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Abstract

A reference equilibrium for the US National Compact Stellarator Experiment is predicted to be
sufficiently close to quasi-symmetry to allow the plasma to flow in the toroidal direction with little
viscous damping, yet to have sufficiently large deviations from quasi-symmetry that
nonambipolarity significantly affects the physics of the shielding of resonant magnetic
perturbations by plasma flow. The unperturbed velocity profile is modified by the presence of an
ambipolar potential, which produces a broad velocity profile. In the presence of a resonant
magnetic field perturbation, nonambipolar transport produces a radial current, and the resulting jxB
force resists departures from the ambipolar velocity and enhances the shielding.

1. Introduction

Resonant magnetic perturbations pose a threat to flux surface integrity in toroidal magnetic
confinement configurations. The width of the island produced by a resonant perturbation scales as
the square root of the perturbation amplitude, so that even a relatively small resonant magnetic
perturbation at a rational surface can produce a substantial magnetic island. There has therefore
been great interest in the role that plasma flow can play in shielding out resonant perturbations at
rational surfaces.[1,2] This effect is believed to play a major role in reducing the vulnerability of
present day tokamaks to resonant field errors, and an understanding of the effect will be important
for setting field-error tolerances for ITER. The flow shielding effect has been studied
systematically in tokamak experiments where externally imposed magnetic field perturbations have
been varied and their penetration threshold determined.[3,4,5]

This paper considers the flow-shielding effect in a quasi-axisymmetric stellarator. Quasi-
axisymmetric stellarator configurations have drift trajectories that look like those in an
axisymmetric configuration, and they allow undamped toroidal flow.[6] In the limit of perfect
quasi-axisymmetry, the flow shielding effect is predicted to look like that in a tokamak having the
same parameters. However, if we allow for the presence of non-quasi-symmetric ripple in the
field, the radial transport is no longer intrinsically ambipolar, as it is in axisymmetric
configurations. This brings in an additional radial current which modifies the physics of the flow
shielding. The radial current produces a j x B torque that resists externally induced changes in
the flow velocity and enhances the effectiveness of the shielding. It also modifies the
unperturbed rotation velocity of the plasma in the absence of a resonant perturbation. Our
modeling of these effects employs a 1D transport code[7], as well as the DEGAS code for



estimating the momentum transfer rate to neutrals, and the PIES code [8] for calculating the
magnitude of the resonant perturbation.

The work described in this paper focuses on a particularly interesting regime of intermediate ripple
amplitude, where the deviations from quasi-symmetry are sufficiently large to substantially modify
the flow-shielding effect, but where the configuration is nonetheless sufficiently close to quasi-
symmetry that the flow damping in the toroidal direction can be considered to be negligibly small
compared to that in the poloidal direction. A reference equilibrium for the US National Compact
Stellarator Experiment (NCSX) is calculated to be in this intermediate regime, and the numerical
calculations presented in this paper focus on that NCSX reference equilibrium.

The three-dimensional NCSX device will have great flexibility for controlling resonant magnetic
field components and investigating their interaction with plasma flow. Comparison of theoretical
predictions with experimental observations on NCSX, and with tokamak experiments having
comparable plasma parameters, will contribute towards the goal of being able to reliably predict
field error penetration thresholds.

The NCSX, under construction at Princeton, is a quasi-axisymmetric stellarator designed to
combine favorable features of advanced tokamaks with those of drift-optimized stellarators. [9-11]
The NCSX configuration has been designed to have nested flux surfaces, incorporating several
layers of defense against excessive magnetic island formation, but flow shielding could nonetheless
have an impact on flexibility and on vulnerability to field errors. The choice of the NCSX fixed
boundary configuration was driven, in part, by calculations with the PIES code indicating that it
has intrinsically nested flux surfaces.[9,12] For the design of the NCSX coils to produce this
configuration, an optimization code built around the PIES three-dimensional equilibrium code was
used to reduce the magnitude of resonant components of the magnetic field while preserving
desired engineering and physics properties.[12,13,14,15] A series of calculations with the PIES
code showed that this coil design process, which targeted the resonant components of the magnetic
field in the NCSX reference equilibrium, also greatly reduced the island widths for a range of
equilibria with varying profiles, betas, and coil currents.[12,16] The NCSX design also
incorporates two sets of trim coils to provide further control over resonant magnetic fields. NCSX
has also been designed to have a monotonically increasing v (=1/q) profile to give neoclassical
suppression of magnetic islands, and this is expected to further protect against magnetic island
formation. Nevertheless, to the extent that the plasma flow shields out residual resonant magnetic
field components at rational surfaces, it will further improve the flexibility of the NCSX device to
generate a range of configurations with nested flux surfaces, and it will further reduce the
vulnerability of the NCSX device to field errors produced by finite tolerances in the construction
and placement of the magnetic field coils.

