

SANDIA REPORT

SAND 2005-5463
Unlimited Release
Printed September 2005

Final Report for the Mobile Node
Authentication LDRD Project

John T. Michalski and Andrew J. Lanzone

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 3

SAND 2005-5463
Unlimited Release

Printed September 2005

 Final Report for the Mobile Node
Authentication LDRD Project

John T. Michalski

Networked Systems Survivability & Assurance Department

Andrew J. Lanzone
Cryptography and Information Systems Surety Department

Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-0785

Abstract

In hostile ad hoc wireless communication environments, such as battlefield networks, end-node
authentication is critical. In a wired infrastructure, this authentication service is typically
facilitated by a centrally-located “authentication certificate generator” such as a Certificate
Authority (CA) server. This centralized approach is ill-suited to meet the needs of mobile ad hoc
networks, such as those required by military systems, because of the unpredictable connectivity
and dynamic routing. There is a need for a secure and robust approach to mobile node
authentication.

Current mechanisms either assign a pre-shared key (shared by all participating parties) or require
that each node retain a collection of individual keys that are used to communicate with other
individual nodes. Both of these approaches have scalability issues and allow a single
compromised node to jeopardize the entire mobile node community.

In this report, we propose replacing the centralized CA with a distributed CA whose
responsibilities are shared between a set of select network nodes. To that end, we develop a
protocol that relies on threshold cryptography to perform the fundamental CA duties in a
distributed fashion. The protocol is meticulously defined and is implemented it in a series of
detailed models. Using these models, mobile wireless scenarios were created on a
communication simulator to test the protocol in an operational environment and to gather
statistics on its scalability and performance.

 4

Intentionally Left Blank

 5

Contents

1 Introduction .. 7

2 Centralized Certificate Authority ... 8
2.1 Basic CA Responsibilities .. 8
2.2 Centralized CA Threat Model... 9

2.2.1 Denial of Service .. 9
2.2.2 Signing an Invalid Certificate... 11

3 Distributed Wireless CA... 12
3.1 Cryptography of a Distributed Wireless CA... 12
3.2 Distributed Wireless CA Functionality... 13
3.3 Benefits of a Distributed Wireless CA.. 14

4 Certificate Request Protocol... 15
4.1 Basic Certificate Request.. 15
4.2 Certificate Request with Domain Extension... 16
4.3 Sparse CA Scenario (SCAS mode)... 17
4.4 Protocol Benefits... 18

5 Model Development ... 19
5.1 Node Model Overview.. 19
5.2 Node-level Logic .. 20

5.2.1 NL1 Logic Conditions.. 20
5.2.2 NL2 Logic Conditions.. 22

6 Node Model Implementation.. 23
7.1 Signature Request Process Block.. 24
7.2 Wireless LAN MAC Interface Process Block .. 27
7.3 Wireless LAN MAC Process Block ... 28
7.4 Signature Request Acknowledge Process Block .. 29

7.4.1 Signature Request (sig_req) Logic Module.. 30
7.4.2 Signature Response (sig_resp) Logic Module.. 34
7.4.2 Other Logic Modules.. 35

7.5 Mobility Processing Block.. 36

8 Protocol Simulation .. 36
8.1 Basic Certificate Request Simulation ... 36
8.2 Certificate Request with Domain Extension Simulation 39

9 Conclusion.. 46

References ... 47

Figures

Figure 1. Initial certificate request ... 16
Figure 2. Additional certificate request with domain extension .. 17

 6

Figure 3. Sparse CA scenario (SCAS mode) ... 18
Figure 4. NL1 node logic diagram... 21
Figure 5. NL2 node logic diagram... 22
Figure 6. Ad hoc wireless node model... 24
Figure 7. Signature request packet header ... 25
Figure 8. Signature request (sig_request) process model .. 26
Figure 9. Wireless LAN MAC interface (wlan_mac_intf) process model........................... 28
Figure 10. Wireless LAN MAC (wireless_lan_mac) process model................................. 29
Figure 11. Mobility (mobile_route) process model.. 36
Figure 12. Initial certificate request transmission.. 37
Figure 13. A node receives the certificate request transmission.. 38
Figure 14. A second node receives the certificate request transmission...................................... 38
Figure 15. A third node receives the certificate request transmission ... 39
Figure 16. Partial certificate reception rate.. 39
Figure 17. Initial certificate request transmission.. 40
Figure 18. A node receives the request and re-broadcasts it.. 41
Figure 19. A second node receives the request and re-broadcasts it ... 41
Figure 20. A third node receives the request and re-broadcasts it ... 42
Figure 21. A fourth node receives the request and re-broadcasts it... 42
Figure 22. A fifth node receives the request and re-broadcasts it.. 43
Figure 23. A sixth node receives the request and re-broadcasts it... 43
Figure 24. A final node receives the request and re-broadcasts it ... 44
Figure 25. Partial certificate reception rates (1 km × 1 km) .. 44
Figure 26. Partial certificate reception rates (2.5 km × 2.5 km) .. 45
Figure 27. Partial certificate reception rates (5 km × 5 km) .. 45

 7

1 Introduction
When sending high-consequence messages, it is important for the sending and receiving parties
to authenticate each other so that they can be assured each is communicating with a trusted
entity. The need for end-node authentication is especially important in mobile ad hoc wireless
networks in hostile environments, such as military operational scenarios, where distribution and
protection of information is paramount.

In a wired infrastructure, this authentication service is typically facilitated by a centrally located
“authentication certificate generator” such as a Certificate Authority (CA) server. This
centralized server provides cryptographic certificates for communicating nodes so they can
authenticate each other. This centralized model is also used in small wireless networks that
remain connected to a wired network. An IEEE 802.11 infrastructure mode network is one such
network.

Unfortunately, the centralized authentication model is ill-suited to meet the needs of mobile ad
hoc networks, such as those required by military systems. Ad hoc networks are characterized by
an extremely dynamic network topology. As the nodes move, network links change rapidly and
paths through the network must continually be adjusted. The speed at which the network
topology changes makes the centralized approach to authentication difficult to maintain. This
problem is exacerbated in military environments where a network node not only moves but also
may be destroyed or disabled at any time. In order for ad hoc mobile networks to have the
requisite authentication mechanisms, a resilient distributed alternative to the centralized CA
approach is needed.

Presently there are no adequate solutions that provide secure, scalable means of authentication.
Current mechanisms either assign a pre-shared key (shared by all participating parties) or require
that each node retain a collection of individual keys that are used to communicate with other
individual nodes. Both of these approaches have scalability issues and allow a single
compromised node to jeopardize the entire mobile node community.

In this report, we propose replacing the centralized CA with a distributed CA whose
responsibilities are shared between a set of select network nodes. Using threshold cryptography,
the set of CA nodes can perform the duties of a centralized CA by working together in a
distributed fashion, thereby reducing the constraints on the network topology. Section 2
describes the duties of a typical CA, and section 3 discusses how a distributed CA can fulfill
those duties. The distributed CA protocol is described in detail in section 4. Sections 5 and 6
discuss modeling the nodes in a distributed CA environment, and section 8 details the
simulations of our distributed CA protocol using those models. Finally, section 9 contains our
conclusions.

 8

2 Centralized Certificate Authority
A common solution to authentication and key management issues in populous environments is to
use a public key infrastructure (PKI). In a PKI, every user possesses a public key/private key
pair. The public keys of all users are publicly known and bound to those users, and the private
keys are kept secret. In order to authenticate himself/herself, a user must demonstrate knowledge
of the private key that corresponds with his publicly-known public key. If such knowledge is
demonstrated, one can be assured that the user is who he claims to be (assuming the binding
between users and public keys is trustworthy and private keys are kept secret).

The role of the CA is to provide a trustworthy binding between users and their public keys.
Users in the network trust the CA to correctly issue certificates to users that essentially vouch for
the authenticity of a user and their key. An electronic certificate contains, among other things,
the user’s name and their public key. The certificate is digitally signed by the CA so that anyone
who trusts the CA can check the signature on a certificate to verify its authenticity. The
Certificate Authority (CA) creates the signature using its unique private key, SKCA. That way,
anyone can use the well-known public key of the CA, PKCA, to verify a certificate and be assured
of the association between a user and their public key. A node can prove its identify by
presenting a valid certificate, which establishes its’ identity and public key, and demonstrating
knowledge of the corresponding private key.

2.1 Basic CA Responsibilities
The CA performs several necessary administrative duties in a PKI. Generally, the CA signs
certificates, stores copies of the certificates, and revokes invalid or expired certificates. These
three roles are described in detail below.

1. Sign certificates:

The CA’s primary duty is to sign new or updated certificates that associate a user with his
public key. The user submits his public key along with other system-specific information
to the CA. Upon receiving this information, the CA must verify that the user is authorized
to receive a certificate and is indeed who he claims to be. This user verification step
often involves querying a Registration Authority (RA) and/or the use of an out-of-band
channel. Once a user has been authorized, the CA uses its private key, SKCA, to sign the
certificate and returns it to the user.

