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1. Executive Summary 
 
An industry-wide need exists for improving material property performance for the applications that they 
are currently used for and to increase their upper use temperature for applications that improve the 
process efficiencies such as chemical and heat-treating processes carried out at higher than currently used 
temperatures. The project takes a new approach of using stochastic optimization algorithm for optimizing 
alloy properties with the minimum number of experimental evaluations of the candidate alloys. The new 
approach has the potential of identifying compositions that cannot be identified without carrying out 
thousands of experiments. Furthermore, the approach has the potential for creating and designing alloys 
for each application, thereby maximizing their utilization at reduced cost. 
 
The goal of this project is to adapt and use an advanced semi-stochastic algorithm for constrained multi-
objective optimization and combine it with experimental testing and verification to determine optimum 
concentrations of alloying elements in heat-resistant and corrosion-resistant H-Series austenitic stainless 
steel alloys that will simultaneously maximize a number of alloy’s mechanical and corrosion properties. 
The approach consists of the use of an advanced semi-stochastic algorithm adapted for constrained multi-
objective optimization combined with selective experimental testing and verification to determine 
optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-Series austenitic 
stainless steel alloys and Ni-based superalloys.  
 

1.1  Alloy Design Tool 
The research resulted in the development of a tool for the design of high-strength H-Series steels and 
other types of alloys unattainable by any existing means with minimum experimental effort. Such a tool 
can be used to reduce or minimize the need for the addition of expensive elements such as Cr, Ni, Co, Nb, 
Ti, or V and still obtain the optimum properties needed to design the components. The project achieved 
the following objectives:  
 

• Devised a method for the development of a new class of alloys for high-temperature strength, 
corrosion, and thermal fatigue resistance;  

• Effectively applied combinatorial methods for rapid screening of materials for industrial 
applications and/or materials property optimization; and  

• Acquired thermophysical property data needed for materials processing and industrial 
applications.  

 

1.2  Technology Transfer 
The H-Series steel producer, Duraloy, and one of the users, ISG (previously, Bethlehem Steel), were 
made aware of the outcome of this project through project progress presentations at the Industrial 
Technologies Program/Industrial Materials for the Future (ITP/IMF) annual project review meetings. This 
was the most direct transfer of the outcome of the project to its partners. 
 
Technology transfer to a broader audience occurred through presentations of this work at the national 
meetings of The Metallurgical Society (TMS) and two topical conferences dealing with multidisciplinary 
analysis and optimizations. One presentation was also made at an international conference in Brazil. In 
addition to presentations, six technical papers were published, which further enhanced the transfer of 
technology. 
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The technology transfer from this project also benefited from the incorporation of some of the results of 
this project in to the Duraloy/Oak Ridge National Laboratory (ORNL) project on development of novel 
H-Series steels with improved strength and higher upper-use temperature.  
 

1.3  Commercialization 
The tool that resulted from this project was developed through very strong industrial interaction. For 
example, a large database of creep properties and detailed chemical analysis used in this project was 
provided by Duraloy. Based on Duraloy-supplied data, the current project identified several alternate 
compositions of H-Series steels that could deliver improved creep strength properties. The ORNL effort 
in this project took some of the compositions identified through this analysis and further investigated their 
phase analysis and microstructural validation. Two of the compositions were produced as experimental 
heats and tested for their creep properties.  
 
Duraloy, the main producer of H-Series steels has not directly used the outcome of algorithm developed 
in this project. However, further optimized H-Series compositions that are based on ORNL work using 
the phase stability and volume fraction have been cast and fabricated into radiant burner tube assemblies. 
One of these assemblies is currently being tested at Nucor steel.  
 
The algorithm developed in this project has a strong potential for commercial use because it can assist in 
predicting the properties of the compositions that are within the range for which the data was used, but for 
which the specific composition for an application has never been produced or tested. The implementation 
of such a capability by industry will require the development of an interactive computer-based tool with a 
range of property-prediction options and data output that can be used directly by production, sales, and 
design-engineering staff. 
 

1.4  Recommendations 
For effective use of the outcome of the algorithm developed in this project, the development of an 
interactive computer-based tool with range of property-prediction options and data output that can be 
directly used by production, sales, and design engineering staff is recommended. After the tool is 
developed, selective experimental validation of certain predicted properties is highly recommended.
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2. Introduction 
 
Experts from the leading countries of the world agree that a great need exists for advancing the 
performance of structural materials, including strength, corrosion resistance, and upper-use temperature. 
The need for improved methods for manufacturing these alloys has also been identified. To meet these 
goals, much money is being spent to develop materials that are generally more expensive than current 
methods because they require special melting, processing, machining, and welding processes. This project 
deals with an industry-wide need for improving material property performance for the applications for 
which it is currently used and to increase the upper-use temperature for applications that improve process 
efficiencies (e.g., chemical and heat-treating processes carried out at higher than currently used 
temperatures). A wide range of alloys with varied components are used in high-temperature applications. 
These alloys are selected based upon the temperature range of operation and the desired properties as 
outlined below. 
 

2.1  Alloys Studied and Project Approach 
Heat-Resistant Alloy Castings: The heat-resistant casting alloys are those compositions that contain at 
least 12% chromium and that are capable of performing satisfactorily when used at temperatures above 
1200ºF. As a group, heat-resistant compositions are higher in alloy content than the corrosion-resistant 
types. The heat-resistant alloys are composed principally of nickel, chromium, and iron together with 
small percentages of other elements. Nickel and chromium contribute to the superior heat resistance of 
these materials. Castings made of these alloys must meet two basic requirements: 
 

1. Good surface film stability (oxidation and corrosion resistance) in various atmospheres and at the 
temperature to which they are subjected. 

2. Sufficient mechanical strength and ductility to meet high-temperature service condition. 
 

Corrosion-Resistant Alloy Castings: The corrosion-resistant castings alloys are those compositions 
capable of performing satisfactorily in a large variety of corrosive environments. They are composed 
principally of nickel, chromium, and iron, and sometimes other elements. Castings made of theses alloys 
offer the ease of (1) production of complex shapes at low cost and (2) securing rigidity and high strength-
to-weight ratios. The selection of the proper cast alloy for a given high-temperature application requires 
knowledge of various factors and the related mechanical and physical properties that must be matched 
with them. Properties of interest include short-time tensile properties, creep strength, stress-rupture 
properties, hot ductility, thermal fatigue properties, oxidation resistance, carburization resistance, 
sulfidation resistance, and surface stability. Different properties may be appropriate for different 
applications, and alloys may have to be optimized for these applications. 
 
