribution.

Before tagging, the value of S/
√
S +B is 30.7. After tagging with the combina-

tion above, the value is 27.0. There is a slight loss in the statistical significance of the

signal compared with the peaking background in question. However, our interest is in
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Table 7.2: Tag efficiencies for various configurations of the K±
opp tag and K∓

opp veto.

signal (S)
efficiency

bad-D∗+ (B)
efficiency S/

√
S +B

K±
opp tag alone 34.1% 8.5% 23.0

K±
opp tag and only one K in

hemisphere
29.6% 4.3% 22.4

K±
opp tag with K∓

opp veto
(pveto > 0.0 GeV/c)

30.0% 4.5% 22.6

K±
opp tag with K∓

opp veto
(pveto > 0.5 GeV/c)

30.7% 5.1% 22.6

K±
opp tag with K∓

opp veto
(pveto > 1.0 GeV/c)

32.6% 6.6% 23.0

K±
opp tag with K∓

opp veto
(pveto > 1.5 GeV/c)

33.3% 7.7% 22.9

K±
opp tag with K∓

opp veto
(pveto > 2.0 GeV/c)

33.4% 8.2% 22.8

Table 7.3: Tag efficiencies for various configurations of the π∓
opp tag and K∓

opp and π±
opp

vetoes.

signal (S)
efficiency

bad-D∗+ (B)
efficiency S/

√
S +B

π∓
opp tag alone 13.7% 3.7% 14.4

π∓
opp tag with π±

opp veto 13.2% 3.1% 14.4

π∓
opp tag with K∓

opp veto
(pveto > 1.0 GeV/c)

13.3% 3.0% 14.5

π∓
opp tag, with K∓

opp veto
(pveto > 1.0 GeV/c)
if only one K in hemisphere 13.3% 3.1% 14.5
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Table 7.4: Tag efficiencies for various configurations of the combined tags and K∓
opp

veto.

signal (S)
efficiency

bad-D∗+ (B)
efficiency S/

√
S +B

K±
opp, π∓

opp, e∓opp, and µ∓
opp tags

with no veto
48.3% 13.5% 27.0

K±
opp tag with K∓

opp veto
(pveto > 1.0 GeV/c);
π∓

opp, e∓opp, and µ∓
opp tags

with K∓
opp veto

(pveto > 1.0 GeV/c)
46.3% 10.9% 26.9

K±
opp tag with K∓

opp veto
(pveto > 1.0 GeV/c);
π∓

opp, e∓opp, and µ∓
opp tags,

with K∓
opp veto

(pveto > 1.0 GeV/c)
if only one K in hemisphere 46.4% 10.9% 27.0

the statistical significance of differently defined signal distributions contained within

the overall wrong-sign signal category. These signal distributions, mainly the decay-

time and resonance contributions, are used in a search for D mixing. Therefore, by

using this event-level tagging technique, we anticipate a significant gain in sensitivity

to potential D-mixing signals.
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Figure 7.8: Projections onto the mKππ0 axis of the maximum likelihood fit to the
wrong-sign data sample before (left) and after (right) using the combined event-level
flavor tag. The shown mKππ0 projection requires 0.1444 < ∆m < 0.1464 GeV/c2.
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Figure 7.9: Projections onto the ∆m axis of the maximum likelihood fit to the wrong-
sign data sample before (left) and after (right) using the combined event-level flavor
tag. The shown ∆m projection requires 1.82 < mKππ0 < 1.90 GeV/c2.
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Chapter 8

Measurement of D0 → K+π−π0

Branching Ratio

The branching ratio

R ≡ Γ(D0 → K+π−π0)

Γ(D0 → K−π+π0)
(8.1)

is measured using the maximum likelihood fit described in Chapter 6 with an effi-

ciency correction based on the Dalitz-plot efficiency discussed in Chapter 5. Sys-

tematic uncertainties from the event selection, the maximum likelihood fit, and the

efficiency correction are estimated, and a final result is reported. The result is vali-

dated by comparison with the result obtained using the tagged data set described in

Chapter 7.
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8.1 Dalitz-Plot Efficiency Correction

As reported in Section 6.3, the uncorrected branching ratio determined by the

maximum likelihood fit is

Rfit = (0.208 ± 0.008)%. (8.2)

However, because the doubly Cabibbo-suppressed (DCS) D0 → K+π−π0 decays

populate the Dalitz plot differently from the Cabibbo-favored (CF) D0 → K−π+π0

decays, the efficiencies of the two have different functions of position in the Dalitz

plot.

Each candidate decay is assigned a signal weight [22]

wsig(�qk) =

∑4
j=1 Vsig,jPj(�qk)∑4
j=1NjPj(�qk)

(8.3)

where j spans signal (j = sig = 1) and background (j = 2, 3, 4) PDFs, �qk ≡

(mKππ0,∆m)k is the vector of dependent mass values for the kth decay, Pj(�qk) is

the value of the j th PDF evaluated for the kth decay, Nj is the j th category yield, and

Vsig,j are the covariance matrix elements of the parameters Nsig and Nj. The covari-

ance matrix Vij is not the full covariance matrix from the maximum likelihood fit, but

rather the covariance matrix for the category yields only, given by

V −1
ij =

∑
k

Pi(�qk)Pj(�qk)

(
∑4

l=1NlPl(�qk))2
. (8.4)

90



These signal weights quantify the statistical separation of signal from background

determined by the maximum likelihood fit, and they have the property that

∑
k

wsig(�qk) = Nsig. (8.5)

The corrected signal yields for the DCS and CF decays are

∑
k

wsig(�qk)/εk (8.6)

where εk is the Dalitz-plot efficiency for the kth decay given by the fitted polynomial

of Equation 5.4. Recall that efficiencies are calculated for both D0 → K−π+π0 and

D0 → K+π−π0 decays, and the appropriate efficiency is applied to the DCS or CF

decay in question.

After applying the efficiency correction, we obtain the result, with statistical error

only,

R = (0.214 ± 0.008)%. (8.7)

8.2 Systematic Uncertainty Estimation

The primary systematic uncertainties come from the event selection, the back-

ground model used in the maximum likelihood fit, and the efficiency correction. The

uncertainties inR are estimated by repeating the analysis with small changes, and tak-

ing the uncertainties to be the differences between the values ofR before and after the
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changes. The estimated uncertainties are listed in Table 8.1. By adding in quadrature

the individual systematic uncertainties, we obtain an overall systematic uncertainty of

±0.008%.

Most of the uncertainties from the event selection cancel when forming the branch-

ing ratio because the reconstructed decays consist of the same particle types in equiv-

alent decay chains. The only difference is in how the DCS decays populate the Dalitz

plot compared to the CF decays, and the selection requirement with the largest effect

on the Dalitz-plot efficiency is the minimum π0 lab momentum requirement. This

momentum requirement also reduces the background significantly. To see the effect

of this requirement on both the efficiency and the background levels, the minimum

π0 lab momentum is lowered to 250 MeV/c from 350 MeV/c (see Figure 4.7), and the

analysis is repeated, refitting for the signal yields and recalculating the Dalitz-plot

efficiency.

The systematic uncertainty from the maximum likelihood fit is mostly due to the

background shape. The signal shape, since it is used for both the D0 → K+π−π0 and

the D0 → K−π+π0 decays, has no systematic uncertainty associated with it when

forming the branching ratio. To estimate the uncertainty in the background, the linear

background shape in the mKππ0 distribution is changed to a quadratic shape. This

allows the background to absorb some signal if this would result in a larger likeli-

hood. The background shape in the mKππ0 distribution has a greater uncertainty than
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Table 8.1: Systematic checks and uncertainties of the branching ratio measurement

R

Statistical
uncertainty

Difference
from

primary result

Primary result 0.214% 0.008%

Selection requirement 250 MeV/c < pπ0 0.221% 0.009% 0.007%
2nd-order polynomialmKππ0 background 0.211% 0.009% -0.003%
Alternative efficiency correction 0.211% 0.008% -0.003%

the background in the ∆m distribution because the mKππ0 signal shape is less well

known, the mKππ0 range is relatively narrow compared to the signal width, and there

are a larger number of unknown backgrounds that can contribute in the mKππ0 distri-

bution.

Finally, we investigate the uncertainty in the Dalitz-plot efficiency correction. This

is done by using an alternative correction algorithm on the primary result. Instead

of fitting the binned efficiency histogram to a third-order polynomial and using that

polynomial to obtain the efficiency for a given point in the Dalitz plot, the efficiency is

taken directly from the binned histogram. This has the effect of varying the efficiency

according to Poisson statistics across the Dalitz plot, and it results in an extreme treat-

ment of the edges of the Dalitz plot for which there are few statistics to determine the

efficiency. The result is an overly conservative estimate of this systematic uncertainty.

The results of these systematic checks are given below in Table 8.1.
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8.3 Comparison with the Tagged Data Set

In order to validate the final branching ratio result from the full data set, we per-

form the analysis on the tagged data set described in Chapter 7 and check to see that

the results are consistent. The tagged data set provides a meaningful check on the

final result because the background distributions are so drastically reduced in size and

changed in shape, yet the signal distribution shapes remain the same.

The uncorrected branching ratio from fitting the tagged data set is

Rfit = (0.213 ± 0.010)% (8.8)

and the value after applying the efficiency correction is

R = (0.220 ± 0.010)%. (8.9)

This result is indeed consistent with the primary reported value.