2. Cache certificates:

A CA is often required to cache existing certificates for two reasons. First, the CA may
need to issue copies of the stored certificates upon request. In some systems, it may be
more efficient to get a user’s certificate from the CA than the user himself. And second,
the CA caches existing certificates so that it can ensure uniqueness among certificates.
When issuing certificates, the CA must be careful to issue no more than one certificate
for a given user name. If more than one certificate is issued to the same user name, it will
be impossible to distinguish between the two, allowing for a wide range of impersonation
attacks. Ensuring uniqueness is a task that is often delegated to the RA.

 9

3. Maintain and Publish Certificate Revocation List (CRL)
Just as a CA is tasked with issuing certificates, it is also required to revoke them. When a
user leaves or is expelled from the system, his certificate must be immediately invalidated
to prevent him from subsequently engaging in any unauthorized communication. To
annul the certificates of invalid users, the CA maintains and publishes a Certificate
Revocation List (CRL) that catalogs the certificates which should no longer be
considered valid. When a user receives a certificate, he should first verify that the
certificate is not on the CRL before engaging in the initialization handshake.

While the number of duties that a CA must perform is small, they are complex. For the purposes
of simplicity, we only focus on the primary duty of CA, that of issuing and signing certificates.
While caching and revoking certificates are important tasks for a CA, they are beyond the scope
of this paper. The need for caching can be avoided by mandating that users supply their own
certificates and having an RA that strictly monitors admittance to the network. For discussions
of how revocation lists may be implemented in a distributed environment, see [3], [4], [14], [16],
and [22].

2.2 Centralized CA Threat Model
The first step in developing a security approach in a network environment is to define an
appropriate threat model. The following is a description of the adversarial threats considered
when designing our network security architecture. We consider attacks against a wireless ad hoc
network with a PKI that relies on a single, centralized CA to service the network.

The goal of the adversary is to disrupt or disable the CA from fulfilling its requisite duties or to
subvert its authority. Thus, an adversary may have two goals for disrupting the CA services.

1. The adversary wishes to prevent the CA from signing certificates.
2. The adversary wishes to get a valid signature for an otherwise unauthorized

certificate.

2.2.1 Denial of Service
It may be advantageous for an adversary to prevent the CA from performing some or all of its
duties. If the adversary successfully denies service to the CA, all of the nodes in the network
will no longer be able to obtain new certificates, renew old certificates, or maintain an accurate
CRL.

If we assume that the adversary wishes to prevent the CA from signing certificates, there are a
number of avenues of attack that he may use. Since the CA is a lone entity, the attacker can
focus all of his efforts on a single point, making his job easier.

• Disable the CA – To achieve a denial of service (DoS), an adversary may attack the CA
itself in an attempt to disable it or cause it to malfunction. An adversary can physically
disable the CA by simply cutting the power to the device, causing it to go down for

 10

maintenance (scheduled or unscheduled), or by physically destroying the machine. Once
the machine is physically unusable, it will obviously be unable to perform its duties.

The attacker may also be able to cause the CA machine to malfunction. If he is able to
infect the CA with some sort of computer Trojan or virus, the adversary may be able to
crash or temporarily disable the machine. Further, once the Trojan or virus is discovered,
the CA could possibly suffer additional downtime while the system is restored to a
trusted state.

• Block Communications to the CA – Another way in which an adversary may cause a
DoS is to block all communications to and from the CA. In this situation, the CA would
be functioning normally but would be unable to communicate with the rest of the network
and, thus, unable to fulfill its responsibilities.

A simple method for blocking communications would be to physically jam the RF
spectrum used by the CA. Obviously, no network traffic can reach the CA if the wireless
signal is jammed. Since the CA is a lone entity, an adversary can focus his jamming
attack to a small physical area, making his task much easier.

A more sophisticated attacker could employ a host of traffic-based DoS attacks, such as a
flood attack or a SYN attack. These attacks swamp the CA with so much network traffic
that it is unable to respond to legitimate traffic, effectively isolating the CA from the
other nodes on the network.

If an adversary controls an important network junction, such as a central node in the ad
hoc network, he can perform what is called a black hole attack in which he only receives
incoming traffic but does not propagate the traffic to the next hop. To help mask the
attack, an adversary may be selective and choose only to block messages destined for the
CA. The effectiveness of this attack depends on the topographical importance of the
node that the adversary is able to compromise.

• Corrupt Data Sent to the CA – A third and even more sophisticated attack would be to

corrupt (but not block) the data that is sent between the CA and the network nodes while
the data is in transit. If an attacker can flip random bits in the communications between
the CA and network nodes, he can damage the certificates and CRLs distributed in such a
way that they are unusable. Since the signals are traveling wirelessly, weak RF jamming
may be sufficient to damage the signals enough to render them unusable.

It may be possible for an adversary to intercept and modify transmissions before they
reach the CA. Even if the modifications are meaningless, the CA will either discard the
signature request or sign an incorrect certificate and return a certificate that does not
match the request the client originally sent.

Likewise, the adversary can also try to intercept or disrupt transmissions that are sent out
by the CA before they reach their destination node. If successful, the adversary can
ensure that the transmission received by the node is useless.

 11

2.2.2 Signing an Invalid Certificate
A second goal of an adversary may be to obtain a valid CA signature on an invalid certificate.
With the ability to get a CA signature for a certificate of his choice, the adversary will be able to
perform a wide range of devastating attacks on the network, such as impersonation and man-in-
the-middle attacks.

• Trick the CA into Signing Bogus Certificates – One obvious way for an adversary to
get a certificate signed is to just ask the CA. Assuming the CA has some means of
detecting invalid signature requests (e.g. duplicate usernames), the adversary must “trick”
the CA into signing a certificate request that would otherwise be rejected.

If the attacker is able to intercept and modify messages while in transit, he may be able
capture traffic of a legitimate certificate request. As the certificate request handshake is
passed back and forth between the CA and the node, the attacker could try to modify the
packets and replace relevant information with his own. Assuming the attacker correctly
modified the handshake, the CA will believe the adversary to be some other legitimate
node. In such a situation, the attacker may be able masquerade as another user and
submit his own certificate requests.

Another, more realistic attack involves recently announced attacks on hash functions. An
adversary can create two certificates, one valid and one invalid, that hash to the same
value. The adversary could then submit the valid certificate to the CA to obtain a
signature. However, since the two certificates have the same hash value, the CA’s
signature on the valid certificate will also be a correct signature for the invalid certificate.
An attacker can then take the signature from the valid certificate and attach it to the
invalid certificate, thereby crafting a signed, bogus certificate.

• Find the Signing Key SKCA – A second way for the adversary to get valid CA signatures
is to generate the signatures himself. In order to create valid signatures, the adversary
must somehow obtain the CA’s closely-guarded private key, SKCA. Compromising the
CA’s key is a difficult goal for the attacker as the key is sure to be heavily protected.
However, if he is able to discover the key, the adversary can forge as many valid
signatures as he pleases.

A naive attacker may try to obtain the CA’s private key by simply trying to guess it or
search for it. Unfortunately for such an adversary, the probability of randomly (or
methodically) finding the CA’s key pair is very small. In fact, this attack’s probability of
success is so small that the it is essentially infeasible and is only mentioned for the sake
of completeness.

Since the chance of the attacker finding the CA’s key pair on his own is remote, a more
realistic approach would be to steal the key pair directly from the CA. While the
likelihood that an attacker can extract the CA’s key pair directly from the CA is also
small, the attacker has an advantage in that there is a lone target on which to focus his

 12

efforts. A motivated attacker can concentrate his efforts on compromising the CA and
gaining unauthorized access. For example, an the attacker may try to upload a virus or
Trojan to the CA that secretly watches for the key pair to be used. If an attacker is able to
do so, he may be able to obtain the CA’s key pair.

In the centralized model, the CA provides certification services for the entire network. For
mobile wireless networks, the scalability challenges are immediately apparent. Many of the
attacks associated with a centralized CA stem from the fact that the CA is a single point of
failure in the network. An attacker is able to concentrate all of his resources on a single, fixed
entity. Consequently, some attacks, especially denial of service, become surprisingly simple to
mount. Similarly, attacks targeting the signing key can be focused on a single entity. A lone CA
is a single point of failure in the network and an obvious target for an attacker.

The intermittent connections and dynamic topologies intrinsic to wireless environments further
exacerbate the availability problems of a lone CA. Because node topologies in a wireless ad hoc
network can change so rapidly, a path to the lone CA may not always be available. When nodes
are left without a connection to the CA, they have no means of obtaining the CA’s services and
are effectively suffering a denial of service. Allowing normal network events, such as node
topology changes, to inflict denial of service conditions on the network is unacceptable. Thus, a
more robust and fault-tolerant method is needed to fulfill the role of the CA in wireless ad hoc
networks.

3 Distributed Wireless CA
To provide better certification services to a mobile ad hoc network, we define a distributed
wireless CA. This distributed wireless CA uses threshold cryptography to share the CA’s
certification duties with many nodes in the network. Instead of relying on a lone CA to sign
certificates, a subset of nodes in the network can work together to perform the same task, making
the network more robust and fault tolerant.

