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ABSTRACT 
                                                      
 The goal of this research has been to generalize Density Functional Theory (DFT) 
for complex molecules, i.e. molecules whose size, shape, and interaction energies cause 
them to show significant deviations from mean-field behavior. We considered free energy 
functionals and minimized them for systems with different geometries and 
dimensionalities including confined fluids (such as molecular layers on surfaces and 
molecules in nano-scale pores), systems with directional interactions and order-disorder 
transitions, amphiphilic dimers, block copolymers, and self-assembled nano-structures. 
The results of this procedure include equations of equilibrium for these systems and the 
development of computational tools for predicting phase transitions and self-assembly in 
complex fluids. 
 DFT was developed for confined fluids. A new phenomenon, surface compression 
of confined fluids, was predicted theoretically and confirmed by existing experimental 
data and by simulations. The strong attraction to a surface causes adsorbate molecules to 
attain much higher densities than that of a normal liquid. Under these conditions, 
adsorbate molecules are so compressed that they repel each other. This phenomenon is 
discussed in terms of experimental data, results of Monte Carlo simulations, and 
theoretical models. Lattice version of DFT was developed for modeling phase transitions 
in adsorbed phase including wetting, capillary condensation, and ordering.   
  
 Phase behavior of amphiphilic dimers on surfaces and in solutions was modeled 
using lattice DFT and Monte Carlo simulations. This study resulted in predictive models 
for adsorption isotherms and for local density distributions in solutions. We have 
observed a wide variety of phase behavior for amphiphilic dimers, including formation of 
lamellae and micelles.    
 Block copolymers were modeled in terms of configurational probabilities and in 
the approximation of random mixing entropy. Probabilities of different orientations for 
the segments were considered as order parameters and the free energy was written as a 
functional of these parameters. Imposing boundary conditions allowed us to apply this 
approach to confined fluids. 

 
Equilibrium self-assembly in fluids was studied in the framework of the lattice 

density functional theory (DFT). In particular, DFT was used to model the phase 
behavior of anisotropic monomers. Though anisotropic monomers are a highly idealized 
model system, the analysis presented here demonstrates a formalism that can be used to 
describe a wide variety of phase transitions, including processes referred to as self-
assembly. In DFT, the free energy is represented as a functional of order parameters. 
Minimization of this functional allows modeling spontaneous nano-scale phase 
transitions and self-assembly of supramolecular structures. In particular, this theory 
predicts micellization, lamellization, fluid – glass phase transitions, crystallization, and 
more.  
 A classification of phase transitions based on general differences in self-
assembled structures is proposed. The roles of dimensionality and intermolecular 
interactions in different types of phase transitions are analyzed. The concept of “genetic” 
codes is discussed in terms of structural variety of self-assembled systems. 



Confined Fluids 
 
                                             Adsorption in Nano-Porous Systems 
 
        Here we consider vapor adsorption in slit pores using the Ono-Kondo version of 
lattice Density Functional Theory.  In this model, the lattice contains adsorbate molecules 
and vacancies. There are interactions between nearest neighbors with g being the energy 
of adsorbate - adsorbate interactions, and gS being the energy for adsorbate - surface 
interactions. For attractive interactions, g and gS are negative, and for repulsive 
interactions they are positive. We assume that the slit walls are two flat boundaries which 
are identical and that the width of the slit is divided into N  layers.  
 The general form of the equation of equilibrium for this case can be represented in 
the following form [1, 2]: 
 
               (1/xb )ln{[xa (1 - xb )]/[H(1 - xa )xb]}+ ( k1 g xa /xb+ k2 g )/kT = 0                  (1)  
 
which relates the normalized density in the bulk, xb , to the normalized density in 
adsorbed  phase, xa . In this equation,  
                                               H = exp(-k0 gs /kT)                                                          (2) 
and k0 , k1 ,and k2 are constants depending on the geometry of the lattice.  
 As seen from equation (1), plotting   
                                      Y = (1/xb )ln{[xa (1 - xb )]/[H(1 - xa )xb]}      
versus xa /xb allows one to obtain information about intermolecular interactions in the 
adsorbed layer. In particular, the sign in the slope of this line allows one to conclude 

whether the interactions are attractive or 
repulsive. Figure 1 gives an example of the 
experimental isotherm for nitrogen in activated 
carbon plotted in the proposed coordinates. As 
seen from Figure 1 (lower plate), the slope of 
the line is negative, indicating strong repulsions 
of nitrogen molecules in the adsorbed phase [2]. 
This work is described further in the paper 
“Vapor adsorption on microporous adsorbents” 
that appeared in Carbon, v.38, p. 701-708 
(2000) and in the paper “Intermolecular 
repulsions in adsorbed layers” that has been 
published in Journal of Colloid and Interface 
Science, v.227, p. 553-560 (2000). 
 
Figure 1. Adsorption isotherm for nitrogen on 
activated carbon at T = 90 K. Data from [3].  The 
upper graph shows adsorption isotherm in 
standard coordinates; the lower graph is the 
isotherm in coordinates of equation (1). 
 



                         A New Phenomenon: Surface Compression in Confined Fluids     
                         
            The behavior of this and other data in these coordinates led to the discovery of a 
new phenomenon, surface compression of adsorbates for gases adsorbed on solids. The 
strong attraction to a surface causes adsorbate molecules to attain much higher densities 
than that of a normal liquid. Under these conditions, adsorbate molecules are so 
compressed that they repel each other. This phenomenon is discussed in terms of 
experimental data, results of Monte Carlo simulations, and theoretical models.  
            An approximate model for monolayer adsorption of Lennard-Jones molecules on 
a surface was derived. This model predicts adsorbate-adsorbate repulsions for strong 
adsorbate-adsorbent interactions. This model is applicable to both monolayer adsorption 
and to the first layer in multilayer adsorption. A linear form of this new model allows one 
to determine the  adsorbate - adsorbate interaction energy in the adsorbed layer from 
experimental data: 
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where a is the adsorption amount, am is the maximum density of adsorbate molecules (per 
square meter) that can be on the surface (i.e. the monolayer capacity), xb is the density of 
adsorbate molecules in the bulk (far from the surface), ns is an average energy of the 
molecule-surface interaction, n is the Lennard-Jones potential function, r* and r*’ are the 
distances between molecules in two-dimensional and three-dimensional liquid 
respectively. Here λ, λ’, are constants. In equation (3), the first two terms dominate and 
can be combined to: 
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             Figure 2 shows experimental isotherms for adsorption of various vapors on 
different adsorbents in coordinates of equation (3) (Y versus a/xb ). As shown by Figure 2, 
in these coordinates, experimental data are straight lines near monolayer coverage (at 
small a/xb ). An interesting thing is that the slope of the straight lines in Figure 2 is 
negative which indicates positive n(r* ). So, in all these cases, there is a repulsion 
between molecules in adsorbed layer near monolayer coverage. 
              Analysis of different systems (such as nitrogen, carbon dioxide, hydrocarbons on 
various adsorbents) shows that the energies of molecule - molecule interactions in the 
adsorbed phase near monolayer coverage are positive, indicating adsorbate-adsorbate 
repulsions, and, hence, that the adsorbates are compressed fluids [12]. This should be 
taken into account in the analysis of equations of state for the adsorbed phase and in 
using adsorption to characterize porous materials. It also should have an effect on 
solidification of the adsorbed layer and on the rates of reaction on catalyst surfaces. The 
results presented here also show that the concept of “monolayer capacity” needs revision 
because it is a function of the adsorbate-adsorbent interaction energy. 
 