A comparison with simulated Monte Carlo events is not done because the fitted

signal shape for Monte Carlo events is significantly different from that used for the

recorded data, the π0 simulation does not reproduce the recorded-data distributions,

and the Dalitz-plot structure of the DCS decays is not simulated. Therefore, it is ques-

tionable how much can be learned by performing this analysis on simulated events.
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8.4 Final Branching Ratio Result

Combining the maximum likelihood fit, the efficiency correction, and the esti-

mated systematic uncertainties, we find

R = (0.214 ± 0.008 (stat) ± 0.008 (syst))%. (8.10)

Although a small number of events from D mixing may contribute to this measure-

ment of R, based on current experimental limits, this contribution can be at most the

size of the statistical error given. As discussed in Section 2.2, the relatively small

value of R for this decay mode yields a greater sensitivity to D mixing in a lifetime

analysis.
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Chapter 9

Measurements of Resonance

Contributions to D0 → K+π−π0

9.1 Introduction

The Cabibbo-favored (CF) D0 → K−π+π0 decay1 proceeds primarily through

one of three intermediate resonances K−ρ+, K∗−π+, and K∗0π0 [23]. We expect the

doubly Cabibbo-suppressed (DCS) D0 → K+π−π0 decay to proceed through simi-

lar resonances. However, as indicated by the Feynman diagrams in Figure 2.1, we

anticipate that the relative sizes of the DCS resonance amplitudes compared with the

corresponding CF amplitudes will follow an approximate flavor-SU(3) symmetry. In
1Charge conjugation is implied except where otherwise stated.
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other words, since the CF decay is dominated by the D0 → K−ρ+ resonance, we

expect the DCS decay to be dominated by the D0 → π−K∗+ resonance. The Dalitz

plots of the CF and DCS will therefore be populated differently, and we can take

advantage of this in a search for D mixing by selecting Dalitz-plot regions with a

relatively large population of CF decays compared to DCS decays. Recall that the

arguments for selecting a sample in this manner were made in Chapter 2.

It would be very challenging to correctly determine the resonance contributions

to the DCS decay without the tagged data set described in Chapter 7. Studies show

that even though the size of the untagged sample is significantly larger than that of the

tagged sample, the background is dominated by CF decays that have been associated

with π±
s candidates not coming from D∗ decays. In particular, the background in

the D0 → K+ρ− invariant-mass distribution is so large that the maximum likelihood

fit described below cannot correctly separate it from the signal. Therefore, in this

chapter, only the tagged data set will be considered.

Ideally, a full Dalitz-plot analysis of the CF and DCS decays would be undertaken

to determine the resonance contributions to each type of decay. Combining such an

analysis with an analysis of the decay-time distribution would provide the most sensi-

tivity to D mixing. However, a time-dependent Dalitz-plot analysis is a major under-

taking, and a competitive search for D mixing can be performed by simply selecting

regions of the Dalitz plot to analyze. In particular, we do not aim for a competitive
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analysis of the resonance contributions to the CF decay, but rather a competent and

sufficient analysis to complement the analysis of the DCS decay resonance structure.

The lineshapes used in this chapter to describe the CF resonances are known to be

crude, but they are adequate for the purpose of this work.

For each of the three primary resonances through which the CF and DCS decays

may proceed—Kρ, K∗π, andK∗0π0—we measure the corresponding branching ratio

RKρ ≡ Γ(D0 → K+ρ−)

Γ(D0 → K−ρ+)
(9.1)

RK∗π ≡ Γ(D0 → K∗+π−)

Γ(D0 → K∗−π+)
(9.2)

RK∗0π0 ≡ Γ(D0 → K∗0π0)

Γ(D0 → K∗0π0)
(9.3)

We expect these branching ratio measurements to be more accurate than the ones

below because the same signal lineshape and reconstruction efficiency apply to both

modes in the ratio. Therefore, systematic uncertainties related to the these two parts of

the analysis cancel when forming the branching ratio. Also, we measure the relative

contributions to the overall DCS decay

Br(D0 → K+ρ−) ≡ Γ(D0 → K+ρ−)

Γ(D0 → K+π−π0)
(9.4)

Br(D0 → K∗+π−) ≡ Γ(D0 → K∗+π−, K∗+ → K+π0)

Γ(D0 → K+π−π0)
(9.5)

Br(D0 → K∗0π0) ≡ Γ(D0 → K∗0π0, K∗0 → K+π−)

Γ(D0 → K+π−π0)
(9.6)
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and to the overall CF decay

Br(D0 → K−ρ+) ≡ Γ(D0 → K−ρ+)

Γ(D0 → K−π+π0)
(9.7)

Br(D0 → K∗−π+) ≡ Γ(D0 → K∗−π+, K∗− → K−π0)

Γ(D0 → K−π+π0)
(9.8)

Br(D0 → K∗0π0) ≡ Γ(D0 → K∗0π0,K∗0 → K−π+)

Γ(D0 → K−π+π0)
(9.9)

These branching ratios are sensitive to both the signal lineshape and the Dalitz-plot

efficiency; therefore, they have a larger systematic uncertainty. As will become ap-

parent, the uncertainty associated with the lineshapes used in this analysis dominate

the overall systematic uncertainty.

9.2 Efficiency-Corrected Two-Body

Mass Distributions

We begin by looking at the Cabibbo-favored Dalitz plot in Figure 9.1 and the

efficiency-corrected two-body mass distributions in Figures 9.2–9.4 to get a sense of

the resonance structure and the relative sizes of the resonance contributions. Using

the tagged dataset fitted with the two-dimensional PDF described in Chapter 6, each

event is assigned a signal weight defined in Equation 8.3. These weights are corrected

for variations in the Dalitz-plot efficiency according to Equation 8.6, and the two-

body mass distributions are shown after this weighting. The signal weights do not
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significantly enhance the CF distributions, but they dramatically show the otherwise-

obscured DCS signal distributions. The signal weights do not accurately show the

DCS signal distributions for D0 → K+ρ− in the untagged dataset, again justifying

the exclusive use of the tagged dataset in this chapter.

It is immediately apparent that the DCS distributions are in fact very different from

the corresponding CF distributions. It can also be seen that the two-body distributions

for the CF decays do not qualitatively agree with those shown in the D0 → K−π+π0

Dalitz-plot analysis performed by the CLEO Collaboration [24], which provides the

basis for the corresponding values listed in the Review of Particle Physics (RPP) [23].

Even an exaggerated estimate of the uncertainty for the Dalitz-plot efficiency correc-

tion cannot account for the difference. Thus, we expect that an analysis of this data

set will yield CF branching ratios that significantly differ from those in the RPP.

9.3 Description of Probability Density Functions

In order to quantitatively describe the resonance contributions to the overall CF

and DCS decay rates, we fit the one-dimensional projections onto the corresponding

invariant-mass distributions of the three primary two-body systems. If the signal con-

tributions have been accurately corrected for Dalitz-plot efficiency variations, then

any interference effects from other resonances in the kinematically allowed region

will cancel in the mass projections. Furthermore, for the particular resonances in-

100



m
2 (
π

+
π

0 )
[G

eV
/c

2 ]
2

1 2 3
0

0.5

1

1.5

2

m2(K−π+) [GeV/c2]2

Figure 9.1: Dalitz plot of theD0 → K−π+π0 decay with 97,722 events selected from
the tagged sample with the requirements 1.85 < mKππ0 < 1.88 GeV/c2 and 0.1444 <
∆m < 0.1464 GeV/c2.
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Figure 9.2: The m2(K−π0) and m2(K+π0) mass distributions, respectively, of
efficiency-corrected, signal-weighted, Cabibbo-favored D0 → K−π+π0 candidates
(left) and doubly Cabibbo-suppressed D0 → K+π−π0 candidates (right).
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Figure 9.3: The m2(K−π+) and m2(K+π−) mass distributions, respectively, of
efficiency-corrected, signal-weighted, Cabibbo-favored D0 → K−π+π0 candidates
(left) and doubly Cabibbo-suppressed D0 → K+π−π0 candidates (right).
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Figure 9.4: The m2(π+π0) and m2(π−π0) mass distributions, respectively, of
efficiency-corrected, signal-weighted, Cabibbo-favored D0 → K−π+π0 candidates
(left) and doubly Cabibbo-suppressed D0 → K+π−π0 candidates (right).
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volved in this analysis—ρ, K∗, and K∗0—the intrinsic width of the resonances is

much larger than the detector resolution, so we may use lineshapes derived solely

from the physics of the decay. However, although the resonant portion of the signal in

a particular mass distribution will follow a well-defined lineshape, the non-resonant

portion in that distribution is expected to vary significantly.

The analysis presented here is a drastic simplification of the above considerations,

yet it appears to be adequate for the analysis of the DCS decays. For the CF decays,

the analysis is too blunt for the incredibly large statistical sample available. However,

since the efficiency-corrected distributions are significantly different from those used

to determine the values in the RPP, the CF resonance contributions determined in this

chapter may be more accurate than the RPP, regardless of the specific methods chosen

to fit the distributions.

In a particular two-body mass distribution, the signal may be split into two cate-

gories: the resonant portion, and the non-resonant portion. The resonant portion is fit

with a Breit-Wigner

bw(m;m,Γ) =
1

(m−m)2 + Γ2/4
(9.10)

where m is the resonance mass and Γ is the resonance width. In the fits performed for

this chapter, the mass and width are fixed to their measured values in the RPP. This

shape would be accurate for narrow resonances; however, these resonances are not

narrow, and a more accurate shape would have a width that depends on m. The non-
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resonant portion is fit to a line, which is surely an oversimplification if one considers

how the Dalitz plot is populated in Figure 9.1. In particular, the non-resonant signal

contribution appears to oscillate as a function of the invariant mass due to interference

effects. However, the advantages of this simple model are that it is easy to vary

in order to estimate systematic effects, it tends neither to absorb nor reject resonant

signal events, and it contains only one free parameter, allowing the fit to the low-

statistics DCS sample to converge reliably.