3.1 Cryptography of a Distributed Wireless CA
In a distributed CA, the CA’s private signing key, SKCA, is no longer located in a single location
but is distributed in part to multiple nodes in the network. Each CA node possesses a small piece
of the private signing key called a secret share. Any subset of k nodes can combine their secret
shares to collectively produce a valid signature, but any collaboration of less than k nodes will be
unable to generate a valid signature. An important advantage of threshold signature schemes is
that the entire private signing key SKCA is never seen by nor revealed to any entity in the network
(except at system initialization when the secret shares are created). Once the secret shares have
been created, the private signing key is thereafter kept secret.

Threshold cryptography was introduced in 1979 by Shamir [19]. While Shamir’s scheme was
simple and insecure, numerous implementations of and improvements to threshold
cryptosystems have since been made. Particularly, improvements have been made to the
robustness and efficiency of threshold secret sharing. For instance, there are improvements

 13

[2][15] that alleviate the need for a trusted party to set up and distribute the secret shares at
system initialization. Another set of improvements, called proactive secret sharing (PSS)
schemes [8][9][12][13][17], periodically update the secret shares to limit the time in which a
mobile adversary can stage an attack. PSS schemes force the adversary to discover k secret
shares in the limited time period between proactive secret share updates. Verifiable secret
sharing (VSS) [7][10][18][21] allows nodes actively to detect bad or corrupt secret shares when
gathering input from k nodes. Thus, VSS provides nodes with the capability of detecting and
possibly reacting to malicious nodes which are deliberately submitting false partial signatures in
an attempt to sabotage the group signatures.

Threshold cryptography is used in our distributed CA. When a node needs to have a certificate
signed by the CA, the node broadcasts a certificate request to all nearby CA nodes. When a CA
node receives such a request, it validates the request and authenticates the node using
information presumably obtained via the RA. If the node’s right to a certificate is established,
the CA node uses its secret share to compute a partial certificate. The partial certificate is then
sent back to the requesting node. When the requesting node receives a partial certificate from a
CA node, it can use VSS to verify the correctness of the partial certificate. Once the requesting
node has at least k valid partial certificates, it can combine them and form a valid certificate with
a correct signature.

In this scenario, the requesting node was able to get a new certificate signed by the CA signing
key SKCA in a distributed fashion. The entire signing key SKCA was never visible to any of the
players in the exchange. There are a several different threshold signature schemes
[5][6][10][11][20] that can be used in such a system, depending on the system’s needs and
environment.

3.2 Distributed Wireless CA Functionality
In order for a distributed wireless CA to be a reasonable substitute for the standard centralized
CA, it must be able adequately to perform the basic duties of a CA. Specifically, a distributed
CA must perform the three previously identified administrative tasks of a CA. In this section, we
recount the duties of a CA and discuss how they can be fulfilled by our distributed CA.

1. Sign certificates:

A CA’s primary duty is to sign new or updated certificates that associate a user with his
public key. The procedure for obtaining a certificate from a distributed environment was
outlined above. Assuming a certificate request message is heard by at least k CA nodes,
the request will be fulfilled. However, therein lies the difficulty: ensuring with high
probability that the certificate request reaches enough CA nodes. This problem is
discussed later and becomes the focus of our modeling and simulation efforts.

2. Cache certificates:

As noted earlier, the duty of caching certificates is not addressed by our protocol.
Caching certificates is generally not a critical task for a CA and, in fact, is often not its
duty at all but that of the RA. As such, we feel this task is of secondary importance and
can be safely omitted from this discussion.

 14

3. Maintain and Publish Certificate Revocation List (CRL)

Actively maintaining and distributing a CRL in a distributed environment is a more
difficult problem. Because of the lack of centralization, determining which nodes should
be revoked and maintaining an authoritative list of those nodes is not as straightforward
as it was for a centralized CA. Nevertheless, CRL distribution in an environment with a
distributed CA can still be achieved. Numerous solutions have been suggested
[3][4][14][16][22], but their descriptions are beyond the scope of this paper. The reader
is directed to those references if further detail is required.

If it assumed that a certificate request is received by at least k CA nodes, then that certificate
request will be satisfied. The validity of that assumption will be examined later in section 8.
However, when the assumption holds, the distributed CA will more than adequately fulfill the
primary duty of a CA, that of signing certificates.

3.3 Benefits of a Distributed Wireless CA
In a standard PKI, the CA is usually a single machine or a small set of redundant machines that
logically function as one. The CA is the sole custodian of the CA’s private key, SKCA, and is the
only entity capable of signing certificates. In such an architecture, all certificate signature
requests go to the lone CA for approval. Obviously, as the system grows larger, the burden of
signing certificates grows. Since the CA must be able to handle the traffic and signing overhead
for certificate requests for the entire system, it can become a bottleneck.

A distributed CA removes the bottleneck from the system, making the DoS attacks discussed in
section 2.2.1 much more difficult to mount. Recall that DoS attacks against a centralized CA
preyed on its uniqueness, allowing an attacker to focus all his resources on a single target. By
distributing the CA duties amongst a host of nodes, DoS attacks must now disable numerous
targets instead of just one. In a distributed environment, the CA is no longer a single point of
failure for the network.

If there are enough CA nodes, a distributed CA is also more available than a single CA under
normal ad hoc network conditions. Since the centralized CA is a single entity, there is a small
number of paths to reach it at any given time. As the network topology changes, it is likely that
the network will sometimes be fragmented into isolated pieces. When this fragmentation occurs,
the segregated portions will be unable to communicate with the CA. In a distributed CA, even if
fragmentation occurs, CA duties can still be accessed. As long as a node is in a fragment with at
least k CA nodes, that node can access the CA services.

A distributed CA is also equipped to protect the secret signing key, SKCA in a unique way. In a
centralized CA, the private key is held by the lone CA. In order to obtain SKCA, an adversary
must compromise the CA. Since the CA is a lone entity, it can be heavily fortified against
compromise or penetration. Nevertheless, it is still a single point of failure on which an attacker
may focus all of his efforts. On the other hand, in a distributed CA, shares of the private signing
key are dispersed among the various signing nodes. While it may be more difficult to secure
multiple nodes, the distributed CA is strengthened by the fact that no single node possesses the

 15

entire signing key. In order to obtain SKCA, an adversary must concurrently compromise k
different nodes. Furthermore, in a system which updates the secret shares using PSS, the
adversary has only a small amount of time to compromise the k nodes. So, even if the distributed
signing nodes were not as individually fortified as a single centralized CA, the need to
compromise k nodes bolsters the system’s overall security.

4 Certificate Request Protocol
Based on the threshold certificate signature scheme discussed above, we now formally define a
protocol for requesting certificates from a distributed CA. The protocol defines the procedures
for requesting a certificate and for CA nodes that need to issue partial signatures.

When a node needs to have its certificate signed by the CA, it initiates a request for a signature to
the distributed CA by sending out a request to a group address that collectively represents the
authority of the CA. The particular group address is targeted at only those nodes that have the
capability to sign a partial certificate. For purposes of discussion, these CA nodes will be said to
belong to Node Level 2 (NL2). The requesting node that initiates the signature request (and all
other nodes) will belong to Node Level 1 (NL1).

4.1 Basic Certificate Request
The first signature request is broadcast by an initiating NL1 node to a group address that targets
all NL2 nodes within the local broadcast area. The request is sent to a group address so that a
single message can be sent to all NL2 nodes within range, making certificate requests more
efficient. This groupcast approach also alleviates the need for maintaining an accurate list of
addressable receivers, a task which can be quite inefficient when addressable receivers are out of
range of the requester. [1]

The basic certificate request has a type field in the transmission frame which identifies it as a
“basic request.” The basic identifier indicates that the message should not be propagated to
other, more distant nodes who are outside of the NL1 node’s transmission range. The request
also contains a sequence number that uniquely identifies it from subsequent transmissions.

An NL2 node that receives a basic certificate request uses its secret share to compute a partial
certificate and transmits the partial certificate back to the requesting NL1 node. Figure 1
illustrates this sequence of events.

 16

Figure 1. Initial certificate request

The NL1 node that initiated the signature request listens for responses for a specific timeout
period. After the timeout period has expired, it tests the validity of each partial certificate it
received using a VSS scheme and compares the number of valid responses with the needed
threshold value k. If the threshold has been met, then the node can combine the signed partial
certificates to create a valid, signed certificate, which can then be used for authentication. [1]

4.2 Certificate Request with Domain Extension
If, after the first certificate request, the number of valid partial certificates is less than the
threshold, a subsequent transmission is sent out. The subsequent transmission is sent using the
same group address as the first transmission. It uses the same sequence number as the first
transmitted frame, which allows the first group of nodes to determine that this is a repeat request.
The type value of this frame is different so that it can be identified as a “forwarding request.”
The type value, when received by the original responders, directs these responders to forward out
this groupcast to other NL2 nodes that are located beyond the range of the original request. The
NL2 nodes forward the request to more distant NL2 nodes who, upon receipt of a forwarded
request, compute the signed partial certificate and transmit the result back to the NL2 nodes that
forwarded them (these return transmissions are unicast). The intermediate NL2 nodes then
forward the results back to the originating NL1 node.

