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ABSTRACT 
 
This report is being submitted as the Quarterly Technical Progress Report covering the period 
July 1, 2004 through September 30, 2004.  During this period a Topical Report was prepared 
that includes research conducted.  The cover sheet, abstract, list of figures, tables and 
executive summary of that report is attached.  
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ABSTRACT 

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based 

sorbents for the capture of CO2 from power plant flue gas.  Electrobalance, fixed-bed and fluid-

bed reactors were used to examine both the CO2 capture and sorbent regeneration phases of 

the process.  Sodium carbonate–based sorbents (calcined sodium bicarbonate and calcined 

trona) were the primary focus of the testing.  Supported sodium carbonate and potassium 

carbonate sorbents were also tested. 

Sodium carbonate reacts with CO2 and water vapor contained in flue gas at temperatures 

between 60 and 80ºC to form sodium bicarbonate, or an intermediate salt (Wegscheider’s salt). 

Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of 

CO2 and H2O.  The low temperature range in which the carbonation reaction takes place is 

suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, 

but limits the concentration of water vapor which is an essential reactant in the carbonation 

reaction.  Sorbent regeneration in an atmosphere of CO2 and water vapor can be carried out at 

a temperature of 160ºC or higher.  Pure CO2 suitable for use or sequestration is available after 

condensation of the H2O.  Flue gas contaminants such as SO2 react irreversibly with the sorbent 

so that upstream desulfurization will be required when sulfur-containing fossil fuels are used.  

Approximately 90% CO2 capture from a simulated flue gas was achieved during the early stages 

of fixed-bed reactor tests using a nominal carbonation temperature of 60ºC.  Effectively 

complete sorbent carbonation is possible when the fixed-bed test is carried out to completion.  

No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation 

conditions coupled with regeneration in pure CO2 at 160ºC.  

Fluidized-bed reactor tests of up to five cycles were conducted.  Carbonation of sodium 

carbonate in these tests is initially very rapid and high degrees of removal are possible.  The 

exothermic nature of the carbonation reaction resulted in a rise in bed temperature and 

subsequent decline in removal rate.  Good temperature control, possibly through addition of 

supplemental water and evaporative cooling, appears to be the key to getting consistent carbon 

dioxide removal in a full-scale reactor system. 

The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates 

laboratory investigations as well as the design of larger scale systems.  Also their low attrition 



resistance appears unsuitable for their use in dilute-phase transport reactor systems.  Sodium 

and potassium carbonate have been incorporated in ceramic supports to obtain greater surface 

area and attrition resistance, using a laboratory spray dryer.  The caking tendency is reduced 

and attrition resistance increased by supporting the sorbent.  Supported sorbents with loading of 

up to 40 wt% sodium and potassium carbonate have been prepared and tested.  These 

materials may improve the feasibility of large-scale CO2 capture systems based on short 

residence time dilute-phase transport reactor systems. 
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EXECUTIVE SUMMARY 

This report contains information relating to research on the capture of CO2 from flue gas using  

dry, regenerable, alkali carbonate–based sorbents.  The research was sponsored by the U.S. 

Department of Energy, National Energy Technology Laboratory.  RTI International1 (RTI) was 

the prime contractor and Louisiana State University (LSU) served as subcontractor.  Church and 

Dwight, Inc. was the industrial partner for the project.   

Combustion of fossil fuels since the beginning of the industrial revolution is believed to be a 

major cause of the increased concentration of CO2 in the atmosphere.  It is becoming clear that 

improved energy efficiency and substitution of low-carbon fuels, while important, will not be 

sufficient to limit the growth of atmospheric CO2 concentrations.  New technologies for the 

capture and sequestration of CO2 are needed. 

The only currently available process for the capture of CO2 from flue gas streams is based on 

amine scrubbing, a costly and energy-intensive process.  The regenerable sorbent-based 

process being developed in this project provides an alternate to amine scrubbing.  This process 

is applicable to the capture of CO2 from existing fossil fuel–fired power plants and is potentially 

applicable to CO2 capture from all stationary fossil fuel combustion sources. 

The important reactions involved in the capture of CO2 using sodium carbonate (Na2CO3) 

sorbents result in the reversible formation of sodium bicarbonate (NaHCO3) and Wegscheider's 

salt (Na2CO3•3NaHCO3): 

Na2CO3(s) + CO2(g) + H2O(g) ↔ 2NaHCO3(s) 

and 

Na2CO3(s) + 0.6 CO2(g) + 0.6 H2O(g) ↔ 0.4[Na2CO3•3NaHCO3(s)]. 

