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Abstract 
 
Here we describe a technique for solving the four-field extended-magnetohydrodynamic 

(MHD) equations in two dimensions.  The introduction of triangular high-order finite 

elements with continuous first derivatives (C1 continuity) leads to a compact representation 

compatible with direct inversion of the associated sparse matrices.   The split semi-implicit 

method is introduced and used to integrate the equations in time, yielding unconditional 

stability for arbitrary time step.  The method is applied to the cylindrical tilt mode problem 

with the result that a non-zero value of the collisionless ion skin depth will increase the 

growth rate of that mode.  The effect of this parameter on the reconnection rate and geometry 

of a Harris equilibrium and on the Taylor reconnection problem is also demonstrated.  This 

method forms the basis for a generalization to a full extended-MHD description of the 

plasma with six, eight, or more scalar fields. 
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I. Introduction 

It has been recognized for some time that it is necessary to go beyond the simple "resistive 

MHD" description of the plasma in order to get the correct quantitative results for the growth 

and saturation of global dissipative modes in a fusion device. The inclusion of a more 

complete "generalized Ohms law" and the off-diagonal terms in the ion pressure tensor 

introduce whistler waves, kinetic Alfvén waves, and gyro-viscous waves, all of which are 

dispersive and require special numerical treatment. We describe a numerical approach to 

solving these extended-MHD equations using a compact representation that is specifically 

designed to yield efficient, high-order-of-accuracy implicit solutions of a general formulation 

of the extended-MHD equations. The representation is based on a triangular finite element 

with fifth order accuracy that is constructed to have continuous derivatives across element 

boundaries.  The Galerkin technique allows this element to be applied to systems of 

equations containing spatial derivative operators of up to fourth order. The final set of 

discrete block matrix equations is solved using a parallel sparse direct solver. 

For the general formulation, the magnetic and velocity fields are decomposed without loss of 

generality in a potential, stream function form as in [1].  Formulating the problem in these 

variables allows two non-trivial subsets of equations that can be studied before embarking on 

the full set of equations.  The two-variable system described in [2] is the well known two-

field “reduced MHD” equations consisting of a single flux function for the magnetic field 

and a single stream function for the velocity.  The present paper describes the method applied 

to a more complex subsystem:   the four-field reduced MHD equations, also known as the 

reduced two-fluid MHD equations.   This set of equations contains both MHD behavior 

associated with the shear Alfvén wave and the essential features of the whistler and kinetic 
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Alfvén wave physics.  Variations of these equations have been extensively studied in the 

literature [3-5]. 

We present the four-field equations in Sec. II, and then describe the split semi-implicit 

method for their solution in Sec. III and the numerical stability of this method in Sec. IV.  

Sections V, VI, and VII present applications of this method to three model problems: 

presenting new results on the effect of the collisionless ion skin depth on the growth rate of 

the tilt mode in Sec. IV and confirming the importance of this term on reconnection rates in 

Secs. VI and VII.   The paper is summarized with discussion in Sec. VIII. 

II. The Equations 

The reduced two-dimensional (x,y) two-fluid MHD equations in the limit of zero electron 

mass can be written [3] 

2 2 2, ,
t

4φ φ φ ψ ψ µ∂ ⎡ ⎤ ⎡ ⎤∇ = ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦∂
φ  ,                                                           (1a) 

[ ] [ ] 2, ,z
z z

V V I V h
t

φ ψ µ µ∂
= + + ∇ − ∇

∂
4

zV  ,                                                   (1b) 

[ ] [ ] 2, ,id I
t

4ψ φ ψ ψ η ψ ν∂
= + + ∇ − ∇

∂
ψ   ,                                                   (1c) 

[ ] [ ]2 2, , ,i z
I 4I d V I
t

φ ψ ψ ψ η∂ ⎡ ⎤= + ∇ + + ∇ − ∇⎣ ⎦∂
Iν  .                                  (1d) 

Here we have utilized the Poisson bracket notation: 

[ ] ˆ,a b a b z≡ ∇ ×∇ ⋅ . 

Here, φ  is the in-plane velocity stream function,  is the z-component of the velocity, zV ψ  is 

the magnetic flux function, and I is the z-component of the magnetic field.   Thus, the 

magnetic field and (incompressible) fluid velocity are represented as:  ˆ ˆB zψ Iz= ∇ × +
G
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; .    It is shown in [3] that Eqs. (1a-d) are valid in the low guide-field limit 

in which whistler waves are the dominant two-fluid effect, but that a very similar set of 

equations is valid in the high guide-field limit in which the kinetic Alfvén wave is prominent.  

Thus, we take the Eqs. (1) to be typical of the extended MHD equations in two dimensions. 

ˆ zV zφ= ∇ × +
G

ˆV z

 

The fluid viscosity, electrical resistivity, hyper-resistivity (or electron viscosity) and 

collisionless ion skin depth are given byµ ,η ,ν , and .   The parameter h is a hyper-

viscosity coefficient added to damp spurious oscillations that might otherwise develop. 

Terms involving the electron mass have been neglected.  The two-field reduced MHD system 

studied in [1] are just Equations (1a) and (1c) with the parameter  set to zero. 

id

id

 

The equations (1) have the energy integral (in the absence of sources): 

{ }
2 22 22 2

2 22 21
2 2 2 22 2 2

2

( )

ˆ

z

z

z

V I
V I dA dA

t h V I

d n

µ φ µ η ψ η
φ ψ

µ ν ψ ν

ψ ψ

⎧ ⎫∇ + ∇ + ∇ + ∇∂ ⎪ ⎪∇ + + ∇ + = − ⎨ ⎬∂ ⎪ ⎪+ ∇ + ∇ ∇ + ∇⎩ ⎭

+ ∇ ∇

∫∫ ∫∫

∫ A iv

  .  (2) 

To derive (2), we have assumed the perturbed variables obey the boundary conditions: 

2
1ˆ ˆ ˆ 0z zn V h n V I n Iφ µ φ µ ψ ν ψ ν= ∇ = = ∇ = = ∇ = = ∇ =� � � � �� �i i i �

t

. 