NL1

NL2

1st response

1st response

 17

When the NL1 node receives this second wave of signed partial certificates (within an
appropriate time-out period) it compares the number of valid additional signatures with the
threshold value. If the value is met, or exceeded, it combines the partial certificates and computes
the needed certificate. If the threshold value is still not met, the node then aborts its attempt.
Figure 2 depicts this activity.

Figure 2. Additional certificate request with domain extension

4.3 Sparse CA Scenario (SCAS mode)
It may be necessary for the mobile ad hoc CA protocol to operate in a more demanding
environment. Depending on the operational environment and scenario, it may be appropriate to
adjust the signature resolution protocol to accommodate sparsely populated distributed CA
services that still require a moderate threshold value k. The need for this operational mode could
be attributed to excessive amounts of environmental clutter (e.g. hills, mountains, trees,
buildings, or weather) that effectively reduce the overall transmission capacity of each
participating node. Another potential reason for this mode could simply be a lack of participating
CA nodes due to expansive territorial range or adversarial destruction and/or compromise.

To compensate for these kinds of restraints, a different type field value was added to the CA
request frame that allows the initiating NL1 node to request a signed partial certificate from

NL1

NL2

Transmit Domain A Transmit Domain B

1st request

1st response

1st response

 2nd request

2nd response

2nd response

2nd response

forward

 18

multiple transmission domains on its first request cycle. This mode allows the request frame to
be propagated through a predetermined number of different transmission domains on the first
request without wasting time waiting for an initial request from a single domain as in the default
configuration. As before, this transmission frame will be associated with a unique sequence
number to allow for the detection of transmission loops. The NL2 nodes will act upon this
request immediately. The original NL1 node will wait a pre-determined amount of time for the
needed amount of responses before timing out and aborting the CA request. Figure 3 illustrates
this SCAS approach.

Figure 3. Sparse CA scenario (SCAS mode)

4.4 Protocol Benefits
This approach to distributed certificate generation for mobile ad-hoc nodes provides an
improvement over comparable mechanisms in the following ways:

• Groupcast certificate request – The groupcast method of information request is more
scalable and efficient than broadcast forms of the same request. A broadcast request
requires that each node that receives the broadcast process it even when the receiving
node does not have the capability of providing part of the answer. With the groupcast
method, only nodes that are associated with the group address are asked to process and
potentially forward the request. This allows only nodes that can provide a part of the
answer to be queried. [1]

• Selectable outreach – The number of hops that the initial request is propagated is

selectable as described:

Transmission Domain A Transmission Domain B

1st response
1st response

1st response

1st request

1st response

forward
forward

 19

o Default Mode – In this mode the initial reach of the request can be limited to a
user-defined broadcast domain. This allows for a very rapid response to an initial
request.

o SCAS Mode – In this mode the reach capability can be extended to encompass
multiple broadcast domains over a widely dispersed geographical area. [1]

• Redundant and stale request detection – The design of the protocol provides a simple

means for a receiving node to differentiate between new certificate requests and
redundant requests which can to be discarded. The protocol also dictates that requests
expire after a pre-selected amount of time, preventing intermediate NL2 nodes from
using valuable memory resources to store stale requests. [1]

• Adjustable k-threshold value – When a threshold signature scheme is used for signature

generation, the number of partial certificates that must be obtained to create a valid
certificate can be adjusted on a system-by-system basis to fit varying needs. [1]

• Transmission loop detection – The presence of broadcast loops in the transmission

medium can be easily detected, and all redundant traffic can be discarded. [1]

5 Model Development
In order to understand and test our distributed CA protocol, we implemented it in a simulated
environment. To do so, a detailed model of the system was developed. The first step was to
create models of the individual network nodes that take part in the protocol. In this section we
describe the logical makeup of our NL1 and NL2 node models. Subsequent sections discuss the
models’ implementation and our system simulation results.

5.1 Node Model Overview
To model our protocol and its proscribed interactions between nodes, two different mobile
objects had to be created: an NL1 node model and an NL2 node model. The NL1 node model
had to provide the following minimum capabilities:

1. At random intervals, send out a request for a signed partial certificate.
2. Wait until it receives a threshold number k responses from NL2 devices.
3. Record the number of partial certificate responses. After a specific time interval, if the

total number of partial certificate responses is at least k, then set the request counter to
“successful;” otherwise, set the request counter to “failed.”

4. Simulate combining the partial certificates by doing operations that represent an
equivalent computational delay.

5. Keep track of the total number of certificate requests.

Similarly, the NL2 node model had to provide the following minimum capabilities:

1. Listen for certificate requests from NL1 objects.

 20

2. Simulate the generation of a partial certificate by doing operations that represent an
equivalent computational delay.

3. Send the partial certificate back to the requester.
4. Keep track of the total number of certificate requests.
5. Forward the certificate request to other NL2 devices*.

These are the bare minimum capabilities that the two types of models must possess. To perform
more detailed simulations, there are several possible adjustments or improvements that we
explored. We list them here for the sake of completeness.

• To facilitate the request and response of the interaction between these two different node
types, it may be appropriate to create a new type of broadcast frame (within the MAC
layer) or, more simply, a new “type field” value within the IP header. This will be
needed to construct the logic state that will provide the processing.

• The development of stat handles may be needed to help track some of the more important
statistics of interest.

• A model that consists of a broadcast-only scenario was developed first. This allowed us
to identify the minimum ratio of NL1 nodes to NL2 nodes vs. the k threshold value.

• The first models created were not concerned with HLA interactions to guide their
movements. This level of detail can come later if desired.

• Initially, random mobile pattern generation was used to dictate the path of each NL1 and
NL2 node. The random paths can be replaced if desired.

• The model can incorporate a wireless routing protocol that allows for multi-hop
capabilities to help improve the chances of reaching the requisite number of NL2. This
scenario can be compared and contrasted with the broadcast only scenario. To facilitate
this multi-hop scenario, a new protocol for a multi-hop wireless threshold signature
scheme will need to be developed.

• HLA interfaces can be added to allow for mobile pattern generation to be driven
remotely. These interfaces allow for other users and their simulators to create different
types of useful scenarios.

5.2 Node-level Logic
Since the wireless nodes are mobile and in constant motion, the number of NL2 nodes that
receive the original transmission from the requesting NL1 node varies over time. In our
simulations, the transmission range value for the NL1 and NL2 nodes is set to 300 meters.
Because of this range limitation, the underlying protocol was designed with features that allow
the limited transmission range to be extended. The following subsections show some of the
conditions and associated logic sequences that are supported by the protocol.

5.2.1 NL1 Logic Conditions
After an NL1 node sends out a groupcast request for a partial certificate, the request is received
by all nodes within the transmission range who are part of the groupcast address as specified in

* This capability is added for multi-hop simulations

 21

the header of the transmitted frame. If other nodes are within range but are not part of the
requesting address group, they filter out and ignore the request. The following section describes
the logic sequence of the transmitting NL1 node.

Condition: An NL1 node generates a signature request frame:

--Generate packet
--Generate sequence number
--Set type field = signature certificate request
--Set origin field = local NL1 address
--Set forward bit
 If forward bit = 0
--Set Range byte = 0
 If forward bit = 1
--Set Range byte >= 1
--Cache sequence number
--Set interrupt for cache time out (interrupt time value will vary depending on range byte value)
--Set destination address = destination group address
--Set source address = local NL1 address
__
NODE LEVEL 1 (NL1) LOGIC CONDITION
Condition: Receive a returning unicast signature response frame from a previously groupcast
forwarding NL2 node.

Figure 4. NL1 node logic diagram

Reply is not stale
Process info

Ignore request
Reply is stale

Discard Packet

Is sequence
Number cached?

Does “Origin Field”
Contain my SRC
 Address?

Packet
No

Yes

No

Yes

 22

5.2.2 NL2 Logic Conditions
Condition: Receive a non-forwarding groupcast or unicast signature request frame from a NL1
node.

--Type field = signature request
--Forward bit = 0 (since forward bit is 0, no need to check range byte)
--Store sequence number
--Store source address

--Generate partial certificate

CREATE RETURN FRAME

--Input stored sequence number
--Set type field = signature response
--Install partial certificate
--Set destination address = stored source address
--Unicast frame back to requesting NL1 node

__

Condition: Receive a forwarding groupcast signature request frame from a NL1 node or a
forwarding NL2 node (All forwarding signature request frames are groupcast).

Figure 5. NL2 node logic diagram

 Process frame

Ignore frame
Loop detected

Filter on Addr
not process

Is sequence
Number cached?

Is SRC address
 my Address?

