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ABSTRACT 

 
The objective of the proposed work is to develop an intelligent distributed fiber optical sensor 
system for real-time monitoring of high temperature in a boiler furnace in power plants.  Of 
particular interest is the estimation of spatial and temporal distributions of high temperatures 
within a boiler furnace, which will be essential in assessing and controlling the mechanisms that 
form and remove pollutants at the source, such as NOx.  The basic approach in developing the 
proposed sensor system is three fold: (1) development of high temperature distributed fiber 
optical sensor capable of measuring temperatures greater than 2000 C degree with spatial 
resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to 
map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of 
an intelligent monitoring system for real-time monitoring of the 3D boiler temperature 
distribution. 
 
Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single 
crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire 
fiber with new fabrication methods, and the fabricated grating was applied to high temperature 
sensor.  Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were 
used to study relationships between temperature and NOx, as the multi-dimensionality of such 
systems are most comparable with real-life boiler systems.  Studies show that in boiler systems 
with no swirl, the distributed temperature sensor may provide information sufficient to predict 
trends of NOx at the boiler exit.  Under Task 3, we investigate a mathematical approach to 
extrapolation of the temperature distribution within a power plant boiler facility, using a 
combination of a modified neural network architecture and semigroup theory. The 3D 
temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of 
empirical data with no analytic expression, we first develop an analytic description and then 
extend that model along a single axis. 
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OVERVIEW AND PROGRESS TO DATE 
 
The objective of the proposed work is to develop an intelligent distributed fiber optical sensor 
system for real-time monitoring of high temperature in a boiler furnace in power plants.  Of 
particular interest is the estimation of spatial and temporal distributions of high temperatures 
within a boiler furnace, which will be essential in assessing and controlling the mechanisms that 
form and remove pollutants at the source, such as NOx.   
 
The basic approach in developing the proposed sensor system is three fold: (1) development of 
high temperature distributed fiber optical sensor capable of measuring temperatures greater than 
2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter 
system (DPS) models to map the three-dimensional (3D) temperature distribution for the 
furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 
3D boiler temperature distribution. 
 
 
TASK 1. FIBEROPTIC SENSOR DEVELOPMENT 
 
1.1 Objectives and Motivations 
 
The objective of this task is to develop an innovative high temperature distributed fiber optic 
sensor by fabricating in-fiber gratings in single crystal sapphire fibers.  This unique high 
temperature distributed fiber optic sensor can precisely monitor the temperature distribution 
inside a boiler, which, in turn, could substantially increase the burning efficiency and reduce the 
pollution emission (e.g., NOx).  Figures 1(a) and 1(b) illustrate a power plant and a boiler with 
embedded fiber optic sensors. 
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Fig. 1(a) A picture of a power plant 
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Fig. 1 (b) A boiler with embedded fiber optic sensor. 
 

Sapphire single crystal optical fiber 
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In the second year, we continuously improve the performance of high temperature distributed 
fiber optic sensor by using new configuration (such as radiation modal coupling) and new in-
fiber grating fabrication approach (such as plasma etching), which can relax the quality 
requirement (e.g., transparency) on alumina cladding that in turn reduce the complexity for the 
sensor fabrication and increase practicability of the sensor. 
 
To the best knowledge of authors, so far, no distributed sensors with sapphire fibers have been 
reported by other groups. For distributed sensors with optical fibers, basically optical time-
domain reflectometry (OTDR) or optical frequency domain reflectometry (OFDR)-based 
methods have been used. With those methods, best achieved spatial resolution was around 1 
meter. This means that those standard methods for distributed sensing can not be used for 
achieving centimeter spatial resolution, which is our case.  Another method for distributed 
sensing is using fiber gratings such as fiber Bragg gratings (FBG) or long period gratings (LPG). 
Actually, these sensors are multiplexed sensors rather than distributed sensors because they don’t 
provide continuous measurement along the fiber. By multiplexing several sensors, however, a 
few centimeters spatial resolution can be readily obtained, which has enough resolution in most 
cases. These ‘quasi-distributed‘sensors have high sensitivities, simple structures. Unfortunately, 
this grating-based method can not be directly applied to sapphire fibers due to lack of 
photosensitivity of sapphire fibers. Micro-machining method might be a logical solution for 
gratings in sapphire fibers because the only way to perturb refractive index of the fiber without 
photosensitivity is to mechanically change the shape of the fiber.  
 
1.2 Major Accomplishments 
 
1.2.1 Demonstrate the effect of micro-machined gratings on single crystal sapphire fibers. 
We showed that the micro-structuring is possible either by mechanical dicing or chemical 
etching after the patterning by lithography in the last year report. To demonstrate the effect of 
micro-machined gratings, we conducted following experiments. 
 