Section 2 of this paper will provide an introduction to the physics issues in the shielding of
resonant magnetic perturbations by plasma flow in a quasi-axisymmetric stellarator. The
remaining sections will discuss the details. The calculations described in this paper have been
done for a reference B = 4% NCSX equilibrium whose properties are extensively discussed in a
special volume of the journal Fusion Science and Technology devoted to the NCSX physics
design.[17] Figure 1 shows the shape of the plasma boundary at several poloidal cross sections
separated by A¢ = n/9. (NCSX is a three period stellarator.) Figure 2 shows the 1 =1/ ¢



(rotational transform) profile plotted as a function of the toroidal flux normalized to its value at the
plasma boundary. (Note that some authors use iota-bar rather than iota to denote 1/ q.)

2. Shielding of Rational Surfaces by Plasma Flow in a Quasi-Axisymmetric Stellarator

In an ideal plasma, reconnection is prohibited and the flux surfaces cannot be broken. A surface
current is induced at the rational surface that shields out resonant magnetic perturbations. In the
absence of plasma flow, the presence of even a small resistivity causes the surface current to decay,
and allows the resonant field to penetrate the rational surface. If flow is present at the rational
surface, a localized current continues to be induced which partially shields out the resonant
component of the field. (The physics of this is perhaps seen more clearly in a reference frame
moving with the plasma, where the resonant perturbation is time dependent.) If the flow is
sufficiently strong, only a very small fraction of the resonant field penetrates the rational surface.

The induced current at the rational surface interacts with the remnant of the resonant field there to
produce a j x B torque. This electromagnetic torque opposes the motion of the plasma at the
rational surface, and acts to slow the flow. When the resonant perturbation amplitude exceeds a
threshold value, the torque is large enough to locally suppress the plasma flow, allowing the
resonant perturbation to fully penetrate the rational surface.

Consider the case where a small perturbation of the magnetic field is turned on in a stellarator
plasma that initially has nested flux surfaces. Express the unperturbed magnetic field in magnetic
coordinates: By = V¥ x VB + V¥, x Vo, where By is the unperturbed field, and ¥y is an
unperturbed flux function satistying By:VWy = 0. Write B=B, + 8B, ¥ = ¥, + 0¥. To first order
By'V(8¥) = -0B-VY¥, . In magnetic coordinates this can be expressed

ByVo (00Y/0p+103¥Y/00) = -0B-VY, . (1)
Dividing by By*V¢ and Fourier transforming, we get
(n - 1m) d¥um = -(8B-VY¥(/ Bp*VQ)um. (2)

The nonresonant Fourier components just introduce small ripples in the flux surfaces. If a resonant
Fourier component is present (one satisfying n = 1 m), the flux surface is broken and a magnetic
island is produced.

The response of a rotating plasma at the rational surface to an externally imposed resonant
perturbation has been calculated theoretically for a variety of regimes and under a variety of
assumptions.[1,18-23] These calculations have been done for either slab or cylindrical geometry.
Because the local induced current is determined by the layer physics, these calculations are
relevant for shaped tokamaks and for stellarators.