The background comprises two general types of decays: those that contain real

D0 decays associated with uncorrelated π±
s candidates, and those that do not contain

real D0 decays. The former type will have the CF resonant structure, and like the

signal, can be split into resonant and non-resonant contributions and fit with the same

lineshapes as the signal. The latter type produces a smoothly varying shape across

the mass distribution, with the possibility of containing a small background resonant

contribution. The latter type is fit using a second-order polynomial added to a Breit-

Wigner.

9.4 Fit Results and Systematic Uncertainty Estimation

To obtain the number of signal events in a particular resonance, a maximum like-

lihood fit to the relevant invariant-mass distribution is performed. The likelihood fit is

a three-dimensional fit to {mKππ0,∆m,mPP} with the likelihood defined by Equa-
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tion 6.1, where mPP ∈ {mππ0 , mKπ0, mKπ} is the invariant mass of the two pseu-

doscalars. The two dimensions {mKππ0,∆m} are fit to the same probability density

functions (PDFs) as in Chapter 6, and they are needed to accurately separate signal

from the three background categories. The crude lineshapes used to determine the res-

onance contributions work primarily because the fit to {mKππ0,∆m} is well-tuned.

The data samples used in the fits have two important features. First, each event is

associated with an efficiency weight to correct for the Dalitz-plot efficiency variation,

and these weights are included in the maximum likelihood fit. Since background

events are also weighted, some regions of mPP , when plotted with the fitted function,

appear to have a larger background contribution than in other histograms of the same

data. Second, the values of mPP used in the fits are calculated from a decay-chain fit

similar to the one described in Section 4.3 with the additional constraint that mKππ0 is

required to have the measured D0 mass. Without this D0-mass constraint, the centers

of the signal distributions in mPP vary across the Dalitz plot. However, with this

constraint, the signal distributions are stable, while the background varies across the

Dalitz plot.

An important feature of these fits is that the background and overall signal yields

are as accurately determined by the two-dimensional {mKππ0,∆m} fit as in Chap-

ter 8. Thus, although the background shapes may not be completely correct in the

mPP distribution, the yields are correct. Also, even though the relative levels of res-
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onant and non-resonant signal are completely dependent upon the mPP distribution,

the total signal yield is correct and constrained by the other two dimensions. These

constraints improve the overall reliability of the fit results.

The fit is performed in two steps. First, the two-dimensional {mKππ0,∆m} fit is

performed to adjust all the parameters and yields to the portion of the data set con-

tained within the fit region of the mPP distribution. Second, the parameters included

in the two-dimensional fit are fixed, and the three-dimensional fit is performed to

find the best values of the parameters in the mPP PDFs, including the yields for the

five categories: resonant signal, non-resonant signal, resonant fake-π±
s background,

non-resonant fake-π±
s background, and non-D0 background. The final fits are shown

projected onto the mPP axes for signal regions of {mKππ0,∆m} in Figures 9.5–9.10.

Systematic uncertainties are estimated by repeating the analysis with small

changes, and taking the uncertainties to be the differences between the values of the

various branching ratios before and after the changes. The estimated uncertainties

are listed in Tables 9.1–9.6. The overall systematic uncertainties on the results in

Tables 9.7–9.9 are obtained by adding in quadrature the individual systematic uncer-

tainties, except on the branching ratios of DCS decays to D0 → K+π−π0. For these

latter measurements, the systematic uncertainty is taken from the fractional uncer-

tainty on the corresponding branching ratio of CF decays to D0 → K−π+π0. This

is done because the fits to the DCS resonances are not stable when the non-resonant
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signal is fitted with a second-order polynomial, as there are too few events.

The first systematic check is to change the non-resonant signal from a linear model

to second-order–polynomial model. This allows a significant change in the relative

yields of the two signal categories, as the non-resonant portion is free to absorb or re-

ject many events. Because we know that both the non-resonant and resonant portions

of the signal are modeled poorly, this is the dominant systematic uncertainty in all the

measurements.

The second systematic check is to allow the resonant-signal lineshape to have a

mass and width that are not fixed to the RPP values, but are instead allowed to float

to values chosen by the fit. This change should not affect the DCS-to-CF branching

ratios, since we are still comparing like resonances with identical signal shapes. This

assertion was indeed verified. However, as predicted, this check has a significant

affect on the branching ratios of CF decays to D0 → K−π+π0, and this bias tends to

counteract that from the first systematic check on the non-resonant shape.
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Table 9.1: Systematic checks and uncertainties of the RK∗π measurement

RK∗π

Statistical
uncertainty

Difference
from

primary result

Primary result 1.03% 0.06%

2nd-order polynomial non-resonant 1.08% 0.06% +0.05%

Table 9.2: Systematic checks and uncertainties of the RK∗0π0 measurement

RK∗0π0

Statistical
uncertainty

Difference
from

primary result

Primary result 0.22% 0.05%

2nd-order polynomial non-resonant 0.23% 0.05% +0.01%

Table 9.3: Systematic checks and uncertainties of the RKρ measurement

RKρ

Statistical
uncertainty

Difference
from

primary result

Primary result 0.102% 0.014%

2nd-order polynomial non-resonant 0.117% 0.009% +0.015%
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Table 9.4: Systematic checks and uncertainties of the Br(D0 → K∗−π+)
measurement

Br(K∗−π+)

Statistical
uncertainty

Difference
from

primary result

Primary result 9.69% 0.09%

2nd-order polynomial non-
resonant

9.21% 0.09% -0.48%

Signal shape floating 10.07% 0.15% +0.38%

Table 9.5: Systematic checks and uncertainties of theBr(D0 → K∗0π0) measurement

Br(K∗0π0)

Statistical
uncertainty

Difference
from

primary result

Primary result 8.88% 0.09%

2nd-order polynomial non-
resonant

8.69% 0.09% -0.19%

Signal shape floating 9.10% 0.11% +0.22%
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Table 9.6: Systematic checks and uncertainties of the Br(D0 → K−ρ+) measurement

Br(K−ρ+)

Statistical
uncertainty

Difference
from

primary result

Primary result 75.44% 0.27%

2nd-order polynomial non-
resonant

77.28% 0.19% +1.84%

Signal shape floating 74.54% 0.19% -0.9%
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Figure 9.5: Projections of the maximum likelihood fit to the DCS D0 → K+π−π0

candidates ontom(K+π0), showing the entire kinematic range (left) and the fit region
only (right). These projections require 1.85 < mKππ0 < 1.88 GeV/c2 and 0.1444 <
∆m < 0.1464 GeV/c2. The vertical lines in the left histogram mark the boundaries of
the fit region.
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Figure 9.6: Projections of the maximum likelihood fit to the CF D0 → K−π+π0

candidates onto m(K−π0), showing the entire kinematic range (left) and the fit re-
gion only (right). These projections require 1.85 < mKππ0 < 1.88 GeV/c2 and
0.1444 < ∆m < 0.1464 GeV/c2. The vertical lines in the left histogram mark the
boundaries of the fit region.
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Figure 9.7: Projections of the maximum likelihood fit to the DCS D0 → K+π−π0

candidates ontom(K+π−), showing the entire kinematic range (left) and the fit region
only (right). These projections require 1.85 < mKππ0 < 1.88 GeV/c2 and 0.1444 <
∆m < 0.1464 GeV/c2. The vertical lines in the left histogram mark the boundaries of
the fit region.
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Figure 9.8: Projections of the maximum likelihood fit to the CF D0 → K−π+π0

candidates onto m(K−π+), showing the entire kinematic range (left) and the fit re-
gion only (right). These projections require 1.85 < mKππ0 < 1.88 GeV/c2 and
0.1444 < ∆m < 0.1464 GeV/c2. The vertical lines in the left histogram mark the
boundaries of the fit region.
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Figure 9.9: Projections of the maximum likelihood fit to the DCS D0 → K+π−π0

candidates onto m(π−π0), showing the entire kinematic range (left) and the fit region
only (right). These projections require 1.85 < mKππ0 < 1.88 GeV/c2 and 0.1444 <
∆m < 0.1464 GeV/c2. The vertical lines in the left histogram mark the boundaries of
the fit region.

C
an

di
da

te
s

/1
0

M
eV
/c

2

0.2 0.4 0.6 0.8 1 1.2 1.4
0

2000

4000

6000

8000

10000

12000

14000

0.2 0.4 0.6 0.8 1 1.2 1.4
0

2000

4000

6000

8000

10000

12000

14000 Data
Fit
Wrong sl. pi

m(π+π0) [GeV/c2]

C
an

di
da

te
s

/5
M

eV
/c

2

0.7 0.8 0.9 1 1.1 1.2
0

1000

2000

3000

4000

5000

6000

7000

0.7 0.8 0.9 1 1.1 1.2
0

1000

2000

3000

4000

5000

6000

7000 Data
Signal Res.
Fake Res.
Signal Non-Res.
Fake Non-Res.
Comb.

m(π+π0) [GeV/c2]

Figure 9.10: Projections of the maximum likelihood fit to the CF D0 → K−π+π0

candidates onto m(π+π0), showing the entire kinematic range (left) and the fit region
only (right). These projections require 1.85 < mKππ0 < 1.88 GeV/c2 and 0.1444 <
∆m < 0.1464 GeV/c2. The vertical lines in the left histogram mark the boundaries of
the fit region.
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9.5 Final Resonance-Contribution Results

The final branching ratio measurements are listed in Tables 9.7–9.9. The

resonance contributions are indeed very different for D0 → K+π−π0 decays and

D0 → K−π+π0 decays. For branching ratios involving the DCS decays, the system-

atic uncertainties are at the same scale as the statistical uncertainties. For the branch-

ing ratios involving only CF decays, the systematic uncertainties are much larger than

the statistical uncertainties, which is expected because of the lineshapes used. How-

ever, the Br(D0 → K∗−π+) and Br(D0 → K∗0π0) results are much lower than the

values listed in the RPP, and it is possible that the results presented here may in fact be

more accurate despite the relatively large systematic uncertainties involved. A Dalitz-

plot analysis of the CF decays in this data set seems well-motivated based on these

results.
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Table 9.7: Branching ratios of doubly Cabibbo-suppressed decays to corresponding
Cabibbo-favored decays.

