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Abstract

The gauge-invariant three-gluon vertex obtained from the pinch technique
is characterized by thirteen nonzero form factors, which are given in complete
generality for unbroken gauge theory at one loop. The results are given in
d dimensions using both dimensional regularization and dimensional reduc-
tion, including the effects of massless gluons and arbitrary representations of
massive gauge bosons, fermions, and scalars. We find interesting relations
between the functional forms of the contributions from gluons, quarks, and
scalars. These relations hold only for the gauge-invariant pinch technique ver-
tex and are d-dimensional incarnations of supersymmetric nonrenormalization
theorems which include finite terms. The form factors are shown to simplify
for N = 1, 2, and 4 supersymmetry in various dimensions. In four-dimensional
non-supersymmetric theories, eight of the form factors have the same functional
form for massless gluons, quarks, and scalars, when written in a physically moti-
vated tensor basis. For QCD, these include the tree-level tensor structure which
has prefactor β0 = (11Nc−2Nf )/3, another tensor with prefactor 4Nc−Nf , and
six tensors with Nc−Nf . In perturbative calculations our results lead naturally
to an effective coupling for the three-gluon vertex, α̃(k2

1, k
2
2, k

2
3), which depends

on three momenta and gives rise to an effective scale Q2
eff (k2

1, k
2
2, k

2
3) which

governs the behavior of the vertex. The effects of nonzero internal masses M
are important and have a complicated threshold and pseudo-threshold struc-
ture. A three-scale effective number of flavors NF (k2

1/M
2, k2

2/M
2, k2

3/M
2) is

defined. The results of this paper are an important part of a gauge-invariant
dressed skeleton expansion and a related multi-scale analytic renormalization
scheme. In this approach the scale ambiguity problem is resolved since physical
kinematic invariants determine the arguments of the couplings.
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1 Introduction : Gauge-Invariant Green’s Func-

tions

The main purpose of this paper is to analyze the structure of the gauge-invariant
three-gluon vertex [1], calculate the fourteen form factors at one loop, and outline
some of the phenomenological applications. Before proceeding, it is worthwhile to
review the motivation and current status of gauge-invariant Green’s functions.

In the conventional formulation of gauge field theories, the manifest gauge-invariance
of the original action is lost upon quantization, simply because one has to fix a gauge
in order to perform calculations. Generically, Greens’s functions are gauge-dependent
and thus not physical by themselves. Only the particular combinations of Green’s
functions which form physical observables must be gauge-invariant. In many the-
oretical studies, however, one would like to consider individual Green’s functions
and extract physical meaning from them [2]. For example, studies of the infrared
behavior of gauge theory using Dyson-Schwinger equations [3] often rely on gauge-
dependent truncation schemes which one hopes are not too brutal. The existence of
gauge-invariant two-point functions is crucial for defining meaningful resummed prop-
agators [4], particularly near threshold, for the construction of effective charges [5],
for a postulated dressed-skeleton expansion of QCD [6], and for justifying renormalon
analyses [7].

Thus there is strong motivation for gauge-invariant Green’s functions with phys-
ical content. We will now briefly discuss the relationship between three different
approaches to gauge-invariant Green’s functions : (1) the Pinch Technique (PT), (2)
the Background Field Method (BFM), and (3) the ? effective Lagrangian scheme of
Kennedy and Lynn. All three approaches will lead to the same Green’s functions.

The pinch technique (PT) was first constructed by Cornwall [2] in order to study
gauge-invariant Dyson-Schwinger equations and dynamical gluon mass generation,
but the approach is much more generally applicable. In the PT approach, unique
gauge-invariant Green’s functions are constructed by explicitly rearranging Feynman
diagrams using elementary Ward identities (WI) as the guiding principle. Longitudi-
nal momenta from triple-gauge-boson vertices and gauge propagators inside of loops
hit other vertices and thus generate inverse propagators (via WI’s), which, in turn,
cancel (or pinch) some internal propagators. In this way, certain parts of Green’s
functions are reduced to parts of lower n-point functions, and should properly be
included in the latter.

As an example of the PT, consider the gluon (or massive gauge boson) self-energy.
The conventional self-energy is gauge-dependent and physically meaningless by itself.
However, when embedded in any physical process, there will be associated parts of
vertex and box graphs which undergo the reduction described above and thus have
the same tensor and kinematic structure as the gluon propagator. These pinched
parts are then added to the conventional gauge-dependent self-energy, yielding a
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gauge-invariant self-energy and gluon propagator that has the correct asymptotic
UV behavior dictated by the renormalization group equation. The resulting two-
point function has numerous positive attributes [4][8][5][9][10], including uniqueness,
resummability, analyticity, unitarity, and a natural relation to optical theorem, from
which it can also be derived [4][11].

Resumming these two-point functions leads to physical effective charges, ála
Grunberg[12], which can be extended to the supersymmetric case and leads to an
analytic improvement of gauge coupling unification with smooth threshold behavior
[13].

This method has been applied to a variety of Green’s functions [1][14][15] [16][17],
with applications to electroweak phenomenology [18][19]. In particular, the gauge-
invariant three-gluon vertex was first constructed in [1] to one-loop order, where the
authors showed that the vertex satisfies a relatively simple abelian-like Ward iden-
tity. However, the integrals were not evaluated, so that little could be said about the
individual form factors except that the UV divergent term in the tree level tensor
structure is correct. The main motivation of this paper is to extend this work by
evaluating the integrals for the fourteen form factors, and expressing the results in a
convenient tensor basis for phenomenological applications. In doing so, an interesting
structure emerges, in which the contributions of gluons(G), quarks(Q), and scalars(S)
are intimately related. These relations are closely linked to supersymmetry and con-
formal symmetry, and in particular the N = 4 non-renormalization theorems. For all
form factors F in dimensions d, we find that

FG + 4FQ + (10− d)FS = 0, (1)

which encodes the vanishing contribution of the N = 4 supermultiplet in four dimen-
sions. In Appendix E, the effects of internal masses are discussed, and the above sum
rule becomes modified

FMG + 4FMQ + (9− d)FMS = 0, (2)

for internal massive gauge bosons (MG), fermions (MQ), and scalar (MS). The ex-
ternal gluons remain massless and unbroken, so the internal gauge bosons might be
the heavy Xµ, Yµ bosons of SU(5), for example.

The PT method has been explicitly extended beyond one-loop [20][21][22], has
recently been proven to exist to all orders in perturbation theory [23][24][25][26], and
interestingly, each Green’s function is equal to the corresponding Green’s function
of the Background Field Method (BFM) in quantum Feynman gauge ξQ = 1, a
result suggested in [27][28]. Heuristically, this is due to the fact that there are no
longitudinal (pinching) momenta in the gauge propagator or the elementary vertices
in this special gauge.

The Background Field Method (BFM) [29] constructs manifestly gauge invariant
Green’s functions in the following way. First, the field variable(A) in the path integral
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is separated into a background(B) and quantum(Q) field, A = B + Q. Only the
quantum field Q propagates in loops, since it is a variable of functional integration. In
contrast, the background field B appears only in external legs. By judiciously choosing
the gauge-fixing function, one arrives at an effective action which remains manifestly
invariant under background field gauge-transformations δBa

µ = −fabcωbBc
µ + 1

g
∂µω

a.
Furthermore, derivatives of the BFM effective action with respect to the background
field B yield the same 1PI Green’s functions as the conventional effective action with
a nonstandard gauge-fixing. Thus, it can be shown [29] that the correct S-matrix is
obtained by sewing together trees composed of 1PI Green’s functions of B fields. In
doing so, one can fix the gauge of B, which propagates only at tree level, independently
of the gauge fixing of Q. For example, convenient non-covariant gauges might be used
for the trees while BFM Feynman gauge ξQ = 1 (BFMFG) can be used for the loops.

The correspondence between the PT and BFM is not surprising, since the BFM is a
formulation of gauge theory where Green’s functions of the gauge field are manifestly
(background) gauge-invariant. Although this is true for all values of the quantum
gauge-fixing parameter ξQ, it is only for the special value ξQ = 1 that the BFM Green’s
functions also have the correct kinematic structure of the irreducible PT Green’s
functions. Alternatively, it has been shown [28] that applying the PT algorithm to
the BFM for ξQ 6= 1 leads back to the canonical (ξQ = 1) PT Green’s functions.

Finally, in the ? scheme of Kennedy and Lynn [30], a gauge-invariant effective
Lagrangian was constructed for electroweak four-fermion processes by explicitly re-
arranging the one loop corrections. As in the pinch technique, vertex parts must be
added to would-be two point functions to yield genuine two-point functions. One
particular motivation is that fact that the photon acquires a spurious mass from its
mixing with Z0, ΠγZ(q2 = 0) 6= 0, unless the correct vertex parts are added. The
resulting effective charges, α?(q

2) and s2
?(q

2) are in fact precisely equal to the corre-
sponding pinch-technique effective charges at one loop, including all finite terms and
threshold dependence [8].

Thus, all three methods for constructing physical gauge-invariant Green’s func-
tions lead to the same results, which in the this paper will be referred to as either PT
or PT/BFMFG Green’s functions.

The organization of this paper is as follows. In section 2, we will discuss the
general structure of the gauge-invariant three-gluon vertex, which is constrained by
the Ward identity and Bose symmetry. Two convenient tensor bases and their rela-
tion are discussed. In section 3, the main results of this paper are given. First, the
nontrivial supersymmetric relations between the gluon, quark, and scalar contribu-
tions to each form factor are discussed. The explicit results for the form factors are
given in two different bases for massless internal particles, with the full mass effects
relegated to Appendix E. In section 4, we briefly discuss the phenomenological ap-
plication to physical scattering processes, where we derive an effective coupling for
the three-gluon vertex, α̃(k2

1, k
2
2, k

2
3), and an effective scale, Q2

eff (k
2
1, k

2
2, k

2
3), both of

which depend on three distinct gluon virtualities. In section 5, the phenomenolog-
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ical effects of internal masses are discussed. A complicated threshold and pseudo-
threshold structure emerges. Furthermore, a three-scale effective number of flavors
NF (k2

1/M
2, k2

2/M
2, k2

3/M
2) is defined. Conclusions are given in section 6. In ap-

pendix A, a brief outline of the calculational method is given, and some basic one-
and two-point integrals are given. Appendix B is devoted to a thorough discussion of
the massive triangle integral, and analytic continuations are given for each kinematic
region. Appendix C collects some useful results for special functions. Appendix D
explains the corrections to the form factors when a supersymmetric regularization is
used. Finally Appendix E gives explicitly the corrections to the form factors arising
from internal massive gauge bosons, fermions, and scalars.

2 General Structure of the Three-Gluon Vertex

2.1 Symmetries

One of the most important aspects of the gauge-invariant three-gluon vertex discussed
in this paper is the relatively simple Ward identity it satisfies, which has the same
form as the Ward ID satisfied by the tree level vertex. This was proven at one-loop
in the original paper by Cornwall and Papavassiliou [1] using the explicit one-loop
result, which is the gluon part of Eqs.(17,18) below. It is straightforward to show that
the fermion and scalar parts also satisfy the same Ward identity (just as in QED).
Furthermore, the equivalence of the BFMFG and PT to all orders [23] allows one to
write the Ward identity satisfied by the three-gluon vertex to all orders as

pµ3

3 Γabc
µ1µ2µ3

(p1, p2, p3) = fadc
(
tµ1µ2(p2)δ

db+Πdb
µ1µ2

(p2)
)
−fadc

(
tµ1µ2(p1)δ

da+Πda
µ1µ2

(p1)
)
,

(3)
plus two other equations which are cyclic permutations. The transverse tensor tµν(p) =
p2gµν − pµpν comes from the tree level term. Here all momenta are defined to be in-
coming and all labels are defined in counter-clockwise fashion, as shown in Fig. 1.
This Ward identity represents a great simplification compared to the usual Slavnov-
Taylor identities satisfied by the conventional gauge-dependent three-gluon vertex,
which involves the gluon propagator, the ghost propagator, and the ghost-ghost-
gluon vertex function. The self-energy function in the above equation is not the usual
gauge-dependent self-energy, but rather the gauge-invariant pinch technique self en-
ergy, which is the only self energy discussed in this paper. An immediate consequence
is that the longitudinal (L) part of the vertex, defined as the part which contributes
to the above Ward ID, must have only the antisymmetric color factor fabc so long as
gluons conserve the color charge, Πab

µν(q) = δabΠµν(q). As far as we know, the trans-

verse (T ) part of the vertex (defined by pµ3

3 Γ
abc(T )
µ1µ2µ3(p1, p2, p3) = 0) is not required to

be proportional to fabc, but may in principle contain dabc terms. Nevertheless, no
such terms appear at one or two loop order, and so in the subsequent discussion we
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Figure 1: The notation and loop momentum routing used throughout this paper. The
internal particle could be a gauge boson, ghost, quark, or scalar.

take

Γabc
µ1µ2µ3

(p1, p2, p3) = fabcΓµ1µ2µ3(p1, p2, p3), (4)

in terms of which the Ward identity becomes

pµ3

3 Γµ1µ2µ3(p1, p2, p3) = tµ1µ2(p2)(1 + Π(p2
2))− tµ1µ2(p1)(1 + Π(p2

1)). (5)

Bose symmetry, the fact that 3 identical particles are entering the vertex, and the
properties of fabc imply definite properties of Γµ1µ2µ3(p1, p2, p3) under the interchange
of labels. In particular, defining the five elements of the permutation group S3 to act
by

g123 =




(µ1, p1) → (µ2, p2)
(µ2, p2) → (µ3, p3)
(µ3, p3) → (µ1, p1)


 g12 =

(
(µ1, p1) → (µ2, p2)
(µ2, p2) → (µ1, p1)

)
(6)

g23 =

(
(µ2, p2) → (µ3, p3)
(µ3, p3) → (µ2, p2)

)
g31 =

(
(µ3, p3) → (µ1, p1)
(µ1, p1) → (µ3, p3)

)

and g321 = g−1
123 one finds that (g123, g321, g12, g23, g31) yields (+, +,−,−,−) when

acting on Γµ1µ2µ3(p1, p2, p3).

