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Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights.  Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does 
not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof.  The views and the opinions of the 
authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof. 
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Abstract 
Power generators are concerned with the maintenance costs associated with the advanced 
turbines that they are purchasing.  Since these machines do not have fully established operation 
and maintenance (O&M) track records, power generators face financial risk due to uncertain 
future maintenance costs.  This risk is of particular concern, as the electricity industry transitions 
to a competitive business environment in which unexpected O&M costs cannot be passed 
through to consumers.  
 
These concerns have accelerated the need for intelligent software-based diagnostic systems that 
can monitor the health of a combustion turbine in real time and provide valuable information on 
the machine’s performance to its owner/operators.  Such systems would interpret sensor and 
instrument outputs, correlate them to the machine's condition, provide interpretative analyses, 
forward projections of servicing intervals, estimate remaining component life, and identify faults.  
 
EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a 
suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in 
real time, interpret data to assess the “total health” of combustion turbines.  The Combustion 
Turbine Health Management System (CTHM) will consist of a series of dynamic link library 
(DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data 
from existing monitoring instrumentation.   
 
The CTHM system will be a significant improvement over currently available techniques for 
turbine monitoring and diagnostics.  CTHM will interpret sensor and instrument outputs, 
correlate them to a machine's condition, provide interpretative analyses, project servicing 
intervals, and estimate remaining component life.  In addition, it will enable real-time anomaly 
detection and diagnostics of performance and mechanical faults, enabling power producers to 
more accurately predict critical component remaining useful life and turbine degradation.   
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Executive Summary 
Introduction 
Power producers are justifiably concerned with the maintenance costs associated with the 
advanced combustion turbines (CTs) they are purchasing today.  While more efficient and 
environmentally clean than previous models, some advanced CT models do not have fully 
established operation and maintenance (O&M) track records.  And without accurate information 
upon which to base maintenance decisions, optimizing system life while minimizing costs can be 
extremely difficult for operators.  As a result, power producers face financial risk due to 
uncertain future maintenance costs and turbine life.  This risk is of particular concern in today’s 
increasingly competitive business environment in which reserve margins are shrinking and 
unexpected O&M costs usually cannot be passed through to consumers.  
 
These concerns have accelerated the need for intelligent software-based diagnostic systems that 
can monitor the health of a CT in real time and provide owners and operators with valuable 
information on machine performance.  While commercial systems—ranging from time-history 
database/display systems to model-specific operation/performance monitoring systems—are 
available, they have limited diagnostic capability and their results typically require expert 
interpretation.  To date, neither CT manufacturers nor owners have developed a comprehensive 
diagnostic monitoring system, primarily because of the cost and the need for historical data from 
many units operating over the entire commercial operating spectrum. 
 
To meet this need, the Department of Energy selected EPRI to lead the development of a 
comprehensive suite of intelligent diagnostic tools for assessing the total health of CTs.  The 
resulting Combustion Turbine Health Management (CTHM) system will improve the RAM of 
CTs in simple-cycle and combined-cycle configurations. 
 
The CTHM system will be a significant improvement over currently available techniques for 
turbine monitoring and diagnostics.  CTHM will interpret sensor and instrument outputs, 
correlate them to a machine's condition, provide interpretative analyses, project servicing 
intervals, and estimate remaining component life.  In addition, it will enable real-time anomaly 
detection and diagnostics of performance and mechanical faults, enabling power producers to 
more accurately predict critical component remaining useful life and turbine degradation.   

Project Objective 
The objective of the proposed project is to develop new monitoring techniques for CT power 
generation in simple or combined-cycle configurations aimed at improving reliability, 
availability and maintainability (RAM) and overall performance/capacity factor.  The project 
team will develop advanced, probabilistic and artificially intelligent performance and mechanical 
fault diagnostics algorithms, sensor validation and recovery modules, as well as prognostics for 
maintenance-intensive CT areas.  The objective stated above will be achieved via the following 
tasks: 

Task 1:  Sensor validation, recovery virtual sensor module 
Task 2:  CT/CC performance diagnosis and prognostics 
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Task 3:  CT/CC combustion process diagnostics. 
Task 4:  CT/CC stall detection and surge margin risk assessment 
Task 5: CT/CC mechanical anomaly detection and fault pattern diagnostics  
Task 6:  CT/CC life limiting component prognostics 
Task 7:  CT/CC database management and health management integration 
Task 8:  Field validation  
Task 9:  Project management and reporting 

Conferences and Publications 

• A Kick-off Meeting with DOE was held in Pittsburgh, PA on December 17, 2001.  EPRI, 
Impact Technologies, Boyce Engineering, and Progress Energy were represented at the 
meeting.   

• EPRI attended the "Next Generation Turbine and Condition Monitoring Conference" held 
at Galveston Texas on February 25- 27, 2002. EPRI presented a program summary at this 
conference.  

• EPRI attended the “Power-Gen International Conference” held at Orlando, Florida on 
December 11- 14, 2002. EPRI presented a program summary at this conference.  

• The Sensor Validation Module (SVM) demonstrated and reviewed at Progress Energy’s 
Raleigh headquarters February 2003.  

• EPRI attended the “International Gas Turbine Institute Conference” held at Atlanta, 
Georgia on June 11- 14, 2003. EPRI presented a program summary at this conference.  

• EPRI attended the “CAM-GT Conference” held at Brussels, Belgium on July 11- 14, 
2003. EPRI presented a program summary at this conference 

• A Progress Review Meeting with DOE was held in Pittsburgh, PA on August 8, 2003.  
EPRI, Impact Technologies, Boyce Engineering, and Fern Engineering were represented 
at the meeting.  The progress to date was accessed and found satisfactory by the DOE 
personnel.  Suggestions by DOE personnel with regard to the relevancy to IGCC 
applications were well received and have been incorporated in the program. 

Status  
Activities during the current period of performance initially focused on “recovery” of signals 
from failed sensors. “Sensor recovery” refers to the capability being built into the SVM that 
infers (through trained parameter correlations) parameter values for signals identified as 
malfunctioning.  Primary focus was placed on the development of a set of Neural Networks that 
can predict all key gas path parameters utilizing correlated parameter data.   

The addition of the sensor recovery feature enables the health diagnostics modules being 
developed to utilize suggested substitute parameter values upon identification of an anomalous 
sensed value.  To this end, the development during this period of performance has been creation 
of the artificial intelligence networks necessary to predict parameter values given the current 
operating state.  Each individual parameter requiring recoverability must have a corresponding 
neural network developed.  The neural networks developed utilize three or four inputs that are 
used by the network to define the current level of operation.  These inputs are primarily sensed 
gas path parameters, which are already being used in the sensor validation and performance 
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analysis modules.  Output from the network is a reasonable approximation of the current output 
value that can be used to replace the detected anomalous sensor output.  

Development was concluded on the integrated Sensor Validation and Recovery Module (SVRM) 
in preparation for delivery on June 30 and on-site beta testing at Progress Energy’s Asheville CT 
location.  Development subsequently concentrated on integration of SVRM with the performance 
degradation module.   

The Performance Degradation Module (PDM) consists of two Microsoft Excel spreadsheet-
based performance-monitoring programs, one for analyzing simple cycle combustion turbine 
performance (CTPDM) and the other for overall combined cycle (CCPDM) plant performance 
analysis.  Both programs are capable of being linked real-time to plant operating data via third-
party data historian software and can be set up to run automatically at user-specified intervals to 
create a continuous record of key performance indicators.  These indicators include both actual 
and expected performance parameters such as compressor efficiency and overall plant or gas 
turbine power output.  These parameters are trended using pre-configured graphs in Excel to 
allow the user to quickly identify areas of degradation.   The programs are capable of monitoring 
performance over the full range of plant operation including part-load and can also monitor gas 
turbines running on syngas for IGCC operation. 