 
Figure 2. Adsorption isotherms for different systems in coordinates of equation (3). 
                a: benzene on silica gel at T = 303 K; data from [4]; 
                b: butane on carbon molecular sieve at T = 324 K; data from [5]; 
                c: carbon dioxide on h-mordenite at T = 303 K; data from [6]; 
                d: carbon dioxide on zeolite molecular sieve at T = 298 K; data from [7]; 
                e: carbon monoxide on zeolite at T = 228 K; data from [8];    



                f: ethylene on activated carbon at T = 311 K; data from [9]; 
                g: ethylene on carbon molecular sieve at T = 279 K; data from [5]; 
                h: acetylene on activated carbon at T = 293 K; data from [10]; 
                i: methane on activated carbon at T = 213 K; data from [11].  
 
This work is described further in the paper “Surface Compression in Adsorption 
Systems” that appeared in Colloids and Surfaces A, v.187-188, p. 95-108 (2001). 
 
 
                         Density Functional Theory for Molecules in Nano-Scale Pores 
 
 Here, we present an analysis of adsorption behavior in slit-like pores using 
density functional theory (DFT) for a confined lattice [13]. Consider molecules of one-
component gas on a lattice with two boundaries (walls). There are interactions between 
nearest neighbors with g being the energy for adsorbate - adsorbate interactions, and gS  
being the energy for adsorbate - surface interactions. 
 Figure 3 shows the adsorption isotherm obtained from the DFT calculations [14] 
at g /kT = -1.0 and gs /kT = -3.0 for 20 layer slit-like pore. As shown in Figure 3, there are 
three steps: step one is the two-dimensional condensation in the first layer (wetting phase 
transition); step 2 is  another two-dimensional phase transition in the second layer; and 
step 3 is the capillary condensation of all other layers. Dotted line 4 shows the point of 
the three-dimensional condensation. As seen from Figure 3, the capillary condensation 
occurs at the density slightly lower than the equilibrium bulk condensation. 

The DFT approach allows predictions of the adsorption behavior not only for pure 
components, but also for mixtures of molecules in nano-scale pores. In this case, the 
lattice DFT considers energies of interactions for all types of molecules; say, for the 
mixture of A and B molecules, these energies are gAA, gAB, gBB , gAS ,gBS . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3. The adsorption isotherm obtained from the DFT calculations [14] 

                at g /kT = -1.0  and gs /kT = -3.0 for 20 layer slit-like pore.  
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This work is described in more detail in the paper “Phase loops in density-
functional-theory calculations of adsorption in nanoscale pores” that appeared in Physical 
Review E, v.60, p.5552-5560 (1999). 
 
Amphiphilic Dimers on Surface 
 

For amphiphilic dimers adsorbed at a surface, there are three configurations in the 
layer adjacent to the surface [15].  The first configuration is to have the dimer molecules 
perpendicular to the surface with “A” segments in the first layer and “B” segments in the 
second layer.  The fraction of sites occupied by molecules of this configuration in the first 
layer is represented by xA

⊥,1 .  Similarly, if we have a dimer that is perpendicular to the 
surface, but with “B” segments in the first layer and “A” segments in the second layer, we 
have the second type of configuration.  The segmental density of sites occupied by 
molecules of this configuration in the first layer is represented by xB

⊥,1.  The third 
configuration is to have both “A” and “B” segments in the first layer.  The segmental 
density of “A” segments in this configuration, xA

//,1, is equal to the segmental density of 
“B” segments in this configuration,xB

//,1 , and therefore this will be denoted as x//,1.  

 Minimization of free energy for this system gives a set of equations of 
equilibrium that relate the density of segments in each layer to the segmental densities in 
adjacent layers and in the bulk [15, 16]. In particular, for the first layer, the equation of 
equilibrium for the parallel configuration is:    

ln {[ 2/4 x//,1 (1 – x4)2] / [(1 – x1)2(x4/12)]} + (εAS + εBS) /kT + [3(xA
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For layer j, the equations of equilibrium for perpendicular and parallel configurations are: 
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(8) 



 Figure 4 shows the results of segmental density calculations for the first layer at 
 εAA /kT=-0.6,  εAB/kT= -0.1,  εBB /kT = -0.2,  εAS /kT = -1.0,  εBS /kT = -0.3 and Monte 
Carlo simulation data. As seen from Figure 4, theoretical predictions are in excellent 
agreement with the simulations. 
 

 
 
 This work is described in more detail in the paper “Adsorption of Amphiphilic 
Dimers at Surfaces” that appeared in  Journal of Colloid and Interface Science 230, 281 
(2000). 
 