 

III. The Numerical Method: 

To derive the implicit system, we Taylor expand the RHS of Eq. (1) in time to center the 

spatial derivatives at the advanced time: n nt tθ θδ+ ≡ + , keeping only the terms through first 

order in the time step tδ .  This gives 
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2 2 2 2 2

2 2 4

, , ,

, ,

t t

t t t 4

,φ φ φ θδ φ φ θδ φ φ ψ ψ

θδ ψ ψ θδ ψ ψ µ φ θδ µ φ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡∇ = ∇ + ∇ + ∇ + ∇⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ ∇ + ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦

� � �

�� �

⎤⎦                                 (3a) 

[ ] [ ] [ ]
2 2 4 4

, , , , ,z z z z

z z z z

V V t V t V I t I t I

V t V h V h t V

,φ θδ φ θδ φ ψ θδ ψ θδ ψ

µ µθδ µ µ θδ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + +⎣ ⎦ ⎣ ⎦⎣ ⎦
+ ∇ + ∇ − ∇ − ∇

�� � � �

� �
                    (3b) 

[ ] [ ] [ ] [ ]
2 2 4 4

, , , , ,i i it t d I d t I d t

t t

, Iψ φ ψ θδ φ ψ θδ φ ψ ψ θδ ψ θδ ψ

η ψ ηθδ ψ ν ψ νθδ ψ

⎡ ⎤ ⎡ ⎤= + + + + + ⎣ ⎦⎣ ⎦
+ ∇ + ∇ − ∇ − ∇

� �� � �

� �
                     (3c) 

 
[ ]

[ ] [ ]

2 2 2

2 2 4 4

, , , , ,

, , ,

i i i

z z z

I I t I t I d d t d t

V t V t V I t I I t I

,φ θδ φ θδ φ ψ ψ θδ ψ ψ θδ ψ ψ

ψ θδ ψ θδ ψ η ηθδ ν νθδ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦
⎡ ⎤+ + + + ∇ + ∇ − ∇ − ∇⎣ ⎦

�� � � �

� ��
⎦

�
     (3d) 

The split semi-implicit method consists of  using Eqs.  (3c) and (3d) , but with the field time 

derivatives ψ�  and I� on the right of the equal sign set to zero and ignoring (small) dissipative 

terms, to eliminate time derivatives ψ�  and I� from Eqs.  (3a) and (3b).  This has the effect of 

isolating the linearized Alfvén wave characteristics in those two equations.  Thus, the 

modified velocity equations become: 

[ ] [ ]( ) [ ] [ ]( )

{ }

2 2 2 4

2 2

2 2 4

2 2 2

, ,

, , , , , ,

, ,

( ) , , , ,

i id I d I
t

t

φ φ φ ψ ψ µ φ

φ ψ ψ ψ ψ φ ψ ψ
θδ

φ φ φ φ µ φ

θδ φ ψ ψ ψ φ ψ

⎡ ⎤ ⎡ ⎤∇ = ∇ + ∇ + ∇ +⎣ ⎦ ⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡∇ + + ∇ +⎣ ⎦ ⎣⎪ ⎪+ ⎨ ⎬

⎡ ⎤ ⎡ ⎤+ ∇ + ∇ + ∇⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ ∇ + ∇⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

�

� � �

� �

⎤⎦  ,              (3a)′ 

[ ] [ ]

[ ] [ ]( )
[ ] [ ]( )

( ){ }

2 4

2

2 4

2

, ,

, , , ,

, , , , ,

( ) , , , , ,

z z z z

i z

i z

z z

z

V V I V h V

I d V

t I d I V V

V h V

t I V I

φ ψ µ µ

φ ψ ψ ψ ψ

θδ φ ψ ψ φ φ

µ µ

θδ φ ψ ψ φ ψ

= + + ∇ − ∇

⎧ ⎫⎡ ⎤⎡ ⎤+ ∇ +⎣ ⎦⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤ z⎡ ⎤+ + + + +⎨ ⎬⎣ ⎦⎣ ⎦ ⎣ ⎦
⎪ ⎪
+ ∇ − ∇⎪ ⎪
⎩ ⎭

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤+ + +⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

�

� �

� �

� ��

  .                           (3b)′ 
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The system (3a)′ , (3b)′ , (3c) and (3d) is solved each time step as two pairs of equations, 

with Eqs. (3a)′ and (3b)′ being solved first to obtain the velocity time derivatives , 

and these being substituted into Eqs.  (3c) and (3d), which are then solved to obtain the field 

time derivatives

and zVφ� �

and Iψ �� .   

 

The motivation is to form two compact systems that can be efficiently solved each time step 

using elementary matrix methods.   The Courant time step restriction associated with the 

Alfvén waves is eliminated by the implicit simultaneous solution of (3a)′  and (3b)′ .  Since  

Eqs.  (3c) and (3d) contain the mechanism for the whistler waves, at least in the electron 

MHD (EMD) model [6], these can next be solved implicitly to remove the severe time step 

restriction associated with the dispersive whistler waves.   

 

A similar technique, but applied to the Alfvén wave only, has been called the “differential 

approximation” in [7] and [8]. The present treatment differs from those in the time-centering 

of the variables and in the retention of terms linear in tδ  in the modified equations (3a)′ and 

(3b)′.  However the major difference between this and previous work is in the extension of 

this technique to the whistler wave through equations (3c) and (3d).  The numerical stability 

of this system is discussed in Sec. IV. 