Development was concluded on the combustion turbine performance degradation module 
(CTPDM) in preparation for delivery on September 30 and on-site beta testing at Progress 
Energy’s Asheville CT location.  The combined cycle performance degradation module 
(CCPDM) with two 7FA gas turbines has been installed and is undergoing field testing at the 
Arthur von Rosenberg power plant owned by City Public Service of San Antonio, Texas. 
 
The final focus of effort during this period of development has centered on refining the SVRM. 
Issues which had previously been identified and which arose during beta testing were addressed.  
Some of the improvements made include adding the capability: to e-mail results of analyses 
conducted in the “Interactive Analysis” mode as well as “Batch Analysis” mode, to add and 
delete sensors from the SVRM main window, to define the duration and frequency of the data 
examined when using the “Batch Analysis” mode and to define the time period when using the 
“Interactive Analysis” mode using a much mode intuitive and user-friendly dialogue box. 

Approach 
Introduction 
Power generators are concerned with the maintenance costs associated with the advanced 
turbines that they are purchasing.  Since these machines do not have fully established operation 
and maintenance (O&M) track records, power generators face financial risk due to uncertain 
future maintenance costs.  This risk is of particular concern, as the electricity industry transitions 
to a competitive business environment in which unexpected O&M costs cannot be passed 
through to consumers.  
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These concerns have accelerated the need for intelligent software-based diagnostic systems that 
can monitor the health of a combustion turbine in real time and provide valuable information on 
the machine’s performance to its owner/operators.  Such systems would interpret sensor and 
instrument outputs, correlate them to the machine's condition, provide interpretative analyses, 
forward projections of servicing intervals, estimate remaining component life, and identify faults.  
 
EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a 
suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in 
real time, interpret data to assess the “total health” of combustion turbines.  The Combustion 
Turbine Health Management System (CTHM) will consist of a series of dynamic link library 
(DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data 
from existing monitoring instrumentation.   
 
The CTHM system will be a significant improvement over currently available techniques for 
turbine monitoring and diagnostics.  CTHM will interpret sensor and instrument outputs, 
correlate them to a machine's condition, provide interpretative analyses, project servicing 
intervals, and estimate remaining component life.  In addition, it will enable real-time anomaly 
detection and diagnostics of performance and mechanical faults, enabling power producers to 
more accurately predict critical component remaining useful life and turbine degradation.   

Program Goals, Research Objectives and Project Objectives 
The goal of this proposed project is to improve the reliability, availability and maintainability 
(RAM) and overall performance/capacity factor of combustion turbines by developing advanced 
health monitoring and management techniques.  The objective is to develop a suite of intelligent 
software tools integrated with a diagnostic monitoring platform that will, in real time, interpret 
data to assess the “total health” of combustion turbines.  

Methodology 
The project team will apply and adapt know-how developed under prior DOD/Navy/NASA 
programs aimed at advanced health monitoring of aviation gas turbines.  The project team will 
develop advanced probabilistic and artificially intelligent performance and mechanical fault 
diagnostics algorithms, sensory validation and recovery modules, and prognostics for 
maintenance-intensive CT areas.   

Description of the Technology 
The Combustion Turbine Health Management System (CTHM) will consist of a series of 
dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts 
turbine health data from existing monitoring instrumentation.  The real-time CTHM application 
algorithms proposed are intended to produce a comprehensive array of intelligent tools for 
assessing the “total health” of a combustion turbine, both mechanically and thermodynamically.  
CTHM includes the integration of real-time anomaly detection and diagnostics of performance 
and mechanical faults in addition to the prediction of critical component remaining useful life 
and turbine degradation.    
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Advanced signal processing algorithms utilizing correlation and coherence detection are 
combined with artificial intelligence and model-based algorithms to provide comprehensive 
coverage of the critical CT failure modes of interest.  Prognostic algorithms have also been 
developed that accept diagnostic system results, model-based remaining useful life predictions, 
operating/maintenance histories and historical RAM data to provide real-time predictions on 
reliability and degraded performance of key CT components.  Through proper utilization of these 
health management technologies, timely decisions can be made regarding unit operation and 
maintenance practices. 
 
The neural network algorithm operates by comparing the physical relationships between signals 
as determined from either a baseline empirical model or computer model of the turbine’s 
performance parameters.  The fuzzy logic based sensor validation continuously checks the 
“normal” bands (membership functions) associated with each sensor signal at the current 
operating condition.  When a signal goes outside these membership functions, while others 
remain within, an anomaly is detected associated with those specific sensors.  Finally, signal 
correlation and special digital filters are used to determine if even small levels of noise are 
present on a particular signal.  These approaches are implemented in parallel and then combined 
in a probabilistic data fusion process that determines the final confidence levels that a particular 
sensor has either failed or has suspect operation.    
 
The integration of prognostic technologies within existing diagnostic systems begins with 
validated sensor information on the engine being fed directly into the diagnostic algorithms for 
fault detection/isolation and classification.  The ability of an enhanced diagnostic system to fuse 
information from multiple diagnostic sources together to provide a more confident diagnosis is 
emphasized along with a system's ability to estimate confidence and severity levels associated 
with a particular diagnosis.  In a parallel mode, the validated sensor data and real-time 
current/past diagnostic information is utilized by the prognostic modules to predict future time-
to-failure, failure rates and/or degraded engine condition (i.e., vibration alarm limits, 
performance margins, etc.).  The prognostic modules will utilize physics-based, stochastic 
models taking into account randomness in operation profiles, extreme operating events and 
component forcing.  In addition, the diagnostic results will be combined with past history 
information to train real-time algorithms (such as neural networks or real-time probabilistic 
models) to continuously update the projections on remaining life.  The specific approaches and 
algorithms for determining these component prognostic results are described in this proposal. 
 
Once predictions of time-to-failure or degraded condition are determined with associated 
confidence bounds, the prognostic failure distribution projections can be used in a risk-based 
analysis to optimize the time for performing specific maintenance tasks.  A process that 
examines the expected value between performing maintenance on an engine or component at the 
next opportunity (therefore reducing risk but at a cost of doing the maintenance) versus delaying 
maintenance action (potential continued increased risk but delaying maintenance cost) can be 
used for this purpose.  
 
The difference in risk between the two maintenance or operating scenarios and associated 
consequential and fixed costs can then be used to optimize the maintenance intervals or alter 
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operational plans.  As key aspect of the proposed technical approach, this project will tap a 
unique resource of engine fault data developed under the Navy and Air Force with its resulting 
diagnostic knowledge base.  This test cell engine fault data is unavailable for heavy frame 
machines and will require many machine-operating years to duplicate.  The project substantially 
reduces its development costs and subsequent field validation by using experts and limited land-
based CT data to modify the existing flight engine diagnostic database. 

Anticipated Benefits 
There is a great opportunity for power generation combustion turbines to become more reliable, 
operationally available and economically maintained through the use of enhanced diagnostic and 
prognostic strategies such as those presented in this proposal.  The development and integration 
of enhanced diagnostic and prognostic algorithms that can predict, within a specified confidence 
bound, time-to-failure of critical engine components can provide many benefits including: 

• Reduced overall life cycle costs of engines from installation to retirement 
• Ability to optimize maintenance intervals for specific engines or fleets of engines and 

prioritization of tasks to be performed during the planned maintenance events 
• Increased up-time/availability of all engines within a fleet 
• Provides engineering justification for scheduling maintenance actions with corresponding 

economic benefits clearly identifiable 
• Improved safety associated with operating and maintaining combustion turbine engines 

 
The maintenance outage factors for the F/FA frame and the mature frame technology are 
significantly divergent, with CT core systems being the primary drivers with outage factors of 
10.074% and 5.080%, respectively.  The core combustion turbine system problems can be 
attributed to new-design introduction centered on inherent design flaws, manufacturing/assembly 
problems, and the combustion system.  These design break-in issues will eventually be 
supplanted by service-imposed mechanical/electrical degradation and outage assembly problems.  
Diagnostic monitoring as an integral component of a proactive maintenance program should 
certainly meet mature fleet RAM performance.  By avoidance of serious damage and improved 
maintenance scheduling, 2% availability points are achievable. 
 