Γ(D0 → K∗+π−)/Γ(D0 → K∗−π+) (1.03 ± 0.06(stat) ± 0.05(syst))%

Γ(D0 → K∗0π0)/Γ(D0 → K∗0π0) (0.22 ± 0.05(stat) ± 0.01(syst))%

Γ(D0 → K+ρ−)/Γ(D0 → K−ρ+) (0.102 ± 0.014(stat) ± 0.015(syst))%

Table 9.8: Branching ratios of doubly Cabibbo-suppressed decays to D0 → K+π−π0

D0 Decay Mode Events Γi/Γ(D0 → K+π−π0)

D0 → K∗+π−

K∗+ → K+π0

(5.37 ± 0.32) × 102 (46.1 ± 3.3(stat) ± 2.9(syst))%

D0 → K∗0π0

K∗0 → K+π−
(1.05 ± 0.26) × 102 (9.0 ± 2.3(stat) ± 0.3(syst))%

D0 → K+ρ− (4.0 ± 0.5) × 102 (36 ± 5(stat) ± 1(syst))%

Table 9.9: Branching ratios of Cabibbo-favored decays to D0 → K−π+π0

D0 Decay Mode Events Γi/Γ(D0 → K−π+π0)

D0 → K∗−π+

K∗− → K−π0

(5.22 ± 0.05) × 104 (9.7 ± 0.1(stat) ± 0.6(syst))%

D0 → K∗0π0

K∗0 → K−π+

(4.78 ± 0.05) × 104 (8.88 ± 0.09(stat) ± 0.29(syst))%

D0 → K−ρ+ (3.901 ± 0.012) × 105 (75.4 ± 0.3(stat) ± 2.1(syst))%
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Chapter 10

Analysis of the D0 Decay-Time

Distribution

10.1 Introduction

In order to search for D0-D0 mixing, a maximum likelihood fit to the D0 decay-

time distribution1 must be performed. This includes fitting both the right-sign

D0 → K−π+π0 and the wrong-sign D0 → K+π−π0 decay-time distributions. The

likelihood fit is a three-dimensional fit to {mKππ0,∆m, tKππ0} with the likelihood

defined by Equation 6.1. The two dimensions of {mKππ0,∆m} are fit to the same

probability density functions (PDFs) as in Chapter 6, and they are needed to accurately
1Charge conjugation is implied except where otherwise stated.
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separate signal from the three background categories. The third observable tKππ0 is

fit to different signal PDFs for the right-sign and wrong-sign decays, respectively, but

the two types of decays have the same background PDFs. As in the measurement of

the branching ratio, the high-statistics sample of right-sign decays serves to determine

precisely the exponential form of the doubly Cabibbo-suppressed decay-time distri-

bution, and it is in the deviation from this well-determined form that one may observe

D mixing in the wrong-sign sample. We begin by fitting the right-sign decay-time

distribution, and proceed to analyze and fit the wrong-sign decay-time distribution to

search for D mixing.

10.2 Measured Decay-Time Uncertainties

As described in Section 4.3, the entire D∗+ → D0π+
s , D

0 → K∓π±π0 decay

chain is fit at once in the final candidate selection, and from the simultaneous fit of

both the D∗+ and D0 decay vertices, the D0 decay time, tKππ0 , and its associated

uncertainty, σt, are calculated. The decay-time is

tKππ0 =

(
mD0

p

)
∆x, (10.1)

where p is the D0 momentum and ∆x is the distance between the D∗+ and D0 decay

vertices. The uncertainty is calculated using the decay-fit covariance matrix, and it

includes the correlations between the two vertex positions. In fitting to the decay-time
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Figure 10.1: Measured D0 decay-time–uncertainty distributions for 1.74 < mKππ0 <
1.98 GeV/c2 and 0.13957 < ∆m < 0.155 GeV/c2. The solid vertical line in both
histograms shows the selection requirement on σt for events to be fitted. The mean
value of σt for signal events is near 0.43 fs.

distribution, we exclude candidates with poorly measured decay times by requiring

σt < 0.5 ps. (10.2)

Figure 10.1 illustrates both the relationship between σt and tKππ0 and the overall σt

distribution. For signal events, the mean σt is near 0.43 ps. Although we do not fit a

PDF to the σt distribution, the per-event values are used in the decay-time distribution

fit.
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10.3 Description of Right-Sign Probability Density

Functions

10.3.1 Signal

The signal PDF for the decay time is based on an exponential shape, convolved

with a Gaussian resolution function to account for the uncertainty in the decay-time

measurement:

ρRS,i(t; τ, k) = e−t/τ ⊗ exp

(
− t2

2(kσi)2

)

= exp

(
− t

τ
+

(kσi)
2

2τ 2

)
erfc

(
− t√

2(kσi)
+

kσi√
2τ

)
(10.3)

In this PDF, the index i spans the events, representing the fact that the uncertainty

σi is measured for each event as described in Section 10.2. The resolution model

is specified by the parameter k, which is a scale factor ≈ O(1) by which the event

uncertainty is multiplied. The assumption underlying this choice of resolution model

is that the uncertainties are relatively accurate, but they may be systematically under-

or over-estimated by a global scale factor. This choice of resolution model has proven

to work well in previous analyses.

The complete, three-dimensional signal PDF is

PRS,i(m,∆m, t) =

S(m,∆m) × {ft3 · ρ3,i + (1 − ft3) · [ft2 · ρ2,i + (1 − ft2) · ρ1,i]} (10.4)
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ρ1,i = ρRS,i(t; τ, k1)

ρ2,i = ρRS,i(t; τ, k2)

ρ3,i = ρRS,i(t; τ, k3)

where S(m,∆m) is defined in Equation 6.6 and {ft3, ft2} are parameters representing

the fraction of events described by the various Gaussian resolution functions.

10.3.2 Combinatoric Background

This background, described in Section 6.2.2, does not have a lifetime associated

with it because it comprises tracks that do not come from any definite decay. One

might expect it to be represented by a Gaussian centered at t = 0; in fact, it is slightly

biased towards positive decay times, and it has a tail in the positive direction. The tail

in the distribution is fit using a Crystal Ball function similar to Equation 6.4 but with

the power-law of the attenuation allowed to vary:

cb(x; x, σ, α, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
− (x−x)2

2σ2

)
if (x−x)

σ
< α

a
(
b+ (x−x)

σ

)−n

if (x−x)
σ

≥ α

(10.5)

α > 0, a = (1/α) exp(α2/2), b = (1/α) − α
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The complete three-dimensional PDF for this background category is

Pcomb(m,∆m, t) =

C(m,∆m) × {fc2 · g(t; t2, σc2) + (1 − fc2) · cb(t; t1, σc1, αc, nc)
}

(10.6)

where C(m,∆m) is defined in Equation 6.8, g(t; t2, σc2) is a Gaussian, and fc2 is a

parameter representing the fraction of events described by the Gaussian.

10.3.3 Bad-D∗+ Background

This background, described in Section 6.2.3, is due to real D0 decays with un-

correlated π±
s candidates. Because the D∗+ decay vertex is primarily determined by

the intersection of the D0 with the beamspot, and the D0 candidate is real, this back-

ground has the same shape as the signal, with the same lifetime. Thus, the decay-time

PDF is given by Equation 10.4, and we have

Pfake,i(m,∆m, t) =

F(m,∆m) × {ft3 · ρ3,i + (1 − ft3) · [ft2 · ρ2,i + (1 − ft2) · ρ1,i]} (10.7)

where F(m,∆m) is defined in Equation 6.9.

10.3.4 Bad-D0 Background

This background, described in Section 6.2.4, is due to particles produced by aD∗+

decay that has been reconstructed incorrectly. These particles may have a measurable
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lifetime that is different from the signal distribution. The decay-time PDF used to

describe this category is the same as Equation 10.4 but with a different lifetime, τB;

the full PDF is

Pbrok,i(m,∆m, t) = B(m,∆m) × {ft3 · ρ3B,i

+ (1 − ft3) · [ft2 · ρ2B,i + (1 − ft2) · ρ1B,i]} (10.8)

ρ1B,i = ρRS,i(t; τB, k1)

ρ2B,i = ρRS,i(t; τB, k2)

ρ3B,i = ρRS,i(t; τB, k3)

where B(m,∆m) is defined in Equation 6.11.

10.4 Right-Sign Fit Results

and D0 Lifetime Measurement

The unbinned maximum likelihood fit described above is performed in two steps.

First, the two-dimensional {mKππ0,∆m} fit is performed to adjust all the parameters

and yields to the data set with the requirement σt < 0.5 ps. The signal yield after

performing this step is 7.307 × 105 ± 1.2 × 103. Second, the parameters of the two-

dimensional fit are fixed, and the three-dimensional fit is performed to find the best

values of the parameters in the decay-time PDFs. The {mKππ0,∆m} PDF parameters
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are fixed because the decay-time distribution is not capable of separating the various

categories better than the mass distributions. The final fit is shown projected onto the

tKππ0 axis for various regions of {mKππ0,∆m} in Figures 10.2–10.6.