The electromagnetic torque exerted on the rational surface by the resonant perturbation is opposed
by a viscous torque produced by the plasma flow external to the surface. (In a nonaxisymetric
configuration there is in general also a direct j x B torque exerted on the boundary layer at the
rational surface by the nonambipolar radial current. This contribution to the torque is small for the



cases we consider in this paper.) The threshold for resonant field penetration is determined by the
relative magnitude of the electromagnetic torque and the viscous torque. While the physics
determining the magnitude of the electromagnetic torque is the same in tokamaks and stellarators,
the physics determining the viscous torque is modified in a stellarator by the radial current
produced by the nonambipolar transport. In the absence of a resonant perturbation, this radial
current produces an ambipolar potential and a corresponding contribution to the plasma flow.
When a resonant perturbation is imposed, the electromagnetic torque causes the flow velocity to
deviate locally from its ambipolar value. The radial current arising from the resulting
nonambipolar transport produces a j x B torque that opposes the electromagnetic torque and
enhances the effectiveness of the shielding.

Sections 3 and 4 discuss the calculation of the viscous torque for NCSX. Section 3 discusses the
ambipolar plasma flow in the absence of a resonant magnetic perturbation. Section 4 discusses the
viscous force that opposes the electromagnetic force produced by a resonant perturbation. Section
5 discusses the resulting penetration threshold for resonant magnetic perturbations.

3. Unperturbed Ambipolar Plasma Flow in NCSX.

In this section we calculate the plasma flow velocity profile in the absence of a resonant
perturbation for our reference B = 4% NCSX equilibrium. We first calculate the ambipolar
potential and corresponding flow neglecting the effect of radial momentum diffusion. We then
bring in the effect of radial momentum diffusion (perpendicular viscosity) through the momentum
diffusion equation. Determination of the appropriate boundary conditions for the momentum
diffusion equation requires a consideration of momentum loss at the plasma boundary, and for this
purpose we calculate the interaction with neutrals and with the scrape-off layer. Our analysis does
not include a momentum source term due to neutral beams. It is planned to heat NCSX with
balanced beams so as to minimize the associated current drive in the plasma core.

3.1 Ambipolar Potential and Corresponding Plasma Flow Neglecting Radial Momentum
Diffusion

We solve for the temperature profiles and self-consistent ambipolar potential using a model [7]
which consists of a set of one-dimensional transport equations in cylindrical geometry, with an
assumed density profile. The thermal diffusivities are calculated as the sum of three contributions:
neoclassical ripple transport, neoclassical axisymmetric transport, and an anomalous transport
model with an adjustable coefficient. The neoclassical ripple transport is calculated from a single
helicity analytical neoclassical ripple model [24,25,26] using an effective helical ripple obtained
from the full three-dimensional numerical equilibrium. In particular, the calculation of the
effective ripple in the 1/v regime uses a code developed by Nemov et al.[27] The neoclassical
axisymmetric transport is given by the Chang-Hinton formulation for a circular plasma cross
section [28], using the same cross sectional area as the toroidal average of NCSX, with a correction
factor incorporated to give agreement with an axisymmetric NCLASS[29] calculation. Unlike
many tokamaks, stellarators often have experimentally determined thermal diffusivities that are
approximately radially constant, and we adopt this simple model for the anomalous transport, with
the anomalous diffusivity adjusted to match a target thermal <> or H factor. The transport model
is described in more detail in Ref. [7]. The calculated electron and ion temperature profiles for our
reference NCSX equilibrium are plotted in Fig. 3. The assume density profile is shown in Fig. 4.



It is important to note that the thermal diffusivities are dominated by the contributions from
anomalous and axisymmetric neoclassical transport, while only the helical neoclassical transport is
expected to contribute to the non-ambipolar radial transport. By varying the effective helical ripple
it should be possible to change the radial currents while not significantly affecting the thermal
diffusivities [7].

In the absence of a radial electric field, the ions are lost more rapidly than the electrons, giving a
net outward current. The radial electric field, E,, builds up until it is sufficiently large to equalize
the radial flux of the ions and electrons, j, = 0. The calculated self-consistent ambipolar radial
electric field is plotted in Fig. 4.