Work to improve the creep and stress rupture properties of the heat resisting Ni-Cr-Fe alloys through the 
addition of small amounts of W, V, Zr, Ti, Cb, N, or combinations of them, has been pursued for several 
years under the Steel Founders’ Society of America sponsorship and by others in the United States, Japan, 
and Britain. Alteration of the carbide morphology from lamellar to discrete particles seems to be the 
important factor. The current work takes the bold step of enhancing the performance of the steels that are 
currently most frequently used—H-Series steels. The project takes a new approach of using stochastic 
optimization algorithm for optimizing alloy properties with the minimum number of experimental 
evaluations of the candidate alloys. The new approach has the potential of identifying compositions that 
cannot otherwise be identified without carrying out thousands of experiments. Furthermore, the approach 
has the potential for creating and designing alloys tailored for each application, thereby maximizing 
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utilization and reducing cost. Such an approach is expected to minimize the time needed for successful 
implementation of these alloys by industry. 
 
The goal of this project was to adapt and use an advanced semi-stochastic algorithm for constrained 
multi-objective optimization and combine it with experimental testing and verification to determine 
optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-Series austenitic 
stainless steel alloys that will simultaneously maximize a number of alloy’s mechanical and corrosion 
properties. The work performed in the project is appropriate for the domestic industry because it will give 
it a tool to customize the properties of the alloys for customer-specified application. Such a tool can 
potentially reduce or minimize the need for the addition of expensive elements, such as Cr, Ni, Co, Nb, 
Ti, or V, and still obtain the optimum properties needed to design the components. The alloys developed 
using this project’s algorithms will find future applications in various industries, such as chemicals, 
petroleum, steel, petrochemical, forest products, glass, along with supporting industries. Optimized 
compositions of H-Series stainless steels that could result from the use of the stochastic algorithm could 
result in increasing the operating temperatures by up to 50ºC. This will result in enhancing industrial 
efficiencies for processes such as ethylene production, secondary processing of steel, and the operation  
of heat-treating furnaces. The potential for energy savings from improved efficiencies of various 
processes in the chemical, steel, and heat-treating industry when the alloys are commercialized is shown 
in Table 2.1.  
 

Table 2.1. Results of the energy benefits impact analysis by the year 2020 

Energy savings 

Vision industry 
Electricity 

(billion kWh) 
Gas 

(billion ft3) 
Oil 

(million barrels) 
Other 

(trillion Btu) 

Total energy 
savings 

(trillion Btu) 

Chemical 0.56 10.4 1.6  26 

Heat treating 0.15 4.7 — — 6 

Steel — 5.8 — — 6 

   Total savings 0.71 20.9 1.6 — 38 

 

2.2  Commercialization Aspects and Path Forward 
The tool in this project was developed through very strong industrial interaction. For example, a large 
database of creep properties and detailed chemical analysis used in this project was provided by Duraloy. 
Based on Duraloy-supplied data, the current project identified several alternate compositions of H-Series 
steels that could deliver improved creep strength properties. ORNL further investigated phase analysis 
and microstructural validation of some of the compositions identified through this analysis. Two 
compositions were produced at experimental heats and tested for their creep properties.  
 
Duraloy, the main producer of H-Series steels has not directly used the outcome of algorithm developed 
in this project. However, further optimized H-series compositions based on ORNL work using the phase 
stability and volume fraction, have been cast and fabricated in to radiant burner tube assemblies. One of 
these assemblies is currently in test at Nucor steel.  
 

The algorithm developed in this project has a strong commercial use potential in that it can assist in 
predicting the properties of the compositions that are with in the range for which the data was used, but 
for which the specific composition for an application has never been produced or tested. The 
implementation of such a capability by industry will require the development of an interactive computer-
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based tool with range of property-prediction options and data output that can be directly used by 
production, sales, and design-engineering staff. After the tool is developed, selective experimental 
validation of certain predicted properties is highly recommended. 
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3. Background 
 
The primary objective of the work presented in this report was to develop a generalized methodology for 
the acceleration of large-scale, multi-objective, multidisciplinary, constrained-optimization problems by 
utilizing new approaches for multilevel analysis, parallelization, and a special treatment of the response 
surface. The developed methods, although of general applicability, were demonstrated by optimizing the 
chemical composition of H-Series stainless steels composed primarily of Fe-Cr-Ni but which contained 
additional alloying elements.  
 
Development of an alloy with desirable properties (objective functions) creates a problem in identifying 
constraints that need to be specified on the objective functions. These constraints are absent in a more 
general multi-objective optimization statement. Such objective constraints should be set by the user 
(expert) and could be allowed to vary during the solution process. For example, the minimum acceptable 
value for the Young’s modulus of elasticity could be specified as an inequality constraint. Or, the 
maximum acceptable percentage of each of the most expensive ingredients in the alloy could be specified 
as a cost-objective constraint. Or, the total acceptable manufacturing cost of an alloy could be specified as 
an equality constraint.  
 
The typical situation when solving a real-life, multi-objective optimization problem is that a designer has 
several tools available for performing the evaluation of the objective functions. These evaluation tools 
differ according to their levels of complexity and accuracy. The low-fidelity analysis models are very 
inexpensive and allow us to carry out optimization, but the validity of the obtained results can be 
questionable. The high-fidelity tools could be the experimental samples of the system or its components. 
However, the exclusive use of such high-fidelity tools in multi-objective optimization is expensive and 
takes a long time to perform. 
  