For each 500 MW combined cycle, this improvement represents 72,000 MWhr valued at $3M 
per year.  For a 100 unit combined cycle fleet, or approximately half of the 30 GW new 
generation projected, a $300M per year cost-avoidance savings appears achievable. 
 
DOE has long played an essential role in bringing high performance CTs with its enabling 
metallurgy into the U.S. generation mix.  The higher performance and fuel savings certainly 
offset the higher maintenance costs when compared to conventional CTs.  Yet concerns exist 
about the overall RAM capability of the fleet in light of shrinking reserve margins and higher gas 
prices.  With DOE and EPRI, important maintenance engineering and management tools can be 
delivered on a timely basis that would otherwise take an additional 5 years to deliver.  
 
These tools would be made available to all CT operators regardless of their EPRI membership 
status and direct contributions.  Since all operators routinely calculate life consumption and 
perform hot section NDE, the introduction of new and improved validated methods will readily 
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find acceptance with plant engineers and maintenance planners.  Training courses and software 
maintenance fees would further support the expanded application and periodic necessary 
updating.  
 

Discussion 
The prior semi-annual report reviewed the completion of the beta version of the Sensor 
Validation Module (SVM). The SVM was demonstrated and discussed at Progress Energy’s 
Raleigh headquarters in early-February 2003.  This report focuses on “recovery” of signals from 
failed sensors, the development of an integrated sensor validation and recovery module (SVRM), 
and the subsequent development and integration of the SVRM with the performance degradation 
module.   

During this report period the integrated Sensor Validation and Recovery Module (SVRM) was 
delivered on June 30,2003 for on-site beta testing at Progress Energy’s Asheville CT location.  
Also, development was concluded on the Combustion Turbine Performance Degradation Module 
(CTPDM) in preparation for delivery on September 30, 2003 and on-site beta testing at Progress 
Energy’s Asheville CT location.  The Combined Cycle Performance Degradation Module 
(CCPDM) with two 7FA gas turbines has been installed and is undergoing field testing at the 
Arthur von Rosenberg power plant owned by City Public Service of San Antonio, Texas.   
 
The final focus of effort during this period of development has centered on refining the SVRM. 
Issues which had previously been identified and which arose during beta testing were addressed.  
Some of the improvements made include adding the capability: to e-mail results of analyses 
conducted in the “Interactive Analysis” mode as well as “Batch Analysis” mode, to add and 
delete sensors from the SVRM main window, to define the duration and frequency of the data 
examined when using the “Batch Analysis” mode and to define the time period when using the 
“Interactive Analysis” mode using a much mode intuitive and user-friendly dialogue box. 
  

Neural Network Developments 
Two types of networks have been evaluated for use in the Sensor Validation/Recovery Module. 
Feed-forward, back propagating networks, discussed in the previous status report, have been 
found to give very good results and are widely accepted for use in function approximation 
applications.  A second type of neural network, generalized regression neural network (GRNN), 
is also often used for function approximation.  The GRNN has particularly good qualities with 
respect to generalization based on scatter I the training data. 

Generalized Regression Neural Networks[1] 
General Regression Neural Networks (GRNN) are a specialized form of a Radial Basis Function 
neural network.  Radial basis function (RBF) networks may require more neurons than standard 
feed-forward back propagation networks, but often they can be designed in a fraction of the time 
it takes to train standard feed-forward networks.  They work best when many training vectors are 
available. 
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Neuron Model 
Figure 1 illustrates a radial basis network with R inputs. 

 
 

Figure 1 – Model of a Radial Basis Neuron 

The inputs to the radial basis transfer function is the vector distance between its weight vector w 
and the input vector p, multiplied by the bias b. (The box in Figure 1 accepts the input vector p 
and the single row input weight matrix, and produces the dot product of the two.)  The transfer 
function for a radial basis neuron is: 

 
 
Figure 2 is a plot of the radial basis transfer function. 

 
 

Figure 2 – Radial Basis Transfer Function 

 
The radial basis function has a maximum of 1 when its input is 0. As the distance between w and 
p decreases, the output increases.  Thus, a radial basis neuron acts as a detector that produces 1 
whenever the input p is identical to its weight vector p.  The bias b allows the sensitivity of the 
radial basis neuron to be adjusted.  For example, if a neuron had a bias of 0.1 it would output 0.5 
for any input vector p at vector distance of 8.326 (0.8326/b) from its weight vector w. 
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Network Architecture 
Radial basis networks consist of two layers: a hidden radial basis layer of Q neurons (the number 
of input sets presented to the network), and an output linear layer, as shown in Figure 3.  The box 
in this figure accepts the input vector p and the input weight matrix IW1,1, and produces a vector 
having Q elements.  The elements are the distances between the input vector and vectors iIW1,1 

formed from the rows of the input weight matrix.  The bias vector b1 and the output of are 
combined via element-by-element multiplication. 
 

 
 

Figure 3 – Architecture of a Generalized Regression Network 

 
Here the nprod box shown above produces Q elements in vector n2.  Each element is the dot 
product of a row of LW2,1 and the input vector a1, all normalized by the sum of the elements of 
a1. 
 
We can understand how this network behaves by following an input vector p through the network 
to the output a2.  If we present an input vector to such a network, each neuron in the radial basis 
layer will output a value according to how close the input vector is to each neuron’s weight 
vector.  Thus, radial basis neurons with weight vectors is quite different from the input vector p, 
which will have outputs near zero.  These small outputs have only a negligible effect on the linear 
output neurons. 
 
In contrast, a radial basis neuron with a weight vector close to the input vector p produces a value 
near 1.  If a neuron has an output of 1 its output weights in the second layer pass their values to 
the linear neurons in the second layer.  In fact, if only one radial basis neuron had an output of 1, 
and all others had outputs of 0’s (or very close to 0), the output of the linear layer would be the 
active neuron’s output weights. This would, however, be an extreme case.  Typically several 
neurons are always firing, to varying degrees. 
 
Examining the first layer, each neuron's weighted input is the distance between the input vector 
and its weight vector.  Each neuron's net input is the element-by-element product of its weighted 
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input with its bias.  Each neuron’s output is its net input passed through the radial basis transfer 
function.  If a neuron's weight vector is equal to the input vector (transposed), its weighted input 
is 0, its net input is 0, and its output is 1.  If a neuron's weight vector is a distance of spread from 
the input vector, its weighted input is spread, its net input is sqrt(-log(.5)) (or 0.8326), therefore 
its output is 0.5.  The second layer also has as many neurons as input/target vectors, but here LW{2,1} 
is set to the target array from the training set. 
 
A larger spread (associated with the radial basis functions) leads to a large area around the input 
vector where layer 1 neurons will respond with significant outputs.  Therefore, if the spread is 
small, the radial basis function is very steep so that the neuron with the weight vector closest to 
the input will have a much larger output than other neurons.  The network will tend to respond 
with the target vector associated with the nearest design input vector.  As the spread gets larger, 
the radial basis function's slope gets smoother and several neurons may respond to the input 
vector.  The network then acts like it is taking a weighted average between target vectors whose 
design input vectors are closest to the new input vector.  As spread gets larger more and more 
neurons contribute to the average with the result that the network function becomes smoother. 