 

To obtain the discrete matrices, we first finite difference in time, with the 

notation: , with n being the time index.  If we define the time step 

 then the second order expression for the time derivative, centered 

( , ) ( , , )n x y x y tφ φ≡ n

n1n nt t tδ +≡ −
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about , is1/ 2nt t +=
1

2 1( , , ) ( , ) ( , )n n nt x y t x y x yδ φ φ φ+ +≅ −� .   By making use of the readily 

verified identity,  

[ ] [ ]2 2 2, , , 2 , 2 ,x x y ya b a b a b a b a b⎡ ⎤ ⎡ ⎤ ,⎡ ⎤∇ = ∇ + ∇ + + ⎣ ⎦⎣ ⎦ ⎣ ⎦                                          (4) 

straightforward manipulation gives the following set of equations relating the variables at 

time level n+1 to those at time level n: 

{ } { }2 1 2 2 1 2 1 3 2 2 2 2
11 11 11 11 11 1 1( ) ( 1)( ) ( )v v n v v v n vtL t L tL tL t L t R tRθδ θδ φ θδ δ θ θ δ φ θ δ δ+∇ − − = ∇ − + − − + + 1v     (5a) 

{ } { }
{ } {

1 2 2 1 1 2 2 1
21 21 22 22

1 3 2 2 1 3 2 2
21 21 21 22 22 22

2 2 1
2 2

( ) ( ) 1 ( )

( 1)( ) 1 ( 1)( )

( )

v v n v v n
z

v v v n v v v} n
z

v v

t L t L tL t L V

tL tL t L tL tL t L V

t R tR

θδ θδ φ θδ θδ

θδ δ θ θ δ φ θδ δ θ θ δ

θ δ δ

+ +− − + − − =

− + − − + − + − −

+ +

      (5b) 

{ } { }1 1 1 1 1 1
11 12 11 12 11 1 (1 ) 1p n p n p n p ntL tL I tL tL I tRθδ ψ θδ θ δ ψ θδ δ+ +− − = + − − + p                    (5c) 

{ } { }1 1 1 1 1 1
21 22 21 22 21 1 (1 ) 1p n p n p n p ntL tL I tL tL I tRθδ ψ θδ θδ ψ θ δ δ+ +− + − = − + + − + p                  (5d) 

Here, we have defined the operators: 

{ }
{ }

{ }

1 1 1 2 2 1 4 1
11

2 1 1 2 2 1 2 1
11

1 1

3 2 4
11

2 2 2
1

, ,

, , , , , ,

2 , , 2 , ,

,

, , ,

v n n n n

v n n n n

n n
x x y y

v n

v
i i

L

L

L

R d I d

φ φ φ φ φ µ φ

φ φ ψ ψ φ ψ ψ ψ φ ψ

φ ψ ψ φ ψ ψ

φ φ φ µ φ

ψ ψ ψ

+ + + +

+ + + +

+ +

⎡ ⎤ ⎡ ⎤= ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎡= ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤= ∇ + ∇⎣ ⎦
⎡ ⎤⎡ ⎤= ∇ + ∇⎣ ⎦⎣ ⎦ [ ]

[ ]

2

1 2
1

, ,

2 , , 2 , ,

,

i

i x x i y y

v

⎤⎤⎦⎦

,I d I

d I d I

R

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

⎡ ⎤⎡ ⎤ ⎡+ ∇ ⎤⎣ ⎦ ⎣⎣ ⎦
⎡ ⎤⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= ∇⎣ ⎦

⎦

                            (6a) 
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{ }
{ }
{ }
{ }
{ }
{ }

1 1 1
21

2 1 1 1
21

1 1 1 2 1
22

2 1 1
22

3 1
21 2

3 21
22 2

2 2
2

,

, , , ,

,

, ,

,

,

, , ,

v n n
z

v n n n

v n n n
z z z

v n n
z z

v n
z

v n
z z z

v
i i

L V

L I I

L V V V

L V V

L V

L V V V h V

R d d I

φ φ

φ φ ψ φ ψ

φ µ

ψ ψ

φ φ

φ µ µ

ψ ψ ψ

+ +

+ + +

+ + +

+ +

⎡ ⎤= ⎣ ⎦
⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣
⎡ ⎤= + ∇⎣ ⎦
⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= + ∇ − ∇⎣ ⎦
⎡ ⎤⎡ ⎤= ∇ +⎣ ⎦⎣ ⎦ [ ]

[ ]1
2

,

,v

4
z

⎤⎦

I

R I

ψ

ψ

⎡ ⎤⎣ ⎦

=

                                                  (6b) 

{ }
{ }

{ }
{ }

1 1 1 1 2 1 4 1
11

1 1 1
12

1 1
1

1 1 2 1 2 1 1
21

1 1 1 2 1 4 1
22

1 1
2

, ,

,

,

, , ,

,

,

p n n n n n
i

p n n
i

p n n

p n n n n
i i z

p n n n n

p n n
z

L d I

L I d I

R

L d d V

L I I I I

R I V

ψ φ ψ ψ η ψ ν ψ

ψ

θ φ φ ψ

ψ ψ ψ ψ ψ ψ

φ η ν

θ φ φ

+ + + + +

+ +

+

+ + + +

+ + + +

+

⎡ ⎤ ⎡ ⎤= + + ∇ − ∇⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= −⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∇ + ∇ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= + ∇ − ∇⎣ ⎦

⎡ ⎤= + − +⎣ ⎦{ } [ ]1 2, ,n n
z i zV d V ,ψ ψ ψ ψ+⎡ ⎤ ⎡ ⎤− + ∇ +⎣ ⎦ ⎣ ⎦

             (6c) 

We next represent each of the unknown scalar fields as a set of time-varying amplitudes 

multiplying time-independent spatial basis functions [2].  The domain is divided into M 

triangular regions.  Within each triangle m, 18 basis functions are defined, 

{ }, ( , ); 1,18m i x y iν =  with the properties: (i) each of the basis functions is a quintic 

polynomial in (x,y) that has the value unity at one node for either the function or one of its 

first five derivatives,  (ii) the basis function and its first five derivatives are zero at the two 

other nodes, and (iii) the quintic terms in the polynomial are constrained so that the normal 

derivative of the basis function is at most a cubic function along each side of the triangle.  