The problem of using an experimental search for optimum chemical composition of an alloy can be an 
unacceptably labor-intensive process. This experimental method requires that an extremely large number 
of alloy compositions be created and evaluated. This method would result in the creation of an extensive 
database that would include information on various properties of alloys for various combinations of a 
chemical structure. Such a database could then be used to solve particular problems in creating alloys 
with desirable properties 
 
The key to the success of the proposed approach is the robustness, accuracy, and efficiency of the multi-
objective constrained optimization algorithm. Only a few commercially available general-purpose 
optimization software packages exist. They all use almost exclusively a variety of standard gradient-based 
optimization algorithms, which are known to be unreliable because of their tendency to terminate in the 
nearest feasible minimum instead of finding a global optimum. Moreover, these optimizers can perform 
optimization only of a weighted linear combination of objective functions. This formulation does not 
provide a true multi-objective optimization capability, that is, each individual objective is not fully 
maximized. These optimizers require an extremely large number of objective function (mechanical and 
corrosion properties of alloys) evaluations, which makes the total number of experimental evaluations 
unacceptably large. The latest developments in the area of semi-stochastic, truly multi-objective 
constrained optimization have not been commercialized and have not been demonstrated in this field of 
application. The present work is based on the use and a special adaptation of a new stochastic 
optimization algorithm that was specifically developed for the task of optimizing properties of alloys 
while minimizing the number of experimental evaluations needed of the candidate alloys.  
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The technical approach uses a combination of analysis tools with different levels of sophistication in the 
multi-objective optimization of complex alloy systems. To reduce the computing time significantly, we 
planned to develop a multilevel, multi-objective constrained optimization methodology that is a modified 
version of a method of indirect optimization based upon self organization (IOSO) and evolutionary 
simulation principles [1]. This approach is intended to minimize the use of the time-consuming, complex 
experimental evaluations. This optimization methodology can be performed on commodity processors 
and is scalable; it is capable of handling hundreds and even thousands of design variables and dozens of 
objectives and constraints. Thus, the role of the designer is to choose the various evaluation tools and 
specify meaningful ranges for the design variables, the multiple objective functions, and the constraints. 
The generalized scheme is shown in Fig. 3.1. 
 

  

 
Fig. 3.1. The general scheme for optimization that  

verifies theoretical and experimental methods. 
 

3.1  The Artificial Neural Network 
Neural networks are methods for the quantitative recognition of patterns in data, without any a priori 
specification of the nature of the relationship between the input and output variables. They can model 
relationships of almost arbitrary complexity [2–9]. The outcome of neural network training is a set of 
coefficients (called weights) and determination of the functions that in combination with the weights 
relate the input to the output. The computer-intensive training process involves a search for the optimum 
nonlinear relationship between the inputs and the outputs. However, after the network is trained, 
estimation of the outputs for any given input is very rapid. There are methods, such as that of MacKay 
[6], that implement a Bayesian framework on the neural network. The error bars then depend on the 
specific position in input space, thus reducing the dangers of extrapolation and interpolation.  
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Neural network models in many ways mimic human experience and are capable of learning or being 
trained to recognize the correct science rather than nonsensical trends. A potential difficulty with the use 
of regression methods is the possibility of over-fitting data. For example, it is possible to produce a neural 
network model for a completely random set of data. To minimize this problem, the experimental data can 
be divided into two sets, a training dataset and a test dataset. The model is produced using only the 
training data. The test data are then used to check that the model functions properly when presented with 
previously unseen data [9]. 
 
In addition, artificial neural networks, once fully trained, are very efficient and accurate interpolating 
algorithms for any multiparameter function. Neural networks, however, are not automatically efficient 
and accurate search algorithms or extrapolation algorithms for venturing outside of the available database. 
Therefore, it is important to understand a need for mathematically sound multi-objective stochastic 
optimization algorithms that are capable of finding the global minimum and that can confidently search 
outside a given initial database. 
 

3.2  Multi-objective Optimization 
As mentioned earlier, a key part of this method is the multi-objective constrained optimization algorithm. 
There are only a few commercially available, general-purpose optimization software packages. Currently, 
the most popular commercially available, general-purpose optimization software in the United States is 
iSIGHT [10]. However, these software packages predominantly use a variety of standard gradient-based 
optimization algorithms that are known to be unreliable because of their tendency to terminate in the 
nearest feasible minimum instead of finding a global optimum. Moreover, these optimizers can perform 
only optimization of a weighted linear combination of objective functions. This formulation does not 
provide a true multi-objective optimization capability, that is, each individual objective is not calculated 
to its extreme. Furthermore, these optimizers require a large number of evaluations of objective functions 
(mechanical and corrosion properties of alloys), making the total number of experimental evaluations 
unacceptably large because no algorithms are available for confidently predicting physical properties 
from given alloy concentrations. The industry is probably aware of these drawbacks of the commercially 
available optimization software. Some industry experts are also becoming aware of the neural network 
approach to alloy design as practiced at Cambridge University and of the applications of genetic 
algorithms in materials design [11] and of its coupling with a molecular dynamics simulation approach 
[12]. However, for the most part, industry is not aware of the latest developments in the area of stochastic, 
truly multi-objective constrained optimization because these methods have not been commercialized and 
have not been demonstrated in this field of application.  
 
The growing need for the multidisciplinary and multi-objective approach to design with a large number of 
design variables resulted in an increased interest in the use of various versions of hybrid [13], semi-
stochastic [14] and stochastic [1,15–23] optimization algorithms. Including more objectives in the 
optimization process has similar effects as including more constraints, especially if these constraints are 
incorporated as penalty functions.  
 

The multi-objective optimization problem maximizes a vector of n objective functions 
 

max Fi( X )     for i = 1, … , n (1) 
 
subject to a vector of inequality constraints 
 

gj( X )≤  0      for j = 1, … , m  (2) 
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and a vector of equality constraints 
 

hq( X ) = 0     for q = 1, … , k  (3) 
 
In general, the solution of this problem is not unique. With the introduction of the Pareto dominance 
concept, the possible solutions are divided into two subgroups: the dominated and the nondominated. The 
solutions belonging to the second group are the “efficient” solutions, that is, the ones for which it is not 
possible to improve any individual objective without deteriorating the values of at least some of the 
remaining objectives. In formal terms, in case of a maximization problem, it is possible to write that the 
solution X  dominates the solution Y  if the following relation is true. 

 
))Y(F)X(F:j())Y(F)X(iF(YX jjiiP >∃∩≥∀⇔>   (4) 

 
Classical gradient-based optimization algorithms are capable, under strict continuity and derivability 
hypotheses, of finding the optimal value only in the case of a single objective. For these algorithms, the 
problem of finding the group of nondominated solutions (the Pareto front) is reduced to several single 
objective optimizations in which the objective becomes a weighted combination of objectives called 
utility function.  
 