In steady-state, the ion momentum equation determines the component of the flow perpendicular to
the magnetic field: v,, = ExB/B*—(1/ne)Vp,xB/B*. There is in addition a component of the

flow velocity aligned with the magnetic field, v,, and its magnitude is determined by the relative

flow damping in the poloidal and toroidal directions. As in a tokamak, the damping in the poloidal
direction is strong. The configuration is sufficiently close to quasi-axisymmetry that the flow
damping in the toroidal direction is small. This implies that the flow velocity in the poloidal
direction can be taken to be zero to a good approximation. In cylindrical geometry, we write

V=Vj><Z;+VHZ;, where B=B/B, B=Bp<§’+Btgz. Imposing the constraint v, =0, we get
v, =(B,/B,)v,.

NCSX has a strong axisymmetric component of shaping, with an ellipticity of 1.8, and it has an
aspect ratio of 4.3. We can ask what effect this geometry has on the calculation of the velocity
driven by the ambipolar potential, whether there should be associated correction factors. This
question can be approached by considering the geometric effects on an axisymmetric field.
Starting from the usual mixed representation for an axisymmetric field, B=Vy xVg+ F(y)Ve,

it is straightforward to obtain a corresponding expression for the perpendicular component of the
velocity, and to determine the parallel component of the velocity from the condition that v, = 0.

We find |v,|/|v,|=|Vy|/F(v)=B,/B,.and v, ~ R@d®/dy - dp,/dy) , where ® is the

ambipolar potential. It follows that our conclusions concerning the magnitude of the toroidal
velocity are unaffected by the shaping.

Our calculation of v, depends on the fact that the deviation from quasi-axisymmetry is sufficiently

small that the flow damping in the toroidal direction may be neglected relative to that in the
poloidal direction. A criterion for the degree of quasi-axisymmetry required may be obtained by

solving the momentum-balance equations in a flux surface.[30,31] Working in Hamada
coordinates, we write the ion flow as v =v’e, +V¢e¢, with e, , the contravariant basis vectors in
the poloidal and toroidal directions. The steady-state parallel force balance equation is

0= <B V- ni> , with m; the ion viscosity tensor. In the Pfirsch-Schliiter and plateau regimes, one
has <B V- 7‘1> ~ v’ + y¢v¢ , and thus v'/v® ~ ny/le. For a tokamak, axisymmetry implies py = 0,
and thus v’ = 0. A criterion for our calculation of e 4V for a quasi-axisymmetric stellarator to be

valid is



1>> vyt = Lo/ L. 3)
In the Pfirsch-Schliiter regime, simple expressions for pg 4 have been worked out[30] for model
expressions for the magnetic field strength B. Taking a single helical component (m,n) with
amplitude B0, one has B = By[1 - € cos(0) - 0 cos(m0 + nd)], and

Hp; | B-VB aﬂ,rﬁB My B 2
= ~ m+n)m,n)o”.
Hos V. < B B 2v ( em,m)

Here, po = 4.095, vj; is the ion-ion collision frequency, p; is the ion pressure, and 1 = ¢ is the
rotational transform. Using this in Eq. (3) yields a ripple criterion for the validity of the analysis:

; “4)

u

2
1>>—(n/m)2A
I+A

where A* = (m +nq)md” /€. Fig. 5 is a plot of the effective helical ripple for the NCSX reference

configuration. The dominant contributions to the ripple come from m=2, n=1, and from m=3, n=2.
The ripple criterion, Eq. (4), is adequately satisfied.

3.2 Momentum Diffusion and Boundary Conditions: Interaction with Neutrals and with the
Scrape-Off Layer

The calculation thus far has not taken into account momentum diffusion. We have taken the
poloidal velocity to be zero because of the strong poloidal damping, and we only need to consider
the toroidal component of the momentum diffusion equation. We consider the momentum
diffusion equation in a cylinder, where it takes the form:
dv, 1d v, .
P (upr r )+ J.B,. (5)
Here p is the plasma density, v, is the axial velocity, p is the (anomalous) momentum diffusivity
(up 1s the coefficient of perpendicular viscosity), and ;. is the current produced by nonambipolar

radial transport. In tokamak experiments, the anomalous momentum diffusivity has been found to
be approximately equal to the anomalous cross-field thermal diffusion coefficient, and we assume
that that is also the case here. As mentioned above, stellarators often have experimentally
determined thermal diffusivities that are approximately radially constant, and we adopt the simple
model of taking 1 to be radially constant. For our reference NCSX equilibrium, p ~ 1.5 m*/sec.

