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Implications of Monte Carlo Statistical Errors in Criticality Safety 
Assessments 

 

Abstract—Most criticality safety calculations are performed using Monte Carlo techniques because of 

Monte Carlo’s ability to handle complex three-dimensional geometries.  For Monte Carlo calculations, 

the more histories sampled, the lower the standard deviation of the resulting estimates. The common 

intuition is, therefore, that the mo re histories, the better; as a result, analysts tend to run Monte Carlo 

analyses as long as possible (or at least to a minimum acceptable uncertainty).  For Monte Carlo 

criticality safety analyses, however, the optimization situation is complicated by the fact that 

procedures usually require that an extra margin of safety be added because of the statistical uncertainty 

of the Monte Carlo calculations.  This additional safety margin affects the impact of the choice of the 

calculational standard deviation, both on production and on safety.  This paper shows that, under the 

assumptions of normally distributed benchmarking calculational errors and exact compliance with the 

upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a 

non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling 

a supercritical configuration as subcritical.  Furthermore, this value is shown to be a simple function of 

the typical benchmarking step outcomes—the bias, the standard deviation of the bias, the upper 

subcritical limit, and the number of standard deviations added to calculated k-effectives before 

comparison to the USL.  

I. INTRODUCTION 

The traditional procedure of determining criticality safety limits for a proposed 

operation involving fissile nuclear material is governed by ANSI/ANS-8.1-1198 [Ref. 1].  

The traditional interpretation of the requirements of this standard (e.g., Ref. 2) leads to a two-

step procedure to establish the maximum mass of fissile material that can be loaded into a 

proposed configuration: (1) determine a maximum allowed calculated value of k-effective 

(“upper subcritical limit” or USL), specific to the methodology used; and (2) translate this 
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crit icality limit into an upper limit on the mass of fissile material that the configuration may 

contain.  Before defining the problem to be addressed, a brief description will be given of this 

two-step procedure. 

The first step is done to validate the use of the calculational methodology for analyzing 

the proposed configuration.  This is accomplished by calculating k-effective (keff) for a 

number of known critical experiments (i.e., with the true keff  known to be 1.00) that are 

similar to the proposed configuration and then performing a statistical analysis on the 

resulting computational errors.  The statistical analysis results in an estimate of the 

methodology’s bias for this type of configuration and an estimate of the standard deviation of 

the bias.  These benchmark errors will have contributions not only from calculational 

approximations, but also from experiment dimension uncertainties, material content 

uncertainties, neutron cross section data shortcomings, etc. [Ref. 3].  Using the bias, the 

standard deviation of the bias, and a good deal of engineering judgment, the analyst sets an 

upper subcritical limit (“USL”)—a value of keff for which any configuration with a higher 

computed keff would be assumed to be supercritical, and thus not allowed.  

For example, if a series of appropriately chosen critical experiments is calculated by the 

methodology and found to have computed keff values ranging from 0.98 to 1.02, the analyst 

might decide that any configuration whose computed keff is below 0.97 might reasonably be 

assumed to be subcritical.  (If the statistical analysis for the benchmark calculations results in 

an average keff value of 0.995 with a standard deviation of 0.005, the USL of 0.97 would 

represent a limit that is five experimental standard deviations below the average value.)  

The subsequent analysis step involves the translation of the USL into a maximum 

allowable mass of fissile material by performing a search for the fissile mass loading for 
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which the calculated keff  is equal to the USL.  This step employs the same calculational 

methodology that was used in the benchmarking step to estimate the keff value of the most 

reactive credible operational configuration (usually identified through a detailed process 

upset contingency analysis).   

Most criticality safety calcula tions are performed using Monte Carlo techniques 

because of their ability to handle complex three-dimensional geometries.  When the analysis 

methodology is a Monte Carlo calculation, the analyst must—in addition to modeling the 

geometry and materials of the configuration—also choose a desired calculational standard 

deviation to use for the analysis, which is then implemented by selecting the appropriate 

number of neutron histories to be used in the analysis.  Since such a Monte Carlo calculation 

results in a statistical uncertainty in the resulting keff prediction, it is the usual practice to add 

two calculational standard deviations to the calculated keff before comparing to the USL 

(“sigma penalty”) to compensate for this added uncertainty.  (The effect is identical to 

lowering the USL by two calculational standard deviations.)   