These conditions are enough to uniquely determine the 21 polynomial coefficients for each 

basis function and to insure that any scalar field represented in terms of these basis functions 

will be continuous and have continuous first derivatives across triangle boundaries.  This 

continuity property is denoted in the literature by C1 [9].  Since the basis functions are 

 8



capable of representing a complete quartic polynomial, it follows from a Taylor’s series 

expansion that the error should go like h5, where h is a typical size of a triangle. 

 

Using these basis functions, the unknown quantities take the physical significance of being 

the function, its two first, and three second derivatives at each of the nodes.  For example, the 

stream function is represented as a sum over each of the 18 basis functions in each of the M 

triangles: 

18

;
1 1

( , ) ( , )
M

n
m i m i

m i

x y x yφ ν
= =

= ∑∑ ;
nΦ                                                             (7) 

The unknowns { }; 1,18n
i iΦ =  for triangle m break into three sets of six:  { }, ; 1, 6n

m i iΦ =  

correspond to , , , , ,x y xx xy yyφ φ φ φ φ φ  at the first node, { }, ; 7,12n
m i iΦ =  are the same quantities 

at the second node, and  { }, ; 13,18n
m i iΦ =  are these quantities at the third node.  Note that all 

the unknowns in Eq. (7) are located at the nodes and are thus shared with all triangles using 

that node.  Since there are asymptotically an average of six triangles utilizing each node, 

there are approximately a total of 3×M unknowns for the global representation of each scalar 

field, rather than 18×M, which might be inferred from Eq. (7). 

 

The discrete expansion (7) for each of the four scalar fields is substituted into the four 

equations (5).   The Galerkin method consists of multiplying each equation (5a)-(5d) by each 

of the basis functions (or trial functions) and integrating these over the domain to obtain 

matrix equations for the discrete unknowns.  Integration by parts is used to shift derivatives 

onto the trial functions so that no higher than second spatial derivatives appear in the final 
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integrals.  These are allowable in this procedure since the basis functions were constructed to 

have continuous first derivatives across triangle boundaries. 

 

We next represent each quantity as the sum of an equilibrium part that is independent of time 

and a perturbed part, thus , etc.  This yields the two sets of matrix equations 

that can be solved sequentially:  

0nΦ →Φ +Φn

;

,

n

nI
⎤Ψ
⎥
⎦

;

,

n

nV
⎤Φ
⎥
⎦

 

            (8) 
1

; ;11 11 11 12
1
, ,21 22 21 22 21 22

0 0n nv v v v
m i m i m i
n nv v v v v v

zm i zm i m i

S D R R
V VS S D D R R

+

+

⎡ ⎤ ⎡ ⎤ ⎡Φ Φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣

 

1 1
; ; ;11 12 11 12 11 11
1 1
, , ,21 22 21 22 21 22 21 22

0 0n n np p p p p p
m i m i m i m i

n n np p p p p p p p
zm i zm i zm i zm i

S S D D R Q
I I VS S D D R R Q Q

+ +

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡Ψ Ψ Φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
             (9) 

                               

The block matrix elements appearing here are defined in Appendix B.  The matrix equations 

(8) and (9) are solved sequentially using the distributed version of the direct sparse matrix 

software package SuperLU [10].  This solution procedure is exceptionally efficient for a 

linear system, since only a one-time LU decomposition of the two matrices appearing on the 

left of the equals sign is required.   A nonlinear problem requires performing the LU 

decomposition whenever there is significant change in the values of the matrix elements. 
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IV. Numerical Stability 

The split semi-implicit time advance method given by equations (8) and (9) is based on 

advancing the velocity variables first each time step, followed by advancing the field 

variables.  This clearly leads to a more efficient numerical method than if the coupled system 

were advanced together, since the rank of each matrix appearing on the left in Eq. (9) is half 

of what it would be for the combined system.  To understand how this leads to an 

unconditionally stable time advance, let us consider a simpler problem that has the essential 

features of the one under investigation. 

 

Consider the simplified Hall MHD system for the fluid velocity,V
G

, the perturbed magnetic 

field, B
G

, and the perturbed current density, J B= ∇×
G G

.  Assume for simplicity that the 

equilibrium magnetic field is uniform and in the  direction, and that the density is spatially 

constant.  In suitably normalized units, the linearized momentum equation and the curl of the 

induction equation become simply: 

ẑ

0
V J B
t

∂
= ×

∂

G G G
                                                                                   (10a) 

0( )i
J B V d J B
t t

∂ ∂ ⎡ ⎤= ∇ × = ∇×∇× − ×⎣ ⎦∂ ∂

G G G G G
                                               (10b) 