• To fabricate in-fiber grating with large depth, we used mechanical dicing approach.  In 
the experiment, a 5 cm long single crystal sapphire fiber, with 250 micron diameter, was 
used.  In order to hold the fiber, the fiber sample was attached to a 2” x 2” glass substrate 
with the use of Crystalbond 509 adhesive and a hot plate.  The glass substrate was then 
placed on a computer-controlled chuck underneath a diamond saw blade.  The substrate 
was firmly held by the vacuum chuck once it was properly aligned.  The blade width was 
40 micron and the grating pitch was 100 micron. The number of the notches was one 
hundred. The depth of the grating was 30 micron. After finishing the dicing, the glass 
substrate was heated on the hot plate and the sapphire fiber samples were carefully taken 
out of the substrate and cleaned with acetone.   

 
• Figure 2 shows the fabricated grating using dicing approach.  As we can see from the 

figure, overall structures were well formed but the edges of the notches were not smooth. 
This is the limitation of dicing approach. But it provides simple and fast means for micro-
machining.  
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• To see the effect of the micro-machined fiber, we built the experimental setup as shown 

in Fig. 3. The light source was HP 8168E tunable laser. As the output of the tunable laser 
was connectorized with FC/PC, collimating optics was used to collimate the beam 
coming out of the connector end. NEW FOCUS model 9091 five-axis fiber aligner was 
used for this purpose. The collimated light beam was focused on the one end of the 
sapphire fiber sample by a microscope object lens (x20). The output beam of the sapphire 
fiber was directly coupled to a regular multimode fiber which was connected to HP 
70951B optical spectrum analyzer (OSA). To get the optimum beam coupling between 
the fibers, Newport 462 series precise 3 axis aligner was used. A sample chamber was 
made to contain the index matching oil for the cladding of the sapphire fiber. The fiber 
sample penetrated this chamber and the index matching oil was provided through top 
open cover. 

.  
• For the micro-machined gratings to work as long period gratings (LPG), well defined 

uniform cladding layer has to be formed. Circumventing this problem, one of the ways 
for watching the effect of micro-machined gratings is to observe radiation coupling 
assisted by the gratings. A simple slab waveguide model can be used to explain this effect. 
If the periodic perturbation is to couple the light from the guided mode to a wave 
propagating into the surrounding cladding and making angle θ with the direction of 
propagation as shown in Fig 4(a), then we must have the following relation as shown in 
Fig. 4(b).  

 
0 cossK k nβ θ− =  

 
 

Fig. 2 Fabricate in-fiber long period grating in single crystal sapphire fiber by precise dicing.
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            where 2 /effnβ π λ=  (propagation constant), 2 /K π= Λ (grating vector). 
     When this, so called, quasi-phase matching condition is satisfied, the radiation coupling 

from the guide mode to cladding occurs. Fig 4(c) shows the calculated wavelength 
dependence of radiation angle according to the quasi-phase matching condition. In the 
calculation, the effective refractive index of core is assumed to 1.78. The region below 0˚ 
angle means that no radiation coupling is allowed. As we can see from the graph, when 
the refractive index of the cladding is 1.765, the radiation coupling occurs for the longer 
wavelength than 1550 nm. This model gives us good qualitative explanation for the case 
of sapphire fiber. For a certain refractive index of cladding, the radiation coupling will 
occur for longer wavelength than a specific value.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

• While changing the refractive index matching oil (Cargille Laboratories, refractive index 
liquids M series) for the cladding of the fiber in the chamber, output spectrums were 
observed. The measured spectrums are shown in Fig. 4. With air cladding and 1.79 index 
cladding, the spectrums didn’t change much. When the refractive index was 1.795, we 
can see the grating-assisted radiation coupling took place in the longer wavelength region 
(>1540nm). With 1.80 index cladding, output light has almost disappeared. Note that the 
values of refractive index of the index matching oil are dependent on the wavelength. The 
provided values by the manufacturer were measured at visible wavelength. The measured 

 
 

Fig 3. The experimental setup for measuring radiation-mode coupling effect by 
micro-structured gratings in the sapphire fiber 
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coupling efficiency of the grating was very low, which is believed due to the inaccuracy 
of dicing saw (normally nanometer order accuracy is required) and surface roughness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1.2.2 Demonstrate the possibility of using super continuum highly broad band source 
 
  In general, the number of grating-based multiplexed fiber sensors is limited by the bandwidth of 
the source. The bandwidth of normal tunable source is around 100 nm. To increase the number 
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Fig. 4 Wavelength dependence of radiation mode coupling 
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of multiplexed sensors, we need wider bandwidth for the light source. A supercontinuum light 
could be a solution for large scale sensor systems. Supercontinuum generation can be achieved in 
a photonic crystal fiber. Since the core radius of a certain photonic crystal fiber can be only 1~2 
micron order, nonlinear effects to cause the supercontinuum are greatly enhanced and the white 
light generation process easily takes place with much less input light intensity. Figure 6 shows 
the experimental setup for supercontinuum generation and generated white light source. The 
measured spectrum was across the entire bandwidth of OSA (600~1700nm).  As the spectral 
fluctuation of the generated white light frequently occurred by small disturbance of input 
coupling, it couldn’t be used as an actual light source for the sensor. Once this problem is 
resolved, it will be a promising candidate for large scale sensor array system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

         
(a) air                                                               (b)  1.79 

 
 

         
 

                           (c) 1.795                                                         (d) 1.80 
 
 

Fig. 5 The output spectrum of the sapphire fiber with surface gratings  
for different cladding refractive indices. 
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1.2.3 Investigate the more accurate patterning and micro-structuring method than mechanical 
dicing. 
 