Multi-objective optimization algorithms that are based on a genetic algorithm have been successfully 
applied in a number of engineering disciplines. However, for a large number of design variables and 
objective functions that need to be carried to the extreme simultaneously, this approach becomes 
progressively too time consuming for practical applications in industry.  
 
A new approach of using a stochastic optimization algorithm for optimizing alloy properties that requires 
a minimum number of experimental evaluations of the candidate alloys is used in this work. The method 
has the potential of identifying new compositions that cannot otherwise be identified without carrying out 
an unacceptably large number of experiments. Furthermore, the approach has the potential for creating 
and designing custom alloys for applications, thereby maximizing their utilization at reduced cost. The 
proposed method uses a special adaptation of a new stochastic optimization algorithm that was developed 
specifically for optimizing properties of alloys while minimizing the number of experimental evaluations 
needed for each of the candidate alloys. This multi-objective, semi-stochastic optimization algorithm 
incorporates aspects of a selective search on a continuously updated multi-dimensional response surface. 
Both the weighted linear combination of several objectives and true multi-objective formulation options 
creating Pareto fronts are incorporated in the algorithm. The main benefits of this algorithm are its 
outstanding reliability in avoiding local minimums, its computational speed, and a significantly reduced 
number of required experimentally evaluated alloy samples as compared to more traditional semi-
stochastic optimizers such as genetic algorithms. Furthermore, the self-adapting response surface 
formulation used in this project allows for the incorporation of realistic nonsmooth variations of 
experimentally obtained data and allows for the accurate interpolation of such data.  
 

3.3  Response Surface and Self-Organization Concepts 
Our approach is based on the widespread application of the response surface technique with the adaptive 
use of global and middle-range multipoint approximation. One of the advantages of the proposed 
approach is the possibility of ensuring good approximating capabilities using minimum available 
information. This possibility is based on self-organization and evolutionary-modeling concepts [1]. 
During the approximation, the approximation function structure is being evolutionarily changed, so that it 
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allows successful approximation of the optimized functions and constraints, having sufficiently 
complicated topology.  
 
The problem of the numerical search for Pareto-optimum solutions set in the multi-objective optimization 
while varying the chemical composition of an alloy would be an unacceptably labor-intensive process. An 
extremely large number of alloy compositions would be need and several of the properties of each of 
these alloys would have to be evaluated experimentally. Such problems are difficult to formalize at the 
initial stage because the user does not know initially the values attainable by some objectives and how the 
remaining objectives will vary. The number of experiments that is necessary for a true multi-objective 
optimization problem solution depends not only on the dimensionality of the problem (the number of 
ingredient species in an alloy) but also it depends to a considerable degree on the topologies of the object 
functions. Since the user has very little if any a priori knowledge of objective function space topology, it 
is very difficult to predict the number of experiments required in the optimization application proposed 
here.  
 

3.4  Summary of Indirect Optimization Based upon the Self-Organization (IOSO) 
Algorithm 

Every iteration of IOSO consists of two stages. The first stage is the creation of an approximation of the 
objective function(s) (Fig. 3.2). Each iteration in this stage represents a decomposition of the initial 
approximation function into a set of simple approximation functions so that the final response function is 
a multilevel graph. That is, the evolutionary self-organizing algorithms are based on the modified version 
of the method of accounting for the groups of arguments. Such algorithms employ the evolutionary 
procedure of constructing approximation functions in the form of multilevel graphs (Fig. 3.3) and solving 
the structure-parametric approximation problem in the process. 
 

 
The second stage is the optimization of this approximation function. This approach allows for corrective 
updates of the structure and the parameters of the response surface approximation. The distinctive feature 
of this approach is an extremely low number of trial points to initialize the algorithm. During each 
iteration of IOSO, the optimization of the response function is performed only within the current search 
area. This step is followed by an actual experimental evaluation for the obtained point. During the IOSO 
operation, the information concerning the behavior of the objective function in the vicinity of the 
extremum is stored, and the response function is made more accurate only for this search area. Thus, 
during each iteration, a series of approximation functions (Fig. 3.4) for a particular objective is built. 
These functions differ from each other according to both structure and definition range.  

 
                                            

 Fig. 3.2. IOSO iteration scheme. 
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The subsequent optimization of these approximation functions allows us to determine a set of vectors of 
optimized variables. IOSO using Sobol’s algorithm [24] was used for redistribution of the initial points in 
the multidimensional function space. IOSO also includes algorithms of artificial neural networks (ANN) 
that utilize appropriately modified radial-basis functions in order to enrich the original data set and build 
the response surfaces. The modifications consisted in the selection of ANN parameters at the stage of 
their training that are based on two criteria: minimal curvature of response surface and provision of the 
best predictive properties for a given subset of test points, inibest WW ∈ . Each iteration of alloy 
composition multi-objective optimization technique involves the following steps. 

 
1. Building and training ANN1 for a given set of test points proceeding from the requirement 

inibest WW = . 
2. Conducting multi-objective optimization with the use of ANN1 and obtaining a specified number 

of Pareto optimal solutions P1.  
3. Determining a subset of test points Wbest that are maximally close to points P1 in the space of 

variable parameters.  
4. Training ANN2 proceeding from the requirement to provide the best predictive properties for 

obtained subset of test points inibest WW ∈ .  

 
                          Fig. 3.4. IOSO approximation process scheme. 

 
            

                          Fig. 3.3.  Example of the IOSO response surface structure. 
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5. Conducting multi-objective optimization with the use of ANN2 and obtaining a set of Pareto-
optimal solutions P2. 

 

In general, the database contains information on experimentally obtained alloy properties compiled from 
different sources and obtained under different experimental conditions. As a result, for alloys with the 
same chemical compositions, there can be considerable differences of measured properties. These 
differences can be explained as errors due to the particular conditions existing during the experiments 
(measurement errors) and by the effect of certain operating conditions (e.g., thermal condition of alloy 
making). Unless operating conditions are quantified numerically, their influence is regarded as an 
additional chance factor. In its simplified form, the methodology can be presented as the following set of 
actions.  
 

1. Formulation of optimization task. These tasks include selection of variable parameters, definition 
of optimization objectives and constraints, and setting initial (preliminary) ranges of variable 
parameters variations.  

2. Preliminary reduction of the experimental database. At this stage, the points meeting the 
optimization task statement are picked up from the database so that alloys having chemical 
composition outside the chosen set of variable parameters are rejected. Alloys for which there is 
no data for at least one optimization objective are rejected. In addition, alloys with chemical 
compositions outside the set range of variable parameters are rejected.  