Setting 0 ˆB z=
G

, and specializing for simplicity to wave propagation in the  direction so 

that

ẑ

ˆ ˆ zz z
z
∂

∇→ ≡ ∂
∂

, and both  are in the  and J
G G

V ˆ ˆx y− plane, the split semi-implicit time 

advance corresponding to equations (5) is 

{ }2 2 1 2 2 ˆ1 ( ) ( )n n n n
it V V t t V d J tzθδ δ θδ δ+ ⎡ ⎤⎡ ⎤− ∇ − = ∇ − ∇ − ×⎣ ⎦ ⎣ ⎦

G G G G
nJ
G

                           (11a) 
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2 1 2 1 2ˆ ˆ1 ( ) [ (1 ) ]n n n n
i itd z J J tz V V td z Jθδ δ θ θ δ+ +⎡ ⎤+ ×∇ − = ×∇ + − − ×∇⎣ ⎦

G G G G
ˆ n

G

z

z

t

d

eff

                 (11b) 

Or, in matrix component form: 

12 2

2 2

2 2

2 2

2 2 2 2

2 2 2 2

2 2

1 ( ) 0 0 0
0 1 ( ) 0 0
0 1

0 1

1 ( 1)( ) 0 ( )
0 1 ( 1)( ) ( )
0 ( 1) 1 ( 1)

( 1)

n
xz

yz

xz i z

yz i z

z i z

z i

z i

Vt
Vt
Jt td
Jt td

t t d
t t t d

t t
t

θδ
θδ
θδ θδ

θδ θδ

θ θ δ θ δ δ
θ θ δ δ θ δ
θ δ θ δ

θ δ

+
⎡ ⎤ ⎡ ⎤− ∂
⎢ ⎥ ⎢ ⎥− ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ − ∂
⎢ ⎥ ⎢ ⎥

− ∂ ∂ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

− − ∂ − ∂
− − ∂ − − ∂

=
− ∂ − − ∂

− − ∂

i

2 20 ( 1) 1

n
x

y

x

yz i z

V
V
J
Jtdθ δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− ∂ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

i

    (12) 

 

The numerical stability is determined by replacing the spatial derivative by an effective wave 

number, , and by introducing the amplification factor r for the vector in Eq. 

(12).  The amplification factor is thus determined by the generalized eigenvalue equation 

2 2 2
z k∇ = ∂ → −

 

2 2 2 2

2 2 2 2

2 2

2 2

1 ( ) 0 ( )
0 1 ( ) ( )

det 0 ,
0

0

eff i eff

eff i eff

eff i eff

eff i eff

r t k s t d k t
r t k s t t d k

tk s r d tk s
tk s d tk s r

θ δ θ δ δ
θ δ δ θ δ
δ δ

δ δ

⎡ ⎤− +
⎢ ⎥− + −⎢ ⎥ =
⎢ ⎥− − −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

              (13) 

 

with [ ](1 ) 1s r θ≡ − − .  Evaluation of  Eq. (13) with both a generalized eigenvalue solver and 

by symbolic expansion of the determinant and using a polynomial root finder give identical 

results:  the amplification factor 1r ≤ , and thus the system is stable, for arbitrary real 

 , 2 0effk > 0tδ > , and  provided the implicit parameter satisfies 0id > 1 2θ ≥ .
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V. The Tilting Cylinder 

Here we apply the method to an extension of the analysis of the tilting cylinder problem 

considered in [2] to the four-field model.  Following [2,11,12] we define an initial force free 

bipolar vortex equilibrium state: 

[ ] ( )
( )

0 10
1

2 / ( ) cos , 1,
( , ) ( ) 0

1/ cos , 1,

kJ k J kr r
x y J k

r r r

θ
ψ

θ

<⎧⎪= =⎨
− >⎪⎩

                              (14a) 

We have defined a polar coordinate system such that cosy r θ= , sinx r θ= .  The initial 

toroidal field is defined as: 

( )2 2 2
00

0

, 1
( , )

1

k x y B r
I x y

B r

ψ⎧ + <⎪= ⎨
>⎪⎩

                                                   (14b) 

It is readily verified that these satisfy the equilibrium condition: 

02
2 0 1

2 0.dI
d

ψ
ψ

∇ + =                                                              (14c) 

This equilibrium is known to be unstable to a tilting motion.  

 

As in [2], the simulation box is a square with sides of length 4 that is divided into (N-1) × (N-

1) rectangular regions, each with two right triangles (using the diagonal that runs from upper 

right to lower left).  Conducting, no slip boundary conditions are applied at the walls. Thus, 

at the y boundary, we impose:  

2

2 0
x x
ψ ψψ ∂ ∂

= = =
∂ ∂

, 
2

2 0I II
x x
∂ ∂

= = =
∂ ∂

,                                        (15) 

2

2 0z z
z

V VV
x x

∂ ∂
= = =

∂ ∂
, 

2 2

2 0
x x y x y
φ φ φ φφ ∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂ ∂

, 
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with similar, but rotated boundary conditions applied at the x-boundary. 

 

The baseline solution used uniform values of η=µ=0.001, h=2(∆x)2, ν=(∆x)2η .  The 

instability is known to persist even at η=0 and is thus considered an ideal instability.   To 

examine the effect of the Hall term on this mode, we specify a value of the ion skin depth di 

and run the code in a linear mode to calculate the linear growth rate.  Figure 1 gives this 

growth rate as a function of the square of di , for which it is seen to have a near linear 

dependence.  Results for both N=15 and N=31 are shown, with those for N=61 being 

indistinguishable from the N=31.  This study was performed with time-step ∆t=0.05, but the 

growth rates changed by less than 2% when going from this value to ∆t=0.20.  The initial 

equilibrium and corresponding eigenmode for the case with N=61 and di=0.2 is shown in 

Fig. 2 (a)-(f) where we display contours of the equilibrium poloidal flux as well as perturbed 

values of the magnetic flux ψ, the current density 2J ψ≡ ∇ , the stream function φ , the z-

directed magnetic field I, and the z-component of the velocity, Vz. 