The nonabelian nature of the permutation group S3 prevents one from finding
a basis in which all of the tensors are eigenstates of all of these operators. Thus,
aesthetic and physical principles must guide us in choosing convenient bases, two of
which are discussed momentarily.
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2.2 Two Convenient Bases

Let us consider the most general tensor structure. The three index Lorentz covariant
tensor must be constructed out of the metric gµν and the momenta (pµ

i ). Since the
momenta are not independent, p1 + p2 + p3 = 0, simple combinatorics implies that
there are in general 14 independent tensor components, 6 of which have one power
of momenta and also the metric, and 8 of which have 3 powers of momenta. Many
different basis choices can be made, although we will use essentially two.

In the subsequent discussion, some efficient notation will prove useful. This is
summarized in Table 1.

Table I. Definition of tensor abbreviations

001 ≡ gµ1µ2p1µ3 002 ≡ gµ1µ2p2µ3

200 ≡ gµ2µ3p2µ1 300 ≡ gµ2µ3p3µ1

030 ≡ gµ3µ1p3µ2 010 ≡ gµ3µ1p1µ2

211 ≡ p2µ1p1µ2p1µ3 212 ≡ p2µ1p1µ2p2µ3

232 ≡ p2µ1p3µ2p2µ3 332 ≡ p3µ1p3µ2p2µ3

331 ≡ p3µ1p3µ2p1µ3 311 ≡ p3µ1p1µ2p1µ3

312 ≡ p3µ1p1µ2p2µ3 231 ≡ p2µ1p3µ2p1µ3

Thus, each tensor is rewritten as a 3 slot object, where slots correspond to
µ1, µ2, µ3 in that order, and the content of each slot is either ‘1’,‘2’, or ‘3’ to rep-
resent momentum p1, p2, p3, or a ‘0’, which must occur in pairs and represents that
those two indices are connected by the metric tensor.

The most naive thing to do would be to just eliminate one momenta, say p3 =
−p1−p2 and use the following 14 basis tensors : 100, 200, 010, 020, 001, 002, 111, 112,
121, 211, 122, 212, 221, 222. This is not very useful since the explicit Bose symmetry
between the three gluons has been broken, and thus delicate relations between the
form factors will have to enforce it.

The ± Basis
A more natural choice is obtained by starting from a manifestly symmetric, but

redundant basis, which has 36 possible basis tensors, 9 with one power of momenta,
and 27 with three powers of momenta. As a step towards our final basis, we find it
convenient to eliminate all such tensors with momenta pµ1

1 , pµ2

2 , or pµ3

3 , i.e. anything
with 1 in the first slot, 2 in second slot or 3 in the third slot. This yields the 14 basis
tensors 001, 002, 200, 300, 030, 010, 211, 212, 232, 332, 331, 311, 231, 312, which
are shown in Table 1. Note that under the action of g123 we have 200 → 030, 300 →
010, 211 → 232, 311 → 212, etc. Also, notice that 200 and 300 are interchanged
by the action of g23, while 211 and 212 are interchanged by the action of g12, etc.
Thus, it is convenient to take appropriate linear combinations such that one of these
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interchange operators is diagonal for each tensor. Such basis tensors are

â12 = (00−) = 001− 002, â23 = (−00) = 200− 300, â31 = (0−0) = 030− 010

b̂12 = (00+) = 001 + 002, b̂23 = (+00) = 200 + 300, b̂31 = (0+0) = 030 + 010

ĉ12 = (++−), ĉ23 = (−++), ĉ31 = (+−+)

d̂12 = (−−+), d̂23 = (+−−), d̂31 = (−+−) (7)

ĥ = (−−−), ŝ = (+++),

where the notation means (±±±) ≡ (2 ± 3, 3 ± 1, 1 ± 2), so that (++−) = 231 −
232 + 211− 212 + 331− 332 + 311− 312, etc. The subscripts are chosen because, for
example, â12 is an eigenstate of g12, etc.

Suppressing indices and momentum dependence, the three-gluon vertex is then
written as

Γ = (A12â12 + B12b̂12 + C12ĉ12 + D12d̂12 + perms) + Sŝ + Hĥ, (8)

where the lower case letters represent the basis tensors, while the upper case letters
are the form factors, which depend on p2

1, p
2
2, and p2

3. In addition to indicating which
basis tensors they are associated with, the subscripts on form factors also indicate
the ordering of momenta in the arguments. For example, A12 = A(p2

1, p
2
2|p2

3), A23 =
A(p2

2, p
2
3|p2

1), A31 = A(p2
3, p

2
1|p2

2), and the first two arguments are either symmetric or
antisymmetric. The behavior of these form factors under S3 can be inferred from
the behavior of the basis tensors under S3 (which will be discussed momentarily),
along with the overall requirement for the vertex given below Eq. 6. One finds that
A(x, y|z) = +A(y, x|z), and thus A12 = A21, etc. Similarly, B12 = −B21, C12 = C21,
and D12 = −D21. H is totally invariant under the interchange or permutation of any
momenta, while S goes to −S under any interchange of momenta, but is invariant
under a cyclic permutation g123.

It is straightforward to see that under the action of the permutation operator
(g123) these fourteen basis tensors are organized into four triplets, {â12, â23, â31},
{b̂12, b̂23, b̂31}, {ĉ12, ĉ23, ĉ31}, {d̂12, d̂23, d̂31}, as well as ĥ and ŝ. The latter two are
eigenstates of all five operators.

Consider the properties of {â12, â23, â31} under the permutation group. It is easy
to see that under the action of any element gi, we have




â12

â23

â31


 → gi




â12

â23

â31


 , (9)
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with the matrices given by

g123 =




0 1 0
0 0 1
1 0 0


 g321 =




0 0 1
1 0 0
0 1 0


 (10)

g12 = −



1 0 0
0 0 1
0 1 0


 g23 = −




0 0 1
0 1 0
1 0 0


 g31 = −




0 1 0
1 0 0
0 0 1




The transformation rules are identical for {cij}, and similar for {bij} and {dij}
with the only change being that there is no minus sign in the three interchange
operators g12, g23 and g31.

The basis constructed above (Eq.(7)) will be called the ± basis. As discussed
later, this basis is the most convenient for phenomenology and furthermore the form
factors exhibit particularly simple relations between the gluon, quark, and scalar
contributions (Eqs.(45,55)).

However, the ± basis as it stands does not contain the tree level tensor struc-
ture. Thus, one is naturally led to diagonalizing the permutation operator g123.

2

Clearly, this is the most symmetric choice and, more importantly, one of the resulting
eigenvectors is the tree level tensor structure.

In the triplet representation of S3, g123 is diagonalized by the similarity transfor-
mation

S =
1√
3




1 1 1

1 λ λ

1 λ λ


 S−1g123S ≡ g̃123 =




1 0 0
0 λ 0

0 0 λ


 , (11)

where λ = exp (2iπ
3

) = −1
2

+ i
√

3
2

, λ = λ∗ are cube roots of unity. This results in new
basis tensors and form factors




â0

â+

â−


 ≡

√
3S−1




â12

â23

â31


 =




1 1 1

1 λ λ

1 λ λ







â12

â23

â31







A0

A+

A−


 ≡ 1√

3
S




A12

A23

A31


 =

1

3




1 1 1

1 λ λ

1 λ λ







A12

A23

A31


 . (12)

This procedure is repeated identically for the (b, B), (c, C), and (d,D) basis tensors
and form factors.

Notice that â0 = gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 is the tree
level tensor, which is why the extra factors of

√
3 were included above.

2One can readily check that the only two operators in S3 which commute are g123 and its inverse
g321. Thus one can diagonalize these two, OR one of the interchange operators g12, g23, g31.
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The transformation properties for the basis tensors âi and ĉi are deduced from
g̃123 given above, g̃321 = diag(1, λ, λ), and

g̃12 = −



1 0 0
0 0 1
0 1 0


 g̃23 = −




1 0 0
0 0 λ

0 λ 0


 g̃31 = −




1 0 0

0 0 λ
0 λ 0


 , (13)

while the transformation properties of the form factors are deduced by demanding
that behavior given below Eq.(6) is respected. For example, since â− → −λâ+ under
g̃23, we find A− → λA+ so that A−â− → −A−â−. For (b, B) and (d, D), the only
change in the above is that there is not a minus sign in g̃12, g̃23, and g̃31.

We have not touched ĥ and ŝ, as these are already eigenstates of all five operators
(g123, g321, g12, g23, g31), with eigenvalues (+ +−−−) and (+ + + + +), respectively.

We will call the above constructed basis the symmetric ± basis. Note that any
basis can be symmetrized in the same manner by diagonalizing the permutation
operator g123. The basis we started with in Eq.(7) is motivated by (a) its simple
and symmetric construction from only metrics and (pi+1±pi−1)µi

, (b) it is the most
convenient basis for perturbative calculations, as will be discussed in section 4, and
(c) The individual form factors have a relatively simple form, as will be discussed in
section 3.

The LT Basis
For some theoretical studies, another convenient basis is determined by the dis-

tinction between transverse (T ) and longitudinal (L) tensors [31][32]. The L tensors
contribute to the Ward ID (or the more complicated Slavnov-Taylor ID for the gauge

dependent vertex) while the T tensors satisfy homogeneous equations pµ3

3 Γ
(T )
µ1µ2µ3 = 0.

This is a very convenient basis for evaluating the loop corrections to the vertex, since
the L and T parts separate, as described in Appendix A.

The ± basis and the LT basis are complementary in the following sense. The
± basis is constructed out of combinations of longitudinal (+) and transverse (−)
momenta, so that for example (00+) = gµ1µ2(p1µ3 +p2µ3) = −gµ1µ2p3µ3 vanishes if the
µ3 index is contracted into a conserved current. Meanwhile, the LT basis distinguishes
between parts of the vertex that do (T ) and do not (L) vanish when dotted with
longitudinal momenta. These straightforward relations to current conservation and
Ward identities are essentially the reason these two bases are the most convenient to
work with.

In our notation, the vertex can be written in the LT basis as Γ = ΓL + ΓT , where

ΓL = (A12a12 + B12b12 + C12c12 + perms) + Ss

ΓT = (F 12f 12 + perms) + Hh, (14)

and the bar distinguishes this LT basis from the ± basis defined above in Eq.(7).
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The relation between basis tensors is given by

a12 = 001− 002 = â12 (15)

b12 = 001 + 002 = b̂12

c12 = 211− 212− (p1 ·p2)(001− 002) =
1

4
(ĉ12 − d̂23 + d̂31 − ĥ)− (p1 ·p2)â12

f 12 = (p1 ·p2)
(
(p2 ·p3)001− (p3 ·p1)002

)
−

(
(p2 ·p3)211− (p3 ·p1)212

)

=
(p1 ·p2)

2

(
− p2

3â12 + (p2
1 − p2

2)b̂12

)

+
1

8

(
p2

3(ĉ12 − d̂23 + d̂31 − ĥ) + (p2
1 − p2

2)(d̂12 − ĉ23 + ĉ31 − ŝ)
)

h = 231− 312−
(
(p1 ·p2)(030− 300) + (p2 ·p3)(001− 010) + (p3 ·p1)(200− 002)

)

=
1

4
(ĥ + ĉ12 + ĉ23 + ĉ31) +

1

2

(
p2

3â12 − (p2
1 − p2

2)b̂12 + p2
1â23 − (p2

2 − p2
3)b̂23

+ p2
2â31 − (p2

3 − p2
1)b̂31

)

s = 231 + 312 =
1

4
(ŝ + d̂12 + d̂23 + d̂31),

and we used (p1·p2) = (p2
3−p2

1−p2
2)/2. This implies the relation between form factors

A12 = A12 − (p1 ·p2)C12 − p2
3

2

(
(p1 ·p2)F 12 −H

)

B12 = B12 +
p2

1 − p2
2

2

(
(p1 ·p2)F 12 −H

)
(16)

C12 =
1

4

(
H + C12 +

p2
3

2
F 12 +

p2
1 − p2

3

2
F 31 +

p2
2 − p2

3

2
F 23

)

D12 =
1

4

(
S + C23 − C31 +

p2
1

2
F 23 − p2

2

2
F 31 +

p2
1 − p2

2

2
F 12

)

H =
1

4

(
H − C12 − p2

3

2
F 12 − C23 − p2

1

2
F 23 − C31 − p2

2

2
F 31

)

S =
1

4

(
S +

p2
2 − p2

1

2
F 12 +

p2
3 − p2

2

2
F 23 +

p2
1 − p2

3

2
F 31

)
,

The unwritten form factors (A23, etc.) and basis tensors can be obtained trivially
from the above equations by cyclic permutation (g123). In doing so it is useful to
keep in mind the properties described under Eq.(8), along with F ij = F ji, Aij = Aji,
Bij = −Bji, Cij = Cji, while H and S have the same transformation properties as
H and S, respectively.
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3 Results for the Form Factors

In this section, we will present the results for the form factors in arbitrary dimension
d using dimensional regularization (DREG), for gluons in the adjoint representation,
and massless quarks and scalars in arbitrary representations. The corrections due to
supersymmetric regularization and massive fermions, scalars, and gauge bosons are
given in detail in Appendices D and E, respectively.