Neural Network Results 
The decision concerning which type of network to use was based on accuracy of the resultant 
prediction, speed of execution and size of the networks.  Based on these metrics, the generalized 
regression neural networks were selected as the best neural network type for implementation in 
the sensor validation/recovery module.  Though the GRNN has many more nodes in the 
developed networks than the feed-forward networks, their speed of execution was much faster, 
with the results being comparable for each as shown in Figure 5. 

 

Table 1 contains a list of the networks, which have been developed for implementation in the 
sensor validation/recovery module.  Each network utilizes four, highly correlated input 
parameters with the exception of the inlet guide vane (CSRGV) sensor, which only utilizes three.  

 

Table 1 -- List of Neural Networks Employed by the SVRM 

Output Inputs 

CPD 

CTD 

DWATT 

FQG or FQLM1 

TTXD1_18 

CSRGV 

DWATT 

TNH 

WQ 
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Output Inputs 

CTD 

CPD 

TTXD1_7 

TTXD1_13 

TTXD1_22 

DWATT 

FQG or FQLM1 

TTXD1_12 

TTXD1_18 

TTXD1_27 

FQG 

TTXD1_5 

TTXD1_11 

TTXD1_17 

TTXD1_26 

FQLM1 

TTXD1_4 

TTXD1_10 

TTXD1_16 

TTXD1_25 

FTG TTXD1_3 

TTXD1_9 

TTXD1_15 

TTXD1_24 

TNH 

TTXD1_2 

TTXD1_8 

TTXD1_14 

TTXD1_23 

TTXD1_* 

TTXD1_1 

TTXD1_7 

TTXD1_13 

TTXD1_22 

WQ 

DWATT 

TTXD1_5 

TTXD1_14 

TTXD1_19 

 
Each parameter requires two separate networks, since the characteristic behavior of the 
parameters varies depending on the fuel used, natural gas or liquid.  Figure 4 illustrates this 
difference for the corrected compressor discharge temperature.  There are clearly two paths 
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followed by the data as it progresses through the lower regions of the generator output power 
range.  Compressor discharge temperature increases along a first order track throughout the 
entire range of operation when burning natural gas fuel.  In contrast, a different track is shown 
for compressor discharge temperature corresponding to generator output loads of 65 MW to 90 
MW when the fuel selection is liquid.  
 

 
 

Figure 4 – Illustration of Variation in Corrected Compressor Discharge Pressure Due to 
Fuel Selection 

Figure 5 shows a comparison of the results obtained from the two types of neural networks 
examined.  In this study, each network was trained on the identical set of training data.  The 
training data was obtained from five sequential passes through the data available for days the CT 
units ran on the respective fuel type.  On each pass, random data was extracted in an effort to 
fully cover the expected range of values experienced by each parameter during operation.  The 
results shown are from a test set of data, approximately 2100 points long, extracted from typical 
operation.  The data was first corrected to standard day atmospheric conditions and then input 
into the two networks.  Both networks show very good prediction of parameter values.  For the 
results shown, the feed-forward, back-prop network required 3.06 seconds while the GRNN 
required only 1.62 seconds.  The size of the feed-forward, back-prop network was only 36 KB 
compared to the 168 KB size of the GRNN due to the size of the training file defining the 
number of nodes contained in the GRNN.     
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Figure 5 – Results Obtained from Test Case Submitted to GRNN Designed for 
Compressor Discharge Pressure 

Data Flow Modifications  
The identification of data recovery as a desired feature of the sensor validation module has 
necessitated changes in the handling of the data obtained from the PI Historian.  Generic signal 
processing techniques do not require pre-processing steps, only the presentation of data.  
However, model-based approaches, which capture the underlying physics of the CT unit’s 
operation, require pre-processing steps to eliminate the variability encountered, which is not 
attributable to the unit’s physical operation.  Supporting parameters, ’AFPAP’, ‘AFPCS’, 
‘CMHUM’ and ‘CTIM’, necessary for correcting the desired parameters to standard day 
conditions are queried and uploaded first for utilization in the pre-processing step of the model-
based evaluation.  Prior to the addition of the neural networks, parameters being evaluated by the 
model-based approach were queried, missing data replaced, corrected to standard day conditions 
before finally being validated utilizing the operating signature curves.  Each step was done to 
completion, for each parameter, before the next parameter was queried.  
 
The introduction of neural networks as a replacement to the operating signature curves has 
required that the data handling approach utilized within the model-based validation algorithm be 
re-written.  Due to the change in input requirements of the neural networks, each one requiring 
up to four inputs, all the parameters to be validated will be obtained prior to calling the actual 
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validation algorithm.  Subsequent steps will then replace values lost during compression via an 
interpolation process and correct all parameter values to standard day conditions.  Corrected 
parameter values are then utilized as input to the neural networks to determine the expected 
values of the parameter being validated.  A comparison is given below outlining the differences 
in the data flow between the signature curve based approach and the neural network based 
approach.  
 
 
Signature Curve Model-Based Pre-
Processing: 
 
• Support data uploaded from PI 

Historian 
• Individual parameters being 

validated are obtained from the PI 
Historian  

• Values lost during compression are 
replaced via interpolation 

• Individual parameter’s values are 
corrected to standard day conditions 

• Parameter values validated utilizing 
operating signature curves 

 
Neural Network Model-Based Pre-
Processing: 
 
• Support data uploaded from PI 

Historian 
• All Parameters being validated are 

uploaded from PI Historian 
• Values lost during compression are 

replaced via non-linear interpolation 
• All parameter values are corrected to 

standard day conditions 
• Parameter values are input to the 

neural networks and the parameter in 
question is predicted and validated 
utilizing the neural networks 

Neural Network Revisions 
The development of neural networks was revisited in an effort to modify the parameters 
designated as inputs to the networks.  Selection of network inputs can be based on many 
different criteria, such as sensitivity, efficiency, robustness or a priori knowledge of the system, 
so long as a correlation exists between the inputs and outputs.  The new approach chosen for 
selection of the inputs to the networks is based on knowledge of the system.  
 
Table 1 contains a list of the networks which have been developed for implementation in the 
sensor validation/recovery module.  The inputs listed below represent the voted value obtained 
from the PI Historian.  Each network has five input parameters with the exception of the exhaust 
gas temperature network which utilizes six inputs and the NOX water flow network which uses 
four.  It is also noteworthy that all the networks being developed, with the exception of the 
compressor inlet pressure and temperature networks are using inputs corrected to ISO standard 
day conditions with corrections for temperature, pressure and humidity.  The compressor inlet 
neural networks utilize data before it is corrected.  We know correcting data to ISO standard day 
conditions removes the effects that ambient conditions have on parameter values during 
operation of the unit.  Correcting the data to ISO standard day before inputting it to these 
networks would remove the very effects embedded in the data which must be exploited to 
reliably predict the compressor inlet conditions. 
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Table 2 -- List of Neural Networks Employed by the SVRM 