For instance, for the previous example of an established USL of 0.97 the analyst could 

choose a calculational standard deviation of 0.01 and not allow a Monte Carlo-predicted keff 

of more than 0.95; or the calculational standard deviation could be cut in half to 0.005 with a 

calculated keff of 0.96 or lower deemed acceptable. The smaller the calculational standard 

deviation, obviously, the closer the calculated keff  can be to the USL.  Since the standards do 

not specify the calculated standard deviation to use in criticality safety analyses, an 

individual analyst is free to choose this value.   

The purpose of this paper is to examine the situation faced by an analyst trying to 

optimize the choice of the calculational standard deviation.  An important assumption (which 
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mirrors the real- life situation) is that this is a constrained optimization problem.  We will 

assume that the USL has been determined through a process that balances production and 

safety, and that the analyst is constrained to exactly comply with the limit, i.e., that the limit 

can be neither increased to allow more production nor decreased to enhance safety.   The 

analyst is at the point of choosing a calculational standard deviation and then performing a 

search for the maximum fissile mass limit consistent with the pre-determined USL. 

II. OPTIMIZATION OPTION #1: MAXIMIZE FISSILE MASS LIMIT 

Since the USL is set through a balance of production and safety, we will first examine 

the situation where the analyst chooses the calculational standard deviation to maximize 

production, i.e., to produce the highest possible fissile mass limit.   

Because the procedures usually require that the sigma penalty be applied for Monte 

Carlo calculation techniques, the analyst’s job is to find the fissile mass that results in a 

calculated keff  given by: 

calccalc USL σλ 2−=  

This optimization path has an easily stated (but unattainable) optimal calculational standard 

deviation of zero, based on the fact that a lower calcσ  results in a larger allowable keff  value, 

which, on average, results in a larger allowable fissile mass. 

Of course, it is well known that the smaller the target standard deviation, the longer that 

the Monte Carlo calculations will have to run, adding to the expense of the analysis (with a 

factor of x reduction of the standard deviation typically requiring a factor of x2 increase in 

computer time).  So, the optimization option of maximum production leads to the common 

situation where additional production can be obtained only at additional cost.  This situation 

requires a cost/benefit analysis that depends on the specifics of the analysis: number of 
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calculations required, amount and cost of resources, etc.  In the end, a specific determination 

must be made of the value of the incremental fissile mass versus the cost of the incremental 

resources required to justify it. 

III. OPTIMIZATION OPTION #2: MAXIMIZE SAFETY 

A second optimization option is to choose the calculational standard deviation that 

maximizes safety (under the padding procedure previously described in Section I).  Since the 

purpose of criticality analysis is to assure that processes involving fissile material remain 

subcritical, we will define our safety goal to be the minimization of the probability of 

inadvertently labeling a supercritical configuration as subcritical (“criticality risk”).  Note 

that no claim is made that this maximizes safety under all possible procedures, just under the 

padding procedure in Section 1. (Indeed, this paper will suggest an even safer, though 

perhaps not desirable in practice, procedure after the optimum sigma for the procedure in 

Section I is derived.) 

In analyzing this probability, we should consider that the crit icality risk has two parts: 

(1) The danger that the physical configuration is one for which the computational tool 

will systematically underestimate the true keff; and 

(2) The danger that a single stochastic calculation of keff will underestimate the 

expected value of keff of the configuration from the computational tool. 

With this in mind, a reduction of the calculational standard deviation will have two 

conflicting effects on the criticality risk: the increased precision of the calculation reduces the 

danger of (2) above (by limiting the variance of the calculational results) while at the same 

time increasing the danger of (1) by allowing a more reactive configuration to be accepted 

(because of the higher value of USL-2σcalc due to a reduction of the sigma penalty).  Since 
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we have these competing effects, the possibility exists that there is a non-zero choice of the 

calculational standard deviation that optimally balances these two dangers, while exactly 

complying with the USL. 