 

To determine the effect of the dissipation coefficients h and ν on the solution, we have 

recomputed the configuration shown in Fig. 2 with a range of values of these.  We find that if 

we write h = C1(∆x)2  and ν =C2(∆x)2η, then we require C1
 ≥  0.5 and C2

 ≥  0.5 

(approximately) for numerical stability.  However, the computed growth rate increases by 

only 0.013% in varying C1
 in the range [0.5, 2.0], and by 0.53% when varying C2 in this same 

range. 
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VI.  Harris Reconnection 

We define a Harris equilibrium and perturbation similar to the one used in the Geospace 

Environmental Modeling (GEM) magnetic reconnection challenge [13], but within the 

limitations of the four-field equations.  The initial equilibrium, shown in Fig. 3, is defined by 

an equilibrium and a perturbed magnetic flux function as follows: 

( ) ( ) ( )0 1, log cosh 2 ; , cos cos
2 x yx y y x y k x k yψ ψ ε= =                                 (16) 

with all the other quantities initialized to zero.  The initial equilibrium and perturbed current 

densities are just the Laplacian of the flux, 0 2 0 2,J J .ψ ψ= ∇ = ∇ The computation is carried 

out in a rectangular domain  and / 2 / 2x xL x L− ≤ ≤ / 2 / 2yL y Ly− ≤ ≤ .  The system is 

taken to be periodic in the x direction with ideal conducting boundaries, Eq. (15),  at 

.   As in [11], we chose the parameters such that / 2yy L= ± 2 /x xk Lπ= , /y yk Lπ= , with 

25.6, 12.8, 0.1x yL L ε= = = . 

 

We illustrate the results from a pair of comparison calculations in Figs. 3-7 .  Both cases had 

N=61, η=µ=0.001, h =C1(∆x)2, ν =C2(∆x)2η,  C1=4, C2=1, time step, ∆t=0.25; and implicit 

parameter θ=0.6.  The first case had the ion skin depth set to zero, di = 0, while the second 

case had di=1.0.   

 

Figures 4 and 5 show the poloidal magnetic flux (top) and current density (bottom) for the 

two cases at time t=37.5.  We see in Fig. 4 that the case with di = 0 (resistive MHD) has a 

thin current layer on the midplane, known as the Sweet-Parker [14]layer.  The corresponding 

case with di=1.0 (Hall-MHD) is shown in Figs. 5-6.  In comparing Fig. 4 and Fig. 5, we see 
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that the Sweet-Parker layer is much shorter with di=1, and the reconnection region has 

essentially changed character from a Y-point to an X-point as expected[15].  In Fig. 6 we see 

the out of plane (z-directed) velocity (top) and magnetic field (bottom) in the Hall-

reconnection case with di=1.  Large in-out flows develop as a result of the reconnecting 

fields.  The z-component of the magnetic field forms the characteristic quadrupole structure 

near the midplane. 

 

We define the reconnected magnetic flux as: Ψ(t) = ½[ψ(0,0,t) - ψ(Lx/2,0,t)], and the 

reconnection rate as the time derivative of this.  In Figure 7 we show a comparison of the 

amount of reconnected flux (dark curves) and the reconnection rates (red curves) vs time for 

the two cases, with several values of the hyper-dissipation coefficients for the di=1.0 case .  It 

is seen that the Hall reconnection case with di=1.0 causes reconnection to occur about eight 

times faster than the resistive MHD case with di=0 for these parameters, and the results are 

relatively insensitive to the values of C1 and C2 as long as these are near unity.  Varying C1  

in the range [0.75,1.25] or C2 as in the range [2.0,4.0] each cause the maximum growth rate 

to increase by less than 1.5%, indicating that the solution is adequately converged in these 

parameters. 
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VII. The Taylor Problem 

The Taylor problem [3] consists of an initial magnetic field given by the flux function 

( )0 1
2y 2yψ = −                                                                          (17) 

The z-component of the magnetic field, I0(x,y) , is initially zero, as are the velocity variables 

φ0 and Vz
0 .  For times , the top and bottom boundaries are perturbed as follows: 0t ≥

( ) ( )

( ) ( )

, 1 ( ) cos
1, 1 ( ) sin

x t kx

x t k
k

x

ψ ε

φ ε

± =

± = �∓
                                                           (18) 

The left and right boundaries are periodic.  The time dependent perturbation function is 

defined as 

( ) ( ) (0 1 1 exp /tt )tε ε τ
⎡= − + −⎣ τ ⎤

⎦                                                        (19) 

This problem has been studied both theoretically [16] and numerically [17] for the case of 

resistive MHD (di=0), but only numerical results [3] exist for the “two-fluid” or “Hall MHD” 

case of non-zero di.    

The results of a series of calculations with ε 0=.01, τ=1.0, k=2π/Lx, η=µ=10-4 ,h=(∆x)2, ν= 

(∆x)2η are presented in Fig. 8.  The reconnected flux (top) and reconnection rate (bottom) vs. 

time are shown for different values of the collisionless ion skin depth di.  The parameter  di is 

seen to have a significant impact on the reconnection rate, especially at early time.  These 

results are seen to be qualitatively similar to Fig. 1 of Ref. [3], but extend those results to a 

nonlinear regime with a larger perturbation amplitude.  More generally, the fact that di ,or the 

Hall term, can greatly accelerate the rate of forced magnetic reconnection is consistent with 

results reported in earlier studies. 
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The calculations presented in Fig. 8 were performed on a domain with Lx=8, Ly=2, which 

was broken up into 60×60 rectangles, each divided into two triangles with a line from upper 

right to lower left.  The other numerical parameters used were δt=0.5 and θ=0.6.  As in the 

other studies in this paper, there was no attempt to concentrate resolution in the reconnection 

layer, although this could dramatically increase the efficiency of this method and will be 

pursued in future studies. 
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VIII. Summary and Discussion 

A new technique for solving the extended MHD equations has been described and applied to 

the four-field model.  This is a generalization of Appendix D of [2] where the MHD two-

field model was discussed.  The further generalization of this method to the fully 

compressible six-field or eight-field system of the full extended MHD equations is underway. 