The scale factors {k1, k2, k3} are initially allowed to float in the fit, and their final

values are given in Table 10.1. The values of {k1, k2}, which are the scale factors

for the resolution functions that together account for over 95% of the events, are very

close to one, indicating that the measurement uncertainties are for the most part very

accurate. The third scale factor, k3, is larger and accounts for events with severely

mismeasured vertices. After an initial minimization, these values are fixed because

they are highly correlated with the parameters representing the fraction of events de-

scribed by each resolution function.

Table 10.1: Decay-time–uncertainty scale factors from the likelihood fit

k1: 1.060
k2: 0.925
k3: 1.950

The fitted lifetime is

τ = 0.4127 ± 0.0006 fs (stat) (10.9)

where the systematic uncertainty is omitted.

Without evaluating all of the systematic uncertainties relating to this lifetime mea-

surement, we would like to assess how accurate it is. To do this, we measure the
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lifetime in a complementary way that does not require the fit to the decay-time dis-

tribution, and we compare the two values. Another way to measure the lifetime is to

calculate the simple mean of the decay-time distribution, taking advantage of the fact

that

〈e−t/τ 〉 = τ . (10.10)

As long as the resolution of the decay-time measurements is not skewed, the mean of

the measured decay-time distribution will be τ .

Using the full dataset fitted with the two-dimensional PDF described in Chapter 6,

each event is assigned the signal weight defined in Equation 8.3. The lifetime is then

calculated as

τ =

∑
i wsig,iti∑
i wsig,i

(10.11)

where i spans all of the events. Evaluating the lifetime in this manner yields

τ = 0.4092 ± 0.0004 fs (stat) (10.12)

Both of these lifetime measurements are expected to have uncertainties that are

dominated by systematic effects. Comparing these values with each other and with

the accepted lifetime of

τRPP = 0.4103 ± 0.0015 fs (10.13)

reported in the Review of Particle Physics [23], we believe that the lifetime fit and the

data are sufficiently well understood to proceed with an analysis of the wrong-sign
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Figure 10.2: Projections of the maximum likelihood fit to the right-sign data onto
tKππ0 for the entire fit region (left) and for the signal region only (right). The entire
fit region is 1.74 < mKππ0 < 1.98 GeV/c2 and 0.13957 < ∆m < 0.155 GeV/c2; the
signal region is 1.85 < mKππ0 < 1.88 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.

decay-time distribution.

10.5 Selection of Dalitz-Plot Regions

Using the knowledge of the doubly Cabibbo-suppressed resonance contributions

gained from the analysis in Chapter 9, we seek to maximize sensitivity to a signal

of D mixing by performing the lifetime analysis in a region of the Dalitz plot that

minimizes RI , where RI is the integrated value of RD over the selected Dalitz-plot

region. We choose to do this by excluding regions of the Dalitz plot that are primarily
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Figure 10.3: Projections of the maximum likelihood fit to the right-sign data onto
tKππ0 for the mKππ0 signal region (left) and for the ∆m signal region (right). The
mKππ0 signal region is 1.85 < mKππ0 < 1.88 GeV/c2 and 0.13957 < ∆m <
0.155 GeV/c2; the ∆m signal region is 1.74 < mKππ0 < 1.98 GeV/c2 and 0.1444 <
∆m < 0.1464 GeV/c2.
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Figure 10.4: Projections of the maximum likelihood fit to the right-sign data onto
tKππ0 for sideband regions emphasizing the combinatoric background in the lower
mKππ0 region (left) and in the upper mKππ0 region (right). The lower mKππ0 region
is 1.74 < mKππ0 < 1.82 GeV/c2 and 0.152 < ∆m < 0.155 GeV/c2; the upper mKππ0

region is 1.91 < mKππ0 < 1.98 GeV/c2 and 0.152 < ∆m < 0.155 GeV/c2.
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Figure 10.5: Projections of the maximum likelihood fit to the right-sign data onto
tKππ0 for a sideband region emphasizing the bad-D∗+ background. The region is
1.85 < mKππ0 < 1.88 GeV/c2 and 0.147 < ∆m < 0.155 GeV/c2.
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Figure 10.6: Projections of the maximum likelihood fit to the right-sign data onto
tKππ0 for sideband regions emphasizing the bad-D0 background in the lower mKππ0

region (left) and in the uppermKππ0 region (right). The lowermKππ0 region is 1.74 <
mKππ0 < 1.82 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2; the upper mKππ0 region
is 1.91 < mKππ0 < 1.98 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.
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populated by the K∗ and K∗0 resonances. Specifically, we select events such that

m(Kπ) < 850 MeV/c2 or m(Kπ) > 950 MeV/c2 (10.14)

m(Kπ0) < 850 MeV/c2 or m(Kπ0) > 950 MeV/c2 (10.15)

Performing the two-dimensional {mKππ0,∆m} maximum likelihood fit on this data

set (including the requirement σt < 0.5 ps) yields

RI = (0.150 ± 0.011)% (10.16)

with the fitted number of wrong-sign signal events equal to (7.6 ± 0.5) × 102. This

defines the final selection of data to be included in the D-mixing decay-time fit.

10.6 Description of Wrong-Sign Signal Probability

Density Function

10.6.1 Motivation and Definition of a Functional Form

Recall from Section 2.3 the time-dependent decay rate including D mixing for a

multi-body decay (Equation 2.32):

Γf̄ (t) = Ā2
Ie

−Γt

(
RI + α

√
RIy

′
I(Γt) +

x2 + y2

4
(Γt)2

)
,

0 ≤ α ≤ 1.
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Previous analyses of theD0 → K+π− lifetime have fitted for {x′2, y′}, where {x′, y′}

are the quantities {x, y} rotated by a strong phase shift δ,

x′ ≡ x cos δ + y sin δ (10.17)

y′ ≡ y cos δ − x sin δ, (10.18)

and

(x′2 + y′2) = (x2 + y2). (10.19)

Because the multi-body decay rate has an additional factor α, to which we have no

direct sensitivity, we cannot directly fit the form given by Equation 2.32. Also, in

general, fitting for {x′2, y′} is not preferable for two reasons. First, there is a strong

correlation between these two parameters in the likelihood fit, making it difficult for

the fit to converge reliably. Second, the likelihood function in terms of {x′2, y′} is

non-parabolic near the likelihood maximum, so the fit returns inaccurate uncertainty

estimates. For all of these reasons, a different functional form is used for the maxi-

mum likelihood fit to the wrong-sign decay-time distribution.

Consider the function

Γ(t) ∝ e−Γt

(
a2

1 +

(
a1a3

1 + a2
2

)
(Γt) +

(
a2

3

4

)
(Γt)2

)
(10.20)
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We can relate physically meaningful quantities to the parameters {a1, a2, a3}:

RI = a2
1 (10.21)

αy′I =
a3

1 + a2
2

(10.22)

(x2 + y2)/2 = a2
3/2 (10.23)

In this form, the amplitude of the mixing rate, (x2 + y2)/2, is determined by a3; the

sign of the interference term is also determined by a3; and the size of the interference

term is determined by a2. The sign of a1 is stable because the value of RI is well-

determined and not near zero. The mixing rate has the property that it is always

nonnegative, which makes the fit much more stable. However, because the sign of a3

is relevant to determining the likelihood value, a3 is not significantly biased towards a

non-zero value. Because a3 is present in the interference term, and the observation of

the interference term is necessarily an observation of D mixing, this form increases

sensitivity to D mixing.

The disadvantage to this form is that the parameter a2 is not well-defined for fit-

ting purposes. There may be a cusp in the likelihood function at a2 = 0 because the

sign of a2 is irrelevant in determining the likelihood. Also, as a2 → ∞, the likelihood

becomes insensitive to the precise value of a2, making estimation of its uncertainty

impossible. However, these considerations do not inhibit for a D-mixing search, be-

cause neither α nor y′I have predicted values for either the Dalitz plot as a whole or

for any region of the Dalitz plot. The specific size of the interference term is not a
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physically important quantity—the interference term is treated here as a tool for gain-

ing sensitivity to the mixing term, (x2 + y2). It should be noted, however, that even

though the uncertainty estimation for a2 may not be accurate, the physical quantity

αy′I will always have sensible values.

The signal PDF for the wrong-sign decay time is based on Equation 10.20, con-

volved with a Gaussian resolution function:

ρWS,i(t; τ, a1, a2, a3, k) =

e−t/τ

(
a2

1 +

(
a1a3

1 + a2
2

)(
t

τ

)
+

(
a2

3

4

)(
t

τ

)2
)

⊗ exp

(
− t2

2(kσi)2

)
. (10.24)

The complete, three-dimensional wrong-sign signal PDF is

PWS,i(m,∆m, t) =

S(m,∆m) × {ft3 · ρ′3,i + (1 − ft3) ·
[
ft2 · ρ′2,i + (1 − ft2) · ρ′1,i

]}
(10.25)

ρ′1,i = ρWS,i(t; τ, a1, a2, a3, k1)

ρ′2,i = ρWS,i(t; τ, a1, a2, a3, k2)

ρ′3,i = ρWS,i(t; τ, a1, a2, a3, k3)

where S(m,∆m) is defined in Equation 6.6 and {ft3, ft2} are parameters representing

the fraction of events described by the various Gaussian resolution functions.
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10.6.2 Validation of the Functional Form

In order to verify that the functional form defined in Equation 10.24 can be fit to

the data reliably, and that the parameter values at the likelihood maximum are not

significantly biased, a number of Monte Carlo data sets are generated and the signal

PDF is fit to them. Seven ensembles of 1000 data sets are generated and fit, and the

parameters used to generate the ensembles are listed in Table 10.2. Each data set is

generated with a 1000 events. The generating parameters are chosen such that one

of the ensembles has no mixing, and the remaining six are split between those with a

negative interference term and those with a positive interference term. Because these

tests are simply to determine whether or not the fit of this PDF has any intrinsic bias,

the samples are generated without any background. Another critical feature of these

tests is that a1 is fixed in the fits, while {a2, a3} are allowed to vary. This is done

because, for these tests, an extended maximum likelihood fit is not performed—the

number of events in the sample is not allowed to vary—and therefore a1 would not be

adequately constrained.