So far, the problems we’ve encountered are  
 

• Poor spatial resolution of mechanical dicing method 
• Shallow grating depth of chemical etching method 
• Surface roughness of structured fiber 

 
Especially, if want to make fiber Bragg grating (FBG) in the sapphire fibers, we need sub-micron 
patterning (~ 200nm) capability. To resolve those problems, we investigated a new fabrication 
method using the following fabrication steps, which is illustrated in Fig. 7. 
 

• Fine polishing 
• Lithography or e-beam lithography 
• Mask patterning  

            
 
 

Fig. 6 Supercontinuum white light source generation for fiber sensor systems. 
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• High density plasma etching (ICP-RIE)  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the accurate patterning, the precise lithography process is required, which means well 
polished flat surface is needed for spin coating uniform photoresist layer over the sample. It can 
be accomplished by putting the fibers on the silicon wafer, filling the gap with thick negative 
photoresist SU-8, post-baking the resist and then polishing the surface. The fibers will have D-
shape as the result of polishing step. Once the surface is made flat, we can use the standard 
micro-fabrication methods. Using normal lithography or e-beam lithography method, the 
accurate pattern can be defined in the photoresist layer. For transferring the pattern into the 
sapphire fiber, high density plasma etching (ICP-RIE) process can be used. With BCl3:Cl2 
chemistry and 800 W RF power, the etch rate of sapphire can reach 350nm/min.   
 
1.3 Future Work Plan 
 
We will apply the developed high temperature distributed fiber optic sensor systems in the 
furnace testing. 

 
 

Λ=450nm

150um

Si wafer
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Figure 7 An illustration of a fabrication process for sapphire fiber FBG grating  

by plasma etching. 
 



 10

TASK 2: BOILER FURNACE MONITORING MODEL DEVELOPMENT 
 
2.1 Objectives and Motivations 
 
Development of the multi-dimensional combustion simulation model has been the focus of 
activities by Prof. Boehman and his student.  The effort has primarily been to get a functional 
workstation, with CFD software, into place and to train the student on its application to multi-
dimensional combustion simulation. 
 
The graduate student is now working with a 2-D model of the Down Fired Combustor Modeling 
this boiler has provided the graduate student the opportunity to become skilled using FLUENT, 
to leverage existing grids and extensive prior experimental work for comparison.  This represents 
a shift from the initial direction, which was to work on a 3-D simulation of the Demonstration 
Boiler.  Subsequent applications of FLUENT will extend to the Drop Tube Reactor (DTR) and 
the Demonstration Boiler.  
 
The student has become proficient at using Gambit 2.1.6, the grid generation software for 
FLUENT, in preparing the demonstration boiler grid for simulation.  Specific skills include:   

o discretizing grid volumes  
o meshing complex geometries 
o evaluating grid for skewness 
o grid refinement 
o creating mesh for data collection at desired spatial positions 

The student has also acquired skills in FLUENT, specifically: 
o prePDF generation (for combustion simulations) 
o solver selection 
o premixed & non-premixed systems 
o steady state or transient simulations 
o air-staging 
o knowledge to carry out validation studies 

 
 
2.2 Major Accomplishments 
 
The hypothesis of this work is that a series of one dimensional, line-of-site temperature profiles 
will provide in-situ temperature information sufficient to predicting NOx emissions at the boiler 
exit, based on the degree of stratification within the combustor, and the relationship between 
stratification to NOx formation.   
 
The desire to implement a temperature measurement-based monitoring and feedback control 
system for improved NOx control necessitates the discovery of a functional correlation between 
boiler temperature distributions, boiler operating parameters and NOx formation.  This numerical 
modeling effort serves to determine how best to implement temperature profile information that 
can be obtained in real-time with a novel fiber optic sensor, which can provide a measurement of 
the temperature distribution along a line-of-site through the interior of the boiler.  This work will 
be successful if information from 1D lines-of-site can be used to develop a numerical 
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relationship between temperature and boiler exit NOx emissions, and that implementation of that 
relationship provides unique exit NOx concentrations from the measured temperatures, for the 
group of temperature profiles from each case tested.  
 