 

The method is characterized by representing the fluid and field in a potential/stream-function 

representation [1] in which higher derivatives occur.  The higher derivatives are handled by 

using a compact triangular high-order finite element representation with C1 continuity rather 

than by introducing auxiliary variables that would increase the rank of the matrices. 

 

The split semi-implicit time advance is introduced which breaks the time advance into two 

steps each cycle.  In the first step, the implicit method avoids time-step restrictions due to the 

Alfvén waves by inverting the ideal MHD force operator.  In the second step, the implicit 

field advance avoids time-step restrictions due to the dispersive waves.  It was shown in Sec. 

IV that the combined two-step time advance is unconditionally stable for arbitrary time step 

as long as the implicitness parameter θ is greater than ½.  The relatively small matrices that 

need to be inverted make a direct sparse matrix inversion practical.  A side benefit is that for 

linear problems, the LU decomposition only needs to be performed once, making the method 

exceptionally efficient. 

 

The present work demonstrated the validity of this method by calculating the effects of the 

collisionless ion skin depth on the ideal MHD tilt mode, and on the rate of magnetic 
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reconnection for both a self-reconnecting and a forced reconnection system.  Future work 

will extend this to a higher order system of equations, to toroidal geometry,  and to three 

dimensions. 

 

Finally we remark that we did not take advantage of the geometrical flexibility that is offered 

by triangles in the applications presented here.  Triangular elements offer the potential to fit 

complex domain boundaries and to easily add refinement where needed.  This will be 

exploited in future studies. 
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Appendix A:   Definitions and symmetry relations.   
 
The matrix and tensor quantities used in the text are defined as follows.  These are evaluated 
by closed form integration of the local polynomial expansions as described in Appendices B 
and D of [2]. 
 
 

[ ]

,

2
,

4
,

2
, , , ,

, , , ,

2
, , ,

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ,

( , ) ,

( , ) , ,

i j j i

i j j i

i j j i

i j k j k i k j i j k

i j k j k i i k j j k

i j k l j k l i

D v d d

A v d d

B v d d

G v d d G

K v d d K

P v

ξ η φ ξ η ξ η

ξ η φ ξ η ξ η

ξ η φ ξ η ξ η

ξ η ψ φ ξ η

ξ η ψ φ ξ η

ξ η φ ψ

Φ ≡

Φ ≡ ∇

Φ ≡ ∇

⎡ ⎤Ψ Φ ≡ ∇ = − Ψ Φ⎣ ⎦

Ψ Φ ≡ = − Ψ Φ

⎡ ⎤Ψ Φ Ζ ≡ ∇⎣ ⎦

∫∫
∫∫
∫∫

∫∫
∫∫
∫∫

[ ]
[ ]

[ ]

, , ,

2
, , , , , ,

, , , , , ,

, , , , , ,

, , ,

( : ( , ) , ,

( , ) , ,

( , ) ,

l j k i j k l

k j i l j k l i l j i k j k l

i j k l j k l i i k j l j k l

l j k i j k l l k j i j k l

i j k l j k l i x x

d d P

note P v d d P

Q Z v d d Q Z

Q Z Q Z

R v

ζ ξ η

ξ η ψ ζ φ ξ η

ξ η φ ψ ζ ξ η

ξ η φ ψ

⎡ ⎤ = − Ψ Φ Ζ⎣ ⎦

⎡ ⎤Ψ Φ Ζ = ∇ = − Ψ Φ Ζ⎣ ⎦

Φ Ψ ≡ = − Φ Ψ⎡ ⎤⎣ ⎦
= − Φ Ψ = Φ Ψ

Φ Ψ Ζ ≡

∫∫
∫∫

∫∫ { }

)

, , , , , , , , ,

, ,

, , , , , , , , , , , ,0
, , ,

, , , , , , , , , , , ,

, , , , , ,

,

, , ,

2
2

( )

y y

l j k i j k l i k j l j k l l k j i j k l

i j j i j j

k j i l i j k l i k j l i j k l
i j k l

k l i j i l k j i k l j i l k j

i j k i k j i j k

i j

d d

R R R
D J A

P P P R
C

P P P R

G G G

Q

ζ φ ψ ζ ξ η⎡ ⎤⎡ ⎤+⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
= − Φ Ψ Ζ = − Φ Ψ Ζ = Φ Ψ Ζ

≡ Ψ

− + +⎡ ⎤
≡ ⎢ ⎥− + +⎣ ⎦

≡ +

( )1
, , , , , , , ,2k l i j k l i j l kQ Q≡ +
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Appendix B:  The Matrix Elements 
 
Making use of the definitions and symmetry relations in Appendix A, the matrix elements are 
given as follows:  
 

0
, , , ,

11 2 0 0 01
, , , 2

0
, ,

21 2 0 0 0 0
, , ,

, , , ,
22

( )

( ) ( )( )

( )

( ) ( )( ) ( )( )