Both forward reactions are exothermic.  CO2 capture is accomplished by the forward reactions 

while equal molar quantities of CO2 and H2O are produced by the reverse, or sorbent 

regeneration, reactions.  Condensation of H2O from the regeneration product gas results in a 

pure CO2 product suitable for use or sequestration.  

Laboratory studies of the CO2 capture and regeneration reactions have been conducted in an 

electrobalance (thermogravimetric analyzer) and in bench-scale fixed-bed and fluidized-bed 

                                                 
1 RTI International is a trade name of Research Triangle Institute. 



 

reactor systems.  Physical properties of sorbents including several grades of calcined sodium 

bicarbonate (SBC), calcined trona, and potassium carbonate have been determined.  

Multicycle tests have been conducted to provide preliminary information on sorbent durability.  

The carbonation reaction was studied in the electrobalance between 60ºC and 80ºC using, in 

most cases, a feed gas containing 8% CO2 and 16% H2O, with the balance made up of an inert 

gas (either He or N2).  These CO2 and H2O contents simulate the flue gas formed from the 

complete combustion of CH4 using 10% excess air.  Calcination was studied between 120oC 

and 200oC in an atmosphere ranging from 0% CO2 (100% inert) to 100% CO2.  Low-

temperature calcination in an inert atmosphere, while not commercially feasible, was chosen to 

minimize the severity of the sorbent exposure during the calcination phase.  If pure CO2 is to be 

produced in a commercial process, a high-CO2 calcination atmosphere must be used along with 

a higher calcination temperature.  These tests confirmed that the optimal carbonation 

temperature was in the 60ºC to 70ºC range.  The minimum temperature is established by the 

dew point of the feed gas while the maximum temperature is limited by the thermodynamics of 

the reversible carbonation reaction.  The carbonation rate was found to increase with increases 

in both the H2O and CO2 concentrations. 

The addition of SO2 (0.1% to 0.4%) to the carbonation feed gas to simulate the flue gas 

composition from combustion of a sulfur-containing fuel produced a rapid decrease in CO2 

removal capacity due to the formation of Na2SO3.  For example, when 0.1% SO2 was added to 

the feed gas, the sorbent capacity for CO2 removal decreased by about 76% during five-cycle 

tests.  The Na2SO3 was stable in an inert atmosphere at temperatures as high as 200oC.  When 

sulfur-containing fossil fuels are used, the CO2 sorbent capture step must be downstream of a 

desulfurization step. 

Fixed-bed reactor tests with product gas analysis as a function of time using gas 

chromatography were used to study the extent of CO2 removal as a function of time.  Nominal 

carbonation temperatures of 60oC and 70oC were studied, along with calcination in N2 at 120oC 

and in CO2 at both 160oC and 200oC.  Five-cycle tests and one 15-cycle test were used to 

obtain additional information on sorbent durability.  When the fixed-bed tests were carried to 

completion, the final percentage conversion of Na2CO3 to Wegscheider’s salt was approximately 

100% in the 60ºC tests and about 90% in the tests at 70oC. 



 

Fluidized-bed reactor tests of up to five cycles were conducted.  Carbonation of sodium 

carbonate in these tests was initially very rapid and high degrees of removal were obtained.  

The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and 

subsequent decline in removal rate.  Good temperature control, possibly through water addition 

and subsequent evaporative cooling, appears to be the key to getting consistent carbon dioxide 

removal in a full-scale reactor system. 

The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates 

laboratory investigations as well as the design of larger scale systems.  The low temperature 

range in which the carbonation reaction takes place is suited to treatment of coal-derived flue 

gases following wet flue gas desulfurization processes, but limits the concentration of water 

vapor which is an essential reactant in the carbonation reaction.  Also these sorbents have low 

attrition resistance and cannot be used without modification in dilute-phase transport reactor 

systems. 

Sodium and potassium carbonate have been incorporated in high surface area ceramic 

supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer.  

The caking tendency is reduced and attrition resistance increased by supporting the sorbent.  

Supported sorbents with loadings of up to 40 wt% sodium and potassium carbonates have been 

prepared and tested.  These materials may improve the feasibility of large-scale CO2 capture 

systems based on short residence time dilute-phase transport reactor systems. 