The gauge invariant vertex at one loop can be written as

g Γabc
µ1µ2µ3

(p1, p2, p3) = gfabc

[
Γ(0)

µ1µ2µ3
(p1, p2, p3)

− ig2

2

(
CAGµ1µ2µ3 + 2

∑

f

TfNfQµ1µ2µ3 + 2
∑

s

TsNsSµ1µ2µ3

)]
(17)

where the gluon (G), quark (Q), and scalar (S) integrals are

Gµ1µ2µ3 =

∫
ddl

(2π)d

1

l21l
2
2l

2
3

(
ΓF

βµ1γ(l2, p1,−l3)Γ
F
γµ2α(l3, p2,−l1)Γ

F
αµ3β(l1, p3,−l2)

+ 2(l2 + l3)µ1(l3 + l1)µ2(l1 + l2)µ3 − 8l21(gµ1µ2p1µ3 − gµ1µ3p1µ2)

− 8l22(gµ2µ3p2µ1 − gµ2µ1p2µ3)− 8l23(gµ3µ1p3µ2 − gµ3µ2p3µ1)

)

Qµ1µ2µ3 =

∫
ddl

(2π)d

1

l21l
2
2l

2
3

Tr[γµ1
/l3γµ2

/l1γµ3
/l2]

Sµ1µ2µ3 = −
∫

ddl

(2π)d

1

l21l
2
2l

2
3

(l2 + l3)µ1(l3 + l1)µ2(l1 + l2)µ3 . (18)

The gluon contribution was first derived in [1] using the pinch technique(PT), and
is equivalent to the vertex obtained in the Background Field Method in quantum
Feynman gauge(BFMFG). The quark and scalar integrals come straightforwardly
from the one loop triangle diagrams. The notation and routing of the integral are
defined in Fig.(1) such that l1 = p2 + l3, l2 = p3 + l1, l3 = p1 + l2 and the tree level
vertex Γ(0) and ΓF are defined as

Γ(0)
µ1µ2µ3

(p1, p2, p3) = gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2

ΓF
βµ1γ(l2, p1,−l3) = 2p1βgµ1γ − 2p1γgµ1β − (l2 + l3)µ1gβγ. (19)

All massless integrals can be reduced to two basic scalar integrals:

J ≡ J(p2
1, p

2
2, p

2
3) =

∫
ddl

(2π)d

1

l21l
2
2l

2
3

J1 ≡ J1(p
2
1) =

∫
ddl

(2π)d

1

l22l
2
3

=

∫
ddl

(2π)d

1

l2(l + p1)2
, (20)
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These functions, and the massive integrals which are considered later, are sum-
marized in Appendices A and B, where J is written in terms of Clausen functions.
In the following we will suppress the momentum arguments and write our results in
terms of J, J1, J2, J3.

3.1 (Supersymmetric) relations between gluons, quarks, and
scalars

Before presenting the results for individual form factors, which are somewhat lengthy,
we will discuss the relationship between the gluon(G), quark(Q), and scalar(S) con-
tributions. For a generic form factor F , let us write the one-loop contribution as

F = ig2
(
CAFG + 2

∑

f

TfNfFQ + 2
∑

s

TsNsFS

)
, (21)

where the coupling constant ig2 and group theory factors have been pulled out. The
standard notation is used, so that CA ≡ C2(G) = Nc for SU(Nc), and Tr[taf t

b
f ] =

Tfδ
ab. Thus, FQ stands for the contribution of one Dirac fermion in the fundamental

representation of SU(Nc), or, due to a symmetry factor of 1
2

for Weyl fermions, the
contribution of adjoint gluinos divided by Nc. Similarly, FS stands for the contribution
of one complex scalar in the fundamental representation, or the contribution of a real
scalar in the adjoint, divided by Nc. These identifications will be used shortly.

After explicitly calculating the integrals in Eq.(18), we noticed that the gluon,
quark, and scalar contributions have a similar structure for each form factor. To
make this explicit, define the following sums for form factor F :

ΣQG(F ) ≡ (d− 2)

2
FQ + FG

ΣSG(F ) ≡ (d− 2)FS − FG. (22)

Although the results for each form factor are often long, these sums are particularly
simple, as can be seen in Eqs.(42,45,55). For all form factors in any basis, it also turns
out that

(d− 10)ΣSG = 8ΣQG (23)

and ΣQG is always proportional to d−10. The above two equations and the results of
Eqs.(42,45,55) can be used to determine the Q and S contributions to any form factor,
given the gluon contributions written explicitly below. Furthermore, Eqs.(22,23) can
be combined leading to

FG + 4FQ + (10− d)FS = 0. (24)

Considering the very different origins of each form factor (Eqs.(17,18)), it is remark-
able that they are related in such a simple manner. Note that no such analogous
relation holds for the gauge dependent vertex [32].
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This type of relation hints at supersymmetry. To further understand the content
of these relations, we will consider various supersymmetries in d = 4.

• N=1 From the above definitions, it is clear that a vector superplet V1 (gluons
plus gluinos) contributes ig2Nc(FG + FQ) ≡ ig2NcFV1 to a generic form factor
F , while NΦ chiral superplets contributes ig2NΦ(1

2
FQ +FS) ≡ ig2NΦFΦ. By the

sum rule Eq.(24) in d = 4, we have FV1 + 6FΦ = 0. Thus any form factor can
be written

F = ig2(NcFV1 + NΦFΦ) =
ig2

3
β

(N=1)
0 FV1 , (25)

where β
(N=1)
0 = 3Nc − 1

2
NΦ is the first β function coefficient. Hence the contri-

butions of vector and chiral superplets have precisely the same functional form
for each form factor. Furthermore, every form factor is proportional to β0 even
though all but one of them are UV finite.

• N=2 Here the vector superplet gives ig2Nc(FG + 2FQ + 2FS) ≡ ig2NcFV2 ,
while Nh hyperplets (a Weyl fermion of each helicity plus a doublet of complex
scalars) yield ig2Nh(FQ+2FS) ≡ ig2NhFh. The sum rule Eq.(24) can be written
as FV2 + 2Fh = 0, and thus

F = ig2(NcFV2 + NhFh) =
ig2

2
β

(N=2)
0 FV2 , (26)

where β
(N=2)
0 = 2Nc −Nh.

• N=4 Here the vector superplet (the only multiplet allowed) contributes 2ig2Nc(FG+
4FQ + 6FS) ≡ NcFV4 , which is identically zero by the sum rule, which of course

is a consequence of β
(N=4)
0 = 0.

Thus, the similarities between form factors in d = 4 are related to supersymmetric
non-renormalization theorems. In particular, the exact conformal invariance of N = 4
implies that the gauge-invariant three-gluon Green’s function is not renormalized at
any order in perturbation theory. Furthermore, at one-loop order there are not even
finite corrections, as reflected in Eq.(24).

Analogous results hold for supersymmetry in d 6= 4. Here we must be careful,
because in the sum rules and form factors presented in this paper we worked in d
dimensions everywhere except in the traces over gamma matrices, where we used
the conventional rule of dimensional regularization tr[γµγν ] = 4gµν , and similarly
for other traces. Properly working in integer valued d dimensions, we should use
tr[γµγν ] = ds(d)gµν , where the spinor dimension of the gamma matrices is

ds(d) =

(
2d/2

2(d−1)/2

)
for

(
d even
d odd

)
. (27)
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Thus FQd
≡ ds(d)

4
FQ is the contribution of a Dirac fermion in d dimensions, and we

have

FG +
16

ds(d)
FQd

+ (10− d)FS = 0 (28)

Rather than using Eq.(28), one can alternatively use Eq.(24) and be sure to count
fermion degrees of freedom in terms of d = 4 spinors. Thus the Weyl fermions of
d = 6 and the Weyl-Majorana fermions of d = 10 are composed of 2 and 4 Weyl
fermions of four dimensions, respectively. From this, it is straightforward to show
that d = 6, N = 2 and d = 10, N = 1 gauge theory give vanishing contribution to
every form factor. For the d = 6, N = 1 case, one finds

F =
ig2

2
β0FV1 β0 = 2Nc −NΦ, (29)

where β0 is determined from Eq.(37) in d = 6.
Note that it is not straightforward to analytically continue ds(d) into arbitrary

non-integer d, which is the reason for the simple dimensional regularization rule.
However, the sum rule expressed in Eq.(24) is an analytic function of d and thus rep-
resents an analytic continuation of supersymmetric non-renormalization theorems to
arbitrary d. This is intimately related to the existence of a supersymmetry preserving
regulator, dimensional reduction (DRED), where vector degrees of freedom are kept
in four dimensions while the integrals are still performed in d dimensions. Around
four dimensions, d = 4 − 2ε, we have FG + 4FQ + (6 + 2ε)FS = 0 in dimensional
regularization, and we see that the ε term plays the role of the so-called ε-ghosts of
DRED. We have calculated the form factors in DRED (see Appendix D) and verified
that

FG + 4FQ + 6FS = 0 (DRED). (30)

In the preceding discussion of supersymmetries in various dimensions we implicitly
used DRED.

The extension of these relations to the massive case is outlined in Appendix E,
where the full effects of internal massive fermions (MQ), massive scalars (MS), and
massive gauge bosons (MG) are included, and the sum rule becomes

FMG + 4FMQ + (9− d)FMS = 0 (31)

in DREG while in DRED the only change is 9 − d is replaced by 5. Note that the
external gluons remain massless and unbroken, so the internal massive gauge bosons
might be the colored heavy gauge bosons arising in GUT models. The change of
10− d in the massless case to 9− d in the massive case reflects the fact that massive
gauge bosons “eat” one scalar degree of freedom.

It should be emphasized that relations such as Eq.(24) do not exist for the gauge-
dependent three-gluon vertex [32], since the gluon contributions depend on the gauge-
parameter, while the quarks and scalars do not. Indeed, it is uniquely the pinch
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technique (or equivalently BFM in quantum Feynman gauge) Green’s function which
satisfies this homogeneous sum rule. For example, calculating in the BFM with
ξQ 6= 1, leads to a nonzero RHS of Eq.(24).

Since the sum rule applies to all form factors, one finds

Gµ1µ2µ3 + 4Qµ1µ2µ3 + (10− d)Sµ1µ2µ3 = 0, (32)

which is remarkable given the expressions in Eq.(18). One can explicitly show this by
performing the trace in Eq.(18) and some tedious algebra to rearrange the ΓF ΓF ΓF

term. This can also be seen in the so-called second order formalism of the BFM (see,
for example [33]).

A similar relation holds for the one-loop gauge-invariant (pinch-technique) gluon
two-point function in d dimensions,

Πab
µ1µ2

(p) = δab(p2gµ1µ2−pµ1pµ2)Π(p2) ≡ ig2δab
(
NcGµ1µ2+2

∑

f

TfNfQµ1µ2+2
∑

s

TsNsSµ1µ2

)
,

(33)
where from Eqs.(36,37) below we find

Gµ1µ2 + 4Qµ1µ2 + (10− d)Sµ1µ2 = 0. (34)

Unfortunately, analogous relations do not hold for higher gauge-invariant gluon
n-point functions. This is essentially because the color and spacetime indices mix
nontrivially. However, inhomogeneous relations of the form

G + 4Q + (10− d)S = simple (35)

still hold [33], where “simple” means an integral with fewer powers of loop momenta
in the numerator. In the four-gluon case, this is just a simple scalar integral with no
powers of loop momentum in the numerator. These loop momentum counting rules
have been derived in the second order formalism, which is reviewed in [33]. Note that
the Ward ID for the four-gluon vertex [17] relates it to the three-gluon vertex, and
thus the longitudinal parts of the four-gluon vertex must satisfy the homogeneous
sum rules FG + 4FQ + (10− d)FS = 0.

