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Abstract

We show how the string amplitude Φ(z) defined on the fifth dimension in AdS5 space can be

precisely mapped to the light-front wavefunctions of hadrons in physical spacetime. We find an

exact correspondence between the holographic variable z and an impact variable ζ, which represents

the measure of transverse separation of the constituents within the hadrons. In addition, we derive

effective four dimensional Schrödinger equations for the bound states of massless quarks and gluons

which exactly reproduce the AdS/CFT results and give a realistic description of the light-quark

meson and baryon spectrum as well as the form factors for spacelike Q2. Only one parameter which

sets the mass scale, ΛQCD, is introduced.
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The correspondence [1] between 10-dimensional string theory defined on AdS5× S5 and

conformal Yang-Mills gauge theories in physical 3+1 space-time has led to important insights

into the properties of conformal theories at strong coupling. QCD is nearly conformal in

the ultraviolet region. It is also a confining gauge theory in the infrared with a mass gap

characterized by a scale ΛQCD and a well-defined spectrum of color-singlet hadronic states.

Although QCD is not conformal, many aspects of the theory, such as the dimensional scaling

of exclusive amplitudes [2], follow if the QCD coupling has an infrared fixed point, allowing

one to take conformal symmetry as an initial approximation.

The essential principle which leads to AdS/CFT duality is the fact that the group SO(2, 4)

of Lorentz and conformal transformations has a mathematical representation on AdS5: the

isomorphism of the group SO(2,4) of conformal QCD in the limit of massless quarks and

vanishing β-function [3] with the isometries of AdS space, xµ → λxµ, z → λz, maps scale

transformations into the the holographic coordinate z, the extension of the hadron wave-

function into the fifth dimension. Different values of z determine the scale of the invariant

separation between quarks. In particular, the z → 0 boundary corresponds to the Q→∞,

zero separation limit. As shown by Polchinski and Strassler [4], the resulting hadronic the-

ory has the hard behavior and dimensional counting rules [2] expected from a conformal

approximation to QCD, rather than the soft behavior characteristic of string theory.

Color confinement implies that there is a maximum separation of quarks and a maximum

value of z. The cutoff at z0 = 1/ΛQCD breaks conformal invariance and allows the intro-

duction of the QCD scale. In fact, this holographic model gives a realistic description of

the light-quark meson and baryon spectrum [5], including orbital excitations, as well as the

meson and baryon form factors for spacelike Q2. Remarkably, only one parameter ΛQCD,

enters the predictions. Essential features of QCD, its near-conformal behavior at short

physical distances plus color confinement at large interquark separation, are incorporated

in the model. This approach known as holographic QCD, has been successful in obtaining

general properties of the low-lying hadron spectra, chiral symmetry breaking, and hadron

couplings [5, 6].

The light-front wavefunctions ψSz

n/h(xi,k⊥i, λi) of a hadron h encode all of its bound-

state quark and gluon properties, including its momentum, spin, and flavor correlations, in

the form of universal process- and frame-independent amplitudes. In this paper we shall

show how the string amplitude Φ(z) defined on the fifth dimension in AdS5 space can
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be precisely mapped to the boost-invariant light-front wavefunctions of the hadrons. The

resulting nonperturbative light-front wavefunctions and distributions allow the calculation of

many observables including structure functions, distribution amplitudes, form factors, deeply

virtual Compton scattering and decay constants. For example, the scale dependence of the

string modes as determined from its twist dimension as one approaches the z → 0 boundary

determines the power-law behavior of the hadronic wavefunction at short distances, thus

providing a precise counting rule for each Fock component with any number of quarks and

gluons and any internal orbital angular momentum [7]. The predicted short-distance and

orbital dependence coincides with perturbative QCD results [8].