3. Final reduction of the experimental database. Since accuracy of the building of response surfaces 
substantially depends on uniformity of distribution of variable parameters in the surveyed area, 
rejection of experimental data points falling outside of the universal set is performed. At the end 
of this stage, a final range of variable parameters for optimization is set. 

4. Execution of multi-objective optimization. This results in a specified number of Pareto optimal 
solutions.  

5. Analysis of optimization results. 
6. Carrying out an experiment. The experiment will obtain a set of Pareto optimal alloy 

compositions (or a certain subset) and analysis of the results obtained.  
7. Change of optimization problem statement and returning to Step 2. The problem statement 

includes the number of simultaneous objectives and constraints and the set and range of variable 
parameters,  

8. Modification of database and returning to Step 4. 
9. Stop. 

 
The objective of this project was to demonstrate the use of the computational tool to predict the effect of 
varying composition on properties of H-Series and other alloys. Alloy properties of interest to be 
optimized include strength (tensile and creep properties) and corrosion (high-temperature oxidation, 
carburization, sulfidation and low-temperature corrison in various solutions). 
 
The objectives of the project were met through the following tasks: 
 
Task 1:  Development of initial plan of experiment (University of Texas at Arlington [UTA]) 
 1.1 Generate alloy compositions with only 6 elements 
 1.2 Generate alloy compositions with 7 to 16 elements 
 
Task 2:  Analysis of the plan of experiment, identification of the objective functions and objective 

constraints (UTA) 
2.1 Objectives to identify will include tensile, creep, and corrosion data 
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2.2  Objective constraints will include the acceptable number of alloying elements and use 
temperature and time 

 

Task 3: Determine solution of M particular optimization problems for objective constraints 
defined in Task 2 (UTA) 
3.1 Determine solutions for tensile properties 
3.2 Determine solutions for tensile and creep properties 
3.3 Determine solutions for tensile, creep, and corrosion properties 

 
Task 4:  Experimental verification and identification of additional experiments needed (UTA, Oak 

Ridge National Laboratory [ORNL])  
4.1  Complete experimental verification of tensile solution 
4.2  Complete experimental verification of tensile and creep solutions 
4.3  Complete experimental verification of tensile, creep, and corrosion properties  

 
Task 5:  Prepare alloys and develop tensile, creep, and corrosion data (UTA, ORNL) 

5.1 Test alloys for tensile properties 
5.2  Test alloys for creep properties 
5.3 Test alloys for corrosion properties 

 
Task 6: Meetings and technical reports 

6.1 Hold one technical meeting each year 
6.2 Complete final report 

 

This work was performed by a team consisting of the University of Texas, Oak Ridge National 
Laboratory, and industries as outlined in Fig. 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.5. Organization plan for the team involved in the project.

University of Texas

Oak Ridge National Laboratory

         Alloy Producers                                 Alloy Users

Duraloy Technologies, Inc.          Bethlehem Steel Corporation 
   The Timken Company

  Edison Industries of Ohio
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4. Results and Discussion 
 
The initial data were the results of experimental testing of 17 samples of H-Series steels with different 
percentages of alloying components. The experimental data for creep rupture strength after 100 h at 
1800ºF (982ºC) is presented in Table 4.1. Note that the poor set of available experimental data (only 17 
points for 6 independent variables) and nonuniformity of their distribution in the space of design variables 
do not allow accuracy of the results in the first iteration of this multi-objective optimization methodology. 
However, the main goal of this research is to create a plan for future experiments, which will allow us to 
improve the accuracy of the optimized steel composition for the next iterations. 
 

Table 4.1. Initial data set 

Nominal composition (wt %)  1800ºF 

Fe C Mn Si Ni Cr N  10^2h (Psi) 

54.64 0.1 0.87 1.24 18.9 24.2 0.05  1684 

52.92 0.14 1.02 1.22 20.1 24.5 0.1  2084 

52.88 0.17 0.92 1.23 20.1 24.6 0.1  2303 

54.28 0.2 0.95 1.07 19.3 24.1 0.1  2691 

51.01 0.27 0.98 1.23 20.4 26 0.11  3324 

50.75 0.28 1.05 1.27 20 26.5 0.15  3500 

52.1 0.28 0.52 0.52 20 26.5 0.08  3600 

51.73 0.3 0.53 0.84 20 26.5 0.1  3800 

50.6 0.3 0.58 1.62 20.1 26.7 0.1  4300 

51.85 0.3 0.53 1.21 19.7 26.3 0.11  4250 

51.06 0.32 0.98 1.26 20.2 26.1 0.08  4415 

51.54 0.32 0.51 1.25 20 26.3 0.08  4600 

51.54 0.32 0.52 1.19 19.9 26.3 0.23  4800 

52.68 0.32 0.5 0.5 19.9 26 0.1  3600 

49.09 0.32 0.51 1.26 19.9 28.8 0.12  3600 

53.9 0.33 0.51 1.25 20 23.9 0.11  3700 

52.409 0.35 0.82 1.07 21.1 24.2 0.051  4573 
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4.1  Design Variables and Multiple Optimization Objectives 
As the independent design variables for this problem, we considered the percentages of the following 
components: C, Mn, Si, Ni, Cr, and N. Ranges of their variation were set according to lower and upper 
bounds of the available set of experimental data. The bounds are presented in Table 4.2. 
 

Table 4.2. Specified ranges of design variables 

 C Mn Si Ni Cr N 

Min 0.1 0.5 0.5 18.9 23.9 0.05 

Max 0.35 1.05 1.62 21.1 28.8 0.23 

 
As the main optimization objective, we considered the creep rupture strength of the H-type steel for a 
100 h rupture life under 1800ºF (982ºC). Other objectives have been chosen to reduce the cost of the 
steel. In this work, three additional objectives simultaneously minimize the percentages of Mn, Ni, Cr. 
Thus, the multi-objective optimization problem had six independent design variables and four 
simultaneous objectives. We defined the desirable number of Pareto optimal solutions as ten points. 
 