Packet Yes

Yes

No

No

 23

--Cache frame (must include source address of originating or forwarding node and “origin” field)
--Set cache interrupt to time-out frame
--Copy cached frame
--Decrement range field
--Groupcast frame out (this continues the forwarding process)

--Generate partial certificate
--Create return frame (insert source address from previous NL1 or forwarding NL2 node)
--Set type field = signature response
--Set forward bit = 0
--Unicast frame back to sender (The sender may be another forwarding NL2 node or the
originating NL1 node)

__

Condition: Receive a forwarding multicast signature request frame from a forwarding NL2
node. Since range byte = 0, Unicast message back to forwarding node but no more groupcast
forwarding

--Type field = signature request
--Forward bit = 1
--Range byte = 0

Determine if sequence number is
Already cached ----------------------- YES ignore request, loop detection

-------- NO
--Cache received frame
--Set cache interrupt to time out frame
--Generate partial certificate
--Create Frame and pack fields

--Return sequence number
--Set type field = signature response
--Set forward bit = 0
--Unicast frame back to sender (The sender is a previously forwarding NL2 node)

6 Node Model Implementation
The general wireless node model, used for both NL1 and NL2 node models, is comprised of
seven underlying processing blocks: a wireless LAN receiver and transmitter module
(wlan_port_rx0, wlan_port_tx0), a wireless media access control module
(wireless_lan_mac), a wireless MAC interface module (wlan_mac_intf), a mobile route

 24

module (mobile_route), a signature request module (sig_request), and a signature request
acknowledge module (sig_request_ack). Figure 6 shows these interconnected modules.

Figure 6. Ad hoc wireless node model

The wireless blocks (wlan_port_rx0, wlan_port_tx0) provide a means to emulate a wireless
transceiver. The bit error rate, receiver sensitivity, and transmission power are set to provide a
range value of approximately 300 meters. Access to the wireless medium is governed by the
wireless_lan_mac module, which emulates an ad hoc wireless node. Wireless traffic that is
received from the MAC layer is pushed up to the wlan_mac_intf. This module has a two-fold
purpose: to forward incoming data up to the signature request acknowledgment process block
(sig_request_ack), and to receive communications from the sig_request and
sig_request_ack process blocks. The following sections describe each of these process blocks
in detail.

7.1 Signature Request Process Block
The signature request process block, shown in Figure 6 as sig_request, is designed to send out
certificate request packets from an NL1 node. NL1 nodes need to be capable of generating
certificate requests and transmitting them out. Recall that, to provide the most efficient means of
utilizing the wireless medium, the certificate requests are sent to all NL2 nodes via a groupcast
transmission.

To facilitate a groupcast transmission, a new packet type had to be created. This new packet was
formed by adding a new identifier to the MAC wireless header. In addition to unicast and
broadcast identifiers, a groupcast identifier was created. This new identifier allows listening
nodes to filter on this type of broadcast if the listening node has the capability of processing
these packets. (All NL2 nodes were designed with the capability of filtering and processing

 25

groupcast packets.) Within the sig_request processing block, a packet is generated that
represents a signature certificate request. The packet header contains fields that allow the packet
to be uniquely identified and propagated throughout the wireless domain. Figure 7 shows the
packet header construct.

Figure 7. Signature request packet header

The “type” field identifies two different types of packets, a signature request packet and a
signature response packet. The header also contains a “sequence_num” field which is used to
store a sequence number that uniquely identifies each individual signature request packet, an
“origin” field used to identify the source of the request, and “forward” and “range” fields that
specify the propagation distance of the packet.

The sig_request process model, shown below in Figure 8, is comprised of four logic blocks:
init, stop, generate, and erase. The init block is used to initialize the process model by registering
itself with the simulation kernel and providing some preprocessing directives. From this starting
point, the process model can move to the stop state directly if it is disabled by the user.
Otherwise, it remains in the init state and waits until it is triggered to move to the generate state.
This trigger comes in the form of a call to the function ss_packet_gernerate(). The
ss_packet_generate code creates a packet structured as in Figure 7, initializes the appropriate
fields with default and user-selectable attributes, and forwards the packet out. The erase logic
state is triggered by an “erase_delay” logic condition, which is used to facilitate animation
during the simulation.

type
(8 bits)

sequence_num
(32 bits)

forward
(8 bits)

range
(8 bits)

response
(8 bits)

hop_cnt
(8 bits)

str_mac
(48 bits)

dst_mac
(48 bits)

 26

Figure 8. Signature request (sig_request) process model

After the packet header is constructed, a data field value is appended and the whole packet is sent
out the packet stream to the next processing block. The following is some of the code that creates
the header and initializes its fields.

/* At this initial state, we read the values of source attributes */
/* and schedule a set interrupt that will indicate our start time */
/* for packet generation. */

/* Obtain the object id of the surrounding module. */
own_id = op_id_self ();
/* Get my assigned MAC address */
parent_id = op_topo_parent (own_id);
//op_ima_obj_attr_get (parent_id, "Wireless LAN MAC Address", &my_address);
//printf ("My src MAC address is: %d\n", my_address);

/* Read the values of the packet generation parameters, i.e. the */
/* attribute values of the surrounding module. */
op_ima_obj_attr_get (own_id, "Packet Interarrival Time", interarrival_str);
op_ima_obj_attr_get (own_id, "Packet Size", size_str);
op_ima_obj_attr_get (own_id, "Packet Format", format_str);
op_ima_obj_attr_get (own_id, "Start Time", &start_time);
op_ima_obj_attr_get (own_id, "Stop Time", &stop_time);

/* Create a packet with the specified format. */
pkptr = op_pk_create_fmt (format_str);
op_pk_total_size_set (pkptr, pksize);

/* Pack the packet fields, type, sequence num, forward, range and address */

 27

pkptr = op_pk_create_fmt ("sig_request_pkt_1");
op_pk_nfd_set (pkptr, "type", 90);
if (op_ima_obj_attr_get (parent_id, "wireless_lan_mac.dest group address",

&group) == OPC_COMPCODE_SUCCESS)
{
 op_pk_nfd_set (pkptr, "group_addr", group);
}
/* Seed the rand using a number */
if (num_gen == 65000)
{
 num_gen = 0;
}
num_gen = num_gen + 1;
srand (num_gen);
/* Call the rand, get the number */
result = rand();

/* Set the sequence number */
op_pk_nfd_set (pkptr, "sequence_num", result);
printf("Sending out a groupcast packet the sequence number is %d \n",result);
op_ima_obj_attr_get (parent_id, "name", &name_buffer);
printf("My requester node name is [%s] \n", name_buffer);

/* Set packet attributes */
op_ima_obj_attr_get (parent_id, "Wireless LAN MAC Address", &my_address);
op_ima_obj_attr_get (parent_id, "wireless_lan_mac.dest group address",

&group_address);
op_pk_nfd_set (pkptr, "src_mac", my_address);
op_pk_nfd_set (pkptr, "origin_addr", my_address);

op_pk_nfd_set (pkptr, "dst_mac", group_address);
op_ima_obj_attr_get(parent_id, "forward", &forward);
op_pk_nfd_set (pkptr, "forward", forward);
op_ima_obj_attr_get(parent_id, "range", &range);
op_pk_nfd_set (pkptr, "range", range);

/* Send the packet via the stream to the lower layer. */
op_pk_send (pkptr, SSC_STRM_TO_LOW);

The packet sent by the sig_request block arrives at the wireless MAC interface block
(wlan_mac_intf), which then assigns the packet a destination group address in the destination
address field. This address value is retrieved from a node-level attribute table which is user-
selectable. The packet is then sent out a packet stream to the wireless_lan_mac processing
block, which finally transmits the packet out into the environment.

7.2 Wireless LAN MAC Interface Process Block
As seen in Figure 6, the wireless LAN MAC process block (wlan_mac_intf) takes inputs from
the signature request block (sig_request), signature request acknowledgement block
(sig_request_ack), and the wireless transceivers (wireless_lan_mac). It is comprised of
several blocks, as shown in Figure 9. The first two blocks (init, init2) are initialization blocks,
which execute preprocessor directives. The wait block queries the model registry for MAC-layer

 28

information, such as the assigned object ID and the packet stream numbers associated with this
wireless LAN MAC layer process. The wireless LAN MAC process block also checks to
determine if the current outgoing transmission will be associated with a standard broadcast or the
newly defined groupcast.

The idle block remains in the idle state until interrupted by an incoming packet from either the
sig_request process block, the sig_request_ack process block, or the wireless_lan_mac
process block. The fwd_grp_out block processes packets originating from a call to the function
ss_packet_generate_fwd contained within the sig_request_ack process block. This module
packs the appropriate header fields of the packet which includes assigning a groupcast
destination address. It is then forwarded out to the wireless_lan_mac process block.

The app_layer_arrival block processes packets originating from either the sig_request_ack and
sig_request process blocks, or from its own mac_layer_arrival module. Packets originating
from the higher level processes are created by a call to the ss_packet_generate function located
in the header block of both processes. The module assigns the IP destination address to the
packet which has been set by the user as an attribute associated with the node model.

The mac_layer_arrival module simply forwards an incoming packet from the lower
wireless_lan_mac process model to the resident appl_layer_arrival block, which in turn
forwards the packet to the higher layer sig_request_ack process block. Figure 9 shows the
wlan_mac_intf process model.