2.2.1 The Demonstration Boiler  
 
The Demonstration Boiler, an industrial boiler located at Penn State’s Energy Institute, originally 
designed for fuel oil or natural gas feedstock, but has since been modified to run coal-based fuels, 
was modeled in this study; it is.  The D-type watertube boiler has a capacity of 15,000 lb/h steam 
at 300 psig, with approximate dimensions of 2.6 x 1 .8 x 2.6 meters.  The burner configuration is 
shown in Fig. 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2.2 Test Matrix 
 
Two different sets of tests were performed.  The first set of tests comprised two combustion 
simulations, for which operating parameters are specified in Table 1.  A series of four tests were 
completed in the second study. The differences between the two studies are summarized in the 
model specifications section, and swirl was applied to the tertiary flow in the second set of tests, 
shown in Table 2.   The rationale for modifying the operating conditions (and the model 
selections) for the Group B simulations, compared to those of Group A, was to improve the 
conditions in order to model combustion more accurately, and to match operation conditions 
from real experiments in order to validate the combustion results. 

 

 
 

Fig. 1. Burner Configuration 
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Table 1.  Test Matrix: Group A – Boiler Inlet Conditions 

 
 
 
 
 
 
 
 
 
 

  Case 1 Case 2 
Fuel Type General General 
Fuel Rate (kg/s) 0.17 0.17 
Primary Air Rate (kg/s) 0.20 0.20 
Secondary Air Rate (kg/s) 0.53 0.20 
Tertiary Air Rate (kg/s) 1.23 1.56 
Total Air Rate (kg/s) 1.96 1.96 
Fuel Temperature (K) 300 300 
Air Temperature (K) 464 464 
Swirl Number None None 

Table 2. Test Matrix: Group B  – Boiler Inlet Conditions 

 
 
 
 
 

  Case 1 Case 2 Case 3 Case 4 
Fuel Type Kentucky Kentucky Kentucky Kentucky 
Fuel Rate (kg/s) 0.17 0.17 0.17 0.17 
Primary Air Rate (kg/s) 0.20 0.20 0.20 0.20 
Secondary Air Rate (kg/s) 0.550 0.200 0.375 0.725 

Tertiary Air Rate (kg/s) 1.240 1.590 1.415 1.065 

Total Air Rate (kg/s) 1.99 1.99 1.99 1.99 
Fuel Temperature (K) 400 400 400 400 
Air Temperature (K) 1800 1800 1800 1800 
Swirl Number (Tertiary) 0.4 0.4 0.4 0.4 
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2.2.3 Grid Development 
 

The computational grid comprises multiple, distinct cells, that represent the continuous flow field.  

Each cell or volume is treated separately, though the sum of cells represents the whole.  The grid 

governs the accuracy and the stability of the calculation, and therefore must be designed 

carefully. 

 

A three-dimensional, non-uniform grid was generated to represent the burner and furnace (entire 

boiler).  The complexity of the burner geometry imposed restrictions as to how the furnace area 

could be constructed.  A visual representation of the grid, comprising more than 270,000 nodes, 

is shown in Fig. 2.   

 

 

 

 

Fig. 2. Computational Grid 
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2.2.4 Results: Group A 
 
Temperature profiles of 2D planes throughout the boiler were examined from the final 
calculations, examples of such profiles are shown in Fig. 3 and Fig. 4.  The evidence of 
stratification of combustion within the boiler determined the proposed sensor locations, shown in 
Fig. 5.   Temperature and NOx data along 1D lines of site were extraction from the combustion 
calculations, for example, as shown in Fig. 6.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Temperature Profile (horizontal) – Case 1 
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Fig. 4. Temperature Profile (horizontal) – Case 2 
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Fig. 5. Spatial Description of 1D Sensors – Test A 

 
 

 

 

Fig. 6. Temperature (K) –Case 2 
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2.2.5 Conclusions 
 
The findings of this investigation conclude that in-situ temperature measurements within a 
combustor are not sufficient to predict NOx emissions at the boiler exit.  This technique may be 
implemented within a regular burner, capable of air staging, but without swirl.  In that case, 
oxidative chemistry is the primary route for NOx formation, and it can be related linearly to 
temperature.  However, this technique showed promise in a very simple combustion system that 
cannot be assumed to be “accurate” at this time.  “Real-life” combustion systems will include 
eddies and vortices that the grid may not have enabled, or that were not modeled due to 
simplicity of the model specifications.   
 
The technique is not useful for air-staged combustion systems with swirl, according to the 
analysis performed in this study.  Swirl creates fuel rich recirculation zones, where temperatures 
can be high enough to suggest increased NOx formation, but instead decrease NOx formation as 
a result of insufficient stoichiometry.        
 
2.2.6 Recommendations 
 
In order to better comprehend the results of this work, and to examine possibilities not investigated 

herein, it is proposed the following studies be conducted: 
• Validation study and stability analyses of the models employed. 
• Mesh refinement studies of the existing grid, in order to assure the computational 

region appropriately represented the boiler, and to guarantee that the mesh 
spacing was adequate to detecting swirl and its effects.  Coarsening areas of the 
grid where appropriate may save computational time. 

• Improved combustion calculations, including a 2-stream PDF model, prompt 
NOx formation, and more accurate swirl representation. 

• A comprehensive study of the behavior within the boiler, in order to determine 
the most appropriate spatial location for the 1D sensors. 