4.2  Numerical Results 
Fig. 4.1 demonstrates the results characterizing the accuracy of the obtained response surface based on 
ANN1. For most of the available experimental points, the mean error of the prediction created by ANN1 
does not exceed 4%. The exception is observed for the experimental point No. 11, where mean error is 
8.4%. As a result of this four-objective constrained optimization problem solution, a subset of 
experimental points inibest WW ∈ , which contained points No. 8, 9, 13, … , 17, was obtained. The 
training of ANN2 allowed us to improve the accuracy of approximation for these points of the 
experimental data set (Fig. 4.2). Then, the four-objective optimization task was actually solved by using 
ANN2, resulting in a Pareto-optimal set of ten new alloy compositions. This set is presented in Table 4.3. 
 

Table 4.3. Set of ten Pareto-optimal solutions 

Pareto-optimal composition (wt %)  1800ºF 

Fe C Mn Si Ni Cr N  
Psi (predicted 

values) 

51.41 0.33 0.50 1.32 19.89 26.31 0.23  4804 

53.42 0.35 1.03 0.50 20.73 23.90 0.08  4214 

52.51 0.35 1.05 1.30 19.05 25.64 0.10  4031 

50.50 0.33 0.67 1.43 18.90 28.02 0.16  3828 

53.33 0.29 0.50 0.51 21.10 24.06 0.20  3607 

53.41 0.19 1.01 1.09 20.31 23.90 0.09  2350 

53.22 0.22 0.97 1.38 18.90 25.20 0.11  2338 

50.88 0.22 0.52 1.59 18.90 27.68 0.22  2257 

53.49 0.15 0.68 1.02 20.60 23.90 0.17  2235 

54.74 0.12 0.55 1.57 18.90 23.90 0.22  1706 
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Fig. 4.3 shows the ten new (optimized) chemical compositions that should be used to create the next 
generation of physical alloy samples that will need to be experimentally tested. One can see that carrying 
out the experimental research for the predicted alloy compositions will make the distribution of the 
experimental points more uniform, and thus it will improve the quality of the response surfaces. 
Figures 4.4 and 4.5 show the examples of ANN2 response surface topology in the vicinity of the first, 
second, and the tenth point from the obtained Pareto set. 
 
A second database containing 201 experimentally tested alloys was also used for the study. A preliminary 
analysis of data showed that for certain alloys no complete information exists on alloy chemical 
composition. Such alloys were excluded from further analysis. Besides, some chemical elements (V, Bi, 
Se, Zr, Sb, Cd) were present in a very small number of alloys, which made it impossible to assess their 
effect from information in this database. Such alloys were also excluded from further analysis. The 
remaining database had 176 alloys. At the next stage, an evaluation was made of uniformity of 
distribution of the percentage values of different elements in the existing range. Certain alloying elements 
had concentrations differing very strongly from the universal set (e.g., the percentage of sulfur in one of 
the alloys exceeded the average value by some ten times). Such alloys were excluded from further 
analysis. The remaining database had 158 alloys.  
 
The following parameters were then used as optimization objectives:  
 

1. Stress (PSI – maximize),  
2. Operating temperature (T – maximize), and 
3. Time to “survive” until rupture (HOURS – maximize).  

 
During this research, the solution of a simultaneous three-objective optimization problem and a series of 
two-objective problems were accomplished using cases in which one of the considered parameters was 
constrained.  
 

4.3  Influence of the Number of Alloying Elements 
In this problem the percentages of the following 17 alloying elements were taken as independent 
variables: C, S, P, Cr, Ni, Mn, Si, Cu, Mo, Pb, Co, Cb, W, Sn, Al, Zn, Ti. The ranges of these elements 
were set as follows. First, minimum and maximum values for the existing set of experimental data 
( 17,1i  ,max_Exp ,min_Exp ii = ) were defined. Then, new minimum and maximum values for each 
of the 17 elements were obtained according to the following simple dependencies: 
( 17,1i  ,max_Exp1.1Max ,min_Exp9.0Min iiii =⋅=⋅= ). The allowable ranges are given in 
Table 4.4. While the lower range for Cr and Ni content almost corresponds to AISI 310 scale-resistant 
stainless steel, the upper range of Cr and Ni content correspond to super alloys [25]. It should be pointed 
out that the chemistry of the two types of alloys is entirely different. 
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Fig. 4.1. Accuracy of ANN1. 
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Fig. 4.2. Accuracy of ANN2. 
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Fig. 4.3. Results of the first iteration of steel composition optimization. 
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Fig. 4.4. Topology of the ANN2-based response surface in the vicinity of  
first, second, and tenth Pareto-optimum points for C – Mn. 
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Fig. 4.5. Topology of the ANN2-based response surface in the vicinity of  
first, second, and tenth Pareto-optimum points for Mn – Si. 
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Table 4.4. Ranges of variation of 17 independent variables  

(chemical elements in the steel alloy) 
 Elements (wt %) 

 C S P Cr Ni Mn Si Al  

Min 0.063 0.001 0.009 17.50 19.30 0.585 0.074 0.001  

Max 0.539 0.014 0.031 39.80 51.60 1.670 2.150 0.075  

 Elements (wt %) 

 Mo Co Cb W Sn Zn Ti Cu Pb 

Min 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.016 0.001 

Max 0.132 0.319 1.390 0.484 0.007 0.015 0.198 0.165 0.006 

  
The three-objectives optimization run was then repeated with only the following nine chemical elements 
as independent variables: C, Cr, Ni, Mn, Si, Mo, Cb, W, and Ti. We followed the same steps during the 
optimization as were used when solving the problem with 17 variables. But, in this case, there were 
noticeable differences due to accuracy deterioration of the response-surface representation. Thus, when 
using fewer alloying elements while decreasing the number of variables for the same experimental 
dataset, additional noise was introduced into this data set. 
 

4.4  Simultaneous Optimization of Three Objectives for Alloys Having 17 
Chemical Elements 

 

During the first stage, the problem of simultaneously optimizing three objectives was solved with 100 
points of Pareto optimal solutions. Figure 4.6 presents the obtained Pareto optimal solutions in objectives’ 
space (PSI – HOURS). Analysis of this figure allows us to extract an area of admissible combinations of 
different optimization objectives. It can be seen that results are distributed in the admissible part of the 
objectives’ space quite uniformly. Such a distribution offers a possibility for a significant improvement of 
accuracy of response surfaces on the condition that the experiments will be carried out at the obtained 
Pareto optimal points. In principle, the first iteration of the process of alloy chemical composition 
optimization by several objectives could be regarded as complete. Then, in accordance with the 
elaborated technique, it is necessary to conduct experiments at the obtained Pareto optimal points, 
evaluate the accuracy of the predicted values of partial optimization criteria, and either complete the 
process or perform another iteration. However, such a strategy is more time consuming than necessary for 
a researcher who knows the tasks more accurately. It can be seen that the ranges of variation of 
optimization objectives for the obtained Pareto set are very wide. At the same time, if a researcher can 
formulate the problem more specifically (for example, by setting constraints on the objectives) the 
volume of experimental work can be substantially reduced.  
 