Amphiphilic Dimers in Solution 

 In the previous section, we considered a lattice Density Functional Theory to 
study the adsorption behavior of dimers at flat surfaces. Although the interactions of 
dimers in solution can be conceptualized as the adsorption of dimers on a central dimer 
molecule, the actual behavior is more complicated because it is necessary to consider the 
three-dimensional arrangement of molecules [16]. There have been no analytic models 
capable of predicting the highly non-ideal behavior of asymmetric dimers in solution.    
In a lattice system, an amphiphilic dimer has only one axis of symmetry.  There are two 
ends (denoted as E) and eight sides (denoted as S) on the surface of a dimer as illustrated 
in Figure 6.  The sites marked ‘1’ are the sites adjacent to the dimer.  The number ‘1’ 
signifies that the site is within the first layer of segments adjacent to the central dimer.  
The ‘2’ sites are located diagonally from the central segments.  They are in the second 
shell from the central dimer.  Sites marked with ‘3’ are in the third shell, i.e. in the second 
layer from the dimer surface.  Here, the ‘B’ sites are assumed to have bulk properties.  
The assumption that forth-nearest neighbors have bulk properties is valid for systems 
with low to moderate interaction energies.  Also bear in mind that a site marked ‘2’ in the 
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Figure 4. Amphiphilic dimer adsorption at surfaces. The energy parameters used here 
are:  εAA /kT = -0.6,  εAB /kT = -0.1,  εBB /kT = -0.2,  εAS /kT = -1.0,  εBS /kT = -0.3.  



side view (the diagram on the right below) has only two neighbors in the first layer, and 
the other four neighbors all are assumed to have bulk densities.  Those second layer sites 
in the side view are therefore marked as ‘2S’.  For the second layer in the end view (the 
diagram on the left below), there are two neighbors in the first layer, three neighbors in 
the bulk, and one neighbor in the same second layer.  They are marked as ‘2E’, where the 
‘E’ denotes the end view.  There are eight ‘2E’ sites and eight ‘2S’ sites around a central 
dimer. 
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Figure 5. Shells around the central dimer. 
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There are three main ‘types’ of configurations for the surrounding dimers.  The 
distinctions between these main types are the physical locations of the two occupied sites.  
Here, we consider only configurations illustrated in Figure 6  where the surrounding 
dimer can occupy sites in the first, second, or third shells around the central dimer. Figure 
6 shows these configurations where the central dimer is marked AB. 
 Applying the DFT procedure for amphiphilic dimers results in the set of equations 
of equilibrium for probabilities of AA, AB, and BB bonds. In this section, we consider 
only two groups of configurations: in the first group, a neighboring dimer has only one 
bond with the central dimer; in the second group, there are two bonds with possible 
energies, ( gAA + gBB ) or 2gAB .  In the framework of this set of configurations, there are 
six variables: xAA , xAB , xBA , xBB , xABAB , and xABBA . Here subscript AA means that the A 
segment of the neighboring molecule has a link to the A segment of the central dimer, 
subscript AB means that the B segment of the neighboring molecule has a link to the A 
segment of the central dimer, etc. Subscript ABAB means that a neighboring dimer has 
both AA and BB links to the central dimer with energy ( gAA + gBB ). Subscript ABBA 
denotes that a neighboring dimer has two AB links to the central dimer with energy 2gAB . 
Considering only these six configurations results in the following set of equations of 
equilibrium: 
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 Figure 7 shows the internal energy predicted by the lattice DFT and obtained from 
Monte Carlo simulations for εAA /kT = -0.5, εAB /kT = +0.4, and εBB /kT = -0.3. Also 
shown are predictions of the mean-field theory (dashed line). As seen from Figure 7, the 
developed model predictions are in agreement with Monte Carlo simulations, and mean-
field predictions are significantly off the Monte Carlo results. 
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 This work is described in more detail in the paper “Nonrandom Behavior of 
Amphiphilic Dimers  in Solution” that appeared in  Journal of Chemical Physics 113, 
3404 (2000). 
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Figure 7. Dependence of internal energy, U, on x4  
at εAA /kT = -0.5, εAB /kT = +0.4, and εBB /kT = -0.3 . 



Lamellization and Micellization 
 
 We have observed a wide variety of phase behavior for asymmetric dimers, 
including formation of lamellae and micelles. Figure 8 illustrates the formation of lamella 
observed in  canonical Monte Carlo simulations performed for amphiphilic dimers in a 
20x20x20 box with periodic boundary conditions at x4 = 0.08, gAA /kT = gBB /kT = -1.5 , 
and gAB /kT = +4. The system was equilibrated for two million steps and then run for eight 
hundred million steps. As seen from Figure 8, the cluster has four sheets of AB 
molecules, and an ordered lamellar cluster coexists with a disordered vapor of 
amphiphilic dimers. The open segments on the right-hand side of the simulation box are 
the periodic boundary conditions for the cluster on the left.    

 A system with micelles is illustrated in Figure 9. These simulations were run for 
conditions where the three-dimensional phase transition is suppressed by repulsive forces 
between the head segments at x4 = 0.2, gAA /kT = -7, gBB /kT =  gAB /kT = 4.  Though such 
parameters are physically unrealistic for non-ionic surfactants, they could be a reasonable 
assumption for ionic surfactants.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Block Copolymers 

                                               Configurational Probabilities 

 Block copolymers are used widely in modern technology and science [17-19].  In 
particular, block copolymers exhibit a broad range of material properties due to the 
variety of sub-molecular structures that can form [20, 21]. These structures result from 

Figure 8. An ordered lamellar cluster of 
AB amphiphiles at x4 = 0.08, gAA /kT = 
gBB /kT =gAA /kT = -1.5 ,  and gAB /kT = 4. 

Figure 9. Amphiphilic dimers showing 
the formation of micelles at x4 = 0.2,   
gAA /kT =  -7, and gBB /kT =  gAB /kT = 4.   



preferential molecular configurations due to segmental interactions between copolymer 
chains [22, 23].  
 Here, phase transitions in block copolymers are considered in terms of 
configurational probabilities, pn , and ordering transitions appear as a stepped increase in 
the probability of a dominating configuration and a simultaneous decrease of the 
probabilities for other configurations. To illustrate this, consider an exchange of a test 
AABBBBBAA molecule from n-th configuration and chain of nine vacancies in the bulk: 
 
   AABBBBBAAn + VVVVVVVVVb =AABBBBBAAb + VVVVVVVVVn               (15) 
 
where the subscript n denotes n-th configuration, subscript b denotes a bulk phase where 
there are random configurations of the molecules, and VVVVVVVVV is the vacancy 
chain. If this exchange occurs at equilibrium, then:     
                                                  ∆U - T∆S = 0                                                                (16) 
where ∆U and ∆S are the internal energy and entropy changes, and T is the absolute 
temperature. In the mean-field approximation, ∆S and ∆U can be represented in the 
following form: 
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          ∆U = -[En + (zc -1) pn En - zc lA (gAA xA + gAB xB ) - zc lB (gAB xA + gBB xB )]       (18)                                
                                                                                                                                      

   
   