It is interesting to see if extensions of these sum rules apply to two-loop calcula-
tions, where the supersymmetric Yukawa vertices must be taken into account. As a
first application, the two-loop pinch technique gluon self-energy has been calculated
including finite terms. Interestingly, the finite terms do not vanish for N = 4 SUSY,
so it appears that the homogeneous sum rule in Eq.(24) does not have a counterpart
at two loops. In any case, the finite parts of the two loop result allow for an im-
proved extraction of the PT couplings from data as well as giving the three loop beta
function. This calculation will be reported elsewhere[34].

Now explicit expressions for the form factors will be given, first in the LT basis,
and then in the ± basis.
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3.2 The longitudinal form factors

It is straightforward to solve the Ward identity (Eq.(5)) for the ten longitudinal form
factors, defined in Eq.(14), in terms of the gluon self-energy function Π defined by
Πab

µν(p) = δab(p2gµν − pµpν)Π(p2). Note that this is not the usual gauge-dependent
self-energy, but rather the gauge-invariant pinch technique self-energy. At one loop
in d dimensions this is given by

Π(p2) = ig2β0(d)

∫
ddl

(2π)d

1

l2(l + p)2
, (36)

where β0(d) is given by

β0(d) =
7d− 6

2(d− 1)
C2(G)− 2(d− 2)

(d− 1)

∑

f

TfNf − 1

(d− 1)

∑
s

TsNs (37)

for massless gluons, quarks, and complex scalars. The mass-dependent results are
given in section 5 and Appendix E. This result holds for dimensional regularization
(DREG), whereas for dimensional reduction (DRED) the gluon coefficient changes
from (7d− 6) to (8d− 10).

The longitudinal form factors are given by

A12 =
Π(p2

1) + Π(p2
2)

2

B12 =
Π(p2

1)− Π(p2
2)

2
(38)

C12 =
Π(p2

1)− Π(p2
2)

p2
1 − p2

2

S = 0,

and of course cyclic permutations yield results for A23, etc. Note that one of the 14
form factors vanishes to all orders and only the A form factors contain UV divergences.

In the notation of Eqs.(20,21) we have

A12(G) =
7d− 6

2(d− 1)

1

2
(J1 + J2)

A12(Q) =
2− d

(d− 1)

1

2
(J1 + J2) (39)

A12(S) = − 1

2(d− 1)

1

2
(J1 + J2),

and similarly for the B and C form factors.
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3.3 The transverse form factors

These form factors cannot be determined from the Ward ID, and must be calculated
explicitly. The algorithm used is briefly described in Appendix A.

Due to the lengthy expressions, the following shorthand notation will be used for
the kinematic invariants:

a = p2
1 b = p2

2 c = p2
3 α = p1 ·p2 β = p2 ·p3 γ = p3 ·p1 (40)

We also define the symmetric invariants

Q = α + β + γ

K = αβ + βγ + γα (41)

P = αβγ.

Note that the dot products can be written in terms of the virtualities α = (c−a−b)/2,
β = (a−b−c)/2, γ = (b−c−a)/2, or vice versa a = −α−γ, b = −α−β, c = −β−γ,
but the formulae are simpler and more transparent when selectively written in terms
of both α, β, γ and a, b, c.

We will only write the full gluon contribution explicitly, since the quark and scalar
parts can be determined from the results of section 3.1 (see Eqs.(22,23,24)) and the
quark-gluon sum rules for the transverse form factors, which are

ΣQG(F 12) = −(d− 10)

2K

(
αJ +

2α(J1 − J2)− β(J2 − J3)− γ(J3 − J1)

β − γ

)

ΣQG(H) =
(d− 10)

2
J. (42)

The gluon contributions to the transverse form factors in the LT basis are

F 12(G) =
1

2K2

(
J
(
10P + c(K − 7α2 − 3βγ)

)
(43)

+
(
1− (d + 1)βγ

K
)(
PJ + αγJ1 + αβJ2 + βγJ3 − K

d− 1
(J1 + J2 + J3)

)

+
7d− 6

2(d− 1)(d− 2)

[
8P + (d− 4)αc2 + (d− 2)(4Kα− cβγ)

]J1 − J2

a− b

+
1

d− 1

[
2β2(d− 2)− 5d− 2

2
K − 7d− 6

d− 2
αβ − 2d2 − 15d + 14

d− 2
αγ

]
(J2 − J3)

− 1

d− 1

[
2γ2(d− 2)− 5d− 2

2
K − 7d− 6

d− 2
αγ − 2d2 − 15d + 14

d− 2
αβ

]
(J3 − J1)

)
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and

H(G) = − 1

2K2

(
J
[
8K2 + (d− 2)PQ+ (d + 1)

abcP
K

]

+
d− 2

d− 1

[
α(K − 2αγ)(J1 − J2) + β(K − 2βα)(J2 − J3) + γ(K − 2βγ)(J3 − J1)

]

+ P d + 1

d− 1

[
− (J1 + J2 + J3) +

d− 1

K (αγJ1 + αβJ2 + βγJ3)
])

. (44)

3.4 The Form Factors in the Physical Basis

Now we will present the results in the physical ± basis (Eq.(7)), before symmetriza-
tion, Eq.(12), since this is the most convenient way to present the results. Of course,
these results can be obtained from the relation between the ± basis and the LT basis
given in Eq.(16), but we write them explicitly for future convenience and phenomeno-
logical applications.

The quark-gluon sums are given by

ΣQG(A12) =
(d− 10)

4K
(
abcJ + aβJ1 + bγJ2 + cαJ3

)

ΣQG(B12) =
(d− 10)

4K
(
(γ − β)abJ + (2α + β)aJ1 − (2α + γ)bJ2 − α(β − γ)J3

)

ΣQG(C12) = −(d− 10)

4K
(
αcJ + γJ1 + βJ2 + cJ3

)

ΣQG(D12) = 0 (45)

ΣQG(H) = 0

ΣQG(S) = 0,

and the remaining sums (for A23, etc.) are related trivially by permutations α →
β → γ → α, a → b → c → a, J1 → J2 → J3 → J1.

The gluon form factors in d dimensions are

−4K2 A12(G) = abcJ(7K + βγ) + aJ1

(
7Kβ + β2γ +Kγ

d− 2

d− 1

)
(46)

+ bJ2

(
7Kγ + βγ2 +Kβ

d− 2

d− 1

)
+ cJ3

(
7Kα + P +Kc

d− 2

d− 1

)

−4K2 B12(G) = abJ(7K + βγ)(γ − β) + aJ1

(
7Kβ − bγ(β − γ) +K2α(7d− 6) + γ

d− 1

)

− bJ2

(
7Kγ + aβ(β − γ) +K2α(7d− 6) + β

d− 1

)
+ (γ − β)J3

(
7Kα + P +Kc

d− 2

d− 1

)
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16K3 C12(G) = cJ

(
3K2(10α + c) +K(α3 − 6cβγ) + PK(d + 4)− P(d + 1)(α2 + 2βγ)

)

+ J1

(
K2

[(3− 2d)

d− 1
α− γ

(d2 − 30d + 24)

d− 1
+ 3β

]
+ P(d + 1)

[ K
d− 1

+ γ(2Q− 3α)
]

+ γK
[(d2 − 3)

d− 1
α2 − 6β2 +

(d2 − 8d + 9)

d− 1
βγ − 4γ2 (d− 2)

d− 1

])
(47)

+ J2

(
K2

[(3− 2d)

d− 1
α− β

(d2 − 30d + 24)

d− 1
+ 3γ

]
+ P(d + 1)

[ K
d− 1

+ β(2Q− 3α)
]

+ βK
[(d2 − 3)

d− 1
α2 − 6γ2 +

(d2 − 8d + 9)

d− 1
βγ − 4β2 (d− 2)

d− 1

])

+ cJ3

(
(30d− 31)

d− 1
K2 +K

[
α2 − 4c2 (d− 2)

d− 1
− (d2 − 4d + 1)

d− 1
βγ

]
+ (d + 1)P(2Q− 3α)

)

16K3 D12(G) = ab(a− b)J
(
K(Q+ 2α)− (d + 1)P

)
− aJ1

(
d2 − 4

d− 1
K2 (48)

+ K
[
β2 − βγ

(d2 − 3)

d− 1
− αβ

(d2 − 4d + 1)

d− 1
+ 4α2 (d− 2)

d− 1

]
− (2α + β)P(d + 1)

)

+ bJ2

(
(d2 − 4)

d− 1
K2 +K

[
γ2 − βγ

(d2 − 3)

d− 1
− αγ

(d2 − 4d + 1)

d− 1
+ 4α2 (d− 2)

d− 1

]

− (2α + γ)P(d + 1)

)
+ (a− b)J3

(
(4d− 7)

d− 1
K2 +K

[
3α2 − βγ

(d2 − 3)

d− 1

]
− αP(d + 1)

)

16K3 H(G) = abcJ
(
P(d + 1)−KQ

)

+ aJ1

(
3− 2d

d− 1
K2 +

[d2 − 3

d− 1
αγ − β2

]
K + (d + 1)βP

)

+ bJ2

(
3− 2d

d− 1
K2 +

[d2 − 3

d− 1
αβ − γ2

]
K + (d + 1)γP

)
(49)

+ cJ3

(
3− 2d

d− 1
K2 +

[d2 − 3

d− 1
βγ − α2

]
K + (d + 1)αP

)

20



16K3 S(G) = (a− b)(b− c)(c− a)J
(
3KQ− (d + 1)P

)
(50)

+ (b− c)J1

(
3K2

d− 1
+K

[
4a2d− 2

d− 1
+ αγ

d2 − 4d + 1

d− 1
− 3β2

]
− (d + 1)P(2Q− 3β)

)

+ (c− a)J2

(
3K2

d− 1
+K

[
4b2d− 2

d− 1
+ αβ

d2 − 4d + 1

d− 1
− 3γ2

]
− (d + 1)P(2Q− 3γ)

)

+ (a− b)J3

(
3K2

d− 1
+K

[
4c2d− 2

d− 1
+ βγ

d2 − 4d + 1

d− 1
− 3α2

]
− (d + 1)P(2Q− 3α)

)

Now we turn to the physical symmetrized basis. From Eq.(12), we see that for
any triplet of form factors, say Aij, we have

A0 =
1

3

(
A12 + A23 + A31

)

A+ =
1

3

(
A12 + λA23 + λA31

)
≡ A1 + iA2 (51)

A− =
1

3

(
A12 + λA23 + λA31

)
≡ A1 − iA2,

where we have defined

A1 =
1

3

(
A12 − 1

2
(A23 + A31)

)

A2 =

√
3

6

(
A23 − A31

)
. (52)

A1 and A2 correspond to the real and imaginary parts of A± only when J, J1, J2, J3

are real. This occurs (in the massless case) when K > 0, which can only happen if all
three gluon virtualities are of the same sign, either all spacelike or all timelike. This
is often not the case for real problems. In general, however, it can be shown that

A∗
±(a, b, c) = A∓(−a,−b,−c)

B∗
0(a, b, c) = B0(−a,−b,−c)

B∗
±(a, b, c) = B∓(−a,−b,−c)

C∗
0(a, b, c) = −C0(−a,−b,−c)

C∗
±(a, b, c) = −C∓(−a,−b,−c) (53)

D∗
0(a, b, c) = −D0(−a,−b,−c)

D∗
±(a, b, c) = −D∓(−a,−b,−c)

H∗(a, b, c) = −H(−a,−b,−c)

S∗(a, b, c) = −S(−a,−b,−c).
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Furthermore, all of the above form factors except for A0 are scale invariant,

F (λa, λb, λc) = F (a, b, c) = F (a/c, b/c, 1) λ > 0. (54)

Only A0 is not scale invariant and does not satisfy a simple reality condition.
The quark-gluon sums are given by

ΣQG(A0) =
(d− 10)

4K Φ0 ΣQG(A±) = 0

ΣQG(B0) = −(d− 10)

8K B0(G)

ΣQG(B±) =
(d− 10)

36K

(
− 3

(
QΦ2 +KJ(β − γ)

)
±i
√

3
(
QΦ1 −KJ(Q− 3α)

))

ΣQG(C0) =
(d− 10)

6
J

ΣQG(C±) =
(d− 10)

24K

(
Φ1±i

√
3Φ2

)
(55)

ΣQG(D0) = ΣQG(D±) = 0

ΣQG(H) = ΣQG(S) = 0

where we have defined the commonly occuring functions

Φ0 = abcJ + aβJ1 + bγJ2 + cαJ3

Φ1 = (K − 3βγ)J − 3γJ1 − 3βJ2 + 3(β + γ)J3 (56)

Φ2 = α(β − γ)J + (2α + γ)J1 − (2α + β)J2 + (β − γ)J3.