The figures of merit for these tests are the pull distributions of a3, in which we

verify that there is limited bias in the fitted values and that the statistical uncertainties

are well-estimated. We do not expect a2 to have well-behaved estimated uncertainties,

so we ignore its pull distributions. This parameter may be regarded as a necessary

degree of freedom provided to the fitter, the specific value of which is sufficiently
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Table 10.2: Parameters used for generating wrong-sign Monte Carlo events.

RI αy′I x2 + y2

0.0015 0.0 0.0

0.0015 -0.01166 0.000136
0.0015 -0.00583 0.000136
0.0015 -0.00117 0.000136

0.0015 0.01166 0.000136
0.0015 0.00583 0.000136
0.0015 0.00117 0.000136

decoupled from the mixing term.

Histograms of the pull distributions are shown in Figures 10.7–10.10. For the case

of no D mixing (Figure 10.7), the distribution is centered at zero with no significant

bias. For the case of mixing with a large interference term (Figure 10.8), the distribu-

tions are nearly Gaussian and minimally biased. For the case of mixing with smaller

interference terms (Figure 10.9,10.10), the distributions become non-Gaussian and

biased because it is more difficult for the fit to correctly determine the sign of a3.

However, they are biased such that the fits tend toward a smaller level of D mixing

than was generated.

Finally, contours of ∆ logL are shown in the {a2, a3} plane for three individual

Monte Carlo event sets in Figures 10.11–10.13. These contours give an indication

of how sensitive we might be to a D-mixing signal, what the statistical uncertainties

might be, and the size of any potential bias resulting from fitting this particular func-
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tion to the data. Using a Bayesian interpretation of the likelihood contours, we may

calculate the expected values and variances of a3 and the related physical quantity

(x2 + y2)/2, according to the formulas

E[x] =

∫
xelogL(a2,a3) da2 da3

=

∫
xL(a2, a3) da2 da3 (10.26)

σ2
x =

∫
(x−E(x))2L(a2, a3) da2 da3 , (10.27)

where x can be either a3 = ±√x2 + y2 or (x2 + y2)/2. For each of Figures 10.11–

10.13, the expected value of a3, E[a3], is represented by a dotted line and the 1σ

region ±σa3 by hatches.

In all of the three cases studied, the generated value of a3 is included in the 1σ

region calculated according to Equation 10.27. In general, given the conditions of

approximately 1000 wrong-sign events with RI ≈ 0.15% and no background, it

appears we may expect uncertainties of σa3 ≈ 0.004 and σ(x2+y2)/2 ≈ (0.004)%.

For comparison, the 95%-confidence limit set by the BABAR Collaboration [10] using

D0 → K+π− decays is (x2 + y2)/2 < 0.13%.
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Figure 10.7: Pull distributions (±√χ2) for the parameter a3 after fitting 1000 Monte
Carlo event sets generated with no mixing. The distribution is from sets generated
with {αy′I , (x2 + y2)} = {0.0, 0.0}. The distribution mean is −0.029±0.045, and the
width is 1.404 ± 0.032.
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Figure 10.8: Pull distributions (±√χ2) for the parameter a3 after fitting 1000 Monte
Carlo event sets generated with a large interference term. The distribution on the left is
from sets generated with {αy′I , (x2 + y2)} = {−0.01166, 0.000136}. The distribution
mean is −0.231± 0.030, and the width is 0.952± 0.021. The distribution on the right
is from sets generated with {αy′I , (x2 +y2)} = {0.01166, 0.000136}. The distribution
mean is 0.403 ± 0.034, and the width is 1.057 ± 0.024.
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Figure 10.9: Pull distributions (±√χ2) for the parameter a3 after fitting 1000 Monte
Carlo event sets generated with a moderate interference term. The distribution on
the left is from sets generated with {αy′I , (x2 + y2)} = {−0.00583, 0.000136}. The
distribution mean is 0.079 ± 0.051, and the width is 1.500 ± 0.037. The distribution
on the right is from sets generated with {αy′I , (x2 +y2)} = {0.00583, 0.000136}. The
distribution mean is −0.271 ± 0.055, and the width is 1.698 ± 0.041.
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Figure 10.10: Pull distributions (±√χ2) for the parameter a3 after fitting 1000 Monte
Carlo event sets generated with a small interference term. The distribution on the
left is from sets generated with {αy′I , (x2 + y2)} = {−0.00117, 0.000136}. The
distribution mean is 5.823 ± 0.0.95, and the width is 3.001 ± 0.067. The distribution
on the right is from sets generated with {αy′I , (x2 +y2)} = {0.00117, 0.000136}. The
distribution mean is −0.687 ± 0.065, and the width is 1.923 ± 0.053.
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Figure 10.11: Fit results for a fit to a wrong-sign Monte Carlo event set with 1000
events, generated with no mixing. On the left is the decay-time distribution with the fit
overlaid. On the right are contours of ∆ logL = 0.5, 2.0, 4.5, representing 1σ, 2σ, and
3σ contours in black, red, and green, respectively. The plus (+) marks the generated
parameter values, and the cross (X) marks the fitted parameter values. The dotted
line marks the expected value of ±

√
x2 + y2, calculated by integrating the likelihood

function over {a2, a3}, and the hatched region shows the 1σ limits. For this generated
data set, we find ±√x2 + y2 = −0.004±0.005 and (x2+y2)/2 = (0.0021±0.0029)%
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Figure 10.12: Fit results for a fit to a wrong-sign Monte Carlo event set with 1000
events, generated with mixing and a large positive interference term. On the left
is the decay-time distribution with the fit overlaid. On the right are contours of
∆ logL = 0.5, 2.0, 4.5, representing 1σ, 2σ, and 3σ contours in black, red, and
green, respectively. The plus (+) marks the generated parameter values, and the
cross (X) marks the fitted parameter values. The dotted line represents the expected
value of ±√x2 + y2, calculated by integrating the likelihood function over {a2, a3},
and the hatched region shows the 1σ limits. For this generated data set, we find
±
√
x2 + y2 = 0.014 ± 0.004 and (x2 + y2)/2 = (0.012 ± 0.006)%
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Figure 10.13: Fit results for a fit to a wrong-sign Monte Carlo event set with 1000
events, generated with mixing and a moderate negative interference term. On the
left is the decay-time distribution with the fit overlaid. On the right are contours
of ∆ logL = 0.5, 2.0, 4.5, representing 1σ, 2σ, and 3σ contours in black, red, and
green, respectively. The plus (+) marks the generated parameter values, and the cross
(X) marks the fitted parameter values. The dotted line marks the expected value of
±√x2 + y2, calculated by integrating the likelihood function over {a2, a3}, and the
hatched region shows the 1σ limits. For this generated data set, we find ±√x2 + y2 =
−0.010 ± 0.004 and (x2 + y2)/2 = (0.006 ± 0.004)%
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10.7 Wrong-Sign Fit Results

and D-Mixing Measurement

The results of the maximum likelihood fit to the right-sign sample are used as

fixed inputs to the wrong-sign fit. It is observed that the combinatoric background in

the wrong-sign sample has a slightly different shape from that in the right-sign sam-

ple, so the relevant parameters are initially allowed to vary in the fit. After the fit has

converged with the parameters {a2, a3} fixed, all of the parameters are fixed to their

final values except for {a1, a2, a3}. Finally, the fit is performed for these three param-

eters, and the fit is shown to converge. In each of these steps, an extended likelihood

fit is performed, so that the value of a1 determines the number of doubly Cabibbo-

suppressed events in the sample, which is very near the total number of fitted signal

events. The final parameter values are given in Table 10.3, and the corresponding

physical values are given in Table 10.4. The statistical uncertainties given are those

returned by the minimization program, and they are not expected to be accurate; they

are listed only for completeness.

The final fit is shown projected onto the tKππ0 axis for various regions of

{mKππ0,∆m} in Figures 10.15–10.19. The likelihood contours for the final data

set are shown in Figure 10.14.