The validation procedure uses calculational estimates of a known set of criticality 

benchmarks.  The calculational method’s ability to estimate keff for the set can be quantified 

using:  
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If, as is often the case, the bias distribution passes a test for normality, the underlying 

distribution of bias can be estimated using the normal distribution: 
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We interpret this equation to mean that if the same calculational method were used to 

estimate the keff of a similar physical system, and the result of the calculation were λcalc, that 

the expected distribution of the true keff , expλ , of the configuration would depend on b 

according to: 
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We can reduce the probability of criticality by decreasing λcalc-1, which is generally 

accomplished through the establishment of an upper subcritical limit (USL) above which λcalc 

is not permitted. 

If the above distribution is rewritten in terms of the variable z, where: 
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the resulting probability is: 
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The last lower limit in the above integral is a measure of how far the USL is below the 

expected calculated keff for critical systems, expressed in units of the standard deviation of the 

bias, Sb.  We will refer to this number as n: 
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(Note that we are not stating that the USL is actually established by specifying a value of n; 

we are only saying that once a USL has been established, the value of n can be found from 

the above equation.)  From standard tables of normal probability distributions4, we can 

approximate the probability of criticality as a function of n using Table I. 

The development thus far is for a deterministic method of calculating keff.   If the 

method for calculating keff is a Monte Carlo method, the analyst must decide on the number 

of Monte Carlo histories that are used in the Monte Carlo calculation.  This choice affects the 

precision of the resulting keff estimate, which is presented by the code as an expected value of 

keff and a normally distributed standard deviation, i.e., 

calccalceffk σλ ±≅ ˆ  
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(Note that we assume that the number of standard deviations is chosen to produce a 

predetermined target calculational standard deviation, σcalc.  Because of this, the σcalc is not 

treated as a stochastic variable and therefore not labeled with a caret.) 

We interpret the previous equation to mean that repeated uses of the same method (with 

statistical independence) would result in an expected value of the calculated keff that follows a 

normal distribution centered on the one calculation that was actually performed: 
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Using this distribution of λcalc values (rather than the fixed value assumed before) 

changes the probability of criticality in the fo llowing way: 
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The integrals are standard; the complexity is buried in the lower limit of the second 

integral.  The earlier definition of n relates the variables ( )b̂1+ , bS , and the USL.  Standard 

criticality practice relates the other two variables to the USL in the following way. 

When Monte Carlo calculations are used to predict the keff value of proposed 

operations, it is standard practice to allow for the statistical variability of the Monte Carlo 

results by requiring that  

USLcalccalc ≤+ σλ 2ˆ  

i.e., to add two standard deviations to the Monte Carlo estimate of keff before comparing to 

the USL.  We refer to this as the “sigma penalty.” 

This common practice can be generalized by defining a variable m : 

≡m Number of calculational standard deviations added to calcλ̂ before 

comparing to the USL 

The above equation and the earlier definition of the variable n combine to give two equations 

for the USL: 
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 Our previous constraint on the analyst to find the maximum fissile material content 
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this assumption, the lower limit of Eqn. 2 can be written in terms of m and n: 
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This result indicates that, for values of n and m defined for a given criticality safety 

analysis, the risk of criticality due to bad luck (i.e., statistical variation in the spread of 

benchmark errors and statis tical variation of the analysis results) depends on the ratio of the 

chosen calculational standard deviation used in the analysis and the fixed, pre-determined 

standard deviation of the bias.  

Defining this ratio as r, i.e., 

b

calc
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=                                                        [Eqn. 3] 
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Note that for r=0, this reduces to the deterministic probability given by Eqn. 2. 

As was mentioned previously, a typical value for m is 2; a typical value for n in an 

actual criticality safety evaluation is about 5-10 (e.g., critically benchmarks calculated near 

keff =1.00 with ≅bS  0.5-1% and 95.0≅USL ).  