Output Inputs 

COMPRESSOR DISCHARGE PRESSURE 

• COMPRESSOR DISCHARGE TEMPERATURE 

• GENERATOR OUTPUT POWER 

• GAS OR LIQUID FUEL FLOW 

• EXHAUST GAS TEMPERATURE 

• WATER FLOW 

INLET GUIDE VANE ANGLE INSUFFICIENT DATA IS CURRENTLY AVAILABLE TO PROPERLY 
DEVELOP THIS NEURAL NETWORK  

COMPRESSOR DISCHARGE TEMPERATURE 

• COMPRESSOR DISCHARGE PRESSURE 

• GENERATOR OUTPUT POWER 

• GAS OR LIQUID FUEL FLOW 

• EXHAUST GAS TEMPERATURE 

• WATER FLOW 

GENERATOR OUTPUT POWER 

• COMPRESSOR DISCHARGE PRESSURE 

• COMPRESSOR DISCHARGE TEMPERATURE 

• GAS OR LIQUID FUEL FLOW 

• EXHAUST GAS TEMPERATURE 

• WATER FLOW 

GAS FUEL FLOW 

• COMPRESSOR DISCHARGE PRESSURE 

• COMPRESSOR DISCHARGE TEMPERATURE 

• GENERATOR OUTPUT POWER 

• EXHAUST GAS TEMPERATURE 

• WATER FLOW 

LIQUID FUEL FLOW 

• COMPRESSOR DISCHARGE PRESSURE 

• COMPRESSOR DISCHARGE TEMPERATURE 

• GENERATOR OUTPUT POWER  

• EXHAUST GAS TEMPERATURE 

• WATER FLOW 

GAS FUEL TEMPERATURE • INSUFFICIENT DATA IS CURRENTLY AVAILABLE TO 
PROPERLY DEVELOP THIS NEURAL NETWORK 
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Output Inputs 

COMPRESSOR INLET PRESSURE 

• COMPRESSOR DISCHARGE PRESSURE  

• COMPRESSOR DISCHARGE TEMPERATURE 

• GENERATOR OUTPUT POWER  

• GAS OR LIQUID FUEL FLOW 

• EXHAUST GAS TEMPERATURE 

COMPRESSOR INLET TEMPERATURE 

• COMPRESSOR DISCHARGE PRESSURE  

• COMPRESSOR DISCHARGE TEMPERATURE 

• GENERATOR OUTPUT POWER  

• GAS OR LIQUID FUEL FLOW 

• EXHAUST GAS TEMPERATURE 

EXHAUST GAS TEMPERATURE 

• COMPRESSOR DISCHARGE PRESSURE  

• COMPRESSOR DISCHARGE TEMPERATURE 

• GENERATOR OUTPUT POWER  

• GAS OR LIQUID FUEL FLOW 

• INLET GUIDE VANE ANGLE 

• WATER FLOW 

WATER FLOW 

• COMPRESSOR DISCHARGE PRESSURE  

• GENERATOR OUTPUT POWER 

• GAS OR LIQUID FUEL FLOW 

• EXHAUST GAS TEMPERATURE 

 
Each parameter requires two networks be developed since the characteristic behavior of the 
parameters varies depending on the fuel used, natural gas or liquid.  The ‘Output’ from the neural 
networks can be used to validate and recover either the voted value or the values output from the 
individual sensors used to monitor the parameters if they are available.  

SVRM Architecture 
Here we will attempt to address any remaining questions concerning the architecture of the 
SVRM.  The discussion will start with the manner in which the sensor validation and recovery 
module queries the PI Historian and move on to how it subsequently deals with the data. 
 
As a result of discussions held with personnel at the Asheville sight, the module is being set up 
to run at 1:00 A.M. during off-peak hours of the computer network at the Asheville site.  A timer 
is set off to initiate the PI Historian querying process.  The process of data gathering begins with 
a command to query the tag DWATT  (Generator Output Power) over the preceding twenty-four 
hour period.  The L1X results are scanned for the “PERMISSIVE” string.  A subsequent 
command is placed to query the values for the tag STATUS_FLD  (Status Field) during the same 
time period.  Here, the sought after result is “ON COOLDOWN”.  Results obtained from these 
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two queries are combined in determining the starting and stopping times for the periods during 
which the CT units were operational.  This is accomplished by sorting the “PERMISSIVE” and 
the “ON COOLDOWN” values based upon their associated timestamps.  If possible, each 
occurrence of a “PERMISSIVE” is paired with an “ON COOLDOWN” such that the timestamps 
are sequential.  These values are then used to define periods of operation, basically from the start 
of rotation to the end of rotation.  In the event that the operating period exceeds the twenty-four 
hour window and thus no corresponding “ON COOLDOWN” is obtained for a current and active 
permissive, the sensor validation and recovery module will perform its analysis on the data 
available provided the unit has achieved a sufficient level of operation.  Here “sufficient level of 
operation” means the CT unit is running at full speed and the power output level of the generator 
is at or exceeds 65MW. 
 
With the useful periods during which the CT units were operational determined, two queries are 
made of the STATUS_FLD within each period found.  The first query is for “COMPLETE SEQ” 
which signals completion of the starting sequence.  Second is a query for “MANUAL 
SHUTDOWN”. This value flags initiation of shutdown.  These two events bound the regions in 
the data where the CT unit has attained the “sufficient level of operation” defined above and are 
used to refine the search interval by replacing the previous start and stop times.  In its current 
state the sensor validation and recovery module algorithms do not address ‘start-up’ and 
‘shutdown’ operating modes.  Data generated during these operating modes is simply overlooked 
at this time.  
 
Once the search interval has been refined, tags of interest are queried and all the available data 
from the new time interval are attained.  This data is then validated utilizing the techniques 
discussed in previous reports.  Table 3 summarizes the capability of the current version of the 
sensor validation and recovery module.  
 

Table 3 – Sensor Validation and Recovery Summary 

Tag Description Validated Recovered 

AFPAP Ambient Pressure X X 

AFPCS Inlet Filter Pressure Drop X  

CMHUM Specific Humidity X  

CPD Compressor Discharge Pressure X X 

CSRGV Variable Inlet Guide Vane X  

CTD Compressor Discharge Temperature X X 

CTIM Ambient Temp/Compressor Inlet Temperature X X 

DWATT Generator Output Power X X 

FQG Gas Fuel Flow X X 
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Tag Description Validated Recovered 

FQLM1 Liquid Fuel Flow X X 

FTG Gas Fuel Temperature X  

RHUM Relative Humidity X  

TNH Speed X  

TTXD1_1 Exhaust Gas Temperature (position in array) X X 

TTXD1_10 Exhaust Gas Temperature (position in array) X X 

TTXD1_11 Exhaust Gas Temperature (position in array) X X 

TTXD1_12 Exhaust Gas Temperature (position in array) X X 

TTXD1_13 Exhaust Gas Temperature (position in array) X X 

TTXD1_14 Exhaust Gas Temperature (position in array) X X 

TTXD1_15 Exhaust Gas Temperature (position in array) X X 

TTXD1_16 Exhaust Gas Temperature (position in array) X X 

TTXD1_17 Exhaust Gas Temperature (position in array) X X 

TTXD1_18 Exhaust Gas Temperature (position in array) X X 

TTXD1_19 Exhaust Gas Temperature (position in array) X X 

TTXD1_2 Exhaust Gas Temperature (position in array) X X 

TTXD1_20 Exhaust Gas Temperature (position in array) X X 

TTXD1_21 Exhaust Gas Temperature (position in array) X X 

TTXD1_22 Exhaust Gas Temperature (position in array) X X 

TTXD1_23 Exhaust Gas Temperature (position in array) X X 

TTXD1_24 Exhaust Gas Temperature (position in array) X X 

TTXD1_25 Exhaust Gas Temperature (position in array) X X 

TTXD1_26 Exhaust Gas Temperature (position in array) X X 

TTXD1_27 Exhaust Gas Temperature (position in array) X X 

TTXD1_3 Exhaust Gas Temperature (position in array) X X 

TTXD1_4 Exhaust Gas Temperature (position in array) X X 

TTXD1_5 Exhaust Gas Temperature (position in array) X X 
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Tag Description Validated Recovered 

TTXD1_6 Exhaust Gas Temperature (position in array) X X 

TTXD1_7 Exhaust Gas Temperature (position in array) X X 

TTXD1_8 Exhaust Gas Temperature (position in array) X X 

TTXD1_9 Exhaust Gas Temperature (position in array) X X 

TTXM Exhaust Gas Temperature voted value X X 

WQ NOX Water Flow X X 

 
All sensors are made available to the generic signal processing techniques.  The methodologies 
involved work irrespective of the current operating mode of the CT unit within the range of 
operation currently being targeted, i.e. turbine running at full speed and the generator outputting 
a load between 65 MW and 170 MW.  The hysteretic effects of rapidly occurring transients have 
been determined to be a secondary consideration currently not requiring special attention within 
the scope of sensor validation and recovery.  Please refer to Status Report #4 for the complete 
discussion of the work done examining hysteretic effects.  The digital high pass filter has been 
developed such that only physically impossible transients are able to pass through and be 
evaluated.  This allows the effectiveness of the high-pass filter technique to work regardless of 
the operating mode.  
 