   

where xA and xB are segmental fractions of A and B components respectively, lA and lB 
are numbers of A and B segments in a molecule of the copolymer, gAA , gAB , and gBB are 
energies of segment - segment interactions, En is the energy of the molecule - molecule 
interaction in the n-th configuration, and zc is the number of possible neighbors around a 
copolymer segment. In our calculations, we consider a cubic lattice with  zc = 4. Negative 
values of gAA , gAB , and gBB imply molecular attractions. Note that xA /lA =  xB /lB . 
 Substituting equations (17) and (18) into equation (16) gives: 

 

 

  (19) 

 

                              

Figure 10 shows the probabilities, p1 - p5, for the various configurations as functions of xA 

predicted by equation (19) at gAA /kT= -0.36, gAB /kT= -0.09, and gBB /kT= 0 and by 

Monte Carlo simulations. 
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As seen from Figure 10, there is a good qualitative agreement between theory and 
simulations. These results show that order - disorder phase transitions in block 
copolymers are accompanied by a dramatic increase of the probability of the dominant 
configuration and simultaneous decrease in the probabilities of all other configurations.    
 
                                                      Random Mixing Entropy 
 
 Random mixing models provide a convenient and relatively simple means of 
predicting the thermodynamic equilibrium of randomly mixed systems.  Additionally, it 
is convenient to model nonrandom mixed systems by predicting thermodynamic 
properties with the random mixing assumption to which corrections can be applied.  As 
Flory, Huggins, Guggenheim, and others developed entropy of mixing models for 
polymer solutions and blends more than 50 years ago, similar approaches can be applied 
to develop entropy of mixing models for copolymer solutions, melts, and blends. 
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Figure 10. Dependence of p1 - p5 on xA predicted  
by equation (19) at gAA /kT = -0.36, gAB /kT = - 
0.09, and gBB /kT = 0 and by Monte Carlo  
simulations. Note that equation (19) represents a  
set of non-linear equations with multiple  
solutions. Therefore, to solve it, we applied a 
new algorithm proposed earlier [24, 25].  



 Recently, Martinez [26] has rederived Guggenheim’s configurational entropy 
model.  Following Martinez, the total number of distinguishable configurations, W  of a 
lattice system can be specified in terms of the molecular geometric constant of a type i 
molecule,  i, the number of molecules of type i, ni, the number of lattice sites occupied by 
a type i molecule, ri, m types of distinguishable molecules, the number of interactions, I, 
the number of bonds of type j, Bj, and b types of bonds:                             
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Using this approach, a random-mixing expression for the change in free energy of a 
diblock copolymer microphase separation transition (Figure 11) has been derived: 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ratio of phase transition temperatures of the demixing of a homopolymer 
blend and the microphase separation of a diblock copolymer with blocks of equal length 
is close to the result of Leibler’s [27] mean field prediction for long chains as can be seen 
in Figure 12.  Unlike Leibler’s approach which is not accurate for short copolymer 
chains, this approach provides results including the dimer limit.  
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Figure 11. Illustration of microphase separation transition of diblock copolymers. 



 
 
 
 
 
 
 
 
 
 
 
 
 
Systems with Order - Disorder Transitions 
 
 Ordering is one of the most important phenomena in understanding phase 
transitions in co-polymers and co-polymer mixtures. That is why, the next step of our 
research was a study of the mechanism of ordering in the model with both attractive and 
repulsive interactions. 
 Order-disorder phase transitions have been studied extensively [28-33] by various 
methods including cell theory [34-38], density functional theory [39-42], and Monte 
Carlo simulations [43].   
 Special approaches have been developed for the analysis of disordered fluid to 
crystal transitions in the framework of lattice gas models. Although the early versions of 
the lattice gas model (Ising model) have been used for analysis of gas-liquid equilibrium 
[44], considerable effort has been directed to the phenomena of crystallization [45] by 
considering excluded shells. In these models, occupancy in the first shell, second shell, 
and, in some cases, even more distant shells is forbidden. Different types of potential 
functions also have been considered, including hard spheres [46], square well potentials 
[47], and repulsions with large positive (but not infinite) energies [48, 49]. It has been 
shown that models with  first-neighbor exclusions give second-order phase transitions 
[50], but models with larger exclusion shells can give a first-order transition [51-53]. 
 In this research, we derive the free energy as a density functional and then use the 
method of Lagrange=s multipliers to minimize the grand potential. The result of this 
procedure is a finite-difference equation with respect to the density distribution, ρi,j,k  . 
Consider a lattice gas (fluid) where i, j, and k are the three dimensions of the lattice 
coordinates. Each site of the lattice either is occupied by a molecule or is empty. There 
are repulsive interactions between nearest neighbors with   being the energy of this 
repulsion (  > 0). One molecule is considered as a central molecule with coordinates 0, 0, 
0. To describe correlations between the central and surrounding molecules we consider 
correlations of other molecules around this central molecule.  
          Here, we consider repulsions between molecule at (i, j, k) and molecule at (i1, j1, k1)  
where i1 can be i±1or i, j1 can be j±1or j, and k1 can be k±1or k. This is equivalent to prior 
work which considered repulsions for the first three nearest neighbors (shells) around a 
central molecule [40]. We also consider attractions between molecule at (i, j, k) and 
molecule at (i2, j2, k2) where i2 can be i±2, i±1 or i,   j1 can be j±2, j±1 or j, and k1 can be 
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Figure 12. The ratio of the liquid de-
mixing temperature of an equimolar 
homopolymer A and homopolymer B 
blend with no vacancies over the 
microphase separation transition 
temperature of a symmetric AB diblock 
copolymer melt with no vacancies is 
predicted as a function of the total chain 
length.  Leibler’s mean-field prediction 
(dashed) of this ratio is also shown.