Figure 1 (developed from a numerical evaluation of Equation 4) shows the dependence 

of criticality probability on r for various values of m given n=5.  As can be seen, the 

probability does not depend on m for r=0, which corresponds to an ideal, infinite-history, 

zero-variance Monte Carlo calculation.  The m=0 case, which corresponds to the case where 

there is no sigma penalty, results in monotonically increasing criticality danger as calcσ  

increases—justifying the need for a sigma penalty to compensate for this extra risk. 

For all cases with positive m (i.e., a sigma penalty), the criticality risk drops with 

increasing calcσ  to a minimum, then increases.  This is an important result because it 
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indicates that the sigma penalty is performing its intended purpose—compensating for the 

extra criticality risk due to calculational uncertainty in keff —as long as calcσ  is less than the 

minimum of the curve, but not beyond the minimum.  This suggests that there may be some 

benefit in finding the value of calcσ  that minimizes the criticality risk. 

The minimum of Equation 4 can be found in the usual way—by finding the value of r 

that makes the derivative equal to zero: 
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Since the exponential argument inside the last integral is a parabola with equation: 

( ) ( ) ( )
2

21
)(

222 mrnrymrnyr
yz

+++−+
−=   , 

there is an axis of symmetry through the vertex of the parabola, which is found by setting the 

derivative of the parabola to zero and solving for y to get: 
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Changing the variable of integration in Equation 5 from y to w=y-ya and dividing the 

integral into two parts yields: 
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The second term is equal to zero because it involves a symmetric-domain integral of the 

product of an odd function and an even function.  In addition, use of: 
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allows simplification of the first integral to give us: 
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Since the term in brackets is positive for non-zero values of m, n, and r, it can be 

factored out to reveal an extremum at the value of r for which: 
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This extremum can be shown to be a minimum by evaluating the second derivative of ( )rfmn  

at the extremum.   If we substitute ya from Equation 6 into Equation 7, we can write the first 

derivative using the product of two functions: 
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If we differentiate this again and evaluate at the extremum, we get: 
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The second derivative at the extremum is therefore given by: 
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This is positive for all nonzero m and n.  Therefore, the extremum is a minimum for all 

nonzero m and n. 

The result of all of this is found by combining Equation 3 and Equation 8, to reveal that 

the probability of inadvertent criticality is minimized if the analyst performs the Monte Carlo 

calculation using a calculational standard deviation given by: 

 bcalc S
n
m







=σ                                                 [Eqn. 9] 

Referring again to Figure 1, we can see that the curves plotted appear consistent with this 

result, with minima apparently near values of m/5 for each curve. 

These results indicate that: 

(1) Calculational standard deviations above the value in Equation 9 should be used with 

care, since beyond this value the marginal increase in the safety margin from the sigma 
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penalty is not adequate to compensate for the marginal increase in criticality risk introduced 

by the less precise keff calculation. 

(2) In contrast, for calculational standard deviations from zero to the value in Equation 

9, the criticality risk decreases with increasing calcσ  due to the fact that the marginal increase 

in the safety margin provided by the sigma penalty more than compensates for the marginal 

increase in criticality risk caused by the extra uncertainty in the keff calculation. 

Note that this paper is not claiming that a higher error Monte Carlo calculation is 

preferable to a lower error Monte Carlo calculation, just that analysts should rest assured that 

the  sigma penalty is providing its intended effect as long as calcσ  is less than the value 

indicated in Equation 9.  In fact, a better safety assessment would result from utilizing a calcσ  

less than the value in Equation 9 and adding m times the Equation 9 value (rather than the 

actual calcσ  used in the calculation) to the calculated keff before comparison to the USL.  This 

has the added advantage of using a better Monte Carlo estimate of keff while retaining the 

reduced criticality probability offered by the optimum calcσ . 

IV. SAMPLE PROBLEM 

To illustrate the use of these results, the “34 Fresh Fuel LWR-type Criticals” sample 

problem was borrowed from Ref. 5.  In this problem the 29 va lues of keff shown in Table II 

are extracted from relevant critical benchmarks and statistically analyzed. 