Figure 9. Wireless LAN MAC interface (wlan_mac_intf) process model

7.3 Wireless LAN MAC Process Block
From Figure 6, it is clear that the last processing stage before the physical interface in the
wireless node model is the wireless_lan_mac process block. This process block is responsible
for emulating the media access communication process within the wireless model. It is also
responsible for orchestrating access to and reception from the wireless medium. This media
access control is accomplished by buffering incoming messages from the higher layers within the

 29

communication stack, and then listening to the wireless media to determine if those messages
can be sent without collision. If collisions occur, this block retransmits the wireless frames until
they reach their intended destination. Finally, this stage is also responsible for discerning if
frames on the wireless media are destined for itself. Figure 10 shows some of the logic
associated with this process block.

Figure 10. Wireless LAN MAC (wireless_lan_mac) process model

7.4 Signature Request Acknowledge Process Block
The process block that provides most of the logic associated with the certificate request protocol
is the signature request acknowledge (sig_request_ack) process block. Within this process
block, signature request packets are processed, returned to sender via unicast, and forwarded out
via groupcast to other nodes in more distant domains.

The init block of the sig_request_ack process initializes this module by obtaining the object
identification number, registering handles for gathering statistics, and registering macros that
display the transmission and reception of wireless frames. After this process block is initialized
it moves to the idle block. The idle block waits for stream interrupts and, when one occurs,
determines to which logic module the packet needs to be forwarded. There are five logic
modules to which the idle block can forward packets. For instance, signature request packets are
forwarded to the signature request (sig_req) module. Below is a description of the sig_req and
sig_resp logic modules.

 30

7.4.1 Signature Request (sig_req) Logic Module
The signature request state block is responsible for processing incoming signature request
packets. One of its first checks is to determine if the incoming request has its forwarding bit set.
If the bit is not set, then the packet is locally processed and returned to sender. The following
source code shows this processing.

if (op_ima_obj_attr_get (parent_id, "name", node_name) ==

OPC_COMPCODE_SUCCESS)
{

printf ("%s has received a signature request frame (%f) \n", node_name,
op_sim_time());

op_pk_nfd_access (pkptr, "src_mac", &src_mac);
printf ("The source MAC address of this frame is: %d \n", src_mac);
op_pk_nfd_access (pkptr, "origin_addr", &origin);
printf ("The origin MAC address of this frame is: %d \n", origin);

}
/* Check forward byte to determine if requester wants to groupcast */
/* this packet to another domain */

op_pk_nfd_access (pkptr, "forward", &forward);

if (forward == 0) // No forwarding, stay within domain
{

cp_pkptr = op_pk_copy(pkptr);

/* Grab sequence number so it can be pushed into returning packet */
op_pk_nfd_access (pkptr, "sequence_num", &sequence);

/* Retrieve and store src_addr field so it can be used to */
/* pack returning packet */
op_pk_nfd_access (pkptr, "src_mac", &return_src_addr);

/* Call delay interrupt, send certificate back to requester */
op_intrpt_schedule_self(op_sim_time() + DELAY_TIME, PROCESS_DELAY);

}

The last line in the code above schedules an interrupt after an appropriate processing delay. The
processing delay is representative of the time taken to generate a partial certificate. After the
processing delay, the module transitions from the idle state to the delay state. The delay state
creates a response containing the partial certificate and unicasts it back to the requester.

If the signature request (sig_req) module receives a request whose forwarding bit is set, it
forwards out the request in hopes of reaching other nodes that are located beyond the
transmission range of the requester. The following code performs this activity.

/* You are here because the forward byte was 1, check range byte to */
/* determine the depth of this request */

 31

if (forward == 1)
{

cp_pkptr = op_pk_copy(pkptr);
op_pk_nfd_access(cp_pkptr, "forward", &forward);
op_pk_nfd_access(cp_pkptr, "range", &range);
printf("The range value is: %d \n", range);
op_pk_nfd_access(cp_pkptr, "dst_mac", &dst_mac);
printf("The destination address is: %d \n", dst_mac);
op_pk_nfd_access(cp_pkptr, "src_mac", &src_mac);
printf("The source address is: %d \n", src_mac);

printf("the forward byte was 1 \n");
count = count + 1;
//printf ("Total of signature request frames received, fwd = 1 is: %d

\n\n", count);
//op_pk_nfd_access (cp_pkptr, "sequence_num", &sequence);

/* Check queue, is this the first packet? */
/* If so push packet into queue */
if ((testnum_pkts = op_subq_stat(0, OPC_QSTAT_PKSIZE)) == 0)
{

printf("The number I print should be 0 [%d] \n", testnum_pkts);

/* Push packet into queue */
op_subq_pk_insert (0, cp_pkptr, OPC_QPOS_HEAD);

/* Get the size of the queue */
num_pkts = op_subq_stat (0, OPC_QSTAT_PKSIZE);
printf("The number of packets in the queue is [%d] \n",

num_pkts);
pkptr_1 = op_subq_pk_access(subq_num, OPC_QPOS_HEAD);

op_pk_nfd_access(pkptr_1, "sequence_num", &sequence_compare);
printf("Accessing the sequence # stored = : %d \n",

sequence_compare);

Note that this code includes a packet cache which stores a copy of the request packet. The
packet cache is necessary so that the node can act as an intermediary and forward partial
certificate responses from distant NL2 nodes back to the original NL1 node.

The distance in which a certificate request is forwarded is determined by the range byte. If the
range byte is greater than zero, then the node decrements the range byte and forwards the packet
back out. When the range byte is zero, the depth has been reached and the packet is no longer
forwarded. The following code shows this process.

/* Is range value 0? */
if (range == 0)
{

/* Grab sequence num so it can be inserted into returning */
/* unicast packet */
op_pk_nfd_access(cp_pkptr, "sequence_num", &sequence);

/* Call delay interrupt send certificate back to requester */

 32

op_intrpt_schedule_self(op_sim_time() + DELAY_TIME,
PROCESS_DELAY);

}

if(range >= 1)
{

printf("range value was 1 or greater \n");

/* Grab sequence num so it can be inserted into returning */
/* unicast packet */
op_pk_nfd_access(cp_pkptr, "sequence_num", &sequence);

/* Call delay interrupt, send certificate back to requester */
printf("Sending a unicast packet back to requester \n");
op_intrpt_schedule_self(op_sim_time() + DELAY_TIME,
PROCESS_DELAY);

/* Grab sequence num so it can be inserted into forwarding */
/* packet */
op_pk_nfd_access(cp_pkptr, "sequence_num", &sequence_2);
/* Decrement range byte and send to forwarding routine */
range = range - 1;
printf("Forwarding out a groupcast packet to another domain_1

\n\n");
ss_packet_generate_fwd();

}
}

The aforementioned packet cache is also necessary for loop detection. Because nodes are often
forwarding packets to the same group address, it is likely that multiple copies of the same request
will be received. Without logic to filter out identical requests, the forwarding nodes will answer
the same request multiple times. To overcome this potential inefficiency, a loop detection
mechanism was deployed to identify and ignore duplicate requests. The following code provides
this technique by comparing all incoming requests with cached requests. The comparison is
based on the sequence number that uniquely identifies each request. The following code shows
this process.

else
{

/* There is at least 1 packet in the queue, Perform loop detection */

op_pk_nfd_access(cp_pkptr,"sequence_num", &sequence_3);
printf("The sequence value for received packet is [%d] \n",

sequence_3);

num_pkts = op_subq_stat(subq_num, OPC_QSTAT_PKSIZE);
printf (" The number of packets in the test queue is [%d] fwd =1 pkt >

1 \n", num_pkts);

/* Loop through each packet in subqueue */
for(i = 0; i < num_pkts; i++)
{

/* Grab packet from queue */
pkptr_2 = op_subq_pk_access(subq_num, i);
// printf("subq_num = [%d], i = [%d] \n", subq_num, i);

 33

/* Grab packets'sequence field */
op_pk_nfd_access(pkptr_2, "sequence_num", &sequence_compare);

/* Check for loop, compare field values */
//printf("The sequence# = [%d] the sequence compare = [%d] \n",

sequence_3, sequence_compare);
if (sequence_3 == sequence_compare)
{

printf("loop was detected!!! packet ignored \n\n");
//set loop detector counter
loop_cntr = loop_cntr + 1;

}
printf("I just jumped out of the loop detector, \n\n");

}

if (loop_cntr == 0) // Loop was not detected
{

/* Grab range byte */
printf("loop was not detected \n");
op_pk_nfd_access(cp_pkptr, "range", &range);

/* Push packet into queue */
op_subq_pk_insert (0, cp_pkptr, OPC_QPOS_HEAD);

/* Set cache timer */
//op_intrpt_schedule_self(op_sim_time() + PACKET_REMOVE,

CACHE_DELAY);

//printf ("The timer is set for [%f] + Packet_Delay \n",

op_sim_time());
/* Get size of queue */
num_pkts = op_subq_stat (subq_num, OPC_QSTAT_PKSIZE);
printf("The number of packets in the queue is [%d] fwd =1 & seq

!= seq \n", num_pkts);

At this juncture the loop detection mechanism has been employed. If a loop was detected, then
the packet is ignored and no additional processing is needed. If, on the other hand, there is no
loop, then the processing continues. The following code processes the request and checks the
range byte to determine if this request needs to be propagated further.