Figure 4.7 presents interdependence of the chosen optimization objectives built on the obtained set of 
Pareto optimal solutions. Figure 4.8 demonstrates the difference in topology of the multi-objective 
function space when using different numbers of alloying elements. The Larsen-Miller diagram (Fig. 4.9) 
shows PSI on the vertical axis and *Temp. log (HOURS + 20) on the horizontal axis (temperature in 
Rankine degrees). Here, logarithm is with the basis 10, while temperature is in Rankine = temperature in 
Fahrenheit + 460. Figure 4.10 illustrates the general trend in the capability of the optimizer to create 
alloys with superior performance as a function of the number of alloying elements chosen for 
optimization. 
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Fig. 4.6. Time-to-rupture vs strength interdependence of optimization objectives for three-
objectives Pareto set with 17 chemical elements (top) and with 9 chemical elements (bottom). 
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Fig. 4.7. Time-to-rupture vs strength and temperature vs strength interdependences of 
optimization objectives for Pareto set resulting from a three-objectives optimization  

with 17 chemical elements (left) and with 9 chemical elements (right). 
 

 
 

      
 

Fig. 4.8. Topography of response surfaces of three-objective optimization problems  
with 17 chemical elements (left) and with 9 chemical elements (right). 
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Fig. 4.9. Larsen-Miller diagram for Pareto sets resulting from a three-objective optimization  
with 17 chemical elements (left) and with 9 chemical elements (right). 
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Fig. 4.10. Influence of the number of optimized alloying elements on the properties of the 
optimized superalloy; 1 – eight element, 2 – nine elements, 3 – eleven elements, 4 – fourteen 
elements, 5 – seventeen elements. A similar trend was observed with the maximum strength. 

 
 
Analysis of these figures shows that the increase of temperature, for instance, leads to a decrease of 
compromise possibilities between PSI and HOURS. Hence, if a researcher knows exactly in what 
temperature range the alloy being designed will be used, it would be more economical to solve a sequence 
of two-objective optimization with an additional constraint for the third objective. Thus, a more efficient 
approach to optimizing alloy compositions could be to solve a sequence of two-objective optimization 
problems in which PSI and HOURS are regarded as simultaneous objectives, while imposing the 
following constraints on temperature: 
 

• Problem 2. - C 780≥T  (1600ºF), number of Pareto optimal solutions is 20. 
• Problem 3. - C 982≥T  (1800ºF), number of Pareto optimal solutions is 20. 
• Problem 4. - C 1038≥T  (1900ºF), number of Pareto optimal solutions is 20. 
• Problem 5. - C 1093≥T  (2000ºF), number of Pareto optimal solutions is 15. 
• Problem 6. - C 1121≥T  (2050ºF), number of Pareto optimal solutions is 10. 

 
The decrease of the number of simultaneous optimization objectives (transition from three- to two-
objectives problem with constraints on temperature) leads to a decrease of the number of additional 
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experiments needed, at the expense of both decreasing the number of Pareto optimal points and 
decreasing the ranges of chemical compositions. Figure 4.11 presents sets of obtained Pareto optimal 
solutions in objectives space. It can be seen that maximum achievable values of HOURS and PSI and the 
possibilities of compromise between these parameters largely depend on temperature. For instance, the 
increase of minimum temperature from 870ºC to 1038ºC leads to a decrease of attainable PSI by more 
than 50%. At the same time, limiting the value of HOURS will not alter with the change of temperature. 
Larsen-Miller diagrams for this set of cases (two-objective optimization for five temperatures) are shown 
in Fig. 4.12. 
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Fig. 4.11. Sets of Pareto optimal solutions of five two-objective optimization  
problems with 17 chemical elements (top) and with 9 chemical elements (bottom). 
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Fig. 4.12. Larsen-Miller diagrams for Pareto sets resulting from five two-objective optimization 
problems with 17 chemical elements (top) and with 9 chemical elements (bottom). 
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5. Accomplishments 
The tool developed in this project occurred through very strong industrial interaction. For example, a 
large database of creep properties and detailed chemical analysis used in this project was provided by 
Duraloy. Based on Duraloy supplied data, the current project identified several alternate compositions of 
H-Series steels that could deliver improved creep strength properties. ORNL took some of the 
compositions identified through this analysis and further investigated them for phase analysis and 
microstructural validation. Two of the compositions were produced and tested for their creep properties.  
 
Duraloy, the main producer of H-Series steels has not directly used the outcome of algorithm developed 
in this project. However, further optimized H-Series compositions based on ORNL work using the phase 
stability and volume fraction have been cast and fabricated into radiant burner tube assemblies. One of 
these assemblies is currently in test at Nucor steel.  
 
The algorithm developed in this project has a strong commercial use potential in that it can assist in 
predicting the properties of the compositions that are within the range of the data used, but the specific 
composition for an application has not yet been produced or tested. The implementation of such a 
capability by industry will require the development of an interactive computer-based tool with range of 
property prediction options and data output that can be used directly by production, sales and design 
engineers. 
 
For convenience, a web site containing pertinent papers, reports, and other information on this project has 
been established at http://www.ms.ornl.gov/mpg/sikka.html. 
 

5.1  Technical Accomplishments 
The major technical accomplishment from this project was the development of two new formulations for 
the design of superior alloy chemical compositions: (1) a direct multi-objective optimization formulation 
that creates chemical compositions with extreme properties (maximum strength, temperature, and time-to-
rupture) and (2) an inverse design formulation that creates multiple new alloy concentration, each 
satisfying prescribed values of desired operating stress, temperature and life expectancy.  

 
Both alloy design methods used an evolutionary optimization algorithm that utilizes neural networks, 
radial basis functions, Sobol’s algorithm, and self-adapting multidimensional response surface concepts.  
Since physical/mechanical properties of all alloys used in this study were performed using standard 
experimental techniques, the predicted properties of the optimized alloys are considered to be 
automatically validated. 