Assuming (as stated in the reference) that these data have passed a normality test, the 

resulting average and standard deviation are given by: 

  009392.0

00025.00.199975.0ˆ

=

−=−=

bS

b
 



Y/DD-1191 

 19 

It is common practice to define the “bias uncertainty” mentioned in Ref. 1 as 2.5 to 3 of 

these experimental standard deviations.  Use of the high end of this range (n=3) would result 

in an upper subcritical limit of  0.9715.  If, as is common practice, the value of m is set at 2, 

the calculational standard deviation that minimizes the criticality risk would be given by: 

   00626.0=





= bcalc S

n
m

σ  

This is a somewhat higher value of the calculational standard deviation than is usual, 

indicating that typical calcσ  values are within the range where the sigma penalty is effectively 

reducing risk.  Note that if the USL is reduced to 0.95—which is a common reduction due to 

site-specific “minimum subcritical margins”—then the optimal value drops to: 

   0035.0009392.0
3.5

2

30.5
009392.0

95.099975.095.0)ˆ1(

=





=






=

=
−

=
−+

=

bcalc

b

S
n
m

S
b

n

σ

 

which is more in line with normal usage (and even corresponds closely to the calcσ  used in 

Ref. 5). 

 V. CONCLUSIONS 

The purpose of this development is to examine the effect of the choice of calculational 

standard deviation in Monte Carlo criticality safety calculations aimed at determining fissile 

mass limits. 

The first option, choosing the standard deviation to maximize these fissile mass limits, 

was found to lead to the typical Monte Carlo trade-off: the lower the calculational standard 

deviation, the better.  This was shown to involve situation-specific marginal cost/benefit 

analysis for which nothing more could generally be said. 
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The second option, choosing the calculational standard deviation to minimize the 

probability of misjudging a physically critical configuration to be subcritical, was shown to 

lead to a non-zero optimal calculational standard deviation.  The development shows that—

under the assumption of normally distributed calculational biases of the criticality 

benchmarks and exact compliance with the USL—for any m>0 the criticality danger 

decreases as calcσ  increases to a minimum at: 

bcalc S
n
m







=σ    , 

which is based on the USL and known benchmarking statistical results. 

In a real analysis situation, both results might be useful.  Even if the analyst’s goal is to 

maximize the fissile material mass limit, the economic reality is that a non-zero calculational 

standard deviation must ultimately be used in the Monte Carlo calculations.  If the chosen 

calcσ  less than bS
n
m







 , the criticality analyst can be assured that the sigma penalty adequately 

compensates for the danger introduced by using a non-zero calcσ  in the Monte Carlo 

calculations.   
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TABLE I 

.  Probability of criticality vs. n for deterministic criticality calculational methods 

n Pr{criticality|n}=Q(n)a 
0 5.0000-1b 
1 1.5866-1 
2 2.2750-2 
3 1.3499-3 
4 3.1671-5 
5 2.8665-7 
6 9.8660-10 
7 1.2798-12 

afrom Reference 4 
bRead 5.0000x10-1 
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Table II 

Sample problem benchmark k-effective values(from Ref. 5) 

Bench
mark 

 
keff 

Bench
mark 

 
keff 

1 0.99647 16 1.00874 
2 0.99776 17 1.0119 
3 1.00764 18 1.0098 
4 0.99587 19 1.00565 
5 0.99744 20 1.01929 
6 1.00337 21 1.0086 
7 0.99609 22 0.99487 
8 1.00108 23 0.99257 
9 0.99737 24 1.00132 
10 0.98408 25 0.99154 
11 0.98871 26 1.00028 
12 0.99527 27 0.99565 
13 0.98804 28 0.98574 
14 1.01363 29 0.98733 
15 1.0166   

 



Y/DD-1191 

 24 

 

 

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r=(Standard deviation of criticality analysis calculation)/(Standard deviation of benchmark 
errors)

P
ro

b
ab

ili
ty

 o
f 

cr
it

ic
al

it
y

m=0

m=1

m=2

m=3

 

Fig. 1.  Probability of Criticality as a Function of Calculational Standard Deviation (for n=5)F 