Implementation of the model-based techniques is also independent of the operating mode of the 
CT unit within the operating range defined above.  Again this goes back to the underlying 
assumption that the hysteretic effects encountered by the CT unit due to transients have little 
impact on the network’s ability to determine the correct output.  The neural networks and the 
operating signature curves have been developed to encompass the full range of reasonable 
operating values and conditions.  Once the generalization is made that hysteretic effects can be 
ignored the assumption can be made that each instant in time can be considered a pseudo steady-
state condition.  Now we are allowed to utilize the model-based techniques for all points whether 
the unit is at partial load or full load.  Results obtained from analysis of the neural network’s 
prediction compared to the actual data show consistent variation regardless of the operating 
mode.  Figure 6 illustrates neural network results obtained for a sample set of data.  The data 
sample reflects the actual operational modes experienced by the CT unit.  Figure 7 and Figure 8 
illustrate magnified views of two transient events encountered during operation.  Figure 7 shows 
a long steady transient.  The neural network does a very good job of tracking the actual 
compressor discharge temperature values through the transition.  The results presented in Figure 
8 illustrate a sharp transient.  Again, the neural network does an excellent job of approximating 
the desired compressor discharge temperature values.  
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Figure 6 – Sample Neural Network Results for Compressor Discharge Pressure 

 
 

 
 

Figure 7 – Neural Network Results 
Tracking a Gradual Transient 

 
 

Figure 8 – Neural Network Results 
Tracking a Steep Transient 

 
One final consideration with respect to operating modes lies in the type of fuel being burned by 
the CT unit.  We know that the Asheville units are required to burn liquid fuel during the winter 
months due to the drain they place on the gas pipeline when they are in operation.  Analysis has 
shown that at low load conditions the characteristic response of the gas path parameters differ 
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between the two fuel types (see Status Report #12).  To compensate for this distinction two 
neural networks have been developed for each parameter, one for each fuel type.  We should 
note that there is significantly less data available for periods of liquid fuel usage than for natural 
gas usage in the ten months of data available.  This is due to the nature of the operation of the 
Asheville CT units.  Recall the units there are ‘peakers’ and as such only come on line when the 
demand on the power grid is sufficient to warrant help in sustaining adequate supply.  During the 
summer months the units will run from late morning through mid-evening with regularity.  In 
contrast, during the winter months the CT units are generally only called upon for short 
durations, two to six hours.  

SVRM Beta Release  
The Sensor Validation and Recovery Module has been completed and delivered.  The main 
screen the user sees when activating the module is shown in Figure 9.  Each of the sensors are 
listed along with fields for sensor condition, ‘COND:’, number of errors found, ‘ERR(#):, 
severity of the errors found, ‘ERR(sev):’ and a viewing option in the form of a pushbutton (see 
February 2003 Status Repot for a detailed discussion of each of these). 
 

 
Figure 9 – SVRM Main Screen 
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User-defined Analysis Period 
The Sensor Validation and Recovery Module is now has two modes of operation.  First, the 
default automated mode which executes daily at midnight and analyzes the previous twenty-four 
hours of data.  Second, the ‘User Defined Time Period’ mode which allows the user to specify 
any time interval at least one hour long and not exceeding twenty-four hours long.  The period 
must also lie within the past seven days from the current user time.  A dialogue box, shown in 
Figure 10 is supplied to assist the user in defining the interval.  To validate and recover sensor 
readings from a selected period of time the user merely specifies the starting time and ending 
time using the dialogue box shown in Figure 10.  The Historian is queried and data is provided at 
1 Hz, the sampling frequency over the range of the desired time period.  The methodology 
described here greatly simplified the procedure for obtaining the data, however, issues arose 
relevant to the limitations of Excel in handling larger amounts of data.  The limitations of Excel 
were overcome by retrieving the data is several pieces of a manageable size.  
 
 

 
Figure 10 -- User Defined Time Period Dialogue Box 

VPN Timeout 
The eventual end-user of the CT Diagnostic Health Monitoring program will likely be accessing 
the plant’s PI Historian from within an internal network.  However, access is also available to 
external sources utilizing a Virtual Private Network, VPN, connection established between the 
off-site computer and the on-site host computer.  One of the issues facing developers was that the 
VPN disconnected itself, ‘timed-out’, after extended periods of no activity.  This is not an issue if 
the only operating mode is the ‘User Defined Time Period’ mode.  However, when the module 
runs in its pre-defined mode of querying the previous twenty-four hour period starting at 
midnight this becomes a problem.  The ‘timed-out’ issue was resolved by setting up a timer 
within the SVRM which ‘pings’ the host’s IP address periodically.  This is sufficient to keep the 
VPN active. 

E-mail Notification 
The SVRM has e-mailing capabilities in the event that anomalous data values are detected.  In 
response to discussion with operators on-site, the SVRM has been equipped with an operating 
mode which enables it to run in the background, without requiring any attention.  In the event 
that faulty data has been detected, the SVRM can be configured to e-mail an exception report to 
up to ten pre-selected addresses automatically alerting the recipients to the faulty values.  At that 
time these individuals can make an assessment of the proper course of action.  The e-mailing 
option is configured as follows: 
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1. Open Windows Explorer  
2. Locate the file, C:\Program Files\SVRM\win32-ix86\bin\svm.ini 
3. Ensure that file reads ‘EMAIL_RESULTS 1’, setting this to ‘EMAIL_RESULTS 0’ 

disables the e-mailing capability. 
4. Specify the e-mail addresses using the format: ‘EMAIL_X Address’ where “X” is address 

number and “Address” the associated e-mail address as shown in the following example: 
EMAIL_1 john.smith@abc_co.com. 

5. The SVRM module must be restarted for changes to take effect. 

Example Results 
Upon completion of an analysis the user has the option of viewing the underlying time series’ of 
the various parameters. Figure 11 illustrates this capability.  The user can also zoom in on a 
region for closer examination of the data as shown in Figure 12. 
 

 
Figure 11 – Generator Output Time Series Viewed from SVRM 
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Figure 12 – Zoom Feature of the SVRM 

 
In the event that a fault is found the erroneous point will be highlighted in red and if available a 
suggested replacement value will be shown in green.  Numerous tests have been conducted and 
an example sensor fault is presented.  Erroneous points have been detected in one of the 
thermocouple’s data.  The figures below illustrate the capabilities of the SVRM in detecting the 
noisy signal.  The frame of reference is given in Figure 13 and Figure 14.  They show that the CT 
unit is not actually going through the undulations depicted in the TTXD1_12 thermocouple 
output illustrated in Figure 15 and Figure 16.  
 

 
Figure 13 – Healthy Generator Output 
Sensor Data 

 
Figure 14 – Healthy Thermocouple Data 
for an Adjacent Thermocouple  
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Figure 15 – Faulty Thermocouple Data 
Shown at the End of the Series 

 
Figure 16 – Magnified View of 
Anomalous Thermocouple Data 

The scatter of the data shown clearly increases to limits beyond reasonable values.  The 
deviations are relatively small, but the generic signal processing algorithms detect several 
problems, and the recovery module provides proxy values.  For larger deviations, more of the 
points would be identified as invalid by the neural networks and recovered, but we currently 
have the tolerance set fairly high to avoid false alarms.  After more testing, the tolerance will be 
reduced to achieve even higher sensitivity. 