Given the parameter values at the maximal likelihood and the likelihood varia-
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Table 10.3: Fitted values of mixing parameters, corresponding to the likelihood
maximum

a1: 0.0431 ± 0.0029
a2: 0.88 ± 0.30
a3: −0.022 ± 0.008

Table 10.4: Values of physical quantities, calculated from the fit parameters

RI : (0.186 ± 0.025)%
αy′: −0.012 ± 0.007

(x2 + y2)/2: (0.024 ± 0.017)%

tions as a function of {a1, a2, a3}, we now attempt to establish an unbiased result for

(x2 + y2)/2 with an accurate uncertainty estimate. The guide in this effort will be the

estimated consistency of this data set with a result of no D mixing. This consistency

is determined by generating 10,000 Monte Carlo data sets with no mixing, fitting the

signal PDF to each of these simulated data sets, and recording a metric indicating

whether the simulated data set or the real data set is a better match to the no-mixing,

or null, hypothesis. A simulated data set is considered more consistent with the null

hypothesis than the real data set if

(L(�xnull)

L(�xmax)

)
MC

>

(L(�xnull)

L(�xmax)

)
Data

(10.28)

a3 < 0 (10.29)

where L(�x) is the likelihood of the indicated data set for the values �x = {a1, a2, a3},

�xnull represents the parameter values in the null hypothesis, and �xmax represents the
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Table 10.5: Monte Carlo data sets demonstrating the consistency of the real data set
with no mixing

Relationship to Real Data Monte Carlo Sets
More consistent with no mixing, a3 < 0.0 3,986
More consistent with no mixing, a3 > 0.0 4,408
Less consistent with no mixing, a3 < 0.0 958
Less consistent with no mixing, a3 > 0.0 648

parameter values that maximize the likelihood for the indicated data set. The value of

a3 is required to be less than zero in this test because the fit to the real data set prefers

a negative value, and we believe that the fit has sensitivity to the sign of a3. The results

of this consistency test are listed in Table 10.5. We find that of 10,000 simulated data

sets, there are 958 cases in which the maximal likelihood of the simulated data occurs

for a3 < 0 and the physical data are more consistent with the null hypothesis than the

simulated data. Therefore, we conclude that the real data set is consistent with the

null hypothesis at the 10% confidence level.

Given the above conclusion, we would like to find an expected value of a3 with

symmetric errors that include a3 = 0 at the 10%, or 1.3-σ, level. Considering the

likelihood contours in Figure 10.14, this is equivalent to finding an appropriate region

over which to integrate Equations 10.26–10.27 in the parameter space of {a1, a2, a3}.

Choosing a region where 0 < a2 < ∞ will yield an expected value of a3 that is zero.

Alternatively, choosing a region where a2 does not vary significantly will yield limits

that are too narrow. We choose a region in a2 that is symmetric about the fitted value
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and that reproduces a no-mixing result at the 10%-confidence level. The integration

limits for the calculation of the expected value of a3 are shown in Figure 10.14 as

vertical lines. The resulting expected value of a3, with symmetric 1σ intervals, is

shown as a horizontal dotted line within a hatched region.

Using the above prescription, we measure the D-mixing rate to be

±
√
x2 + y2 = −0.013 ± 0.010 (10.30)(

x2 + y2

2

)
= (0.013 ± 0.013)% (10.31)

The sign of ±√x2 + y2 indicates the sign of the interference term, which appears to

be negative for the Dalitz-plot region selected in this analysis.

Systematic uncertainties have not been evaluated for these measurements. How-

ever, based on the knowledge of previous D mixing searches, we expect systematic

uncertainties in these results to be small compared to the estimated statistical uncer-

tainty.

To help understand the sensitivity of the fit to mixing, the fit is shown projected

onto the tKππ0 axis in Figure 10.20 after the parameters {a1, a2, a3} have been ad-

justed to the null hypothesis. The difference between the fit after it has been adjusted

to the null hypothesis and the fit at the likelihood maximum is almost imperceptible;

this is expected, since the background contributions in these projections are dominant.
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Figure 10.14: Likelihood contours for final data set, where the likelihood is a function
of {a1, a2, a3} and the parameter values are constrained to reproduce the number of
fitted signal events. The contours indicate ∆ logL = 0.5, 2.0, 4.5, in black, red, and
green, respectively. The cross (X) marks the parameter values that give the maximal
likelihood. The vertical lines mark the region of parameter space that, when calculat-
ing an expected value of ±

√
x2 + y2, yields symmetric uncertainties which include

a null result at the 10%-confidence level. The horizontal dotted line and hatched re-
gion designate the corresponding expected value of ±

√
x2 + y2 with 1σ confidence

intervals.
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Figure 10.15: Projections of the maximum likelihood fit to the wrong-sign data onto
tKππ0 for the entire fit region (left) and for the signal region only (right). The entire
fit region is 1.74 < mKππ0 < 1.98 GeV/c2 and 0.13957 < ∆m < 0.155 GeV/c2; the
signal region is 1.85 < mKππ0 < 1.88 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.
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Figure 10.16: Projections of the maximum likelihood fit to the wrong-sign data onto
tKππ0 for the mKππ0 signal region (left) and for the ∆m signal region (right). The
mKππ0 signal region is 1.85 < mKππ0 < 1.88 GeV/c2 and 0.13957 < ∆m <
0.155 GeV/c2; the ∆m signal region is 1.74 < mKππ0 < 1.98 GeV/c2 and 0.1444 <
∆m < 0.1464 GeV/c2.
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Figure 10.17: Projections of the maximum likelihood fit to the wrong-sign data onto
tKππ0 for sideband regions emphasizing the combinatoric background in the lower
mKππ0 region (left) and in the upper mKππ0 region (right). The lower mKππ0 region
is 1.74 < mKππ0 < 1.82 GeV/c2 and 0.152 < ∆m < 0.155 GeV/c2; the upper mKππ0

region is 1.91 < mKππ0 < 1.98 GeV/c2 and 0.152 < ∆m < 0.155 GeV/c2.
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Figure 10.18: Projections of the maximum likelihood fit to the wrong-sign data onto
tKππ0 for a sideband region emphasizing the bad-D∗+ background. The region is
1.85 < mKππ0 < 1.88 GeV/c2 and 0.147 < ∆m < 0.155 GeV/c2.
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Figure 10.19: Projections of the maximum likelihood fit to the wrong-sign data onto
tKππ0 for sideband regions emphasizing the bad-D0 background in the lower mKππ0

region (left) and in the uppermKππ0 region (right). The lowermKππ0 region is 1.74 <
mKππ0 < 1.82 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2; the upper mKππ0 region
is 1.91 < mKππ0 < 1.98 GeV/c2 and 0.1444 < ∆m < 0.1464 GeV/c2.
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Figure 10.20: Projections of the maximum likelihood fit to the wrong-sign data onto
tKππ0 for a signal region, showing the fit with the mixing parameters at the values
that maximize the likelihood (left) and with the mixing parameters at the values of
the null hypothesis (right). The signal region is 1.85 < mKππ0 < 1.88 GeV/c2 and
0.1444 < ∆m < 0.1464 GeV/c2.

148



10.8 Conclusions

The measurement of the integrated D mixing rate (x2 + y2)/2 in this chapter is

the most precise to date. The quoted uncertainty is an order of magnitude smaller

than previous analyses of the decay-time distribution in D0 → K+π− decays. This is

due in part to the larger data sample, in part to the accurate and well-tuned maximum

likelihood fit, in part to the techniques used to reduce the relative amount of doubly

Cabibbo-suppressed decays, and in part to the more robust functional form used in the

fit for mixing. A more precise measurement will require more data, a time-dependent

Dalitz-plot analysis, or both.

Although the D-mixing rate is not very interesting in itself due to inability to

predict it accurately, it offers a foothold to obtaining possible indications of Physics

beyond the Standard Model. For example, as discussed in Chapter 1, it is generally

predicted within the Standard Model that x 	 y. With the value of y ≈ 1%, as

measured by BABAR [16], and the value of
√
x2 + y2 ≈ 0.013, as given above, a value

x ≈ 0.8% is calculated, which is about the same magnitude as y. Also, the ability to

measure the D-mixing rate accurately enables one to do CP -violation studies, which

would indicate new phenomena if CP violation is observed. This result is therefore

significant and relevant in the effort to better understand the nature of Particle Physics,

and the methods developed for conducting this search may be of general use in the

future.
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Appendix A

Standard Candidate Lists

A.1 General Track Lists

A.1.1 GoodTracksVeryLoose

• dxy < 1.5 cm, where dxy is the distance of closest approach (DOCA) to the

beamspot in the transverse plane (relative to the beam axis)

• dz < 10 cm, where dz is the DOCA to the beamspot along the direction of the

beam axis
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A.1.2 GoodTracksLoose

• dxy < 1.5 cm, where dxy is the distance of closest approach (DOCA) to the

beamspot in the transverse plane (relative to the beam axis)

• dz < 10 cm, where dz is the DOCA to the beamspot along the direction of the

beam axis

• pt > 100 MeV/c, where pt is the transverse lab-momentum relative to the beam

axis

• At least 12 hits in the drift chamber

A.2 General Neutral Lists

A.2.1 GoodPhotonLoose

• γ candidates are taken from the CalorNeutral list, which contains single

EMC bumps that are not matched with any track

• EMC bump energy > 30 MeV/c2

• EMC Lat < 0.8 (see Table 4.1 for definition)
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A.2.2 pi0VeryLoose

• γ candidate are taken from the GoodPhotonLoose list, defined above

• 90 < mγγ < 165 MeV/c2

• no merged π0 candidates

A.3 Particle Identification Lists

A.3.1 KLHTight

For each track, the selector calculates likelihoods L for several particle hypothe-

ses. The particle types checked are K, π, p, µ, and e. The likelihood calculations use

information from the SVT and DCH, such as dE/dx and number of hits; information

from the EMC, such as E/P ; and information from the DRC, such as the Cerenkov

angle and the number of photons. The selector combines the likelihoods into ratios,

and make cuts to select tracks with a given efficiency and fake rate.

Histograms showing the various efficiencies of this selector are found in Fig-

ures A.1–A.6.

152



A.3.2 KLHVeryTight

This selector calculate likelihoods as for the KLHTight selector described above,

making different cuts on the ratios.

Histograms showing the various efficiencies of this selector are found in Fig-

ures A.7–A.12.

A.3.3 piLHTight

This selector calculate likelihoods as for the KLHTight selector described above,

making different cuts on the ratios.