k±2, k±1 or k, assuming attractions between the central molecule and  the fourth and fifth 
shells. With these pair interactions, Hamiltonian, H, can be written in the following form: 
                                                                       i*        j*        k* 
                                  H=(½) 3    3    3  ρi,j,k  [g1(R1 + R2 + R3 ) + g2( R4 + R5 )]         (21) 
                                            i=-i*   j=-j*   k=-k* 

with                                             R m i j k
i j k S m

= ′ ′ ′
′ ′ ′ ⊂
∑ρ , ,

( , , )
                                                  (22)  

where summation goes over all (i’,j’,k’) from the sets of sites, Sm , defined as follows: 
C S1 is the set of sites (i±1, j, k), (i, j±1, k), and (i, j, k±1);                                     
C S2  is the set of sites (i±1, j±1, k), (i, j±1, k±1), and (i±1, j, k±1);                                   
C S3  is the set of sites (i±1, j±1, k±1);  
CS4 is the set of sites (i±2, j, k), (i, j±2, k), and (i, j, k±2);   
CS5  is the set of sites (i±2,j±1,k),(i±2,j,k±1),(i,j±2,k±1),(i±1,j±2,k),(i,j±1,k±2),(i±1,j, k±2). 
                In equation (21), g1 is the energy of repulsion (> 0 ) and g2 is the energy of 
attraction (< 0 ). Equation (21) remains valid if we stipulate that ρ0,0,0  = 1 . Equation (21) 
for Hamiltonian gives the following equation of equilibrium:                                    
ln{[ρ i,j,k (1 - ρ∞  )]/[(1 - ρ i,j,k )ρ∞  ]} + [ g1(R1 + R2 + R3 - 26ρ∞  ) + 
                                                                    + g2(R4 + R5 - 30ρ∞ ) ]/kBT = 0                  (23) 
 Figures 13 and 14 illustrate the changes in the density distribution around the 
central molecule in the vicinity of the order-disorder phase transition for z = 6,  ρ∞  = 
0.125, g2 /kBT = 0, and various g1 /kBT . As shown in Figure 13, at g1 /kBT = 0.9, there are 
oscillations of the density around the central molecule, but the amplitude of these 
oscillations decays rapidly. Figure 14 shows that, at g1 /kBT = 0.93, the character of the 
density distribution dramatically changes: there still are oscillations around the central 
molecule, but their amplitude does not decay and remains finite even far away from the 
central molecule. The order-disorder phase transition occurs at g1 /kBT between 0.9 and 
0.93.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work is described further in the paper “Lattice density functional theory predictions 
of order-disorder phase transitions” that has been published in Journal of Chemical 
Physics 115, 2361-2366 (2000). 
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Figure 13. Density distribution around 
central molecule in the plane with k = 0 for 
ρ4 = 0.125, g2/kBT = 0, and g1/kBT = 0.9. 
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Figure 14. Density distribution around 
central molecule in the plane with k = 0 for 
ρ4 = 0.125, g2/kBT = 0, and g1/kBT = 0.93. 



Self-Assembly 
 

The potential for making self-assembled structures provides numerous 
opportunities for new technologies in nano-electronics [54], nonlinear optics [55], block 
copolymers [56] and conducting polymers [57], radiation absorbing materials [58], 
materials for artificial muscles [59], nano-materials [60, 61], supramolecular structures 
on surfaces [62], as well as lamellar and micellar systems [63]. The common feature of 
all self-assembled systems is that they have complex geometric structures with local 
order. The ability to form these complex structures depends on the geometry of molecules 
and on their intermolecular interactions.  

Self-assembly has been defined as “the process by which a complex 
macromolecule (as collagen) or a supramolecular system (as a virus) spontaneously 
assembles itself from its components” [64]. In this research, the fundamentals of 
equilibrium self-assembly have been studied to learn how supramolecular structures can 
form by phase transitions in fluids.  A lattice density functional theory (LDFT) is 
developed to describe this equilibrium self-assembly. 
 In the mean field approximation, the energy of interaction, E, between molecules 
sitting      on two neighboring sites is  
                                           E =(1/2)33gmn p(m) p(n)                                                    (24) 
where p(m) and  p(n) are independent probabilities of having molecules on the sites with 
orientations providing contact of m-th and n-th contact points, gmn is the energy of 
interaction between m-th and n-th contact points, and  the summation goes over all 
possible orientations.  

Here, a complex fluid is modeled by asymmetric segments with directional 
interactions. It is shown that it is the directional interactions that allow processes akin to 
self-assembly. To illustrate this, consider a two-dimensional system on a square lattice.  
Each site (i, j) of this lattice either can be occupied by one molecule or empty and each 
molecule can have one of four different orientations. Applying LDFT for this system 
gives:                                                                                                                                       
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where  x1, i, j , x2, i, j , x3, i, j , and x4, i, j  are order parameters, i.e. the probabilities of finding a 
molecule of each orientation at each site, and Ek is the energy of the segment in k-th 
orientation.   
 Figure 15 shows densities at each position, x1, i, j + x2, i, j + x3, i, j + x4, i, j , as a 
function of i and j at T . 130 K,  g11 = -200 K, g22 = -1000 K, and all other gmn being 
zeros. As seen from Figure 15, decreasing temperature from 130 K to 127.94 K results in 
self-assembly of stepped lamellae from dimers. In general, the matrix ||gmn|| is a 
primordial code for the structure of the fluid and for self-assembly of nano-scale and 
supramolecular objects. This code determines possible spontaneous phase transitions in 
the system.    
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Phase Transitions in Systems with Directional Interactions 
 
 Density functional theories can result in accurate predictions of the free energy 
and phase transitions of a system.  Applying the simplifications of only considering 
nearest neighbor interactions, and restricting the possible locations of components to a 
lattice can result in relatively simple expressions for the free energy. 
 With a simplification and generalization of a lattice density functional theory 
developed by Aranovich and Donohue [65], the free energy of a mixture including 
molecules with directional interactions has been derived: 
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Figure 15. Self-assembly of stepped lamellae from dimers. 



where N is the number of lattice sites, kB is Boltzmann’s constant, T is the system 
temperature, ν is the number of types of components (including vacancies), xi

4 is the 
probability of a random site containing a type i component, ε[i,m][j,n] is the interaction 
energy of the mth side of type i component with the nth side of a type j component, ηj is 
the number of sides on a type i component, and 
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The first two terms reduce to the Regular Solution Theory [66] when the molecules are 
homogeneous, the pure limits of the free energy of the mixture are subtracted from the 
free energy of the mixture to obtain the free energy of mixing, and the interaction energy 
between two molecules is approximated as the geometric mean of the respective pure-
component interaction energies.  The third term represents a nonrandom mixing 
correction to the random mixing free energy of the mixture. 
             As this free energy expression does not require every type of monomer to have 
the same number of sides, the phase behavior of mixtures molecules with different 
numbers of interaction sites can be predicted.  For example, as can be seen in Fig. 16a, a 
binary mixture of 4-sided and 8-sided homogeneous monomers has two spinodal loops.  
Furthermore, as can be seen in Figs. 16b, 16c, and 16d, a binary mixture of 4-sided 
monomers with directional interactions and 8-sided homogeneous monomers, can have 
unusually shaped spinodal curves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16a. A spinodal curve is presented for a binary mixture of homogeneous 
monomers of types A and B with no vacancies as a function of the mole fraction of A.  
Each type A monomer has 8 type α  sides and each type B monomer has 4 type β sides 
where εαα = εαβ = kB (-200 K) and εββ  = kB (-1100 K). 