 
The alloy design methods developed in this project are applicable to the design of any type of alloy and 
can easily accommodate desired features of new alloys such as low cost, low weight, availability, and 
processability. Conceptually, these alloy design methods could also incorporate uncertainty in the alloy 
manufacturing and testing procedures and in thermal and mechanical posttreatment of the new alloys. 

 
Results from this project were reported in six technical papers (see Sect. 5.3 for details). 
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5.2  Technology Transfer 
The H-Series steel producer, Duraloy, and one of the users, ISG Plate (previously Bethlehem Steel), were 
made aware of the outcome of this project through project progress presentations at the ITP/IMF annual 
project review meetings. This was the most direct transfer of the outcome of the project to its partners. 
Technology transfer to a broader audience occurred through presentations of this work at the national 
meetings of TMS and two topical conferences dealing with multidisciplinary analysis and optimizations. 
One presentation was also made at an international conference in Brazil. In addition to presentations, six 
technical papers were published, which further enhanced the transfer of technology. Also, some of the 
results of this project were incorporated into the Duraloy/ORNL project on development of novel 
H-Series steels with improved strength and higher upper use temperature.  

5.3  Publications  

Journal Articles 
I. N. Yegorov-Egorov and G. S. Dulikravich, “Chemical Composition Design of Superalloys for 

Maximum Stress, Temperature, and Time-to-Rupture using Self-Adapting Response Surface 
Optimization,” Materials and Manufacturing Processes, 20, no. 3 (May 2005). 

I. N. Yegorov-Egorov and G. S. Dulikravich, “Inverse Design of Alloys for Specified Stress, 
Temperature, and Time-to-Rupture by Using Stochastic Optimization,” Inverse Problems in Science 
and Engineering, 13, no. 6 (December 2005). 

Papers in Conference Proceedings 
G. S. Dulikravich, I. N. Egorov, V. K. Sikka, and G. Muralidharan, “Semi-Stochastic Multi-Objective 

Optimization of Chemical Composition of High-Temperature Austenitic Steels for Desired 
Mechanical Properties,” pp. 801–814 in Metallurgical and Materials Processing Principles and 
Technologies (Yazawa International Symposium), Vol. 1: Materials Processing Fundamentals and 
New Technologies, ed. F. Kongoli, K. Itakagi, C. Yamaguchi, and H-Y Sohn, TMS Publication, San 
Diego, Calif., March 2–6, 2003. 

N. Yegorov-Egorov and G. S. Dulikravich, “Inverse Design of Alloys for Specified Stress, Temperature, 
and Time-to-Rupture by Using Stochastic Optimization,” Proceedings of International Symposium on 
Inverse Problems, Design, and Optimization — IPDO, ed. M. J. Colaco, G. S. Dulikravich, and H. R. 
B. Orlande, Rio de Janeiro, Brazil, March 17–19, 2004. 

G. S. Dulikravich, I. N. Yegorov-Egorov, V. K. Sikka, and G. Muralidharan, “Optimization of Alloy 
Chemistry for Maximum Stress and Time-to-Rupture at High Temperature,” 10th AIAA/ISSMO 
Multidisciplinary Analysis and Optimization Conference, Albany, N.Y., Aug. 30–Sept. 1, 2004. 

G. S. Dulikravich and I. N. Yegorov-Egorov, “Robust Optimization of Concentrations of Alloying 
Elements in Steel for Maximum Temperature, Strength, Time-to-Rupture, and Minimum Cost and 
Weight,” invited lecture, ECCOMAS 2005: Computational Methods for Coupled Problems in Science 
and Engineering, ed. M. Papadrakakis, E. Onate, and B. Schrefler, Fira, Santorini Island, Greece, 
May 25–27, 2005. 

Presentation Only (Abstract) 
G. S. Dulikravich, I. N. Yegorov-Egorov, V. K. Sikka, and G. Muralidharan, “Semi-Direct and Inverse 

Design of High-Temperature Alloys Using Multi-Objective Stochastic Optimizaiton,” invited lecture, 
Symposium on Materials by Design: Atoms to Applications, 2004 Annual Meeting of TMS, 
Charlotte, N.C., March 14–18, 2004. 
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6. Conclusions 
 
Two new formulation methods for the design of superior alloy chemical compositions have been 
developed. 

 
1. A direct multi-objective optimization formulation that creates chemical compositions with 

extreme properties (maximum strength, temperature, and time-to-rupture). 
2. An inverse design formulation that creates multiple new alloy concentration each satisfying 

prescribed values of desired operating stress, temperature and life expectancy.  
 

Both alloy design methods use an evolutionary optimization algorithm that utilizes neural networks, 
radial basis functions, Sobol’s algorithm, and self-adapting multidimensional response surface concepts.  
 

Evaluations of physical properties of all alloys were performed using classical experimental techniques, 
thus automatically confirming the validity of the predictions of properties of the optimized alloys. These 
alloy design methods are applicable to design of any type of alloys and can easily account for additional 
desired features of new alloys such as low cost, low weight, availability, and processability. Conceptually, 
these alloy design methods could also incorporate uncertainty of the alloy manufacturing and testing 
procedures and thermal and mechanical posttreatment of the new alloys. 
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7. Recommendations 
 
For effective use of the outcome of the algorithm developed in this project, the development of an 
interactive computer-based tool with range of property prediction options and data output that can be 
directly used by production, sales and design engineering staff is recommended. After the tool is 
developed, selective experimental validation of certain predicted properties is highly recommended. 
 
Analytical tools such as those developed in this project need very large well-characterized databases. 
Within the databases, the algorithm can lead a variety of alternate compositions or properties for a 
specified composition. The extrapolation of predicting capability outside the range of data requires 
experimental validation. For the use of the project outcome, results need to be converted into an 
interactive computer-based tool that can produce data output in the forms that the industrial engineers are 
used to seeing. This development needs further support. 
 
The major barrier to developments of this approach is the need for large well-characterized property 
databases with detailed chemical analysis. Although, a good database existed for creep properties, similar 
database corrosion properties is not easy because of the large number of variables involved and many 
different test methods used. Thus, an effort is needed to find a way to normalize the corrosion database. 
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