• Determination of ability of a complex algorithm to link in-situ temperature 
information to exit NOx concentrations.  The algorithm could survey the sensor 
reading for the most stratification, and eliminate the temperature information 
outside the bounds of the stratified areas, and then use the selected information to 
look at possible correlations between temperatures and exit NOx.   

• Investigation of an algorithm based on the frequency of certain temperature 
values, or the frequency of series of temperature for a given sensor, may also be 
useful. 

 
2.3 Future Work Plan 
 
The Demonstration Boiler, an industrial boiler located at Penn State’s Energy Institute will be 
modeled using FLUENT and the 1D temperature measurement will be compared with the 
simulation.  The 3D temperature distribution will be compared with the result of extrapolation by 
the system-type neural networks to be developed in Task 3 as an intelligent monitoring system 
for estimating temperature distribution in boiler furnace. 
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TASK 3. INTELLIGENT MONITORING SYSTEM DEVELOPMENT  
 
3.1 Objectives and Motivations 
 
The proposed project will focus on an investigation of a mathematical approach to extrapolation, 
using a combination of system-type neural network architecture and the semigroup theory. The 
target of the investigation will be a class of distributed parameter systems for which, because of 
their complexity, lack an analytic description. Although the primary objective is extrapolation, 
this effort must begin with the development of an analytic description from the given empirical 
data, and then, proceed to extend that model into an adjoining domain space for which there is 
neither data nor a model. That is, given a set of empirical data for which there is no analytic 
description, we first develop an analytic model and then extend that model along a single axis. 
Semigroup theory provides the basis for the neural network architecture, the neural network 
operation and also for the extrapolation process. Concerning the architecture, semigroup theory 
dictates that under certain circumstances, a given composite mapping should be regarded as two 
families of maps, requiring two separate neural network channels; concerning the operation, 
semigroup theory requires that the second channel possesses the classic semigroup property of 
mapping composition; concerning the extrapolation process, semigroup theory requires that the 
extrapolated elements share the same semigroup property that are possessed by the elements 
previously formed from the given empirical data. The semigroup theory provides a unified and a 
powerful tool for the study of differential equations on Banach space, covering system described 
by ordinary differential equations, partial differential equations, functional differential equations 
and combinations thereof [1]. For applications to control systems, estimation techniques are 
often required to compensate for an inadequate amount of data, arising from the unavailability of 
that data.  
 
In the past, for systems described by ordinary differential equations, various estimation 
techniques have been developed with the most popular (and successful) ones being based on 
variations of the Kalman filtering theory. However, as control theory has been expanded to 
include more complex behavior, such as distributed parameter systems, described by partial 
differential equations, the estimation problem has taken on a new importance, because now it is 
necessary to provide estimated data at a great (theoretically infinite) number of points. A need 
therefore exists for a generalized estimation technique that can be applied to a broad class of 
nonlinear systems, any one of whose behavior is described by a partial differential equation. 
Stated very concisely, a need exists for a technique which can begin with a sparse set of data 
derived from a few discrete points within some continuum in one, two or three dimensional 
space and which can then develop estimated data at as many points as needed within the 
continuum, in a manner which is dynamically consistent with the given empirical data points, 
and additionally, to extrapolate the resulting function into an adjoining region of space for which 
there is no data.  
 
The modeling technique uses a process referred to as algebraic decomposition to find a particular 
type of smooth approximating function to the empirical data, namely, one that lends itself to a 
representation as the product of a coefficient vector and a basis set of functions, where the 
coefficient vector possesses a semigroup property. Extrapolation involves only the coefficient 
vector and begins by training the semigroup channel neural network to replicate the coefficient 
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vector trajectory, while at the same time acquiring a semigroup property of its own (expressed in 
weight space).  The acquisition of the semigroup property is dynamic, expressing itself as a 
particular sequence of weight changes. The learning algorithm is new in that the weight 
convergence is realized recursively, by training the neural network repetitively over successively 
longer intervals and searching for a second level of convergence. Extrapolation is concerned with 
discovering the dynamics of the weight change sequence and then autonomously continuing that 
sequence. 
 
3.2 Development of Intelligent Monitoring System 

3.2.1 Monitoring of Temperature Distribution in Boiler Furnace 
 
The electric utility industry is charged to deliver power as inexpensively and as reliably as 
possible.  Meeting these dual obligations has become increasingly difficult over the past 30 
years.  Environmental and economic concerns pressed the utility industry to develop clean and 
efficient ways of burning coal and oil. This has required major improvements in instrument, data 
management, and control of electric power plant components such as boilers.  It has become a 
challenge to measure high temperature distributions of high-pressure liquids, steam, combustion 
gases, and heat transfer components in extremely adverse power plant environments. Traditional 
sensors have not exhibited sufficient stability and long-term accuracy without requiring 
expensive maintenance and recalibration. Intelligent distributed parameter estimation coupled 
with the fiberoptic sensor system is to be developed to better estimate the temperature 
distribution of a boiler furnace and for improved combustion. The basic approach in developing 
the proposed monitoring system is two fold: (1) development of distributed parameter system 
(DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and 
(2) development of an intelligent monitoring system for real-time monitoring of the 3D boiler 
temperature distribution based on the 1D fiberoptic sensors.  
 