Equation (5) differs from the momentum diffusion equation in a tokamak by the presence of the
last term, which is nonzero when the flow velocity on a flux surface is forced away from its
ambipolar value.

Eq. (5) must be supplemented by boundary conditions at the origin and at the edge. At the origin,
regularity requires dv, /dr=0. At the plasma edge, the boundary condition is determined by the
interaction with neutrals and with the scrape-off layer, which produce a momentum flow through
the plasma edge equal to —47°aRupdv,, /dr , where a is the minor radius and R is the major radius.
The momentum flow is equal to the total force exerted by the neutrals and scrape-oft layer, which

are taken to act on a radially narrow region at the plasma edge. (We will justify this approximation
below.)



Near the plasma edge, momentum is transferred to the neutrals primarily through charge exchange.
Ionization reactions also must be taken into account, because they serve to impart some of the
momentum picked up by the neutrals back to the ions. To estimate the rate of momentum transfer
to the neutrals we use the Degas code to do a Monte Carlo calculation for a model axisymmetric
geometry.[32] We use the ¢ = /6 (bullet-shaped) cross-section for this purpose, as is appropriate
for the expected initial placement of a limiter on NCSX.

The momentum transfer to the neutrals is localized at the plasma edge, with the average
momentum transfer rate in the zone 0.96 < r/a < 1 calculated to be about seven times as large as
that in the zone 0.92 < 7/a < 0.96. The rate of momentum transfer to the neutrals can be expected
to scale roughly linearly with the plasma velocity. We write this momentum transfer rate as v,v,,
where v, is a coefficient to be determined. For an edge velocity of 290 km/sec, the integrated
momentum transfer rate is calculated to be about 1.2 Newtons, corresponding to v, = 4 x 10°
kg/sec. This gives the boundary condition a dv,(a) / d r = -k v,(a), with k = 2.

We next estimate the momentum transfer to the scrape-off layer. We consider the case where there
is a toroidal rail limiter. Field lines outside the plasma edge intercept the limiter, with a connection
length of L = m R / 1, where 1 = 0.6 is the rotational transform at the plasma edge. The ion mean
free path is comparable to the connection length. Particles outside the plasma edge are lost to the
limiter in a time t = L / vy, so that the momentum loss rate in the scrape-off layer is approximately
p vz / 1. Combining this with momentum diffusion, and adopting a slab approximation (which is
appropriate in the narrow scrape-off layer), we get (d/dr)[up(dv,/dr)]= pv,/7. The velocity
decays exponentially as a function of r in the scrape-off layer, v,(r) = v,(a) exp(-(r-a)/l). The
density obeys a similar equation, and it too decays exponentially in the scrape-off layer. If the

diffusion coefficients are equal, / ~ 1.6 /ur. Momentum is dissipated in the scrape-off layer at
the rate I : pv, lt=.6p(a)v, (a)/u/7r. The momentum transfer rate is again of the form v, v,,

with the scrape-off layer contribution to v, estimated to be roughly 0.6p(a)\/u/7. The

momentum transfer to the scrape-off layer is sensitive to the value of p at the edge. For our
assumed density profile n.(a) = 1.5 x 10" m?, and we calculate x ~ 18. For smaller values of
ne(a), the momentum transfer to the scrape-off layer is correspondingly smaller, with the total
momentum transfer rate bounded below by the contribution of the neutrals.