/* Is range byte equal to zero? */
if(range == 0)
{

/* Do not groupcast this packet out to other domains, */
/* just call delay and send packet back to requester */

/* Retrieve sequence # so it can be inserted into */
/* returning packet */
op_pk_nfd_access (cp_pkptr, "sequence_num", &sequence);

/* Call delay interupt, send certificate back to */
/* requester */

 34

op_intrpt_schedule_self(op_sim_time() + DELAY_TIME,
PROCESS_DELAY);

}

if(range != 0)
{

printf("range value is :%d \n\n", range);
range = range -1;
/* Grab sequence num so it can be inserted into */
/* forwarding groupcast packet */
op_pk_nfd_access(cp_pkptr, "sequence_num", &sequence_2);

/* Forward out packet to another domain */
ss_packet_generate_fwd();

/* Also process local received packet for partial */
/* certificate generation and send back to upstream */
/* requester */

op_intrpt_schedule_self(op_sim_time() + DELAY_TIME,
PROCESS_DELAY);
// }

}
if (loop_cntr >= 1)
{

//printf("loop was detected!!!, Packet discarded \n\n");
}

}
}

}
else
{

//printf ("I'm a requester node I will not respond \n \n");
}

7.4.2 Signature Response (sig_resp) Logic Module
After a signature request is received and processed, a signature response is transmitted. When a
node received a signature response, it must either process the response or forward it to the node
which requested it. The node checks each response to see if the response is destined for itself or
another node then acts accordingly. The following code performs the processing of the signature
response messages.

/* Obtain the incoming packet. */
//pkptr = op_pk_get (op_intrpt_strm ());
/* This has been moved to the IDLE block */

/* This is the signature response logic module. It has one of two */
/* functions: */
/* Function 1, Process end of the line certificate packets that */
/* originated from this node as signature requests or */
/* Function 2, Relay a partial certificate response back to the */
/* originating node. This entails retrieving a cached packet with a */

 35

/* matching sequence number and inserting the proper destination */
/* address of the previous (upstream node) */

/* Is this packet addressed to me? */
op_pk_nfd_access (pkptr, "dst_mac", &address);
op_ima_obj_attr_get (parent_id, "Wireless LAN MAC Address", &address_1);

if (address == address_1)
{

if (op_ima_obj_attr_get (parent_id, "name", node_name_1) ==

OPC_COMPCODE_SUCCESS)
{

printf ("%s has received a signature response frame %f \n",
node_name_1, op_sim_time());

//printf ("Node [%d] has received a signature response frame \n",
parent_id);

op_pk_nfd_access (pkptr, "sequence_num", &sequence);
printf ("The sequence number is : %d \n", sequence);
op_pk_nfd_access (pkptr, "src_mac", &src_addr_1);
printf ("The source address of this packet is : %d \n",

src_addr_1);
op_pk_nfd_access (pkptr, "dst_mac", &dest_mac_1);
printf ("The destination address of this packet is : %d \n",

dest_mac_1);
op_pk_nfd_access(pkptr, "origin_addr", &origin);
printf("The origin address of this packet is: %d \n", origin);

//num_pkts = op_subq_stat(0, OPC_QSTAT_PKSIZE);
//printf ("the number of packets in queue is %d\n",num_pkts);
if (address == origin)
{

printf ("Packet has arrived Home, the sequence # is:[%d]
\n", sequence);

signature_response = signature_response + 1;
printf ("The total number of signature responses is [%d]

\n\n", signature_response);
}
else
{

op_pk_nfd_access (pkptr, "origin_addr", &src_mac);
printf ("This response packet is not mine, unicast to

origin \n\n");
ss_packet_generate_1();

}

7.4.2 Other Logic Modules
The signature request acknowledge (sig_request_ack) process block has several other logic
modules, delay, cache, and erase, that support the two primary state processing blocks, sig_req
and sig_resp. Their descriptions are omitted.

 36

7.5 Mobility Processing Block
Each node has a mobility processing block that dictates its movement in the simulation. This
process block is called mobile_route, as seen in Figure 6. The starting point of each node is
generated randomly based on a uniform distribution. The maximum and minimum values are
associated with the size of movement area grid. Once the starting point of the node is known,
then a target position, or stopping point, is randomly selected. The node will then move on a
vector linking its starting point to its target destination. After reaching its stopping point, the
node pauses based on some preset pause time and calculates a new path. Additional variables
allow the user to set the velocity of the nodes. Figure 11 shows the node mobility process model.

Figure 11. Mobility (mobile_route) process model

8 Protocol Simulation
In our distributed CA, if a certificate request is heard by at least k NL2 nodes, then those nodes
can satisfy the request. That assumption is valid if the mobile network is dense enough or if k is
small enough. However, the difficulty is ensuring that k nodes receive the request, especially in
sparse networks or networks in which k is large (relative to the number of nodes). We used our
models to simulate the system and further examine this problem.

The simulation model is comprised of a mobile NL1 requester node and multiple mobile NL2
response nodes. The intent of the simulation was to examine visually and statistically features
associated with the protocol. Specifically, it was important to test the effectiveness of the
protocol in mobile ad hoc environments. In order for the protocol to work, the initiating NL1
node needs to receive at least k partial certificate responses. With that goal in mind, our
simulations focused on analyzing the response rate of the mobile ad hoc network to the different
types of certificate requests.

8.1 Basic Certificate Request Simulation
The first scenario we considered was the basic certificate request scenario. In this scenario, an
NL1 node broadcasts a request for a certificate, and the NL2 nodes within transmission range
compute and return partial certificates. No domain propagation occurs.

This scenario was intended to gauge the efficiency gained when transmitting via groupcast as

 37

opposed via unicast. Standard unicast transmissions are limited to a one-to-one ratio of
transmissions to responses. For our distributed CA protocol to work efficiently, the groupcast
transmissions must be efficient. This scenario was also designed to test the feasibility of
receiving enough partial certificates using only basic certificate requests. Therefore, the metric
used was the ratio of transmitted certificate requests to successfully received responses.

The simulations were run with ten NL2 responder nodes and one NL1 requester node randomly
positioned in one square kilometer. The nodes all selected a random starting location within the
area and randomly plotted a vector course. Each node then followed its own movement vector
until reaching the area boundary, paused, recalculated another vector, and continued its
movement. The requester sent a certificate request once per minute.

Figures 12-15 show the simulated sequence of events. The simulation starts in Figure 12 with a
certificate request broadcast to a group address. The concentric rings represent the omni-
transmission pattern and range of the requester. When the outermost circle encompasses any
other node, that node is highlighted in blue indicating that the transmission has been received and
is being processed. This “highlighting” takes place almost simultaneously but is shown
sequentially on the simulator because receiver activity is based on the actual arrival time of the
transmitted signal. Because each node is at a slightly different distance from the requester node,
the transmitted energy arrives at slightly different times. Figures 10-13 show a single certificate
request transmission (Figure 12) that is received by three NL2 nodes (Figures 13-15.

Figure 12. Initial certificate request transmission

 38

Figure 13. A node receives the certificate request transmission

Figure 14. A second node receives the certificate request transmission

 39

Figure 15. A third node receives the certificate request transmission

For each certificate request, the NL1 node tallied the number of responses that it received from
the neighboring NL2 nodes. The number of responses was based on how many responders could
be reached per each transmitted request. As seen in Figure 16, in our simulations the number of
nodes that received each transmitted request varied over time based on the location of each
receiving node relative to the requester. Depending on the system’s threshold value k and the
density of the nodes, this variation may or may not be acceptable. In our scenario (ten nodes per
square kilometer), if k is greater than 20% of the NL2 nodes, the CA protocol will experience
difficulties.

Figure 16. Partial certificate reception rate

8.2 Certificate Request with Domain Extension Simulation
The second scenario focused on the certificate requests that are propagated beyond the initial
transmission domain. In these simulations, the initiating NL1 node sends out a certificate request

Partial Certificate Reception Rate

0
1
2
3
4
5

1 3 5 7 9

Request Number

Nodes Nodes Receiving

 40

that is marked for domain extension. When the request is received by NL2 nodes, they process
the request, re-broadcast the transmission, and send a partial certificate back to the initiating NL1
node. The original NL1 node waits a pre-determined amount of time in hopes of receiving the
requisite number of partial certificates before timing out and aborting the certificate request.

A series of simulations was conducted to determine the effectiveness of using the domain
extension capability of the protocol. The first simulation was executed twice, once using the
basic certificate request with domain extension disabled, and a second time with domain
extension enabled. As before, the positions of all participating nodes were restricted to one
square kilometer, and all starting positions of the nodes and their paths during the simulation
were randomly generated. The requester node (requester_node_0) sent a certificate request
once per minute. NL2 nodes that received the certificate request processed the request and sent
partial certificates back to the requesting node. In the second simulation, the NL2 nodes also re-
broadcast the request.

Like that of the previous simulations, the goal was to analyze the rate of partial certificate
responses. As before, the number of responses was based on how many NL2 nodes could be
reached by each request. The metric used was the ratio of transmitted certificate requests to
successfully received responses.