Fig. 1(b) in Task 1 shows the Penn State down-fired combustor (DFC), which is an advanced 
pilot-scale furnace designed to evaluate the combustion performance of various fuels (natural gas, 
coal, coal-water slurry fuel) including emissions monitoring.  The combustor has a 20-inch 
internal diameter, is 10 feet high, and is designed for a thermal input of 350,000 Btu/h (nominal), 
but this can be varied from 200,000 to 500,000 Btu/h. The nominal  temperature range is from 
1,200 to 1,600 °C. 
  
The proposed boiler furnace-monitoring model addresses the estimation of spatial temperature 
distribution continuously for any operating condition.  The three-dimensional (3D) distributed 
parameter systems (DPS) model, however, is highly nonlinear and time varying with significant 
uncertainties in model parameters.  Therefore, an efficient state estimation methodology will be 
developed for this class of DPS models.  A three-dimensional DPS model is described by a set of 
partial differential equations (PDE’s) for temperature distribution in 3D spatial domain.  State 
estimation technique has matured for lumped parameter systems, that is, the systems described 
by ordinary differential equations (ODE’s), primarily due to the Kalman filtering theory.  
Parallel attempts have been made for DPS [2]; however, its application has been limited due to 
the complexity of the model. As an alternative to the above model-based estimation techniques, 
such as infinite dimensional extended Kalman filtering, an intelligent monitoring scheme will be 
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developed for 3D temperature estimation by using the proposed system-type neural networks.  
Commercial grade simulation codes such as FLUENT will also generate 3D temperature data to 
train the neural networks.  Then, an intelligent algorithm will be developed to adaptively tune the 
monitoring system in real-time to implement in the experimental boilers. Much work on 
computational intelligence has already been performed at the Penn State Intelligent Distributed 
Controls Research Laboratory (IDCRL) [2]. The previous emphasis on the application of 
computational intelligence for control and diagnostic will be shifted to state estimation and 
prediction problems.   

3.2.2. Failures/shortcomings of Conventional ANN’s 
 
Recently, a shift has occurred in the overall architecture of neural networks from simple or 
component-type networks to system-type architectures. The most popular architecture seems to 
be the one advocated by Jacobs and Jordan [4], called the “Modular Connectionist Architecture”, 
one example of which is shown in Fig. 1 [5].  It consists of a collection of expert components, 
each being trained independently, tied together by a component called the “gating logic” element, 
whose function is to decide on the relative contributions to be made by each expert component, 
such that when they are added, they provide the correct output for a given input. The present 
proposed method represents an adaptation of Fig. 1.  
 
The most serious flaw in the design of system-type neural networks is the lack of a cohesive 
discipline in the architectural design and in the design of the learning algorithm. Virtually, the 
entire design is done on an intuitive basis. As a contrast to intuition, the proposed method relies 
on semigroup theory for the design of the semigroup channel. 
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Fig. 1 Modular connectionist architecture. 
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To illustrate the lack of a cohesive discipline, in [5], the partitioning of components corresponds 
to separation of variables, which works if the variables are separated and does not work if the 
variables are not separated. C. Relationship of semigroup theory to ANN design 
 
3.2.3 Semigroup Theory 
 
In recent years, among many other applications, semigroup theory has been widely used in the 
study of control and stability of systems governed by differential equations on an abstract 
Banach space. It is well known that differential equations form a major tool in the study of pure 
and applied sciences including engineering and many areas of social sciences. Depending on the 
problem, these equations may take various forms, such as functional differential equations, 
partial differential equations (PDE’s), and sometimes combination of interacting systems of 
ordinary and partial differential equations. In general, under broad assumptions, many of these 
equations can be reformulated as ordinary differential equations on abstract spaces, for example, 
Banach spaces. Once this is done, various “denseness” theorems then provide the basis for 
forming a finite-dimensional approximation. This is where semigroup theory plays an important 
role and provides a unified and powerful tool for the study of existence, uniqueness, and 
continuous dependence of solutions on parameters and their regularity properties. Semigroup 
theory has also found extensive applications in the study of Markov process, ergodic theory, 
approximation theory and control and stability theory [1]. To give an idea of a semigroup 
property being possessed by a mapping, consider the following steady state heat flow model in 
Cartesian coordinates: 
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for a suitable matrix A, which leads to a semigroup for C(y). 
 
3.2.4 Relationship of Semigroup Theory to Neural Network Design 
 
The semigroup approach [6] begins by asserting that certain functions are to be re-interpreted as 
follows: under certain circumstances, the function ( , )T r z  should be thought of not as one map, 
but rather, as one family of maps: { ( ),  z [0, ]}zT r L∈ which, in turn, is produced by a second family 
of maps { ( )}zΦ  where the two families are related by the following: 

    1 2 1 2( ) ( ) ( );    where:  ( ) ( ) (0),  and where: ( ) = ( ) ( )T

zT r C z E r C z z C z z z z= = Φ Φ + Φ Φ . 