Having determined the boundary conditions, we return to the solution of Eq. (5). For this purpose,
we must determine the dependence of j, on v,. The radial current vanishes when v, has its
ambipolar value, corresponding to the ambipolar value of the electrostatic potential. We adopt a
simple linear approximation for j,, interpolating between the values for E,=0 and for the ambipolar
value of E,. The last term in Eq. (5) can then be written in the form j B, = —a/(r)[v, — vO(r)],

where v0 is the ambipolar value of v, (i.e. the value that v, assumes when E; has its ambipolar
value). Eq. (5) now assumes the linear form

dv, 1d v, B
p— = wpr—5) —a(nlv, =vo(r)] (6)

and can be solved numerically in a straightforward manner.




Fig. (6) shows numerical solutions for the steady-state velocity profile for three different values of
k. The top curve corresponds to k¥ = 0, giving the velocity profile in the absence of momentum
dissipation at the plasma edge. The middle curve was obtained with k = 2, the lower bound on
momentum dissipation due to collisions with neutrals. The bottom curve corresponds to k = 18,
the estimate for momentum dissipation in the scrape-off layer with the assumed value of ne(a).
Because the ripple magnitude increases rapidly towards the plasma edge, the flow velocity profile
is broad. As the g profile evolves during startup, low order rational surfaces entering from the
plasma boundary are particularly vulnerable to resonant magnetic perturbations. The broad
velocity profile in NCSX will provide relatively strong shielding for low order rational surfaces
near the plasma edge, and this will potentially impact the options available for startup scenarios.

4. Viscous Torque on Rational Surfaces

When a resonant magnetic field perturbation is imposed on a rotating plasma, the resulting
electromagnetic force slows the plasma rotation at the rational surface. The electromagnetic force
is balanced by a viscous force exerted by the neighboring plasma on the rational surface, which
opposes the slowing of the plasma at the rational surface. As the amplitude of the external
perturbation is increased, the electromagnetic force increases, and the rotation velocity of the
plasma at the rational surface decreases further. The magnitude of the viscous force on the rational
surface is determined by the momentum diffusion equation.

In addition to the viscous force on the rational surface, there is also a direct j x B torque exerted by
the current that arises from the non-ambipolar transport. The total torque exerted directly by the
radial current is obtained by integrating the torque density across the boundary layer at the rational
surface. For the case considered here, the viscous torque is estimated to be much larger than the
torque exerted directly by j.

We again consider the reference NCSX equilibrium whose unperturbed velocity profile we
discussed in the previous section. The 1 = 3/5 rational surface is of particular concern because of
its low order and because of its proximity to external perturbations. (It is located at 7/a = 0.8.) The
m=5, n=3 island proved to be the island that was the most difficult to suppress in the NCSX coil
design process. We consider here the resonant mode penetration at the 1 = 0.6 rational surface in
the presence of the ambipolar flow. Assuming that an externally generated m=5, n=3 perturbation
slows the rotation of the rational surface, we calculate the countervailing viscous force. We solve
the momentum diffusion equation for this purpose.

The steady-state solution of Eq. (6) is obtained under the assumption that the electromagnetic force
has slowed the rotation to a fraction of its ambipolar value. Denote the velocity at the rational
surface by v, and the unperturbed velocity at the rational surface by vy. We consider the case
where vy = vy/2, and the case where vi = 0. Figures (7) and (8) show, respectively, the
corresponding solutions of Eq. (6) for k = 2 and x = 18. In each plot, the top curve corresponds to
the solution in the absence of an electromagnetic force, the middle curve corresponds to the
solution when the velocity at the 1 = 0.6 rational surface is slowed to half its ambipolar value, and
the bottom curve corresponds to the solution when the rotation at the rational surface is entirely
suppressed.



The viscous force exerted on the rational surface by the plasma flow is given by
47*rR p,u[dv/dr]i , where [dv/dr]J_r is the jump in the radial derivative of the fluid velocity across

the associated boundary layer. For k = 2, we calculate a[dv/dr]J_rz 274 km/sec and 540 km/sec
respectively for vy = v4/2 and vy = 0. For x = 18 we calculate a[dv/dr]J_r ~ 238 km/sec and 478
km/sec respectively. Relative to vy, the velocity on axis for the unconstrained velocity profile, we

have a [dv/dr]J_r ~ 3.4 vpand 6.8 vy for k ~ 2, a[dv/dr]J_r ~ 3.5 vpand 7.0 v, for k = 18.