From the definition of ΣQG in Eq.(22) we see that the quark and gluon (and thus
scalar, by Eq.(23)) contributions have the same functional form for the seven form
factors which have a zero in the above. Letting F stand for A±, D0, D±, H or S, we
find that

F = ig2
(
Nc − 4

d− 2

∑

f

TfNf +
2

d− 2

∑
s

TsNs

)
F (G), (57)

which, in d = 4 QCD, reduces to F = ig2(Nc −Nf )F (G).
In addition, both A0 and B0 are governed by one function, since they satisfy

different sum rules. In particular, the tree level tensor structure has coefficient

A0 = − ig2

2K

(
11

3
CA − 2(3d− 8)

3(d− 2)

∑

f

TfNf − 2

3(d− 2)

∑
s

TsNs

)
Φ0. (58)

This form factor will be discussed in more detail in the next section.
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Also, one finds from explicit calculation that the scalar contribution to B0 van-
ishes,

B0(S) = 0 B0(G) + 4B0(Q) = 0, (59)

and thus

B0 = ig2

(
Nc − 1

2

∑

f

TfNf

)
B0(G) where

B0(G) = − 2

3K

(
(a− b)(b− c)(c− a)J + (b− c)(2Q− 3β)J1 + (c− a)(2Q− 3γ)J2

+ (a− b)(2Q− 3α)J3

)
(60)

Finally, since S = 0 exactly, we know that our fourteen dimensional basis is
degenerate, which is reflected in the fact that S + 3D0 = 0. Hence we define a new
basis tensor d̂′0 = d̂0 − 3ŝ so that D0d̂0 + Sŝ = D0(d̂0 − 3ŝ) = D0d̂

′
0.

Thus, we find that eight of the thirteen nonzero form factors have the same func-
tional form for gluons, quarks, and scalars. Only the five form factors B±, C0 and C±
do not. These statements are basis dependent. One can always find bases where none
of the form factors have a vanishing QG sum rule. In the course of our calculations,
we found that the ± basis gives the maximum number of such zeroes among bases
which are reasonable and contain the tree-level tensor structure. In this sense the
(symmetric) ± basis is the simplest and most compelling. We will see in the next
section that this is also the most convenient basis for perturbative calculations. Of
course, as discussed in a previous section, with supersymmetry every form factor is
proportional to β0, and so supermultiplets are governed by the same function in any
basis.

4 Three-Gluon Vertex in Perturbation Theory

Applying the pinch-technique (PT) construction to the three-gluon vertex occurring
in a physical process involving three external on-shell legs, one arrives at a dressed
tree-level skeleton graph, dressed with pinch-technique vertices and self-energies as
shown in Fig. 2. Generically the amplitude of the three-gluon graph can be written

M = Cg4
0V

ν1
1 V ν2

2 V ν3
3 Dµ1ν1(k1)Dµ2ν2(k2)Dµ3ν3(k3)Γµ1µ2µ3(k1, k2, k3), (61)

where C is the overall color factor and g0 is the bare coupling. The PT vertices Vi are
for gluons coupled to external particles, whose indices are suppressed; this is shown in
Fig. 2 for external quarks. Γ =

∑13
i=1 Fif̂i is the gauge invariant three gluon vertex,
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(A)
+ perms

(B)

Figure 2: The tree-level skeleton graphs dressed with pinch-technique vertices and
self-energies, which are used to define effective charges both for the quark-quark-gluon
vertex (depending on a single gluon virtuality) and for the three-gluon vertex, which
depends on three different momenta.

whose thirteen form factors (Fi) are given in the preceding section. Finally the “gauge
invariant” PT gluon propagator is

Dµν(k) =
1

k2

(
tµν(k)

1 + Π(k2)
+ ξlµν(k)

)

tµν(k) =

{
gµν − kµkν

k2

gµν − nµkν+kµnν

n·k

}
in

{
covariant

axial

}
gauges

lµν(k) =

{
kµkν

k2

kµkν

(n·k)2

}
in

{
covariant

axial

}
gauges, (62)

where ξ is the gauge fixing parameter. This is “gauge invariant” in the maximal sense,
i.e. the gauge dependence comes only from the tree level terms, and in particular
Π(k2) is totally gauge invariant.

Regardless of whether the external particles are quarks, gluons, or scalars, the
vertices satisfy kµ

1 V1,µ = 0 when these particles are on shell (OS). One can then show
that the gauge dependent terms coming from Eq.(62) vanish in the full amplitude
consisting of all of the graphs in Fig.(2). This can be seen trivially in the covariant
gauges where the gauge cancelations occur graph by graph, and with some work in
axial gauges, where the cancelation occurs between all of the graphs. In the latter
case, one must use the fact that the three gluon vertex satisfies the Ward ID in Eq.(3).
Therefore we can take

Dµν(k) → gµν

k2(1 + Π(k2))
. (63)
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Also, in the ± basis (Eq.(7)) any tensor with a ′+′ in any slot gives vanishing con-
tribution to M. For example, (+00) = (k2 + k3)µ1gµ2µ3 = −k1,µ1gµ2µ3 , and k1,µ1 dots
into V1,µ1 yielding zero. Hence only (00−), (−00), (0−0), and (−−−) contribute, and
we find

M =
Cg3

0

(1 + Π(k2
1))(1 + Π(k2

2))(1 + Π(k2
3))

V µ1

1 V µ2

2 V µ3

3

k2
1k

2
2k

2
3

g0Γ
OS
µ1µ2µ3

(k1, k2, k3), (64)

where the three-gluon vertex connected to on-shell (OS) external particles is

ΓOS
µ1µ2µ3

(k1, k2, k3) = (1 + A0)â0 + A+â+ + A−â− + Hĥ, (65)

in the notation of section 2 where hatted objects are three index basis tensors.
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Figure 3: The effective scale Q2
eff (10 GeV2, 10 GeV2, p2) is the lower blue curve,

while Q2
eff (−10 GeV2,−10 GeV2, p2) = Q2

eff (10 GeV2, 10 GeV2,−p2) is the upper
red curve. These both asymptote to zero, although very slowly for the upper curve.

Now one naturally defines PT effective charges by3

g2(k2
i ) ≡

g2
0

1 + Π(k2
i )

i = 1, 2, 3. (66)

Since we only have a single power of g0 for each 1/(1+Π(k2
i )), this leaves

∏3
i=1 1/

√
1 + Π(k2

i ) ≈
1 − 1

2
(Π(k2

1) + Π(k2
2) + Π(k2

3)) to be absorbed into the three gluon vertex. Thus we
have

3∏
i=1

1√
1 + Π(k2

i )
ΓOS

µ1µ2µ3
(k1, k2, k3) = (1 + Ã0)â0 + A+â+ + A−â− + Hĥ

Ã0(k
2
1, k

2
2, k

2
3) ≡ A0(k

2
1, k

2
2, k

2
3) −

1

2

(
Π(k2

1) + Π(k2
2) + Π(k2

3)
)

(67)

3Eq.(66) holds for external fermions or scalars, but for gluons one would instead have three
additional three gluon effective couplings, as is clear from the derivation of Eq.(69).
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Figure 4: The effective scale Q2
eff (10 GeV2, p2, p2) is the lower blue curve, while

Q2
eff (−10 GeV2, p2, p2) = Q2

eff (10 GeV2,−p2,−p2) is the upper red curve. These
both asymptote to 10eΩ GeV2 ≈ 31.25 GeV2.

and

M = Cg(k2
1)g(k2

2)g(k2
3)

V µ1

1 V µ2

2 V µ3

3

k2
1k

2
2k

2
3

g0

[
(1 + Ã0)â0 + A+â+ + A−â− + Hĥ

]
. (68)

This naturally leads to the effective coupling of the three gluon vertex

g̃(k2
1, k

2
2, k

2
3) ≡ g0(1 + Ã0(k

2
1, k

2
2, k

2
3))

α̃(a, b, c) ≡ g̃2(a, b, c)

4π
≈ α0

1− 2Ã0(a, b, c)
, (69)

first obtained by Lu in [35]. Our amplitude then takes the final form

M = Cg(k2
1)g(k2

2)g(k2
3)g̃(k2

1, k
2
2, k

2
3)

V µ1

1 V µ2

2 V µ3

3

k2
1k

2
2k

2
3

[
â0 + A+â+ + A−â− + Hĥ

]
. (70)

Recall from the previous section that A±, H ∝ Nc −Nf in QCD.

The three-gluon effective coupling evolves according to

α̃(a, b, c) =
α̃(a0, b0, c0)

1− 2
(
Ã0(a, b, c)− Ã0(a0, b0, c0)

) (71)
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In four dimensions with regularization scheme R = DRED or DREG we have

Ã0(a, b, c) = −αs

8π
β0

[
L(a, b, c)− log µ2 − CUV − η3

]

where β0 =
11

3
Nc − 2

3
Nf − 1

6
Ns

CUV =
1

ε
− γE + log 4π (72)

η3 = (2 + Ω) +
Nc

3β0

δR,DREG

Ω =
16

3
√

3
Cl2(π/3) ≈ 3.125

The scheme dependence δR,DREG is explained in more detail in Appendix D. Here we
have defined

L(a, b, c) =
1

K
(
αγ log a + αβ log b + βγ log c− abcJ(a, b, c)

)
+ Ω, (73)

and the (massless) triangle integral function J = J(a, b, c) = −16iπ2J(a, b, c) is given
in Appendix B in terms of Clausen functions, Eqs.(121,122). This result (Eqs.(69,72))
differs from Lu [35] by only the finite constants which (slightly) affects the numerical
extraction from data. The discrepancy can be traced to the inconsistent application
of dimensional regularization in [35].

The logarithm-like function L satisfies

L(a, a, a) = log a (74)

since

J(a, a, a) =
4

a
√

3
Cl2(π/3). (75)

One can use the real part of this function to define an effective scale of the three-gluon
vertex:

L(a, b, c) = log
(
Q2

eff (a, b, c)
)

+ iIm L(a, b, c)

Q2
eff (a, b, c) = |a|αγ/K|b|αβ/K|c|βγ/K exp

(
Ω− abc

K Re J(a, b, c)
)
. (76)

This is sensible since the dimensions of Q2
eff (a, b, c) are indeed mass squared.

The three gluon effective charge α̃(a, b, c) is related to the usual MS coupling
α(q2) by

1

α̃(a, b, c)
=

1

α(µ2)
+

β0

4π

(
log

Q2
eff (a, b, c)

µ2
+ iIm L(a, b, c)− η3

)

=
1

α(e−η3Q2
eff (a, b, c))

+ i
β0

4π
Im L(a, b, c). (77)
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Figure 5: A contour plot of Q2
eff (1, x, y). The contours, from red to blue, are at

2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

Since exp
(

η3

2

) ≈ 14, we see that when using MS, the scale should be fourteen times
lower than the typical virtualities of the gluons, given by Qeff (a, b, c). Of course,
this is true only if the three-gluon vertex diagram dominates the physical process. In
general there will be different scales at the various quark-gluon vertices when using
the PT scheme (as seen in Eq.(70)). In contrast, in MS the same scale is used
at every vertex. The following approximate values of the three-gluon coupling are
derived from Eq.(77) (including the effects of quark masses which discussed in the
next section) for various symmetric timelike(T) and spacelike(S) configurations :

SSS : α̃(−M2
Z ,−M2

Z ,−M2
Z) ≈ 0.192

SST : α̃(−M2
Z ,−M2

Z , +M2
Z) ≈ 0.157 + 0.023I

STT : α̃(−M2
Z , +M2

Z , +M2
Z) ≈ 0.156 + 0.025I

TTT : α̃(+M2
Z , +M2

Z , +M2
Z) ≈ 0.170 + 0.062I

It is clear that the three-gluon coupling is stronger than naively expected from
αMS(MZ) ≈ 0.118.
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Figure 6: A three-dimensional contour plot of Q2
eff (1, x, y).

The effective scale Q2
eff (a, b, c) satisfies the following relations:

Q2
eff (a, b, c) = Q2

eff (−a,−b,−c)

Q2
eff (λa, λb, λc) = |λ|Q2

eff (a, b, c)

Q2
eff (a, a, a) = |a| (78)

Q2
eff (a,−a,−a) ≈ 5.54|a|

Q2
eff (a, a, c) ≈ |c|eΩ−2 for |a| À |c|

Q2
eff (a,−a, c) ≈ |c|eΩ for |a| À |c|

Q2
eff (a, b, c) ≈ |b||c|

|a| eΩ for |a| À |b|, |c|.

Lu [35] has previously found the last of these limits in the case where all momenta are
spacelike, giving an effective scale QminQmed/Qmax. It should be noted that the rate of
convergence to the above limits strongly depends on the signatures (S ≡ spacelike ↔
p2 < 0, T ≡ timelike ↔ p2 > 0) of the virtualities a, b, c. If the signatures are mixed
(TTS) or (TSS) then the convergence is very slow, and the effective scale tends to
stay larger compared to the cases (SSS) or (TTT).

Some plots demonstrating the novel behavior of Q2
eff are given in Figs.(3,4,5,6).