More generally, we shall show that there is an exact correspondence between the fifth

dimensional variable z and a weighted impact separation variable ζ in physical space-time

for each n-parton Fock state. Thus the coordinate z can be directly interpreted as a measure

of the transverse separation of the constituents defined by the boost invariant light-front

wavefunction (LFWF) of the hadronic Fock state. In addition, we shall derive effective radial

Schrödinger equations for the bound states of massless quarks and gluons where the effective

potential is dictated by conformal symmetry and the constraint that the twist dimension

of each hadron, including its orbital angular momentum, is reproduced at short distances.

These effective equations for meson, baryons, and glueballs are completely equivalent to the

AdS results.

The light-front Fock expansion of any hadronic system is constructed by quantizing quan-

tum chromodynamics (QCD) at fixed light-cone time x+ = x0+x3 and forming the invariant

light-cone Hamiltonian HLC : HLC = P 2 = P+P− −P2
⊥, with P = (P+, P−,P⊥) [9, 10]. In

principle, solving the HLC eigenvalue problem gives the entire mass spectrum of the color-

singlet hadron states in QCD, together with their respective light-front wave functions. A

hadronic state satisfies HLC |ψh〉 = M2|ψh〉, where |ψh〉 is an expansion in multi-particle

Fock eigenstates {|n〉} of the free light-front Hamiltonian: |ψh〉 =
∑

n ψn/h|ψh〉. The solu-

tions are independent of P+ and P⊥. Thus, given the Fock projections ψSz

n/h(xi,k⊥i, λi)=

〈n; xi,k⊥i, λi|ψh(P
+,P⊥, Sz)〉, the wave function of a hadron is determined in any frame

[11]. The resulting equations can be solved, in principle, using the discretized light-cone

quantization (DLCQ) method [12]. The light-cone momentum fractions xi = k+
i /P

+ and

k⊥i represent the relative momentum coordinates of constituent i in Fock state n, and λi the

helicity along the z axis. The physical momentum coordinates are k+
i and p⊥i = xiP⊥+k⊥i.
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Here
∑n

i=1 xi = 1 and
∑n

i=1 k⊥i = 0.

It is useful to define transverse position coordinates xir⊥i = xiR⊥ + b⊥i so that
∑n

i=1 b⊥i = 0 and
∑n

i=1 xir⊥i = R⊥. The internal coordinates b⊥i are conjugate to the

relative coordinates k⊥i. The LFWF ψn(xj,k⊥j) can be expanded in terms of the n − 1

independent coordinates b⊥j, j = 1, 2, . . . , n− 1

ψn(xj,k⊥j) = (4π)
n−1

2

n−1∏
j=1

∫
d2b⊥j exp

(
i

n−1∑
j=1

b⊥j · k⊥j

)
ψ̃n(xj,b⊥j). (1)

The normalization is defined by

∑
n

n−1∏
j=1

∫
dxjd

2b⊥j|ψ̃n(xj,b⊥j)|2 = 1. (2)

The electromagnetic current Jµ(0) is represented in the interaction picture as a bilinear

product of free fields, so that it has an elementary coupling to the charged constituent

fields [13]. The Drell-Yan-West result for the form factor of a meson in terms of the transverse

variables b⊥i has the convenient form:

F (q2) =
∑

n

n−1∏
j=1

∫
dxjd

2b⊥j exp
(
iq⊥ ·

n−1∑
j=1

xjb⊥j

)|ψ̃n(xj,b⊥j)|2, (3)

corresponding to a change of transverse momentum xjq⊥ for each of the n − 1 spectators.

The formula is exact if the sum is over all Fock states n. We use the standard light-cone

frame where q = (0,−q2/P+,q⊥) and P = (P+,M2/P+,0⊥). The momentum transferred

by the photon to the system is q2 = −2P · q = −q2
⊥.