SVRM/PDM 
The Sensor Validation and Recovery Module in combination with the Performance Degradation 
Module (PDM) will provide personnel a comprehensive tool for assessing and monitoring CT 
and CC performance.  Scheduled, periodic monitoring of the unit’s performance will facilitate 
maintenance scheduling and aid in operational optimization.  
 
The Sensor Validation and Recovery Module has been developed as a pre-processor for the 
performance module.  The SVRM can accommodate either a user specified time period or will 
run in an automated mode which queries the previous day’s data at a predefined time, currently 
midnight.  The SVRM will query the plant historian for a predefined set of data obtained from 
key parameters. This data is then analyzed to determine if any anomalous values exist in the set.  
In the event an erroneous value has been detected, neural networks are utilized to obtain a 
replacement value more accurately reflecting the current state of operation of the CT unit.  The 
data can then be passed to the CT performance module for evaluation. 
 
The PDM Excel spreadsheet, which has been developed as a user interface to the PDM.DLL, can 
also accommodate a user-input mode as well as an “on-line”, real time mode acquiring data 
directly from the CT plant’s PI historian via OSIsoft’s DataLink Excel add-in.  Upon completion 
of the analysis, results are compiled on the supporting “Results” worksheet and shown on a series 
of graphs illustrating the many performance metrics calculated by the PDM within the Excel 
environment.  
 
At this stage in the CT Diagnostic Health Monitoring program the objective is to combine the 
data querying and validating capabilities of the SVRM with performance analysis and trending 
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ability of PDM to form a comprehensive analysis tool.  Figure 17 illustrates the interaction of the 
plant instrumentation, the PI historian, SVRM and PDM.  To accomplish the desired data 
exchange the appropriate cells of the “Inputs” spreadsheet within the PDM workbook will be 
populated with values represented the mean value exhibited by a parameter over some pre-
defined period.  
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Figure 17 - Functional Flowchart Showing Interaction Between the SVRM, PDM DLL, the 
PDM.xls Excel Spreadsheet, and Combustion Turbine Instrumentation (Adapted from 
PDM Spreadsheet, Version 3, Computer Manual, Figure 1-1) 

SVRM/PDM Integration 
The functionality of the SVRM/PDM integration is designed to emulate a combination of the 
original PDM input methods, manual and on-line, in an automated fashion.  When utilizing the 
“manual” input mode the user inputs values that characterize a period of performance directly 
into the appropriate cells of the “Inputs” worksheet.  The performance analysis is initiated with a 
button press (Click to Run PDM).  Results of the analysis are compiled on the “Report” 
worksheet.  Upon review of the results the user can save them for trending purposes with another 
button press (Save Results).  The results are then saved to the “Results” worksheet and 
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subsequently the Results.csv file.  The “on-line” mode of the worksheet was set up to initiate an 
analysis every ten minutes on the previous ten minutes of data in real-time.  The OSIsoft 
DataLink querying functions (PICalcVal) embedded in the “Inputs” worksheet were configured 
to query the PI historian for ten minutes of data and subsequently calculate the mean value of the 
data just obtained.  This mean value is then utilized by the .DLL in its performance analysis.  
The results are then automatically saved to the “Results” worksheet and subsequently the 
Results.csv file.  A timing function advances the analysis starting time by ten minutes.  When the 
clock reaches the new starting time a new analysis is initiated.  
 
The PDM carries out five main functions when it is called by another program: data checking, 
actual performance, expected performance, corrected performance, and inlet cooling 
performance.  The data checking function entails an evaluation of whether a complete set of 
input data is available and, if so, whether the data values make physical sense.  (For example, if 
the compressor discharge temperature is colder than the compressor inlet temperature, an error 
message is issued and the calculation is not carried out.)  However, the checks in place within 
PDM are very basic and are limited to determining whether values exceed possible physical 
thresholds and relative temperature and pressure checks. 
 
The Sensor Validation and Recovery Module has been developed to act as a pre-processor for 
the data being submitted to PDM.  To improve upon the basic “sanity check” of the data 
currently done by PDM, the SVRM validates the data values presented to the performance 
module are within expected levels given the current state of operation of the CT unit.  In the 
event an anomalous value is detected, the SVRM provides a replacement value for use in the 
performance calculations.  
 

The process begins with the definition of the time period being evaluated.  As previously stated, 
the SVRM is capable of supporting a user-defined time period or an analysis of the previous 
twenty-four hours in its automated mode which is initiated by an internal timer.  The selection of 
which sensors to query is based on the sensors required by the PDM.DLL.  Figure 18 shows the 
PDM “Inputs” worksheet containing the parameters required to complete the analysis.   

Table 4 has been included to clarify the source of the data that will be used, i.e. the parameter is 
a measured value with an actual sensor or it is a calculated parameter whose value is determined 
based on other parameter values or the parameter uses a default value.  
 
Integration of the SVRM with PDM utilizes functionality from both input modes to form an 
automated hybrid.  The sensor validation and recovery module will run on the desired set of data 
verifying that the parameter values are reasonable.  This will result in a matrix of data, 
decompressed to the original sampling frequency of 1 Hz, with each row containing the 
“snapshot” of data for the corresponding instant in time and each column representing a 
particular sensor’s output.  In each spot where an anomalous value was detected a replacement 
value is substituted based on results from the appropriate neural network.  
 
Following completion of signal validation, analysis of the resultant matrix of data is completed 
utilizing blocks of values corresponding to ten–minute intervals.  Ten minutes is the default 
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configuration but the user has the option of specifying a different interval from a configuration 
file.  The mean value is then obtained for each parameter from the ten–minute block of data and 
plugged into the appropriate cell of the “Inputs” spreadsheet as illustrated in Figure 18.  Analysis 
is initiated automatically once all necessary cells have been populated, the equivalent of clicking 
on the Click to Run PDM button shown in Figure 18.  Upon completion of evaluating the current 
set of data the results are written to the “Results” spreadsheet and the various graphs maintained 
by PDM are updated.  Following this the analysis continues with the mean values obtained from 
the next ten-minute block of data and so on until all the data has been evaluated.  At this point 
the results may be viewed on the updated graphs and an evaluation of the results can be made.  
 

 
Figure 18 – PDM “Inputs” Worksheet 
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Table 4 – PDM Inputs Data Source (Adapted from PDM Spreadsheet, Version 3, Computer 
Manual, Table 4-1) 

Inputs 
Row # 

Description English 
Units 

SI Units Comments 

3 Unit Name N/A N/A Displays Name of Unit Being 
Evaluated 

4 Date of Data Capture N/A N/A MM-DD-YYYY 

5 Time of Data Capture N/A N/A HH:MM:SS 

6 Firing Mode Option N/A N/A 0 = base, 1 = peak 

7 Fuel Type Option N/A N/A 0 = natural gas fuel, 1 = liquid fuel 

8 Ambient Temperature °F °C Measurement Available 

9 Barometric Pressure " Hga bara Measurement Available 

10 Relative Humidity % % Calculated from Dew point 

11 Compressor Inlet Temperature °F °C Measurement Available 

12 Inlet Filter Pressure Drop " H2O mbar Measurement Available 

13 Total Inlet Pressure Drop " H2O mbar Default value available 

14 Exhaust Pressure Drop " H2O mbar Default value available 

15 Bellmouth Static Pressure Drop " H2O mbar Optional, used in air flow formula 

16 Reserved for Future Use N/A N/A  

17 Compressor Discharge Press. psig barg Measurement Available 

18 Compressor Discharge Temp. °F °C Measurement Available 

19 Inlet Guide Vane Position degrees degrees Measurement Available 

20 Power MW MW Measurement Available 

21 Natural Gas Fuel Flow lb/sec kg/sec Measurement Available 

22 Liquid Fuel Flow lb/sec kg/sec Measurement Available 

23 Inlet Air Flow lb/sec kg/sec Not Available on Asheville Units 

24 Water Injection Flow lb/sec kg/sec Measurement Available 

25 Steam Injection Flow lb/sec kg/sec Default available 
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Inputs 
Row # 