5 Phenomenological Effects of Internal Masses

So far, all fields propagating in the triangle graphs have been treated as massless. This
was useful for simplifying the discussion and elucidating the general structure of the
radiative corrections and the N = 4 sum rules. However, in real world applications
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one usually does not have all three gluon virtualities in the same desert region Mi ¿
a, b, c ¿ Mi+1. Thus, mass corrections should be taken into account. We have
calculated the effects of massive fermions (MQ), massive scalars (MS), and massive
gauge bosons (MG) for all of the form factors; the complete results are given in
Appendix E. The corrections for the case of massive fermions were first obtained in
Ref.[36] and we are in agreement. Here we will focus on the massive quark (MQ)
contribution to the form factor multiplying the tree level tensor structure, which from
Appendix E and section 3 is

A0(MQ) =
4M2

3(d− 2)
JM +

3d− 8

6K(d− 2)

[
abcJM + aβJ1M + bγJ2M + cαJ3M

]
. (79)

Here JM , J1M , J2M , and J3M are the massive analogs of J, J1, J2 and J3, respectively.
The two-point function J1M and tadpole TM are reviewed in Appendix A, while
Appendix B is devoted to a discussion of the massive triangle integral, JM , and its
analytic continuations and various limits.
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Figure 7: LMQ(a/M2, a/M2, a/M2) vs. a/M2 for timelike a > 0. The solid line is the
real part and the dashed line is the imaginary part.

As in the previous section, when considering a physical matrix element we always
have the combination Ã0 = A0 − 1

2

(
Π1 + Π2 + Π3

)
multiplying the tree-level tensor

structure. This leads us to consider the massive quark contribution Ã0(MQ) =
A0(MQ)− 1

2

(
Π1(MQ) + Π2(MQ) + Π3(MQ)

)
, which upon using Eq.(135), inserting

the prefactor ig2, and expanding around d = 4 becomes

Ã0(MQ) = −αs

4π

[
1

3

(
CUV − log

M2

µ2

)
+

2

3
+

1

3K
(
abcJM − αγL(a)− αβL(b)− βγL(c)

)

+
2M2

3

(
JM +

2− L(a)

a
+

2− L(b)

b
+

2− L(c)

c

) ]
. (80)
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Figure 8: LMQ(−Q2/M2,−Q2/M2,−Q2/M2) vs. Q/M for spacelike −Q2 < 0.

Here JM = −16iπ2JM and

L(a) = v(a) log
v(a) + 1

v(a)− 1
where v(a) =

√
1− 4(M2 − iε)

a
, (81)

comes from J1M and has the analytic continuations given in Eq.(106). The three-scale
logarithm-like function for massive quarks (MQ) is thus given by

LMQ

(
a

M2
,

b

M2
,

c

M2

)
=

1

K
(
αγL(a) + αβL(b) + βγL(c)− abcJM(a, b, c)

)
+ Ω

+ 2M2

(L(a)− 2

a
+
L(b)− 2

b
+
L(c)− 2

c
− JM

)
(82)

Ã0(MQ) =
( αs

12π

) [
LM

(
a

M2
,

b

M2
,

c

M2

)
+ log

M2

µ2
− CUV − (2 + Ω)

]
.

This massive logarithm-like function has the following limits :

LMQ

(
a

M2
,

b

M2
,

c

M2

)
≈ 2 + Ω M2 À |a|, |b|, |c|

LMQ

(
a

M2
,

b

M2
,

c

M2

)
≈ L(a, b, c)− log M2 M2 ¿ |a|, |b|, |c|, (83)

with the number Ω ≈ 3.125 defined in Eq.(72). The convergence to the massless limit
is very slow, indicating that threshold effects must be included for most applications.

In Figs.(7,8) we have plotted LMQ for the symmetric case a = b = c for time-
like and spacelike momenta. For the timelike case, the threshold at a = 4M2 and
the pseudo-threshold at a = 3M2 are evident. In Fig.(9) the mixed case (TTS)

31



10

10

6

−2

L_M

4

8

2 8

0

−2 6

12

−6

4

0

2

−4−8

14

a/M^2

Figure 9: LMQ(a/M2, a/M2,−a/M2) vs. a/M2. The solid line is the real part and
the dashed line is the imaginary part. The real thresholds are at a = ±4M2 while
the pseudo-threshold is at a = 5M2.

LMQ(a/M2, a/M2,−a/M2) is plotted, where the thresholds at a = ±4M2 and the
pseudo-threshold at a = 5M2 are evident. For the purely timelike (TTT) case in
Fig.(7), there is a discontinuity in the imaginary part and the real part diverges at
the pseudo-threshold. In contrast, for the mixed signature case (TTS) the imaginary
part diverges while the real part is discontinuous. This pseudo-threshold phenomena
is explained in more detail in Appendix B.

From the above results, one can define the effective number of active quarks which
characterizes the effects of quark mass :

NF

(
a

M2
,

b

M2
,

c

M2

)
= −M2 d

dM2
LMQ

(
a

M2
,

b

M2
,

c

M2

)
. (84)

This clearly goes to zero and one in the limits M2 À |a|, |b|, |c| and M2 ¿ |a|, |b|, |c|,
respectively.

To motivate this definition, let’s look at the single-scale pinch-technique effective
charge (using the notation of [13]) as a function of spacelike momenta a = −Q2

1

α̃(Q2)
=

1

α0

+
1

4π

∑
p

βp

(
Lp(Q

2/m2
p)− log

µ2

m2
p

− CUV − ηp

)
, (85)

where βp is the contribution of each particle p to the first β function coefficient, and
to a very good numerical approximation (for spacelike momenta)

Lp(Q
2/m2

p) ≈ log

(
eηp +

Q2

m2
p

)
, (86)
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Figure 10: The effective number of quark flavors. The lower blue solid curve
is NF (Q2/M2) for the symmetric spacelike (a = b = c = −Q2) three-gluon vertex,
while the upper dashed red curve is the fermion number of flavors N1/2(Q

2/M2) for
the single scale effective charge.

where the constants ηp are 5/3, 8/3, and 40/21 for massive fermions, scalars, and
gauge bosons, respectively. The exact one-loop formula are given in Eq.(23-26) of
Ref.[13], although the analytic continuation in Eq.(26) of that paper should have
opposite imaginary part. This effective charge satisfies the RGE

dα̃(Q2)

d log Q2
= − α̃2

4π

∑
p

βp

dLp(Q
2/m2

p)

d log Q2
≡ − α̃2

4π

∑
p

βpNp

(
Q2

m2
p

)

Np

(
Q2

m2
p

)
≡ dLp(Q

2/m2
p)

d log Q2
= −dLp(Q

2/m2
p)

d log m2
p

≈ 1

1 +
m2

p

Q2 eηp

. (87)

The function Np goes to one when Q2 À m2
p and zero when Q2 ¿ m2

p and unambigu-
ously measures what fraction of particle p is “turned on” at scale Q2.

Moving back to the three-scale case, we now have the complication that our ef-
fective charge is a solution of a multi-scale RGE

dα̃(a, b, c)

d log a
= − α̃2

4π

∑
p

βp
d

d log a
LMQ

(
a

M2
,

b

M2
,

c

M2

)
, (88)

and two other permutations with a → b or a → c. This leads to three different Nf ’s :

Nf

(
a

M2

∣∣∣ b

M2
,

c

M2

)
=

d

d log a
LMQ

(
a

M2
,

b

M2
,

c

M2

)
, (89)
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and two cyclic permutations, each of which goes to 1/3 in the symmetric desert
a = b = c À M2. This suggests adding all three together to define a symmetric

NF

(
a

M2
,

b

M2
,

c

M2

)
=

(
d

d log a
+

d

d log b
+

d

d log c

)
LMQ

(
a

M2
,

b

M2
,

c

M2

)
, (90)

which is in fact the same as given in Eq.(84).
The results for NF can be obtained with the help of the results in Appendix

B. Instead of presenting these lengthy results, let us focus on the symmetric case
a = b = c, where we find for spacelike a < 0

NF

( a

M2

)
≡ d

d log a
LMQ

( a

M2
,

a

M2
,

a

M2

)
= − d

d log M2
LMQ

( a

M2
,

a

M2
,

a

M2

)

= 1 + 18
M2

a
+ 2M2JM(a, a, a) + 54M2L(a)

a− 2M2

(a− 3M2)(a− 4M2)
.(91)

In this example, spacelike a is chosen to avoid the pseudo-threshold a = 3M2 and
the threshold a = 4M2. Fig.(10) shows a plot of this along with single-scale quark
number of flavors function Ns=1/2 from Eq.(87).

The negative value of NF at 0 <∼ Q <∼ 4M is not entirely novel, as a similar
behavior was also found in the context of two-loop quark mass corrections to V-
scheme effective charge [37]. It is essentially due to the anti-screening of color charge,
this case in the triangle interaction, and does not arise in the one-loop single scale
effective charge, as seen in Fig.(9).

Using the results of Appendix E, the above analysis can be easily extended to the
case of massive scalars (MS) or massive gauge bosons (MG), which have the following
logarithm-like functions

LMS

(
a

M2
,

b

M2
,

c

M2

)
=

1

K
(
αγL(a) + αβL(b) + βγL(c)− abcJM(a, b, c)

)
+ Ω

− 4M2

(L(a)− 2

a
+
L(b)− 2

b
+
L(c)− 2

c
− JM

)
(92)

LMG

(
a

M2
,

b

M2
,

c

M2

)
=

1

K
(
αγL(a) + αβL(b) + βγL(c)− abcJM(a, b, c)

)
+ Ω

+
4

7
M2

(L(a)− 2

a
+
L(b)− 2

b
+
L(c)− 2

c
− JM

)
. (93)

The qualitative behavior is the same as the quark case.
Finally, we should consider the limitations of the effective scale Q2

eff (a, b, c) in-
troduced in the last section and effective number of flavors NF (a/M2, b/M2, c/M2)
discussed in this section. Given the complicated structure of the full mass dependent
form factors, such tools for characterizing and understanding the behavior of the ver-
tex are helpful. However, in a real calculation such methods may be of limited use
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and the full mass dependent results should be used. For example, the effective scale
Q2

eff has been defined only in the massless case so far because the definition becomes
complicated and somewhat arbitrary in the massive case. In particular, consider the
possible definition (for QCD):

Re

[
11

3
CAL(a, b, c)− 2

3

∑
q

(
LMQ

(
a

M2
q

,
b

M2
q

,
c

M2
q

)
+ log M2

q

)]

≡
(

11CA

3
− 2

3

∑
q

Ñq

(
a

M2
q

,
b

M2
q

,
c

M2
q

) )
log Q̃2

eff (a, b, c), (94)

where Ñq is some suitably defined number of flavors, possibly a step function such
as δ(a + b + c− 3M2

q ), possibly the NF defined in Eq.(84), or some other definition.

It should be clear that any choice of Ñq determines Q̃2
eff , and vice versa, and there

seems to be no compelling choice for these quantities. Furthermore, in the approach
advocated here, the couplings at each vertex depend on physical momentum scales
which will typically be integrated over in the phase space. Thus, matching onto a
conventional MS type approach can only be done at the end of the calculation, so
that trying to define a Q2

eff at an intermediate stage is not very useful.
Thus, in real world applications, one should generally use the full results for the

mass dependent form factors. This constitutes a multi-scale analytic renormalization
scheme that contains information which cannot be obtained in the simple single-
scale leading-log renormalization methods. In other words, every three-gluon vertex
(at tree-level) can be dressed, or “RG improved”, with this gauge-invariant effective
coupling and the associated form factors, which are process independent and contain
more information than the MS procedure.

6 Conclusions and Future Directions

The results of this paper represent only a fraction of what is needed for a re-organization
of perturbation theory into fully gauge-invariant pieces with physical content, each of
which can be renormalized independently, leading naturally to a physical multi-scale
analytic renormalization scheme. This is possible due to the remarkable properties
of the pinch technique (PT)/ Background Field Method quantum Feynman gauge
(BFMFG) Green’s functions. There is still much progress that can be made in cal-
culating these Green’s functions in perturbation theory.

The present paper gives a complete and general characterization of the off-shell
three-gluon vertex at one-loop. A similar study of the gauge-invariant triple gauge
boson vertices of the Standard Model [14] would be very useful. It may also be possible
to quantitatively look at the unification of triple gauge boson vertices and couplings,
in analogy with the work on the unification of single-scale PT couplings[13]. Some
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progress has been made on the conventional gauge-dependent three-gluon vertex at
two loops [38][39], which gives hope for eventually treating the gauge-invariant three-
gluon vertex at two-loops.

The gauge boson two-point functions and the associated effective charges for QCD
[2][5], electroweak theory [15][8][11], and supersymmetric grand unified models [13]
have been calculated in the past to one-loop. We know from general principles the
divergent parts at two-loops, but no complete two-loop PT calculation as yet exists.
To fill this gap, the two-loop gluon PT self-energy will be presented in the near future
[34]. This will allow for a more precise determination of coupling from data, as well
as giving the three-loop β function coefficient. Furthermore, by the Ward identity in
Eq.(3), this also yields the longitudinal form factors of Γ

(ggg)
µ1µ2µ3 through two loops.