This interpretation suggests that the mapping must be achieved with a pair of neural networks, 
one that selects a given function at each value of z and another that then implements the chosen 
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function. This interpretation also places severe constraints on the “selecting” neural component, 
forcing it to take on the generic semigroup behavior: 1 2 1 2( ) ( ) ( )z z z zΦ + = Φ Φ .   
 
If a given system behavior (expressed as a set of data) possesses a semigroup property, the 
extrapolation of that data set is achieved by a neural network (the semigroup channel) which 
itself acquires its own semigroup property. The semigroup property is ultimately achieved within 
the semigroup channel as a sequence of weight changes that occur after weight convergence has 
taken place.  
 
3.2.5 Proposed Neural Network Architecture. 
 
Neural networks are being used for systems described by PDE’s [7]. The system-type attribute of 
the neural network architecture is shown in Fig. 3, implementing an arbitrary function ( , )T z r . 
Unlike conventional neural network architectures that would attempt to achieve the mapping 

( , )T z r  with one neural network, the proposed architecture reflects a system-type approach using 
two neural network channels, a Function Channel and a Semigroup Channel, in an adaptation of 
the connectionist architecture (Fig. 2). During use, the semigroup channel supplies the function 
channel with a coefficient vector ( )C z  as a function of the index z. The coefficient vector, when 
applied to the basis set ( )E r of the function channel, causes the function channel to operate as one 
specific function from within a vector space of functions. Jointly, these two channels realize a 
semigroup-based implementation of the mapping ( , )T z r . The similarity between the proposed 
architecture (Fig. 2) and that of Fig. 1 arises from the fact that the Function channel is 
implemented as N “expert” systems.  
 

C(0)

Function Channel
(NN1)
{E(r)}

Semi-group Channel
(NN2)
{Ф(z)}

C(z) = C[0]Ф(z)

r

z

T(z,r)=C(z)TE(r)

           
 

Fig. 2. System-type architecture.                   . 
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The function channel can have a Radial Basis Function (RBF) architecture [8]. It consists of n 
RBF networks, each one of which implements one orthonormal vector of an n-dimensional basis 
set of vectors ( )E r . The outputs of the orthonormal vectors are (internally) linearly summed so 
that the channel spans an n-dimensional function space. The coefficients which determine the 
linear sum and thereby define the specific function being implemented is supplied by the 
semigroup channel. Up to this point, the operation of the RBF channel parallels the idea used by 
Phan and Frueh [9]. One of the essential differences between their approach and the present 
proposed approach is that the former requires prior engineering knowledge for selecting the basis 
vectors, and the latter approach requires no such knowledge. One advantage that RBF networks 
have over other architectures is that their functionality can be given an explicit mathematical 
expression in which the neuron activation functions act as Green’s functions [10], [11]. This 
makes these networks amenable to design rather than training. Another advantage is that they 
function as universal approximators [8]. The semigroup channel can be adapted from the 
Diagonal Neural Network (DRNN) [12], [13] or the Elman architecture [14], in which the input 
is split into a dynamic scalar component z and one static vector component, the vector (0)C . The 
output is a vector ( )C z , which is related to the dynamic input z and to the static input (0)C  by the 
semigroup property: ( ) ( ) (0)C z z C= Φ , where 1 2 1 2( ) ( ) ( )z z z zΦ + = Φ Φ . (Refer to Fig. 2). 

3.2.6 Learning Algorithm of Proposed System-type NN 
 
The first component of the system, namely the Function Channel, since it is composed of RBF 
components, can be designed, rather than trained. The second component, the Semigroup 
Channel, can be trained in the new way illustrated below. During training, the semigroup channel 
receives as input a preliminary coefficient vector ( )C z  and produces a smoothened coefficient 
vector ( )C z . That is, the primary objective of training is to replicate (and, if necessary, to 
smoothen) the vector ( )C z  with a vector ( )C z  which has the following semigroup property [15]: 

( ) ( ) (0)C z z C= Φ , where 1 2 nC(z) [c ( ), c ( ), ..., c ( )]  Tz z z≡  and ( )zΦ  is an nxn matrix that satisfies: 

1 2 1 2( ) ( ) ( )z z z zΦ + = Φ Φ . However, there is a secondary objective of training; the channel must also 
“replicate” the semigroup property of the trajectory by gradually acquiring a semigroup property 
of its own, in weight space. The existence of this acquired semigroup property in weight space 
becomes the basis for extrapolation. In order to elicit this gradual acquisition of the semigroup 
property, it is necessary that the training in this second step (semigroup tracking) occur in a 
gradual manner, as shown in Fig. 3.  In Fig. 3, the entire trajectory is split into successively-
longer sub-trajectories. 
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Fig. 3. Overview of new training algorithm. 