Description English 
Units 

SI Units Comments 

26 Dew Point Temperature °F °C Measurement Available 

27 Injected Water Temperature °F °C Default available 

28 Injected Steam Temperature °F °C Default available 

29 Gas Fuel Temperature °F °C Measurement Available 

30 Gas Fuel Pressure psig barg Default available 

31 Liquid Fuel Temperature °F °C Default available 

32 Exhaust Temperature °F °C Measurement Available 

SVRM Modifications 
Several feature refinements had been identified in the latter stages of development and also in the 
beta testing conducted by Progress personnel for improvement.  All of the items, listed in Table 
5, have been addressed.  
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Table 5. Identified Action Items 

# Items Status 
1 Put at the top of display the site name and unit 

number Modifications in place 

2 Put TCs in numerical order 1,2…10…15,16..27 Modifications in place 
3 On the display different colors for status in the 

bottom right corner Modifications in place 

4 Need E-mail ability for User Defined Time Period New functionality in place 
5 

Ability to add or subtract sensors 
Ability to add and subtract sensors is available 
within the limits of those sensors listed in the 
configuration window 

6 User Configurable Batch Analysis. New functionality in place 
7 Change User defined period so it is similar to PI 

where you can enter a date and time 
New user interface facilitates definition of time 
period 

8 Change minimum power to 5 MW instead of 
65MW 

Not currently feasible due to insufficient data at 
low power 

9 Able to run batches for many units at same time, 
last night system crash when Units 3 & 4 were 
running together 

This item is still being addressed 

10 Error when leaving program run overnight? Not currently able to reproduce any errors and are 
investigating issues with Windows XP sleep mode 

11 Users guide for exception report e-mails says to 
use c:\program files\combustion turbine sensor 
check\win32-ix86\bin\svm.ini.  It is actually:  
c:\program files\SVRM\win32-ix86\bin\svm.ini. 

Revisions pending receipt of a current version 

 

Improving the Appearance of the Main SVRM Screen 
In response to feedback obtained from beta testing a few modifications have been made 
to the main window that appears when the SVRM is launched to draw attention to and 
clarify key information.  First, the thermocouples (TTXD1_1 – TTXD1_27) have been 
re-ordered to appear in numerical order.  Respondents also suggested that it would be 
more lucid to identify which site and unit were being analyzed at the top of the window.  
Finally, color panes have been implemented to emphasize the status of the current 
analysis.  These modifications are all illustrated in Figure 19.  
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Figure 19. Modifications Made to the SVRM Main Window 

E-Mailing Capabilities 

File  Email Analysis Results… 
The SVRM batch analysis operating mode was set up to enable the SVRM to operate as a 
behind the scenes application which would run unnoticed by CT operators unless a 
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problem was detected.  In the event that an anomalous signal is detected, specified e-mail 
recipients will receive a report detailing the exceptions found.  The desired e-mail 
addresses are entered in the configuration file.  Beta testing revealed that this 
functionality would also be a desirable feature when utilizing the SVRM module in its 
interactive operating mode.  To this end a dialogue box, shown below, has been made 
available during all modes of operation that allows the user to enter an e-mail address and 
send the recipient results from the current analysis.  
 

 

Figure 20 – Dialogue Box Enabling Entry of E-mail Recipient’s Address 

Improved Configuration Capabilities 
Improvements in the configuration capabilities are driven by the desire to make the 
Sensor Validation and Recovery Module as easy to use and as adaptable as possible.  To 
this end features have been added or modified will aid the user in setting up the SVRM to 
analyze and present the desired data. 

Options  Configuration… 
The Configuration dialogue box has been modified to contain three tabs.  The first tab, 
Program, is primarily used to select and enter information required by the DataLink Add-
In utility pertaining to the desired CT unit to be analyzed.  Here, the user can also now 
specify whether or not the PDM module is run.  
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Figure 21. Program Tab of the Configuration Dialogue Box 

 
Feedback from beta testing revealed that an added benefit would be attained if the user 
could specify which parameters were displayed on the main SVRM window.  Certain 
sensors may be thought of as extraneous to the current scope of interest when the user sits 
down to use the SVRM and as such can now be “turned off”.  The second tab of the 
Configuration dialogue box, Sensor Display, configures which parameters are displayed 
on the main Sensor Validation and Recovery Module screen.  The user simply checks 
which parameters to be viewed.  
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Figure 22. Sensor Display of the Configuration Dialogue Box 

 
The final tab, Batch Analysis, facilitates configuration of the SVRM when in batch 
analysis mode.  Respondents to beta testing thought the original set-up of querying the 
previous twenty-four hours of data for analysis at or near mid-night, when network traffic 
is low, too constrictive.  Utilizing this dialogue box the user can now dictate the duration 
of the window of time being analyzed and specify when the analysis takes place.  For 
example, with the settings as they appear in Figure 23 an analysis would be initiated at 
mid-night and query the previous hour’s data.  Subsequent analyses would then start each 
hour after that on the respective previous hour’s data.  
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Figure 23. Batch Analysis Tab of the Configuration Dialogue Box 

 

Options  Run Sensor Validation (User Defined Time Period)… 
Further key feature improvements included as a result of testing is an improved dialogue 
box for defining the time period of the analysis when using the SVRM in its interactive 
analysis mode.  The addition of the new dialogue box allows the user to quickly and 
easily specify the date and time of interest.  Figure 24 illustrates the dialogue box.  
Clicking the arrows at the top of the calendar will scroll through the months.  A date is 
selected and subsequently highlighted by the click of the mouse.  Finally, the hours of 
interest can be highlighted in the pane at the right to specify the hours of data being 
analyzed. 
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Figure 24. Dynamic Dialogue Box for Specifying Interactive Analysis Time Periods 

Monitoring Multiple Units 
Development concerning the issue of monitoring multiple CT units at the same time is in 
progress.  At this time it is possible to monitor multiple units concurrently by launching 
multiple instances of the SVRM in batch mode and initiating their respective queries in 
non-coincident hours, e.g. the module monitoring G3 initiates on even hours for an 
analysis duration of two hours while the module monitoring G4 initiates on the odd hours 
for an analysis duration of two hours.  This scenario has been difficult to test since the 
two units have not run at the same time very often.  
 

Final Issues 
A suggestion was made during beta testing to lower the generator output range the 
SVRM considers from 65 MW to 5 MW allowing sensor validation to take place during 
start-up.  This would be a very good idea and would be implemented if enough data was 
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available at low output levels to properly develop and mature the model-based approach 
utilized by the SVRM. 
 
A revision will be made to the Sensor Validation and Recovery Module User’s Guide 
which highlights and explains all the features detailed in this report.   

Future Work 
 
Over the next report period the SVRM will be integrated with the performance module 
and fault diagnostic capability will be added to both CT-PDM and CC-PDM.  The fault 
diagnostics will be based on rules developed for compressor fouling, inlet air filter 
clogging, damaged compressor blade, clogged fuel nozzle, cracked combustion liner, 
combustor cross-over tube failure, damaged turbine section blade, high turbine blade 
temperature, and turbine section fouling.  
 
Future activity will also focus on developing the implementation of the hot section lifing 
analysis and automating inspection and maintenance interval calculations. 
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