We consider a simple model to compare the viscous force in a quasi-axisymmetric stellarator with
that in a tokamak. Fitzpatrick [18] writes
v=v"+vy" (7)

© s the velocity profile in the absence of the resonant perturbation, and he adopts the

where v
equation

av” 1d av'’

2 _ 19 8
dt rdr (upr dr ) ®)

for the deviation of the toroidal velocity in a tokamak from its unperturbed value. This is valid as
long as the plasma flow is driven by a momentum source which is independent of v. If we
substitute Eq. (7) into Eq. (6), we get

av’ 1d av'’ M

- Tz . 9
P rdr(ﬂ/?” dr) av, )

Relative to the tokamak, the stellarator has an additional term —av'" on the right hand side. To

get some insight into the effect of this term, we consider the simple model where pp and o are both
assumed to be independent of ». The steady-state solutions of Eq. (9) are then the modified Bessel

functions I,(\Ja/(up)r), K,(Na/(up)r). For a>> up, these solutions have the asymptotic form
(up /)" exp(Ja l(up)r)/\N2zr and (up/a)" 7" %exp(—Ja [(up)r)/2r , so that the perturbed

1/2

. For a — 0, we recover the tokamak

limit, where the scale length of the velocity gradient is comparable to r, so that the jump in dv / dr
is of the order of v/ r. In a stellarator, the velocity gradient is affected by the magnitude of the
non-ambipolar j x B force, so that the gradient scale length can be shorter, imparting greater
stiffness to the flow velocity, and enhancing the shielding effect.

velocity profile has a gradient scale length of (up/ )

5. Resonant Mode Penetration Threshold

In mode penetration experiments on tokamaks where the amplitude of the external perturbation is
gradually ramped up, it is found that the rational surface first slows to some fraction of its initial
rotation frequency, and then abruptly ceases to rotate when the perturbation amplitude exceeds a
threshold value. The cessation of rotation is accompanied by a complete penetration of the
resonant perturbation at the rational surface. This is consistent with the predictions of theoretical
calculations. The magnitudes of the viscous and electromagnetic forces are functions of v, and if
vs > 0 it must satisfy Fyisc(Vs) = Fem(Vs). There is predicted to be a threshold in the perturbation
amplitude above which Fep(vs) exceeds Fyise(vs) for 0 < vy < vy, so that v = 0 when the
perturbation amplitude exceeds this threshold.
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The magnitude of F.n scales as the square of the resonant perturbation amplitude, with the
functional dependence of Fen(vs) (i.e. the shape of Fey(vs)) independent of the amplitude. Our
numerical solution shows that Fyis.(vs) is well approximated by a linear function of v, as it is in a
tokamak, so that while its amplitude may be quite different, the functional dependence on vy has
not changed. It follows that there is again a threshold value of the resonant perturbation amplitude
above which F., dominates F.i., and that at the threshold value v, is the same as in the tokamak.
The resonant mode penetration threshold scales as Fviscl/ 2

To estimate the magnitude of the flow shielding effect for magnetic islands in NCSX, we compare
with a resonant mode penetration experiment on DIII-D.[4] The DIII-D reference case has been
chosen to have similar parameters to those in our NCSX reference equilibrium. It has (B ) = 3.7%,
(ne) = 5 x 10" m™, and an ellipticity k ~ 1.8. Our reference NCSX equilibrium has (B ) = 4%, (n.)
=6x 10" m~, and an average axisymmetric component of ellipticity of 1.8. The magnetic field of
both the DIII-D reference shot and the NCSX reference case is 1.2 T. The rotation frequency of
the rational surface in the DIII-D reference shot is about 12 kHz. For the NCSX case, the predicted
rotation frequency ranges from about 9 kHz for k = 2 to about 7 kHz for k = 18. DIII-D has R =
1.67 m and R/{a) =~ 2.1, while NCSX has R = 1.42 m and R/{a) = 4.3. The experimentally

observed penetration threshold in the DIII-D reference case is B,,, /B ~ 4x107*.