d 
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Figure 16b. A spinodal curve is presented for a binary mixture of type A homogeneous 
monomers and of type B monomers with directional interactions with no vacancies as a 
function of the mole fraction of A.  Each type A monomer has 8 type α  sides and each 
type B monomer has 2 type β1 sides and 2 type β2 sides where εαα = εαβ1 = εαβ2  = kB (-
200 K), εβ1β2  = kB (-1100 K), and εβ1β1  = εβ2β2  = 0. 

Figure 16c. A spinodal curve is presented for a binary mixture of type A homogeneous 
monomers and of type B monomers with directional interactions with no vacancies as a 
function of the mole fraction of A.  Each type A monomer has 8 type α  sides and each 
type B monomer has 2 type β1 sides and 2 type β2 sides where εαα = εαβ1 = εαβ2  = kB (-
200 K), εβ1β2 = kB (-1100 K), and εβ1β1  = εβ2β2  = kB (700 K).   

Figure 16d. A spinodal curve is presented for a binary mixture of type A homogeneous 
monomers and of type B monomers with directional interactions with no vacancies as a 
function of the mole fraction of A.  Each type A monomer has 8 type α  sides and each 
type B monomer has 2 type β1 sides and 2 type β2 sides where εαα = εαβ1 = εαβ2  = kB (-
200 K), εβ1β2 = kB (-1100 K), and εβ1β1  = εβ2β2  = kB (1100 K).  

 
Self-Assembly in Confined Fluids                                                    
                                                   
             Self-assembly is the spontaneous formation of complex, hierarchical structures 
from solutions of randomly oriented molecules.  Molecular assemblies created in such a 
way are of great interest in materials science, as they represent a way to build complex 
structures from a “bottom-up” approach, as contrasted to the more typical “top-down” 
methodologies such as photolithography and the chemical vapor deposition technique.  
Because these structures sometimes mimic those found in living cells, the process of self-
assembly is also of fundamental importance in the fields of biology and biotechnology.  
The goal of this work is to understand the phenomena of self-assembly using 
mathematically simple models. 
             In this work, a two-dimensional system consisting of monomers with directional 
interactions between two walls was modeled using lattice density functional theory 
(DFT) [14], with the goal of studying the phase behavior of the system.  The molecules 
were modeled as having two different sides, denoted as A and B.  Nearest neighbor 
molecule-molecule and molecule-wall interactions were explicitly accounted for in the 
model. 
             Four different types of behavior were observed in this study.  First, the system 
was studied under low interaction potentials.  This regime is important because it allows 
for detailed comparisons to commonly made approximations in experimental studies.  In 
this work we specifically consider the Langmuir and Frumkin approximations.  It also 
allows the results of the DFT model to be compared to Monte Carlo machine simulation 
data, which is a good test of the ability of the theory to capture the essential physics of 
the system.  The second type of behavior studied was condensation transitions, which 
were found to occur when the three molecule-molecule interactions (A-A, B-B, and A-B) 
were equal and larger than –1.0 kT.  Next, the ordering behavior of the system was 
examined, which was found to occur when one of the molecule-molecule interactions 
(here the A-A interaction) was significantly larger than the other two.  Finally, complex 



transitions in which all interactions were large were studied, which appeared to be a 
superposition of both ordering and condensation transitions. 
             In the low interaction limit, it was found that when molecule-molecule 
interactions were present in the system, there were significant deviations between the 
DFT predictions and the Langmuir and Frumkin approximations of the theory at 
moderate to high bulk concentrations of monomers.  However, the DFT model 
predictions were closest to the machine simulation data.  Of interest was the magnitude of 
the error in using the Frumkin approximation, which is commonly thought to be a good 
semi-theoretical model for real isotherm data.  It was found that in cases where the final 
state of the system was ordered, the error in the Frumkin approximation was so large that 
even qualitative predictions of the system behavior were wrong. 
              The condensation transition was found to exist when the molecule-molecule 
interactions were relatively symmetric (almost equal to each other) and more attractive 
than –1.0 kT.  Snapshots from Monte Carlo simulations in the two phase region showed 
that the condensed phase was liquid-like in the number of nearest neighbors, but 
unordered. 
              For systems in which one of the molecule-molecule interactions was 
significantly larger than the other two, ordering was observed.  It was found that when 
the largest interaction was less attractive than –2.4 kT, the system became more ordered 
as the bulk concentration was increased.  However, when this interaction was –2.4 kT or 
more attractive, the system ordered itself as a first-order phase transition  (Figure 17).  
This transition is an order-disorder transition.  It was found that the magnitude of the 
molecule-surface interactions could be used to control the orientation of the molecules in 
the ordered state.  Monte Carlo simulations in the two phase region showed that the 
order-disorder transition resulted in the formation of long chains of molecules in the 
system (Figure 18); the orientation of these chains can be controlled by adjusting the 
molecule-surface interaction.  There is some experimental evidence for the formation of 
these types of chain-like structures in real systems; one example is magnetorheological 
fluids which are exposed to a magnetic field. 
             Finally, by increasing all of the interactions in the system to large values, 
transitions can be observed which are a combination of both ordering and condensation.  
Similar to the order-disorder transitions, the molecule-surface interaction can be used to 
control the orientation of the ordered state.  Monte Carlo simulation shows that the phase 
transition results in a condensed, liquid-like state, except that the final state is made of 
monomers which are all in the same orientation. 
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Figure 17.  An order-disorder transition in a system with four layers between the 
two walls.  Since the system is symmetric, only the results for the first two layers 
are presented.  The two possible orientations of the molecules are denoted as 
parallel and perpendicular.  The predictions are from the DFT model. 

Figure 18. A Monte Carlo snapshot of a 
system with ten layers after an order 
disorder transition.  The formation of 
chain-like structures is apparent.  In the 
figure, the open squares represent 
monomers in the parallel orientation, while 
the filled squares are monomers in the 
perpendicular orientation. 