The form factor can be related to an effective single particle transverse density [14]

F (q2) =

∫ 1

0

dx

∫
d2~η⊥ei~η⊥·~q⊥ ρ̃(x, ~η⊥). (4)

From (3) we find

ρ̃(x, ~η⊥) =
∑

n

n−1∏
j=1

∫
dxjd

2b⊥j δ
(
1− x−

n−1∑
j=1

xj

)
δ(2)

( n−1∑
j=1

xjb⊥j − ~η⊥
) ∣∣∣ψ̃n(xj,b⊥j)

∣∣∣
2

, (5)

where the integration is over the coordinates of the n− 1 spectator partons, and x = xn is

the coordinate of the active charged quark. We can identify ~η⊥ =
∑n−1

j=1 xjb⊥j. This is the

x-weighted transverse position coordinate of the n − 1 spectators. The procedure is valid

for any n and thus the results can be summed over n to obtain an exact representation.
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We now derive the corresponding expression for the form factor in AdS. The derivation

can be extended to vector mesons and baryons. A non-conformal metric dual to a confining

gauge theory is written as [4]

ds2 =
R2

z2
e2A(z)

(
ηµνdx

µdxν − dz2
)
, (6)

where A(z) → 0 as z → 0, and R is the AdS radius. In the “hard wall” approximation [4]

the non-conformal factor e2A(z) is s a step function: e2A(z) = θ
(
z ≤ Λ−1

QCD

)
.

The hadronic matrix element for the electromagnetic current in the warped metric (6)

has the form [15]

ig5

∫
d4x dz

√
g A`(x, z)Φ∗

P ′(x, z)
←→
∂ `ΦP (x, z). (7)

We take an electromagnetic probe polarized along Minkowski coordinates, Aµ =

εµe
−iQ·xJ(Q, z), Az = 0, where the function J(Q, z) has the value 1 at zero momentum

transfer, and as boundary limit the external current Aµ(x, z → 0) = εµe
−iQ·x. Thus

J(z,Q = 0) = J(z = 0, Q) = 1, since we are normalizing the bulk solutions to the to-

tal charge operator. The solution to the AdS wave equation, subject to boundary conditions

at Q = 0 and z → 0, is [15]

J(Q, z) = zQK1(zQ). (8)

The hadronic string modes are plane waves along the Poincaré coordinates with four-

momentum P µ and invariant mass PµP
µ = M2: Φ(x, z) = e−iP ·xf(z). Substituting in

(7) we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is thus the overlap of the normalizable modes dual to the incoming

and outgoing hadrons ΦP and ΦP ′ with the non-normalizable mode J(Q, z) dual to the

external source [15].

It is useful to integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0

dx
(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x
x

)
ρ̃(x, ζ), (10)

where we have introduced the variable

ζ =

√
x

1− x
∣∣∣

n−1∑
j=1

xjb⊥j

∣∣∣, (11)
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representing the x-weighted transverse impact coordinate of the spectator system. We also

note the identity ∫ 1

0

dxJ0

(
ζQ

√
1− x
x

)
= ζQK1(ζQ), (12)

which is precisely the solution J(Q, ζ) for the electromagnetic potential in AdS (8). We

can now see the equivalence between the LF and AdS results for the hadronic form factors.

Comparing (10) with the expression for the form factor in AdS space (9), we can identify

the spectator density function appearing in the light-front formalism with the corresponding

AdS density

ρ̃(x, ζ) =
R3

2π

x

1− xe
3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Equation (13) gives a precise relation between string modes Φ(ζ) in AdS5 and the QCD

transverse charge density ρ̃(x, ζ). The variable ζ, 0 ≤ ζ ≤ Λ−1
QCD, represents the invariant

separation between point-like constituents, and it is also the holographic variable z charac-

terizing the string scale in AdS; i.e., we can identify ζ = z. For example, for two partons

ρ̃n=2(x, ζ) = |ψ(x, ζ)|2/(1 − x)2, and a closed form solution for the two-constituent bound

state light-front wave function is found

∣∣∣ψ̃(x, ζ)
∣∣∣
2

=
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x

~η2
⊥ = x(1− x)b2

⊥.