The gauge-invariant PT/BFMFG quark self-energy turns out to be equal to the
conventional self-energy in the Feynman gauge [22], and so is known through two-
loops [40]. Due to the Ward identity [21] satisfied by the PT/BFMFG quark-gluon

vertex, this also yields the longitudinal form factors of Γ
(qqg)
µ through two loops.

In QCD, another logical step is the four-gluon vertex at one-loop. In the general
off-shell case, there are hundreds of independent tensors structures and form factors.

Beyond perturbation theory, the study of Dyson-Schwinger Equations [3] and
renormalons [7] in the PT/BFMFG approach may yield new insight.

To summarize, in this paper we have analyzed the behavior of the gauge-invariant
three-gluon vertex at one-loop. Starting from the symmetry principles governing
the vertex, a convenient tensor basis decomposition was given in Eqs.(7,12). As
seen in Eq.(65) and the subsequent discussion, this basis is the most convenient for
phenomenological studies, since it is built out of “transverse” (−) and “longitudinal”
(+) momenta, the latter of which vanish when dotted into external on-shell vertices,
thus leading to relatively simple matrix elements. In the case considered in section
4, only four form factors remain, rather than the thirteen which would be present
in a generic basis. Nonetheless, the choice of basis is only a matter of convenience,
and the real physics lies in the thirteen non-vanishing form factors given explicitly in
section 3.

The supersymmetric relations between the scalar, quark, and gluon contributions
leads to a simple presentation of the results for a generic (unbroken) gauge theory.
Only the gluon contributions to the form factors are given explicitly in section 3,
while the quark and scalar contributions are inferred from the homogeneous relation
FG + 4FQ + (10− d)FS = 0 and the results for the relatively simple sums ΣQG(F ) ≡
(d−2)

2
FQ + FG which are given in section 3 for each form factor F . The extension to

the case of internal masses is outlined in Appendix E and leads to the modified sum
rule FMG + 4FMQ + (9− d)FMS = 0.

The phenomenology is largely determined by the form factor of the tree-level
tensor structure, which in section 4 is used to define a three-scale effective charge
α̃(a, b, c). In addition, the characteristic scale Q2

eff (a, b, c) governing the behavior of
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the vertex and the effective charge was analyzed, thus providing a natural extension of
BLM scale setting [41] to the three-gluon vertex. Physical momentum scales always
set the scale of the coupling. The phenomenological effects of quark masses are
discussed in section 5 and are found to be important for generic physical applications,
since decoupling is slow and a complicated threshold and pseudo-threshold behavior
is observed. An important next step is to fully apply these techniques to a physical
process. In the future we will present such an analysis for the hadronic production of
heavy quarks, where the importance of the form factors other than the tree-level one
(A0) will be addressed. The interpretation of the pseudo-threshold phenomena also
deserves further study.

Acknowledgements M.B. would like to thank Lance Dixon for useful dis-
cussions regarding the second order formalism of the BFM and the supersymmetric
decomposition of one-loop amplitudes.
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Appendix A: Reduction to Scalar Integrals

First, we will describe the evaluation of the massless integrals, and then briefly
mention the modifications due to internal masses. As before, we will use the shorthand
notation

a = p2
1 b = p2

2 c = p2
3 α = p1 ·p2 β = p2 ·p3 γ = p3 ·p1 (95)

In order to evaluate the integrals in an efficient manner, it is very convenient to
choose a manifestly symmetric routing of the loop momenta, as shown in Fig.1, where
clearly

l1 = p2 + l3 l2 = p3 + l1 l3 = p1 + l2. (96)

Of course there is only one integration momenta l, which can be chosen to be l1, l2, or
l3, thus breaking the cyclic symmetry. However, using the symmetric labeling greatly
simplifies the analysis.

First we decompose the full vertex Γ into longitudinal (L) and transverse (T ) parts,
Γ = ΓL + ΓT , as in Eq.(14). The tensor integrals in Eq.(18) are then converted into
scalar integrals by applying projection operators. In doing so, the longitudinal (L)
and transverse (T ) parts essentially decouple, and the ten independent L form factors
are easily found either directly, or by solving the Ward ID, resulting in Eq.(38). The
remaining four T parts are found by applying the following four projection operators
to Eq.(18) : 200, 030, 001, and 231, where as in Table 1 we have defined 030 ≡
p3µ2gµ1µ3 , etc. Thus, for the gluon contribution G we have four scalar integrals :
G(200) ≡ p2µ1gµ2µ3Gµ1µ2µ3 , G(030), G(001), and G(231). Similarly, there are four
integrals for the quarks and scalars as well. In the numerator of each of these integrals
there will be various dot products of momenta, which can always be reduced to
momentum squares using Eq.(96). For example, p1 ·l2 = (l23 − l22 − p2

1)/2 and l1 ·l3 =
(l21 + l23 − p2

2)/2. Thus we are left with integrals of the form

Iijk =

∫
(l21)

i(l22)
j(l23)

k

l21l
2
2l

2
3

, (97)

where
∫ ≡ ∫

ddl
(2π)d and i, j, k ∈ {0, 1, 2}. Using the standard rules of dimensional

regularization, it is easy to see that any integral with any two of i, j, k nonzero must
vanish. Furthermore, it is straightforward to show that

I200 = −βI100 I020 = −γI010 I002 = −αI001. (98)

Thus we are left with only two types of integrals: (1) the trivial two point integrals
J1, J2, and J3, where

J1 = I100 =

∫
1

l22l
2
3

=

∫
1

l2(l + p1)2
, (99)
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and (2) the master triangle integral

J ≡ J(p2
1, p

2
2, p

2
3) =

∫
1

l21l
2
2l

2
3

. (100)

For the gluon contribution, for example, one then has a system of four equations
with four unknowns, the transverse form factors. Denoting the gluon contribution to
the longitudinal projections by LG(200) = 200·ΓL(G), etc. we solve for the transverse
form factors




F 12(G)
F 23(G)
F 31(G)
H(G)


 = M−1

T




G(200)− LG(200)
G(030)− LG(030)
G(001)− LG(001)
G(231)− LG(231)




where MT = −K




β (d− 1)β β 2− d
γ γ (d− 1)γ 2− d

(d− 1)α α α 2− d
K K K 0


 , (101)

and similarly for the quark and scalar contributions.
The above procedure can also be followed for the massive case, with only a few

modifications. First, the tadpole M2TM =
∫

1
l2i−M2 does not vanish. Thus, instead of

∫ l21
l22l23

= −βJ1 we now have

∫
l21 −M2

(l22 −M2)(l23 −M2)
= −βJ1M + M2TM , (102)

where J1M =
∫

1
(l22−M2)(l23−M2)

=
∫

1
(l2−M2)((l+p1)2−M2)

. We also need the following

result and permutations :

∫
l22 −M2

l23 −M2
=

∫
l23 −M2

l22 −M2
= aM2TM . (103)

Finally, we have the master triangle integral with nonzero masses

JM ≡ JM(p2
1, p

2
2, p

2
3) =

∫
1

(l21 −M2)(l22 −M2)(l23 −M2)
. (104)

To summarize, in the massive case we need JM , J1M , J2M , J3M , and TM . In the
massless case we need J , J1, J2, and J3. For each of these we pull out the factor i

16π2

and define JM = i
16π2 JM , etc.

Some formula for these integrals in d dimensions can be found in [32]. Here we
will give only the expansions in four dimensions and define CUV = 1

ε
− γE + log 4π

where d = 4− 2ε.
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The tadpole integral is

TM = CUV + 1− log
M2

µ2
. (105)

The two point integral is

J1M = CUV + 2− log
M2

µ2
− L(a) (106)

L(a) =





2v tanh−1 (v−1) = v log v+1
v−1

2v tan−1 (v−1)
2v tanh−1 (v)− iπv = v log 1+v

1−v
− iπv



 for





a < 0
0 < a < 4M2

a > 4M2





and the generalized velocities are

v =

√
1− 4M2

a
v =

√
4M2

a
− 1. (107)

In the massless limit this becomes

J1 = CUV + 2− log
|a|
µ2

+ iπθ(a). (108)

Appendix B: Results for the Triangle Integral

The massive triangle integral

JM ≡ JM(p2
1, p

2
2, p

2
3) =

∫
d4l

(2π)4

1

(l21 −M2 + iε)(l22 −M2 + iε)(l23 −M2 + iε)
(109)

is finite in four dimensions. We will give the results for JM = −i16π2JM . This integral
has been discussed previously in the literature [42][43][44][36]. In particular, ’tHooft
and Veltman [42] derived a formula which is valid for all values of the kinematic vari-
ables a, b, c and mass M , although careful analytic continuation is required. We will
first write the results of [42] in our notation and then discuss the analytic continu-
ations. The various functions involved and some reference formula are summarized
below in Appendix C.

Defining ρ =
√−K, where as before

K = αβ + βγ + γα = −1

4

(
a2 + b2 + c2 − 2(ab + bc + ca)

)
, (110)
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we have

JM = − 1

2ρ
(I3(a|b, c) + I3(b|c, a) + I3(c|a, b)). (111)

The results for I3(a|b, c) can be expressed in terms of the velocity v =
√

1− 4(M2−iε)
a

and the variable x = β/ρ :

I3(a|b, c) = Li2(z1)− Li2(z1) + Li2(z2)− Li2(z2)− η(x− v, x + v) log
z2

z1

+ η(−1− v,
1

x− v
) log z1 − η(1− v,

1

x− v
) log z2

+ η(−1 + v,
1

x + v
) log z2 − η(1 + v,

1

x + v
) log z1 (112)

where we have defined

z1 =
x + 1

x− v
z2 =

x + 1

x + v
z1 =

x− 1

x + v
z2 =

x− 1

x− v
(113)

and the function η(x, y) compensates for the branch cut in the logarithms:

log xy = log x + log y + η(x, y) (114)

η(x, y) = 2iπ
(
θ(−Im x)θ(−Im y)θ(Im xIm y)− θ(Im x)θ(Im y)θ(−Im xIm y)

)
.

The other two integrals I3(b|c, a) and I3(c|a, b) are easily obtained by permutation

of the above results, so that x = γ/ρ, v =
√

1− 4M2

b
and x = α/ρ, v =

√
1− 4M2

c
, re-

spectively. Although these results entirely characterize the massive triangle function,
it is a rather tedious exercise to analytically continue the results to the six different
physical kinematical regions. To our knowledge, such complete analytic continuations
have not appeared in the literature thus far.

JM takes different forms for K > 0 and K < 0 since then the variable x is
imaginary and real, respectively. The case K > 0 can occur only if all momenta
are spacelike (a, b, c < 0) or timelike (a, b, c > 0). The case K < 0 can occur for
momenta of any signature. Thus, if all momenta are spacelike or all timelike, the
ratios of momenta will determine if K > 0 or K < 0. For each of these two cases,
we must also distinguish when a is spacelike, timelike below threshold, and timelike
above threshold. For timelike above threshold and spacelike, the generalized velocity

v =
√

1− 4M2

a
is real, except for the iε term which is used in the analytic continuation

and hence not included below. Below threshold v = iv = i
√

4M2

a
− 1.

Case K > 0
For K > 0 we have

ρ =
√
−K = i

√
K ≡ iρ

x = β/ρ = −iβ/ρ ≡ −iw (115)
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• K > 0 and v real ⇐⇒ (a < 0 or a > 4M2)

I3(a|b, c) = i

(
2Cl2(2φ1)− Cl2(2φ1 − 2φ2)− Cl2(2φ1 + 2φ2)

+ 2iπ(φ1 − φ2)θ(a− 4M2)

)

φ1 = tan−1(w) φ2 = tan−1(w/v) (116)

• K > 0 and v = iv ⇐⇒ (0 < a < 4M2)

I3(a|b, c) = i

(
2Cl2(2φ1)− Cl2(2φ1 − 2φ2)− Cl2(2φ1 + 2φ2)

+ 2φ2 log

∣∣∣∣
w − v

w + v

∣∣∣∣− 2iπφ1θ(|w| − v)

)

φ1 = tan−1(1/w) φ2 = tan−1(1/v) (117)

Note that the prefactor of i in the above equations cancels against the i from ρ = iρ
in the prefactor of Eq.(111), so that the terms involving the Clausen function Cl2(x)
(discussed in Appendix C) contribute to the real part of JM .

Case K < 0
Here x is real.

• K < 0 and v real ⇐⇒ (a < 0 or a > 4M2)

I3(a|b, c) = Re
(
Li2(z1)− Li2(z1) + Li2(z2)− Li2(z2)

)

+ 2iπ
(
ϕ1σ(a)θ(|x| − v) + ϕ2θ(a− 4M2)

)

ϕ1 =
1

2
log

∣∣∣∣
x + 1

x− 1

∣∣∣∣ ϕ2 =
1

2
log

∣∣∣∣
(x + v)(x− 1)

(x− v)(x + 1)

∣∣∣∣ (118)

• K < 0 and v = iv ⇐⇒ (0 < a < 4M2)

I3(a|b, c) = 2Re
(
Li2(z1)− Li2(z1)

)

z1 =
x + 1

x− iv
z1 =

x− 1

x + iv
(119)
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Several features of these results deserve comment.
First, in the K > 0, v = iv case, there are anomalous thresholds which give rise

to a nonzero imaginary part and a diverging real part. As seen in Eq.(117), these
anomalous thresholds occur in I3(a|b, c) (and similarly for I3(b|c, a) and I3(c|a, b) by
permutation) when

|w| = v ⇐⇒ abc = 4M2K. (120)

There will be a nonzero imaginary part for |w| > v ⇐⇒ abc > 4M2K. Note that since
here 4M2 > a > 0 and K > 0, we must have b, c > 0. Let us now look at some special
cases:

• a = b = c Here the condition for an anomalous threshold reduces to a > 3M2,
which was found in [36].