3.2.7 System Modeling 
 
The modeling and extrapolation problem is formulated as follows. Given a set of empirical data 
for which there is no analytic description, first develop an analytic model for the data, and then 
extrapolate the model along one specific axis. System modeling is achieved through a technique 
referred to as algebraic decomposition. Algebraic decomposition is an operation which is applied 
to a given function ( , )T r z , for the purpose of representing it in a form that contains a semigroup: 

( , ) ( ) ( ) ( )T
zT r z T r C z E r= = , where ( )E r  provides the algebraic basis for the representation of each 

member of the parameterized function { ( )}zT r . The essential value of algebraic decomposition is 
that when it is applied to the class of functions that will be considered in this proposed research, 
it always produces a semigroup property for the coefficient vector.  

3.2.8 Extrapolation 
 
Extrapolation involves only the coefficient vector and the Elman neural network (the semigroup 
channel). At the uppermost level, the idea is to train the neural network to replicate the 
coefficient vector (produced by the previous system modeling effort) in such a way that it is 
additionally replicating the semigroup property, which is responsible for generating the 
coefficient vector by acquiring a semigroup property of its own in weight space. As a 
comparison, some other recent extrapolation attempts are given in [16].  One current method, 
which also attempts to build a universal framework for extrapolation, occurs in various forms in 
nonlinear control theory and is collectively called “continuation methods.” These methods have 
been in existence for some time, but are only recently receiving attention [17].  
 
3.3 Simulation and Estimation Results 
 
The following illustrates simulation results of the application of the proposed method to the 
prediction (extrapolation) of temperature data from a boiler furnace of dimensions comparable to 
that found in a power plant. The data represents “raw data” furnished by the Penn State Energy 
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Institute. The geometry of the furnace is cylindrical with the z-axis along the furnace axis, and 
with r going from one wall to the other wall. (Note that r is a diameter, not a radius.) A 
simulation will be performed on the configuration below, where there are 25 probes, each one 
providing 11 readings. The extrapolation will be simulated in the region occupied by probes 25 
to 30, Fig. 4. The results of the extrapolation will be compared to given raw data in that region. 
The temperature distribution is shown in Fig. 5. 
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Fig. 4. Temperature probe configuration for the furnace. 

 

 
Fig. 5. Temperature distribution for the furnace. 

 
The preliminary (rough) coefficient vector and the basis vectors produced by the RBF network 
are shown in Fig. 6. The use of this rough coefficient vector together with the basis set of vectors 
can produce the computed temperature distribution shown in Fig. 7. The Elman neural network 
then smoothens the preliminary coefficient vector, as shown in Fig. 8 (only the first two 
coefficients are shown). 
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Fig. 6a. Preliminary coefficient vector set. 
 
 

 
Fig. 6b. Basis vector set. 
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.  
Fig. 7. Computed  temperature. 

 
 
 

.  
Fig. 8a. Comparison of original to smoothened coefficient vectors (only first two coefficients are 

shown). 
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Fig. 8b. Comparison of original to smoothened coefficient vectors (only first two coefficients are 

shown). 
 
 
 
The possibility for extrapolation begins by checking for weight convergence as training is 
performed along the coefficient vector. In this case, weight convergence occurs as this training is 
repeated over successively longer intervals (refer Fig. 3). It is this weight convergence, which 
becomes the basis for extrapolation. These are shown in Fig. 9. 
 
In this case, because of the smoothness, the possibility for extrapolation exists and the next step 
is to apply an extrapolation test in which the trailing end of the weight change sequence 
(produced by training) is replaced by an equivalent weight change sequence based on a rule that 
generates a semigroup. Based upon an observation of the weight change sequence on the interval 
from 15 to 20, a semigroup-based rule for weight change is formulated and applied to the 
interval from 20 to 25, as a test. Extrapolation (to the region where no data were assumed) 
consists of the autonomous continuation of the rule for weight change, which was derived during 
the extrapolation test. These results are shown in Fig. 10 below (only the first two coefficients 
are shown).  
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Fig. 9. Integral of input weight change sequence. 

 
 
 

 
Fig. 10a. Extrapolation results for C1. 
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Fig. 10b. Extrapolation results for C2. 

 
 
3.4. Conclusions 
 
In this research, we investigate a mathematical approach to extrapolation of the temperature 
distribution within a power plant boiler facility, using a combination of a modified neural 
network architecture and semigroup theory. Given a set of empirical data with no analytic 
expression, we first develop an analytic description and then extend that model along a single 
axis. This can be achieved by using the algebraic decomposition to obtain an analytic description 
of empirical data in a specific form, called the semigroup form, which involves the product of a 
coefficient vector and a basis set of vectors. If this form can be achieved, the describing aspect is 
simplified because the description of the coefficient vector is decoupled from the description of 
the basis vector. Additionally, each component of the coefficient vector and each component of 
the basis set of vectors can be described individually.  
 
3.5 Future Work Plan 
 
The concept of the system-type neural networks will be applied to develop an intelligent 
monitoring system for estimating temperature distribution in boiler furnace.   
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