In general, the short-distance behavior of a hadronic state is characterized by its twist

(dimension minus spin) τ = ∆ − σ, where σ is the sum over the constituent’s spin σ =
∑n

i=1 σi. Twist is also equal to the number of partons τ = n. Upon the substitution

∆ → n + L, φ(z) = z−3/2Φ(z) in the AdS wave equations describing glueballs, mesons or

vector mesons [5], we find an effective Schrödinger equation as a function of the weighted

impact variable ζ [
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

This new effective LF wave equation in physical space-time has stable solutions satisfying

the Breitenlohner-Freedman bound [17]. The solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2JL(zM). (17)
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Its eigenvalues are determined by the boundary conditions at φ(z = 1/ΛQCD) = 0 and are

given in terms of the roots of the Bessel functions: ML,k = βL,kΛQCD. Normalized LFWFs

ψ̃L,k follow from (14) [18]

ψ̃L,k(x, ζ) = BL,k

√
x(1− x)JL (ζβL,kΛQCD) θ

(
z ≤ Λ−1

QCD

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 . The first eigenmodes are depicted in

Figure 1, and the masses of the light mesons in Figure 2. The predictions for the lightest

hadrons are improved relative to the results of [5] using the boundary conditions determined

in terms of twist instead of conformal dimensions. The description of baryons is carried out

along similar lines and will be presented elsewhere.

FIG. 1: Two-parton bound state holographic LFWF ψ̃(x, ζ) for ΛQCD = 0.32 GeV: (a) ground

state L = 0, k = 1, (b) first orbital excited state L = 1, k = 1.

The holographic model is remarkably successful in organizing the hadron spectrum, al-

though it underestimates the spin-orbit splittings of the L = 1 states. A better understand-

ing of the relation between chiral symmetry breaking and confinement is required to describe

successfully the pion. This would probably need a description of quark spin-flip mechanisms

at the wall.

We have shown how the string amplitude Φ(z) defined on the fifth dimension in AdS5

space can be precisely mapped to the frame-independent light-front wavefunctions of hadrons

in physical spacetime. This specific correspondence provides an exact holographic mapping

at all energy scales between string modes in AdS and boundary states with well-defined

number of partons. Consequently, the AdS string mode Φ(z) can be regarded as the prob-
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FIG. 2: Light meson orbital states for ΛQCD = 0.32 GeV: (a) pseudoscalar mesons and (b) mesons.

ability amplitude to find n-partons at transverse impact separation ζ = z. Its eigenmodes

determine the hadronic mass spectrum. The degeneracy of hadron states depends on the

flavor symmetry that is assumed; i.e., the number of massless quarks. There is no explicit

dependence on NC , and the QCD spectrum follows by matching twist dimensions to SU(3)C

color-singlet hadronic states at the z → 0 boundary.

The model can also be formulated in four dimensions without reference to AdS space [19].

To this end we have derived effective radial Schrödinger equations for the bound states of

massless quarks and gluons with boundary conditions at zero separation distance determined

by twist. These effective equations for meson, baryons, and glueballs exactly reproduce the

AdS/CFT results. Since only one parameter is introduced, the agreement of the hadron

spectrum with the observed pattern of physical states and the behavior of measured spacelike

form factors is remarkable. The complete set of wavefunction solutions are orthonormal and

complete, giving a correct representation of current and charge matrix elements.

The phenomenological success of dimensional counting rules for exclusive processes can

be understood if QCD resembles a strongly coupled conformal theory. The holographic

model gives a mathematical realization of such theories. In some sense it is a covariant

generalization of the MIT bag model, but it also incorporates the approximately conformal

behavior of QCD at short physical distances. Our results suggest that basic features of QCD

can be understood in terms of a higher dimensional dual gravity theory which holographically

encodes multi-parton boundary states into string modes and allows the computation of

physical observables at strong coupling.
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