Figures 17-24 are snapshots from the communication simulator. In Figure 17, the certificate
request is sent out. In Figure 18 the first NL2 node receives the certificate request, processes it,
and then re-broadcasts the request. In Figure 19, a second NL2 receives the request and acts in a
likewise manner. The same pattern continues in Figures 20-24.

Figure 17. Initial certificate request transmission

 41

Figure 18. A node receives the request and re-broadcasts it

Figure 19. A second node receives the request and re-broadcasts it

 42

Figure 20. A third node receives the request and re-broadcasts it

Figure 21. A fourth node receives the request and re-broadcasts it

 43

Figure 22. A fifth node receives the request and re-broadcasts it

Figure 23. A sixth node receives the request and re-broadcasts it

 44

Figure 24. A final node receives the request and re-broadcasts it

The response rates of the two simulations are shown in Figure 25. The first simulation, during
which domain extension was disabled (range = 0), is depicted in blue. The second simulation,
which made use of the domain extension capability (range = 1), is depicted in red.

1 4 7

10 13 16 19 22 25 28 31

0

2

4

6

8

10

Nodes Responding
Range = 0
Nodes Responding
Range = 1

Figure 25. Partial certificate reception rates (1 km × 1 km)

According to Figure 25, the range extension bit does have an impact on the numberof responses
received. The blue bars on the graph represent the number of responses received by the
originating requester with transmission limited to a single transmission domain. The red bars on

 45

the graph represent the number of responses received by the originating requester with
transmission extension enabled to propagate out into an additional domain. The average number
of partial certificates received for the basic request without domain extension was 3.5 compared
to an average of 8.2 partial certificates when using domain extensions. That is a 134% increase.

The same pair of simulations was executed in environments of 2.5 kilometers by 2.5 kilometers
and 5 kilometers by 5 kilometers, and the results are show in Figure 26 and Figure 27,
respectively. The results support similar conclusions. As the network grows more sparse, the
need to use domain extension grows. As seen in Figure 27, in very large, sparse environments,
using domain extension is essential for a distributed CA to operate properly.

1 4 7

10 13 16 19 22 25 28

0

1

2

3

4

5

6

Nodes Responding
Range = 0
Nodes Responding
Range = 1

Figure 26. Partial certificate reception rates (2.5 km × 2.5 km)

1 4 7

10 13 16 19 22 25 28

0

1

2

3

4

Nodes Responding
Range = 0
Nodes Responding
Range = 1

Figure 27. Partial certificate reception rates (5 km × 5 km)

 46

9 Conclusion
In a mobile wireless environment, a distributed certificate authority offers many advantages over
a centralize one. For this study, we validated this statement by creating and testing a general
distributed CA protocol. The protocol specified the basic functionality of both regular and CA
nodes. This distributed CA was then prototyped using detailed models that implemented the
protocol. Using our model, several detailed simulations were performed. These simulations
showed that our distributed wireless CA protocol with domain extension can provide CA
services even in sparse environments when connectivity is sporadic, a scenario in which a
centralized approach fails. The statistics we gathered and evaluated showed the performance
improvements of our distributed wireless CA protocol.

As wireless technology continues to expand and demands on its operation increase, it will be
important to continually pursue more efficient ways of providing authentication wireless node
authentication. This study provided a basic proof-of-concept design, but more detailed analysis
is warranted.

 47

References

[1] W. Anderson, J. Michalski, and B. Van Leeuwen. Enhancements for distributed
Certificate Authority Approaches for Mobile Wireless Ad Hoc Networks. Sand Report
SAND2003-4395, December 2003.

[2] D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. Advances in

Cryptology – CRYPTO ’97, pages 425-439. Lecture Notes in Computer Science 1294.
Springer-Verlag, 1997.

[3] C. Crepeau and C. R. Davis. A Certificate Revocation Scheme for Wireless Ad Hoc

Networks. Proceedings of the 1st ACM workshop on Security of ad hoc and sensor
networks, pages 54-61. ACM, 2003.

[4] C. R. Davis. A Localized Trust Management Scheme for Ad Hoc Networks. 3rd IEEE

International Conference on Networking. IEEE, 2004.

[5] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to Share a Function
Securely. 26th Annual ACM Symposium on Theory of Computing, pages 522-533.
ACM, 1994.

[6] Y. Desmedt and Y. Frankel. Shared Generation of Authenticators and Signatures.

Advances in Cryptology – CRYPTO ’91, pages 457-569. Lecture Notes in Computer
Science 576. Springer-Verlag, 1991.

[7] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. 28th

IEEE Symposium on Foundations of Computer Science, pages 427-437. IEEE, 1987.

[8] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Optimal Resilience Proactive
Public-Key Cryptosystems. 38th IEEE Symposium on Foundations of Computer
Science, pages 384-393. IEEE, 1997.

[9] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Proactive RSA. Advances in

Cryptology – CRYPTO ’97, pages 440-452. Lecture Notes in Computer Science 1294.
Springer-Verlag, 1997.

[10] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and Efficient Sharing of

RSA Functions. Advances in Cryptology – CRYPTO ’96, pages 157-172. Lecture
Notes in Computer Science 1109. Springer-Verlag, 1996.

[11] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Signatures.

Advances in Cryptology – EUROCRYPT ’96, pages 354-371. Lecture Notes in
Computer Science 1070. Springer-Verlag, 1996.

 48

[12] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public-
key and signature schemes. 4th Annual Conference on Computer Communications
Security, pages 100-110. ACM, 1997.

[13] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Secret Sharing or: How

to Cope with Perpetual Leakage. Advances in Cryptology – CRYPTO ’95, pages 339-
352. Lecture Notes in Computer Science 963. Springer-Verlag, 1995.

[14] C. Y. Liau, S. Bressan, and K. Tan. Efficient Certificate Revocation: A P2P Approach.

ASIAN 2002 Workshop on Southeast Asian Computing Research, 2002.

[15] M. Malkin, T. Wu, and D. Boneh. Experimenting with Shared Generation of RSA
keys. Internet Society's 1999 Symposium on Network and Distributed System Security
(SNDSS), pages 43-56. Internet Society, 1999.

[16] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. A Certificate Revocation Scheme for a

Large-Scale Highly Replicated Distributed System. Technical report, Vrije University,
Amsterdam, 2002.

[17] T. Rabin. A Simplified Approach to Threshold and Proactive RSA. Advances in

Cryptology – CRYPTO ’98, pages 89-140. Lecture Notes in Computer Science 1462.
Springer-Verlag, 1998.

[18] B. Schoenmakers. A Simple Publicly Verifiable Secret Sharing Scheme and its

Application to Electronic Voting. Advances in Cryptology – CRYPTO ’99, pages 148-
164. Lecture Notes in Computer Science 1666. Springer-Verlag, 1999.

[19] A. Shamir. How to Share a Secret. Communications of the ACM 22 (11), pages 612-

613, 1979.

[20] V. Shoup. Practical Threshold Signatures. Advances in Cryptology – EUROCRYPT
2000, pages 207-220. Lecture Notes in Computer Science 1807. Springer-Verlag,
2000.

[21] M. Stadler. Publicly Verifiable Secret Sharing. Advances in Cryptology –

EUROCRYPT ’96, pages 190-199. Lecture Notes in Computer Science 1070.
Springer-Verlag, 1996.

[22] P. Zheng. Tradeoffs in Certificate Revocation Schemes. ACM SIGCOMM Computer

Communication Review 33 (2), pages 103-112, 2003.

 49

Distribution

 MS
1 0785 R. L. Hutchinson, 5616
5 0785 A. J. Lanzone, 5614
2 0785 J. T. Michalski, 5616
1 0785 T. S. McDonald, 5614
1 0784 R. E. Trellue, 5610
1 1161 T. K. Stalker, 5432
1 MS9018 Central Technical File, 8945-1
2 MS0899 Technical Library, 9616

	Final Report for the Mobile Node Authentication LDRD Project
	Abstract
	Table of Contents
	List of Figures
	1. Introduction
	2. Centralized Certificate Authority
	2.1 Basic CA Responsibilities
	2.2 Centralized CA Threat Model

	3. Distributed Wireless CA
	3.1 Cryptography of a Distributed Wireless CA
	3.2 Distributed Wireless CA Functionality
	3.3 Benefits of a Distributred Wireless CA

	4. Certificate Request Protocol
	4.1 Basic Certificate Request
	4.2 Certificate Request with Domain Extension
	4.3 Sparse CA Scenario (SCAS mode)
	4.4 Protocol Benefits

	5. Model Development
	5.1 Node Model Overview
	5.2 Node-level Logic

	6. Node Model Implementation
	7.1 Signature Request Process Block
	7.2 Wireless LAN MAC Interface Process Block
	7.3 Wireless LAN MAC Block
	7.4 Signature Request Acknowledge Process Block
	7.5 Mobility Processing Block
	8. Protocol Simulation
	8.1 Basic Certificate Request Simulation
	8.2 Certificate Request with Domain Extension Simulation

	9. Conclusion
	References
	Distribution List