Critical Point Corrections 
 

Studying crossover between mean-field behavior and critical behavior [67] 
provides important insights into the thermodynamics of fluids and liquid mixtures over 
the entire range of conditions [68]. However, rigorous approaches are limited, and cannot 
be applied without further development to complex systems including self-assembled 
layers [69], colloid systems [70], and nano-phases [71, 72] where objects of different 
scales (nano-, meso-, and macro-) and different dimensionalities are in equilibrium.  

For complex systems, mean-field approaches turn out to be useful [73-75], but the 
description of the system behavior close to the critical point has to be corrected.  In this 
paper, we propose a simple method of correcting critical points for mean-field theory of 
adsorption. For this purpose, we consider Ono-Kondo lattice density functional theory 
[76, 77] which describes density gradients near phase boundaries and in nano-scale pores 
[78-81]. In the classical Ono-Kondo model [76], the vapor-liquid interface is represented 
by a lattice where each site either can be occupied by a molecule or empty. Ono-Kondo 
theory also has been applied to liquid-solid and gas-solid interfaces [78-83].  
 
Classical Ono-Kondo Theory 
 

Consider a one-component lattice gas in contact with a surface (hard wall). There 
are interactions between nearest neighbors with ε being the energy of adsorbate - 
adsorbate interactions and εS being the interaction energy for adsorbate molecules at the 
adsorbent surface. (Both ε and εS  are negative for attractive forces.) For one layer 
between two walls (Figure 19), the Ono-Kondo equation can be written in the following 
form: 
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In this equation, x1 is the density or fraction of sites occupied by molecules in the 
adsorbed layer, xb is the fraction of sites occupied with fluid molecules in the bulk, z3 is 
the coordination number for three-dimensional lattice (z3 = 6 for a cubic lattice), z2 is the 
monolayer coordination number (z2 = 4 for a square lattice), z1 is the number of molecule-
surface bonds (z1 = 2 for one layer between two walls as shown in Figure 19), k is 
Boltzmann's constant, and T is the absolute temperature.  

 
 

                                
 
 
                       
 

Equation (28) relates the density in the adsorbed layer with the density in the 
bulk. In earlier publications, we presented a numerical method of solving the Ono-Kondo 
equations when there are multiple solutions [84, 85]. A typical solution of equation (28) 
is illustrated in Figure 20 for z1 = 2, z2 = 4, z3 = 6, ε /kT= - 1.3 and εS /kT= - 1.0. In 
Figure 20, points A and B indicate spinodals for two-dimensional condensation (in the 

Figure 19. Cross section of the monolayer between two walls. 



monolayer) and points C 
and D indicate spinodals 
for three-dimensional 
condensation (in the bulk). 
Hence, the Ono-Kondo 
equation not only gives the 
adsorption isotherm, but it 
also relates phase behavior 
in the adsorbed layer to the 
phase behavior in the bulk 
[81]. However, the Ono-
Kondo model gives 
classical, mean-field phase 
diagrams and critical points 
[86-88]. In this paper, we 
propose a correction to the 
Ono-Kondo equation to 

describe phase behavior near the critical point more accurately.   
 

 
Adsorption Equilibrium  
 
 Consider taking an adsorbate molecule from the adsorbed layer between two 
walls (Figure 19) and moving it to an empty site in the bulk. This is equivalent to the 
exchange of a molecule with a vacancy, 
                                            Ma  +  Vb  6 Va + Mb                             (29) 
where M is the adsorbate molecule, and V is the vacancy (empty site) that it fills (and vice 
versa). If this exchange occurs at equilibrium, then: 
                                                 )U - T)S = 0                                   (30) 
where )U and )S are the enthalpy and entropy changes.  

The value of )S can be represented in the form: 
                                           )S = kB lnW1  -  kB lnW2                          (31)                                        
where W1 is the number of configurations where site in the adsorbed layer is occupied by 
an adsorbate molecule and the site in the bulk is empty, and W2 is the number of 
configurations where the site in the bulk is occupied by an adsorbate molecule and site in 
the adsorbed layer is empty. 
 If the overall number of configurations for the system is W0 , then: 
                                             W1/W0 = x1 (1 – xb )                                (32) 
and 
                                             W2/W0 = xb (1 – x1 )                                (33) 
Substituting equations (32) and (33) into equation (31) we obtain 
                                           )S = k ln[x1 (1 - xb )/(1 – x1 )xb  ]              (34) 
 The change in enthalpy, )U, can be written as 
                                                        )U = Ea – Eb                               (35) 
where Ea is the configurational energy of a molecule in the adsorbed layer,  
and Eb is the configurational energy of a molecule in the bulk. In the  
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Figure 20. Typical solution for Ono-Kondo equation. 



classical (mean-field) approximation: 
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and 
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kT
E bb ε3−=                                           (37)    

Substituting equations (36) and (37) into equation (35), and then equations (35) and (34) 
into equation (30) gives the classical Ono-Kondo equation (28) for a monolayer between 
two walls.  
 
 
Equilibrium between Phases in the Bulk 
 
 Here, we assume molecules are in the two phase region for the three-dimensional 
lattice fluid. Consider taking a molecule from phase 1 and moving it to an empty site in 
phase 2. This is equivalent to the exchange of a molecule with a vacancy, 
                                            M1  +  V2  6 V1 + M2                                             (38) 
If this exchange occurs at equilibrium, then equation (30) also is valid, and it results in 
the following equation instead of equation (28): 
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where '
bx and ''

bx  are the densities of phase 1 and phase 2.  
Note that one-component lattice gas with nearest neighbors interactions is 

equivalent to classical Ising model [89] with symmetric phase diagram. Assuming that 
''' 1 bb xx −= , equation (39) can be written in the following form: 
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which is the Bragg-Williams bimodal [89].     
 
 
Spinodals 
  

Differentiation of equation (28) with respect to xb gives: 
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From equation (41), it follows that dx1/dxb = 0 if                                                              

                                                 0
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and dx1/dxb = ∞  if 
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Note that equations (42) and (43) are the Bragg-Williams spinodals for the three-
dimensional and two-dimensional lattices respectively [89].  Equation (41) can be written 
in a more general way: 
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where equations  
                                                       f3(xb,T)=0                                               (45) 
and  
                                                      f2(x1,T)=0                                                (46)   
give the spinodals for three-dimensional and two-dimensional lattices respectively. 
Improving the functions f3(xb,T) and f2(x1,T) (compared to equation (41)) would allow 
more accurate predictions for equilibrium between adsorbed and bulk phases.   
 