• b = c This leads to (a/M2) = (b/M2)(4 − (b/M2)), which is possible only if
b < 4M2.

There are also anomalous thresholds for the case of K < 0 and a > 4M2. For example,
for the mixed signature symmetric case a = b = −c > 0, there is a discontinuity in
the real part of JM(a, a,−a) and a divergence in the imaginary part at a = 5M2, as
seen in Fig.(9). Anomalous thresholds were analyzed long ago [45][46].

In the case K > 0, v real, there is an imaginary part above threshold, a > 4M2,
which vanishes in the massless limit a

M2 →∞.
In [44], the authors find an interesting geometrical interpretation and derivation

of the triangle integral (and higher n-point integrals).
In the symmetric limit a = b = c, the above results reduce to those given in

Eqs.(55-62) of [36].
In the massless limit, we obtain

• K > 0

J(a, b, c) = −1

ρ

(
Cl2(2φα) + Cl2(2φβ) + Cl2(2φγ)

)

φα = arctan
( ρ

α

)
, etc. (121)

• K < 0

J(a, b, c) = −1

ρ

(
C̃lh2(2φα) + C̃lh2(2φβ) + C̃lh2(2φγ)

+ iπφαθ(a) + iπφβθ(b) + iπφγθ(c)

)

φα =
1

2
log

∣∣∣∣
α + ρ

α− ρ

∣∣∣∣, etc. (122)
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where

C̃lh2(2φα) =

(
Clh2(2φα) for ab > 0

AClh2(2φα) for ab < 0

)
, (123)

and similarly for C̃lh2(2φβ) when (bc > 0, bc < 0) and C̃lh2(2φγ) when (ca >
0, ca < 0).

The results for the massless case are well known [42][31][32][35], although the notation
is non-standard. Here we have adopted the notation of [35] by using the hyperbolic
Clausen function Clh2(x), and alternating hyperbolic Clausen function AClh2(x),
which are discussed below.

Appendix C: Special Functions

Here we collect some useful results, mainly taken from [47]. The dilogarithm
function is defined for complex z by

Li2(z) = −
∫ z

0

dx log
(1− x)

x
. (124)

In order to find the real and imaginary parts of this function, one should first ensure
that the modulus is less than unity by judiciously using

Li2(z) = −Li2(1/z)− π2

6
− 1

2
log2 (−z). (125)

The notation Li2(r, θ), with two arguments, is used for the real part of Li2(re
iθ). For

modulus less than unity, r < 1, we have the integral representation

Li2(r, θ) = −1

2

∫ r

0

log (1− 2x cos θ + x2)

x
(126)

The imaginary part for r < 1 is

Im (Li2(re
iθ)) = T log r +

1

2
(Cl2(2θ) + Cl2(2T )− Cl2(2θ + 2T ))

T = tan−1

(
r sin θ

1− r cos θ

)
. (127)

In particular,

Im (Li2(e
iθ)) = Cl2(θ) and Cl2(θ) =

1

2i

(
Li2(e

iθ)− Li2(e
−iθ)

)
. (128)
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The Clausen function frequently appears in the triangle integral and has the following
representations :

Cl2(x) = −
∫ x

0

dy log |2 sin
y

2
| =

∞∑
n=1

sin nx

n2

Furthermore, Cl2(x) is odd, Cl2(−x) = −Cl2(x), satisfies periodicity, Cl2(x + 2nπ) =
Cl2(x), and a duplication formula Cl2(2x) = 2Cl2(x) + 2Cl2(x − π). Many other
properties can be found in [47] and the some are conveniently summarized in the
appendix of [35].

We have used the notation of Lu[35], who used the hyperbolic Clausen function,
Clh2(x), and alternating hyperbolic Clausen function, AClh2(a), defined by the inte-
gral representations

Clh2(x) = −
∫ x

0

dy log |2 sinh
y

2
|

AClh2(x) = −
∫ x

0

dy log |2 cosh
y

2
|. (129)

These can also be written as

Clh2(x) =
1

2
Re

(
Li2(e

x)− Li2(e
−x)

)

AClh2(x) =
1

2
Re

(
Li2(−ex)− Li2(−e−x)

)
(130)

in analogy with Eq.(128).
Finally, some elementary relations which are used often include (for x, y real)

arg (x + iy) = tan−1
(y

x

)
+ πθ(−x)σ(y)

tan−1(x) + tan−1(y) = tan−1

(
x + y

1− xy

)
+ πσ(x)θ(xy − 1)

tan−1(x) + tan−1 (1/x) = σ(x)
π

2
. (131)

where σ(x) = x/|x| is the sign function and the step function θ(x) = (σ(x) + 1)/2
should not be confused with the angle θ.

Appendix D: Form Factors with Dimensional Re-
duction (DRED) Regularization

Here we discuss the form factors regularized using dimensional reduction (DRED)
in integer number of dimensions dR, defined analogously to the usual dR = 4 DRED
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scheme. This could be used for dR = 6 or dR = 10 theories, but of course we mainly
have in mind the four-dimensional case.

It is easy to see that the quark and scalar contributions are unchanged from
DREG, and only the gluon contribution is different. This is most easily expressed in
terms of the modified sum rule

FG(DRED) + 4FQ + (10− dR)FS = 0, (132)

which implies FG(DRED) = FG(DREG) + (dR − d)FS. Expanding d = dR − 2ε
around the real number of dimensions dR leads to FG(DRED) = FG(DREG) +
2εFS, which makes manifest the role of the 2ε adjoint DRED “ghosts” which preserve
supersymmetry.

In four dimensions we have

FG(DRED) + 4FQ + 6FS = 0. (133)

Since only the A form factors have a UV divergence in four dimensions, only these
form factors will be changed when using DRED:

δDRED(A12(G)) = δDRED(A12(G)) = −1

3

i

16π2
. (134)

In the symmetrized physical ± basis we have δDRED(A0(G)) = −1
3

i
16π2 , and all other

form factors are unchanged.

Appendix E: Quark and Squark Mass Corrections

Here the corrections to the form factors due to fermion and scalar masses will
be given. The massive quark (MQ) contributions were first obtained in [36], and we
obtain exactly the same results. To our knowledge, the squark contributions, either
massless or massive (MS), have not yet appeared in the literature.

First, the well known formulas for the scalar and fermion self-energies are repro-
duced in our notation :

Π1(MQ) =
d− 2

1− d
J1M + 2M2

(
2J1M − (d− 2)TM

a(1− d)

)

Π1(MS) =
1

2(1− d)
J1M −M2

(
2J1M − (d− 2)TM

a(1− d)

)
(135)

with the integrals J1M , TM given in Appendix A. These yield the massive fermion and
scalar contributions to the longitudinal form factors through Eq.(38).
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Notice that the terms proportional to M2 in the above two equations are equal
up to a factor of −2. After explicit calculation, it was discovered that the scalar mass
correction terms (δMS) are just minus one-half of the quark mass correction terms
(δMQ) for all form factors. Thus, for generic form factor F

F (MS) = F (S)
∣∣∣
M

+ δMS(F )

F (MQ) = F (Q)
∣∣∣
M

+ δMQ(F ) (136)

δMQ = −2δMS

The notation F (S)
∣∣∣
M

simply means to take the appropriate massless result for the

form factor F , as given in section 3, and replace J → JM , J1 → J1M , J2 → J2M ,
J3 → J3M everywhere.

Because of the relation δMQ = −2δMS, we need only write either the fermion
or scalar mass correction terms explicitly. Here we choose the scalar contributions,
which for the transverse form factors are

δMS(F 12) = −2M2

K2

[(K − 3βγ

d− 2

)
JM +

P − 2αK − γ2(3α + 2γ − β)

a(β − γ)(d− 1)
J1M (137)

− P − 2αK − β2(3α + 2β − γ)

b(β − γ)(d− 1)
J2M − 2c

d− 1
J3M +

(2− d)Kα

2(d− 1)ab
TM

]

and

δMS(H) =
2M2

K2

[
3P

d− 2
JM − K − 2αγ

d− 1
J1M − K − 2αβ

d− 1
J2M − K − 2βγ

d− 1
J3M +

K(d− 2)

2(d− 1)
TM

]
.(138)

The results in the physical ± basis can be obtained from those of the LT basis
through the use of Eq.(16), and are included here for completeness.

δMS(A12) =
M2

K

[
cα

d− 2
JM +

γJ1M + βJ2M + cJ3M

d− 1

]
(139)

δMS(B12) = −M2

K

[
(a− b)α

d− 2
JM +

(2α + γ)J1M − (2α + β)J2M + (β − γ)J3M

d− 1

]
(140)
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δMS(C12) =
M2

4K2

[
8P + α2c + 3β2(α− γ) + 3γ2(α− β)

d− 2
JM

+
8P + α2(β − γ) + γ2(5α + 7β + 4γ)

a(d− 1)
J1M (141)

+
8P + α2(γ − β) + β2(5α + 7γ + 4β)

b(d− 1)
J2M

+
4c2 + 2βγ −K

d− 1
J3M +

(d− 2)K(α2 + 2βγ + 3K)

(d− 1)2ab
TM

]

δMS(D12) =
M2

4K2

[
(K + 3α2)(a− b)

d− 2
JM +

K + 4α2 + 2αγ

d− 1
J1M (142)

− K + 4α2 + 2αβ

d− 1
J2M +

(2βγ − 3K)(a− b)

c(d− 1)
J3M +

(d− 2)K(a− b)

2(d− 1)c
TM

]

δMS(H) =
M2

4K2

[
2P + abc

2− d
JM +

K − 2αγ

d− 1
J1M +

K − 2αβ

d− 1
J2M +

K − 2βγ

d− 1
J3M

− (d− 2)K
2(d− 1)

TM

)]
(143)

δMS(S) = −M2

4K2

[
3(a− b)(b− c)(c− a)

2− d
JM +

(4a2 + 2αγ − 3K)(b− c)

a(d− 1)
J1M

+
(4b2 + 2αβ − 3K)(c− a)

b(d− 1)
J2M +

(4c2 + 2βγ − 3K)(a− b)

c(d− 1)
J3M

− (d− 2)(a− b)(b− c)(c− a)K
2(d− 1)abc

TM

)]
. (144)

It is straightforward to see that all of the correction terms are ultraviolet finite.
The relation −2δMS = δMQ is necessary for the preservation of the form of a

quark/scalar sum ΣSQ = 2FS + FQ, which is equal to 2
d−10

ΣQG using the results of

section 3. In other words 2FMS + FMQ = 2FS

∣∣
M

+ FQ

∣∣
M

, so that this quantity has
no correction terms proportional to M2.

However, the relations between massive gauge bosons and massive fermions and/or
scalars will be different, since the gauge bosons eat a degree of freedom to acquire
mass. Consider the contribution of a massive gauge boson to the gauge-invariant
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gluon self-energy 4 :

Π1(MG) = J1M

[
8d− dR − 7

2(d− 1)

]
+

2M2

a

(dR − 1)

(d− 1)

[
J1M +

1

2
(2− d)TM

]
, (145)

where as before dR = d in dimensional regularization (DREG) and dR = 4 (or the
real integer number of dimensions) in dimensional reduction (DRED). From this and
Eq.(135) we deduce

Π1(MG) + 4Π1(MQ) + (9− dR)Π1(MS) = 0 (146)

and thus the massive N = 4 sum rule becomes

FMG + 4FMQ + (9− dR)FMS = 0 (147)

for the longitudinal form factors. It can also be shown that this holds for the trans-
verse form factors and so the results of this paper also give the contributions of massive
internal gauge bosons. Proving this involves detailed analysis of the vertices and dia-
grams that contribute to the triple gluon vertex when the PT/BFMFG is applied to
a spontaneously broken gauge theory that leaves a non-abelian subgroup (of gluons)
intact. This can be done following a pinch-technique route similar to [15][19]. Due to
the equivalence of the PT and BFMFG, it is more convenient to follow the BFMFG
route similar to [48]. For example, in SU(5) GUTs the colored superheavy X and
Y gauge bosons give a contribution which satisfies the above massive sum rule. We
should emphasize that these sum rules are simply a convenient way of relating the
contributions of various spin particles, all with hypothetical mass M , but no assump-
tion is made about the actual masses for a given theory under consideration; the sum
rules are entirely stripped of color factors.

4This is also the contribution of W± to the photon self-energy.
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