Histograms showing the various efficiencies of this selector are found in Fig-

ures A.13–A.18.

A.3.4 piLHVeryTight

This selector calculate likelihoods as for the KLHTight selector described above,

making different cuts on the ratios.

Histograms showing the various efficiencies of this selector are found in Fig-

ures A.19–A.24.
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A.3.5 eMicroLoose

• −0.7 < θp < 0.84, where θp is the polar angle of the lab momentum with

respect to the beam axis

• E/p > 0.65, where E/p is the energy deposited in the electromagnetic

calorimeter divided by the lab-momentum magnitude

• At least 4 calorimeter crystals in the cluster associated with the track

• 500 < dE/dx < 1000, where dE/dx is the ionization energy loss in the drift

chamber (values are in arbitrary, detector-specific units)

A.3.6 PidLHElectrons

For each track, a likelihood is calculated for several particle hypotheses. The like-

lihood calculation for each particle hypothesis, Lhypo, includes the following quanti-

ties:

• E/p, the energy deposited in the electromagnetic calorimeter (EMC)

divided by the lab-momentum magnitude

• LAT, the lateral moment of the EMC cluster (see Table 4.1 for definition)

• ∆φ, the angular difference between the centroid of the EMC cluster and the

calculated track position at the face of the calorimeter, multiplied by the charge
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of the track

• dE/dx, the ionization energy loss in the drift chamber

• θC , the Cerenkov angle in the DIRC

(if the momentum magnitude p < 2.5 GeV/c)

The total likelihood is defined as

L =
Le

Le + Lπ + LK + Lp
(A.1)

This selector requires the following criteria:

• p > 300 MeV/c, where p is the lab-momentum magnitude

• −0.74 < θp < 0.84, where θp is the polar angle of the lab momentum with

respect to the beam axis.

• 0.65 < E/p < 1.5

• At least 5 calorimeter crystals in the cluster associated with the track.

• 500 < dE/dx < 1000

• −0.05 < ∆φ < 0.15

• At least 6 photons in the DIRC, if at least 6 photons are expected for the track

• L > 0.98
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Figure A.1: Efficiencies for selecting K±s using the KLHTight list in Monte Carlo
and data. The histograms show the efficiency as a function of momentum for the entire
detector acceptance range. The left shows the efficiency for selecting K+, the center
shows the efficiency for selecting K−, and the right shows the ratio of efficiency in
data to that in Monte Carlo.
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Figure A.2: Efficiencies for selecting K±s using the KLHTight list in data. The
histograms show the efficiency for K− and K+ as a function of momentum for the
forward section of the detector (left), the center section (center), and the backward
section (right)
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Figure A.3: Efficiencies for selecting K±s using the KLHTight list in data. The his-
tograms show the efficiency for K− and K+ as a function of polar angle for the low-
momentum tracks (left), medium-momentum tracks (center), and high-momentum
tracks (right)
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Figure A.4: Efficiencies for selecting π±s using the KLHTight list in Monte Carlo
and data. The histograms show the efficiency as a function of momentum for the
entire detector acceptance range. The left shows the efficiency for selecting π+, the
center shows the efficiency for selecting π−, and the right shows the ratio of efficiency
in data to that in Monte Carlo.
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Figure A.5: Efficiencies for selecting π±s using the KLHTight list in data. The
histograms show the efficiency for π− and π+ as a function of momentum for the
forward section of the detector (left), the center section (center), and the backward
section (right)
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Figure A.6: Efficiencies for selecting π±s using the KLHTight list in data. The
histograms show the efficiency for π− and π+ as a function of polar angle for the low-
momentum tracks (left), medium-momentum tracks (center), and high-momentum
tracks (right)
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Figure A.7: Efficiencies for selecting K±s using the KLHVeryTight list in Monte
Carlo and data. The histograms show the efficiency as a function of momentum for
the entire detector acceptance range. The left shows the efficiency for selecting K+,
the center shows the efficiency for selecting K−, and the right shows the ratio of
efficiency in data to that in Monte Carlo.
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Figure A.8: Efficiencies for selecting K±s using the KLHVeryTight list in data.
The histograms show the efficiency for K− and K+ as a function of momentum for
the forward section of the detector (left), the center section (center), and the backward
section (right)

159



[Deg]θ
40 60 80 100 120 140

0.8

0.85

0.9

0.95

1
 p[GeV/c]<0.75≤Low P , 0.25

+K
-K

[Deg]θ
40 60 80 100 120 140

0.8

0.9

1
 p[GeV/c]<2.00≤Med P , 0.75

+K
-K

[Deg]θ
40 60 80 100 120 140

0.7

0.8

0.9

1
 p[GeV/c]<5.00≤High P , 2.00

+K
-K

Selector : VeryTightLHKaonMicroSelection Dataset : run4-r16a Tables created on 1/2/2005 (Data)

Figure A.9: Efficiencies for selecting K±s using the KLHVeryTight list in data.
The histograms show the efficiency for K− and K+ as a function of polar angle
for the low-momentum tracks (left), medium-momentum tracks (center), and high-
momentum tracks (right)
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Figure A.10: Efficiencies for selecting π±s using the KLHVeryTight list in Monte
Carlo and data. The histograms show the efficiency as a function of momentum for the
entire detector acceptance range. The left shows the efficiency for selecting π+, the
center shows the efficiency for selecting π−, and the right shows the ratio of efficiency
in data to that in Monte Carlo.
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Figure A.11: Efficiencies for selecting π±s using the KLHVeryTight list in data.
The histograms show the efficiency for π− and π+ as a function of momentum for the
forward section of the detector (left), the center section (center), and the backward
section (right)
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Figure A.12: Efficiencies for selecting π±s using the KLHVeryTight list in data.
The histograms show the efficiency for π− and π+ as a function of polar angle
for the low-momentum tracks (left), medium-momentum tracks (center), and high-
momentum tracks (right)
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Figure A.13: Efficiencies for selecting π±s using the piLHTight list in Monte Carlo
and data. The histograms show the efficiency as a function of momentum for the entire
detector acceptance range. The left shows the efficiency for selecting π+, the center
shows the efficiency for selecting π−, and the right shows the ratio of efficiency in
data to that in Monte Carlo.
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Figure A.14: Efficiencies for selecting π±s using the piLHTight list in data. The
histograms show the efficiency for π− and π+ as a function of momentum for the
forward section of the detector (left), the center section (center), and the backward
section (right)
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Figure A.15: Efficiencies for selecting π±s using the piLHTight list in data. The
histograms show the efficiency for π− and π+ as a function of polar angle for the low-
momentum tracks (left), medium-momentum tracks (center), and high-momentum
tracks (right)
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Figure A.16: Efficiencies for selecting K±s using the piLHTight list in Monte
Carlo and data. The histograms show the efficiency as a function of momentum for
the entire detector acceptance range. The left shows the efficiency for selecting K+,
the center shows the efficiency for selecting K−, and the right shows the ratio of
efficiency in data to that in Monte Carlo.
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Figure A.17: Efficiencies for selecting K±s using the piLHTight list in data. The
histograms show the efficiency for K− and K+ as a function of momentum for the
forward section of the detector (left), the center section (center), and the backward
section (right)
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Figure A.18: Efficiencies for selecting K±s using the piLHTight list in data.
The histograms show the efficiency for K− and K+ as a function of polar angle
for the low-momentum tracks (left), medium-momentum tracks (center), and high-
momentum tracks (right)
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Figure A.19: Efficiencies for selecting π±s using the piLHVeryTight list in Monte
Carlo and data. The histograms show the efficiency as a function of momentum for the
entire detector acceptance range. The left shows the efficiency for selecting π+, the
center shows the efficiency for selecting π−, and the right shows the ratio of efficiency
in data to that in Monte Carlo.
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Figure A.20: Efficiencies for selecting π±s using the piLHVeryTight list in data.
The histograms show the efficiency for π− and π+ as a function of momentum for the
forward section of the detector (left), the center section (center), and the backward
section (right)

165



[Deg]θ
40 60 80 100 120 140

0.92

0.94

0.96

0.98

1
 p[GeV/c]<0.75≤Low P , 0.25

+π
-π

[Deg]θ
40 60 80 100 120 140

0.8

0.85

0.9

0.95

1
 p[GeV/c]<2.00≤Med P , 0.75

+π
-π

[Deg]θ
40 60 80 100 120 140

0.85

0.9

0.95

1
 p[GeV/c]<5.00≤High P , 2.00

+π
-π

Selector : VeryTightLHPionMicroSelection Dataset : run4-r16a Tables created on 1/2/2005 (Data)

Figure A.21: Efficiencies for selecting π±s using the piLHVeryTight list in data.
The histograms show the efficiency for π− and π+ as a function of polar angle
for the low-momentum tracks (left), medium-momentum tracks (center), and high-
momentum tracks (right)
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Figure A.22: Efficiencies for selecting K±s using the piLHVeryTight list in
Monte Carlo and data. The histograms show the efficiency as a function of momentum
for the entire detector acceptance range. The left shows the efficiency for selecting
K+, the center shows the efficiency for selecting K−, and the right shows the ratio of
efficiency in data to that in Monte Carlo.
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Figure A.23: Efficiencies for selecting K±s using the piLHVeryTight list in data.
The histograms show the efficiency for K− and K+ as a function of momentum for
the forward section of the detector (left), the center section (center), and the backward
section (right)
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Figure A.24: Efficiencies for selecting K±s using the piLHVeryTight list in data.
The histograms show the efficiency for K− and K+ as a function of polar angle
for the low-momentum tracks (left), medium-momentum tracks (center), and high-
momentum tracks (right)
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