 
Improving Functions f3(xb,T) and f2(x1,T) 
 

Consider equations (36) and (37) as linear approximations for an expansion of the 
configurational energy in powers of density. Then, the series  
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and 
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represent more exact expressions for Ea and Eb. Here αa, βa, αb, and βb are temperature 
dependent coefficients. Note that the quadratic and higher terms in equations (47) and 
(48) reflect correlations that become important near the critical point but which are not 
taken into account in the classical mean-field, Ono-Kondo model. 
 Using equations (47) and (48) instead of equations (36) and (37) and leaving only 
linear, quadratic, and cubic terms, we obtain instead of equation (41):  
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So: 
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From statistical mechanics of the lattice gas [89], it is well known that both 
spinodals have to be symmetric. Hence  



                                               βb (T)= -2αb(T )/3                                                  (52)   
and   
                                              βa (T)= -2αa(T )/3                                                   (53)  
Therefore, the equations for spinodals are: 
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At the critical points, x1 = 0.5 and xb = 0.5. These requirements give from equations (54) 
and (55): 
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where T3
cr and T2

cr are critical temperatures for three- and two-dimensional lattices 
respectively. 

In the vicinity of the critical point, there is a significant range of concentrations 
where the phase diagram is flat (and where T is almost constant). In this range,  

                                    )(Taα ≈ )( 2
cr

a Tα                                       (58) 

                                    )(Tbα ≈ )( 3
cr

b Tα                                       (59)  

Away from the critical point, the corrections )1()(2 bbb xxT −− α and 
)1()(2 11 xxTa −− α  to the functions f3(xb,T) and f2(x1,T) vanish because factors 

)1( bb xx − and )1( 11 xx −  become small. Therefore, using approximations (58), (59) in 
equations (54) and (55) should be reasonable over a range of densities and temperatures. 
Plugging equations (56) and (57) into equations (54), (55), (58), (59) gives the following 
equations for spinodals (for two- and three-dimensional cases respectively): 
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Similarly, using the linear, quadratic, and cubic terms in equation (48) results in 
corresponding corrections to equation (39) and the following equation instead of equation 
(40):  
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which gives the binodal for three-dimensional lattice: 
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For two-dimensional case, equation (63) can be rewritten in the following form: 
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 Figures 21 and 22 show binodals predicted by equations (63) and (64) for two- 
and three-dimensional lattices, the exact 2D bimodal [89] and Monte Carlo simulation 
data for the 3D bimodal [90]. Also shown are binodals for quasichemical and Bragg-
Williams approximations and spinodals predicted  by equations (42), (43), (60), and (61).  

 

 

  

 

 

 

Figure 21. Binodals (thick 
lines) for two-dimensional 
lattice with z2 = 4:  
A - predicted by equation 
(64); B - quasichemical; C -
Bragg-Williams; solid circles 
show exact binodal from 
ref.[89]; thin lines show  
spinodals predicted by 
equations (43) and (60).  
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Figure 22. Binodals 
(thick lines) for three-
dimensional lattice with 
z3 = 6: A -predicted by 
equation (63);  
B - quasichemical;  
C - Bragg-Williams;  
solid circles show Monte 
Carlo simulation data for 
binodal from ref.[90];  
thin lines show spinodals 
predicted by equations 
(42) and (61). 
 

 

 

As shown by Figures 21 and 22, this new model predicts binodals which are in good 
agreement with exact results for 2D and with Monte Carlo simulation data for 3D. 
Though these results are quite good, there are errors at intermediate densities. 

 

Scaling Behavior Near the Critical Point 

 
 Approximations (63) and (64) based on equations (58) and (59) give binodals 
which are exact at the critical point and in the limits of small and large densities. 
However, there are errors at intermediate densities (Figures 21 and 22). To reduce these 
errors, we consider a correction to equations (58) and (59) taking into account the 
temperature dependence of the coefficients αa and αb.  

 Consider expansion of αa(T ) and αb(T ) for subcritical temperatures in powers of 
ta and tb  
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in the form: 

                                                     )()Re()( aaa tSitT +=α                         (67) 

                                                      

                                                 )()Re()( bbb tSitT +=α                             (68) 

where Re and Si are regular and singular components defined as follows: 
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                                                     b
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with 1 > νa > 0  and 1 > νb > 0.  

 Equations (67) – (72) give the following expansions for αa(T ) and αb(T ):  
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 Equations (58) and (59) used only the first terms in the expansions (73) and (74). 
Now, we consider a second approximation - first two terms of the expansions - which 
gives: 
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With approximations (75) and (76) instead of (58) and (59), equations (63) and (64) can 
be rewritten in the following form:                         
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In the limit of small ta and tb , equations (77) and (78) give: 
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where 15.0 xL
a δρ +=  (liquid density for 2D phase), b

L
b xδρ += 5.0  (liquid density for 

3D phase), 15.0 xG
a δρ −=  (gas density for 2D phase), b

G
b xδρ −= 5.0  (gas density for 

3D phase), δx1 and δxb are variations of x1 and xb near the critical value (0.5).  Equations 
(79) and (80) coincide with well-known equation for densities of coexisting phases near 
the critical point if νa /2 and νb /2 coincide with critical exponent β for two and three 
dimensions respectively [77]. Then:  

                                                           νa = 2β a                                         (81) 

                                                           νb = 2β b                                         (82) 

Note that β a= 1/8 and β b ≈ 0.325 for 2D and 3D Ising models respectively.  

 Figure 23 shows binodal for two-dimensional (square) lattice predicted by 
equation (78) at Ba = 3.5 and νa = ¼. Also shown is exact bimodal [89] and binodal 
predicted by equation (64). As seen from Figure 23, using the appoximation (75) instead 
of (58) makes the error in predictions very small.  

 Figure 24 gives the binodal for the three-dimensional (cubic) lattice predicted by 
equation (77) with Bb = 2 and νb = 0.65 compared to Monte Carlo simulation data. Also 
shown are predictions of equation (63). As seen from Figure 24, approximation (76) 
gives excellent agreement between theoretical binodal and Monte Carlo simulations.  
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Figure 23. Binodal for two-dimensional (square) lattice: (a) - equation (78); (b) - 
equation (64); solid circles show exact binodal from ref.[89]. Here Ba = 3.5, and νa = 
0.25. 
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