( )

i j i j i j k k kv

i k j l k k l l

i j k zk zkv

i j k l k k l l k k l l

i j i j i j i kv

A t B G
S

t C

tK V V
S

t Q I I I I

D t A hB K
S

θδ µ

θδ

θδ

θδ

θδ µ

⎧ ⎫⎡ ⎤+ − + Φ + Φ⎪ ⎪⎣ ⎦= ⎨ ⎬
+ Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭
⎧ ⎫− +⎪ ⎪= ⎨ ⎬

⎡ ⎤− + Ψ + Ψ − Ψ + Ψ +⎪ ⎪⎣ ⎦⎩ ⎭

− − +
=

0
,

2 0 0
, , ,

0 01
, , , , 2

11 2 0 0 01
, , , 2

0 01
, , 2

21

( )

( ) ( )( )

(1 ) ( ) ( )

( 1)( ) ( )( )

( ) ( )

j k k

i j k l k k l l

i j i j i j k k k k kv

i k j l k k l l

i j k zk zk zk zkv

t Q

A t B tG
D

t C

tK V V V V
D

θδ

δ θ µ δ θ

θ θ δ

δ θ

⎧ ⎫⎡ ⎤Φ + Φ⎪ ⎪⎣ ⎦
⎨ ⎬
− Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤+ − + Φ + Φ − Φ + Φ⎪ ⎪⎣ ⎦= ⎨ ⎬
+ − Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭

⎡ ⎤− + + +⎣=
2 0 0 0 0

, , ,

0 01
, , , , , 2

22 2 0 0
, , ,

1
, , 2

11

( 1)( ) ( )( ) ( )( )

(1 ) ( ) ( ) ( )

( 1)( ) ( )( )

(

i j k l k k l l k k l l

i j i j i j i k j k k k kv

i j k l k k l l

i j k k kv

t Q I I I I

D t A hB K
D

t Q

tG
R

θ θ δ

δ θ µ θ

θ θ δ

δ

⎧ ⎫⎪ ⎦
⎨ ⎬

⎡ ⎤− − + Ψ + Ψ − Ψ + Ψ +⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎡ ⎤+ − − + Φ + Φ − Φ + Φ⎪ ⎪⎣ ⎦⎣ ⎦= ⎨ ⎬
− − Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭

Ψ + Ψ
=

⎪

{ }
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0 2
, ,

2 0 0 01
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2 0 0 01
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0 0 0 01 1
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i i j k l k k l l
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t G J

t d C I I

R t d C

tK I I

d P P PR
t

θ δ η

θ δ

θ δ

δ

θ δ

⎧ ⎫+⎪ ⎪
⎨ ⎬

⎡ ⎤+ × + Ψ + Ψ⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤= × Ψ Ψ⎣ ⎦
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⎡ ⎤⎡ ⎤− + + × Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ= ⎣ ⎦ ⎣ ⎦+
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0 0 0 0 01 1 1
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, , 2

01
, , , , 222 2

0 0 0 01
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i i j k l k l k l l k k l i k j i j k k k

i j k k k

v
i j k i k j k k

i i k j l i k l j k l k l l k

d Q I I I I I I I I G G I I

tK
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t

d Q Q I I I

η

δ

η
θ δ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎛ ⎞⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎡ ⎤⎜ ⎟− + + + + − +⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

+ Ψ + Ψ

⎡ ⎤− Ψ + Ψ= ⎣ ⎦
+

⎡ ⎤− + × Ψ + Ψ + Ψ +⎣ ⎦

)

1
3 k lI

⎧ ⎫
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Figure 1:  Dependence of the linear growth rate for the tilt mode on the square of the ion 
skin depth,   Results are shown for calculations with 15×15 and 31×31 rectangles, each 
divided into 2 triangles. 

2
id

 
Figure 2:  Linear eigenmodes for one of the calculations performed for Fig. 1 with N=61 and 
di=0.2 . Shown are contours of (a) the equilibrium magnetic flux, Ψ0; (b) the perturbed 
values of the magnetic flux, ψ; (c) the perturbed current density, J;(d) z-directed magnetic 
field, I; (e) the stream function, φ;  and (f) the z-component of the velocity, Vz,.  The region (-
1.5,1.5) × (-1.5,1.5) is shown while the calculation was performed on a (-2.0,2.0) × (-2.0,2.0) 
domain with conductor boundary conditions imposed. 
 
Figure 3:   Initial equilibrium poloidal magnetic flux ψ (top) and current density J (bottom) 
for the Harris reconnection problem.  
 
Figure 4:  Poloidal magnetic flux (top) and current density (bottom) for the “resistive MHD” 
reconnection at time t=37.5 with di=0. 
 
Figure 5:  Poloidal magnetic flux (top) and current density (bottom) for the “Hall- MHD” 
reconnection at time t=37.5 with di=1.0.  
 
Figure 6:  Out of plane (z-directed) velocity (top) and magnetic field in the Hall-
reconnection case with di=1 (bottom).  Large in-out flows develop as a result of the 
reconnecting fields.  The z-component of the magnetic field forms the characteristic 
quadrupole structure near the midplane. 
 
Figure 7:  Comparison of the amount of reconnected flux (dark curves) and the reconnection 
rates (red curves) vs time for the two cases.  Three runs are shown for the di=1 case with 
C1=1,C2=2 (dashed),  C1=1,C2=4 (dashed), C1=0.75,C2=4 (dashed-dotted).  The 
reconnected flux and reconnection rate are essentially independent of these dissipation 
parameters over this range. 
 
Figure 8: Reconnected flux (top) and reconnection rate (bottom) vs time for the Taylor 
problem for different values of the collisionless ion skin depth di.  Other physical parameters 
were η=µ=10-4, h=(∆x)2  The parameter  di is seen to have a significant impact on the 
reconnection rate, especially at early time. 
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