6. Discussion

The physics determining the penetration of a resonant magnetic perturbation in a stellarator differs
from that in a tokamak due to the presence of a radial current produced by nonambipolar transport.
As the electromagnetic force produced by the perturbation slows the rotation at the rational surface,
the radial current driven by the resulting nonambipolar transport exerts a j x B force that resists
departures from the ambipolar velocity and enhances the shielding effect. The unperturbed
velocity profile is also modified in a stellarator. We have focused here on a particularly interesting
regime, corresponding to an NCSX reference equilibrium, in which the configuration is sufficiently
close to quasi-symmetry that the viscous damping in the toroidal direction is small, but the
deviations from quasi-symmetry are sufficiently large to produce a substantial ambipolar flow, and
a substantial modification of the flow-shielding effect. Because the ripple magnitude increases
rapidly towards the plasma edge, the flow velocity profile is broad. The strong shielding for low
order rational surfaces near the plasma edge will have potential implications for startup scenarios.

A reference DIII-D shot with parameters similar to those of our reference NCSX equilibrium has
been reported to have a penetration threshold of B,,, /B ~ 4x107*.[4] Calculations with the PIES

code found that the resonant m = 5, n = 3 field component associated with an initial NCSX coil
design algorithm that did not explicitly target resonant field error reduction was

B. /B~13x107. This is likely above the penetration threshold, even including the
enhancement of the shielding due to nonambipolarity, and a further coil optimization using the
PIES code to reduce the magnitude of the resonant field components was a prudent step in the coil

design process.
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To the extent that the plasma flow shields out residual resonant magnetic field components at
rational surfaces, it will further improve the flexibility of the NCSX device, and it will further
reduce the vulnerability of the NCSX device to field errors.

The flexibility of the nonaxisymmetric NCSX device will potentially allow a variety of
experiments to clarify the physics of the shielding of resonant magnetic perturbations by plasma
flow. Control over the magnitude of the non-quasisymmetric ripple will provide a knob for
adjusting the magnitude of the nonambipolar current and the toroidal flow damping. Moreover,
the thermal diffusivities are dominated by the contributions from anomalous and axisymmetric
neoclassical transport, so they will not be significantly affected by modest changes of the
effective helical ripple. The externally generated rotational transform will allow control over the
g profile independent of the current profile. Simultaneous adjustment of the neutral beam power
and the ohmic current drive will allow adjustment of the rotation frequency with a fixed current
profile. Two sets of trim coils will provide control over the resonant components of the magnetic
field. Comparison of the experiments with theoretical predictions will provide a new perspective
on the physics of the shielding, and will contribute towards the goal of being able to reliably
predict field error penetration thresholds in tokamaks and stellarators.
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Figure Captions

. Plasma boundary shape of reference quasi-axisymmetric configuration at poloidal cross sections

separated by A = 1/9.

. Plot of rotational transform profile, 1 = 1/g, as a function of toroidal flux normalized to its value

at the plasma boundary.

. Calculated electron and ion temperature profiles for the reference NCSX equilibrium.
. Electron density and ambipolar radial electric field for the reference NCSX equilibrium.
. The effective helical ripple for NCSX vs. the square root of the normalized toroidal flux as

calculated by the NEO code.

. Calculated ambipolar velocity profiles for three different levels of momentum dissipation at the

plasma edge. The three curves were obtained with x=0, k¥ ~ 2 and x ~ 18, corresponding,
respectively, to no momentum dissipation at the edge, to dissipation appropriate for neutral
collisions only, and to dissipation produced by the scrape-off layer with ne(a) ~ 1.5 x 10" m”.

. Numerical solution of the momentum diffusion equation for three different constraints at the

rational surface, with k¥ = 2. The top curve (solid) is the unconstrained solution. The middle
and bottom curves correspond, respectively, to vy = v¢/2 and vs = 0.

. Numerical solution of the momentum diffusion equation for three different constraints at the

rational surface, with k = 18. Again, the top curve (solid) is the unconstrained solution, while
the middle and bottom curves correspond, respectively, to vy = v4/2 and vs = 0.
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