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ABSTRACT 
Verification of large-scale computational algorithms used in nuclear 
engineering and radiological applications is an essential element of reliable 
code performance.  For this reason, the development of a suite of 
multidimensional semi-analytical benchmarks has been undertaken to 
provide independent verification of proper operation of codes dealing with 
the transport of neutral particles.  The benchmarks considered cover several 
one –dimensional, multidimensional, monoenergetic and multigroup, fixed 
source and critical transport scenarios.  The first approach, called the 
Green’s Function Method (GFM), features a new innovative Fourier 
transform solution based on an analytical moments representation of the 
Green’s function.  In slab geometry, the Green’s function is incorporated 
into a set of integral equations for the boundary fluxes.  Through a numerical 
Fourier transform inversion and subsequent matrix inversion for the 
boundary fluxes, a semi-analytical benchmark emerges.  Multidimensional 
solutions in a variety of infinite media are also based on the slab Green's 
function.  In a second approach, a new converged SN method is developed.  
In this method, the SN solution is “mined” to bring out hidden high quality 
solutions. For this case multigroup fixed source and criticality transport 
problems are considered.  Remarkably accurate solutions can be obtained 
with this new method called the Multigroup Converged SN (MGCSN) 
method as will be demonstrated. 
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INTRODUCTORY REMARKS 
 
The design of nuclear reactors including the accompanying safety analyses 
and burnup predictions are routinely performed in today's large-scale 
computational environments. Methods developers have perfected 
computational algorithms for cross section generation, neutron transport and 
diffusion, and Monte Carlo calculations in order to take advantage of new 
computer architectures and computational algorithms that have recently 
emerged.  As computational capacity increases with new developments in 
the microchip industry, ever-larger problems can be accommodated.  Along 
with these advances in large scale computing has come an increased 
reliability of numerical methods and, as a result, the development of more 
powerful and sophisticated numerical algorithms.  In particular, finite 
difference, finite element, nodal, PN and SN methods are among today’s 
most effective numerical algorithms for neutron transport and diffusion 
theory applications.  While these methods allow for consideration of 
comprehensive problems in nuclear engineering, they all generally possess 
one inherent shortcoming-- numerical discretization error.  This error is a 
result of the finiteness, though large by past standards, of computer storage.  
Of course, for most algorithms, an estimate of the numerical error is 
provided; but usually this error is only approximate and can, under certain 
circumstances, be misleading.  In addition, because of the mathematical and 
numerical complexity of the algorithms used to solve these comprehensive 
problems, there is always the concern that a neutron transport or diffusion 
algorithm has not been properly coded. 
 
In these times of accountability and continuous improvement, it is 
imperative that assurance of acceptable numerical error and proper 
programming be provided to the customer.  In order to assess the numerical 
error of a particular code and to address the issue of proper programming, 
one or all of the following tests have been routinely used in the past: 
 

1. Observation of the conservation of quantities such as particle 
number, total energy and momentum 

2. Comparison of results to known physical trends usually involving 
simplified problems with known physical behavior 

3. Comparison of results with numerical algorithms designed for 
similar applications 

4. Comparison to standards or analytical benchmarks. 
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It must be emphasized that there is no guaranteed method of verifying that a 
particular computational algorithm is performing correctly for all cases 
envisioned since, if there were, then there would be no need for the 
algorithm in the first place.  The value of the tests mentioned above is in 
indicating algorithmic inconsistencies by their failure.  Note that comparison 
to experiment is not included as one of the tests considered, since 
comparison to experiment measures how well a particular physical situation 
is modeled indicating nothing about the quality of the numerical results.  For 
this reason, comparison to experiment is considered a code validation 
measure rather than code verification measure as will be presented here. 
 
The primary aim of this benchmark presentation is to provide a series of 
analytical benchmarks to be used as standards for comparison.  Currently, 
there is a lack of such benchmarks in the literature; and it is for this reason, 
that this project has been undertaken.  A secondary use of these benchmarks 
derives from their educational value.  The development of benchmarks 
requires a firm understanding of analytical solution techniques as well as 
numerical methods and computational strategies.  In courses in nuclear 
engineering, introducing analytical benchmarks along with theory can 
enhance the concept of neutron interaction with matter.  As will be evident, 
each benchmark is described in a manner that can cover a significant portion 
of the subject matter in the reactor theory and neutron transport theory given 
additional information about the physical setting and the approximations 
used in practice.  In addition, the study of these benchmarks introduces the 
student to standard numerical techniques such as numerical integration and 
iteration strategies as well as analytical mathematical methods, error analysis 
and computational strategies. 
 
1. OVERVIEW OF ANALYTICAL BENCHMARKING 
 
When solving the neutron transport equation, a hierarchy of analytical 
solutions, based on accuracy, is possible.  This hierarchy can be categorized 
as follows: 

 exact-analytical 
 near-analytical 
 semi-analytical 
 purely-numerical. 

 

A closed form exact-analytical numerical solution is the ideal solution one 
strives toward when solving any equation.  In this case, an explicit solution 
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representation is found in terms of elementary or special functions.  The 
most accurate numerical evaluation of this closed form solution therefore is 
through infinite precision arithmetic, thus avoiding truncation error 
altogether.  Unfortunately, the solutions to particle transport equations do 
not generally lend themselves to closed form representations.  With the 
increased use of symbolic manipulation for numerical evaluation however, 
the ideal of the exact-analytical solution to the transport equation in the 
future is not entirely out of the question.  A near-analytical solution to the 
transport equation is an evaluation of a closed form solution representation 
using standard numerical approximations and finite high-precision 
arithmetic.  Such an evaluation may make use of numerical quadrature and 
infinite series for which error estimates are available.  Semi-analytical 
solutions are finite precision numerical evaluations of a continuous variable 
transport solution representation that, for example, may be in the form of a 
set of integral equations.  These solutions generally require iterative 
techniques with inherent error control and the potential for acceleration 
toward convergence.  Examples of semi-analytical solutions are derived 
from integral transport theory and the 1-D Green’s Function Method 
[Ganapol, 1999b].  Finally, the most common solutions to the transport 
equation involve full numerical discretization of the transport operator with 
respect to particle position, direction, time and energy. These Purely 
numerical solutions, while containing discretization error, are nevertheless, 
the most comprehensive transport solutions available and are the foundation 
of numerical transport applications.  Algorithms such as discrete ordinates 
(SN formulation) can generate ultra fine mesh benchmark solutions that can 
be as accurate as semi-analytical benchmarks as has been demonstrated 
[Ganapol, 1999a]. 
 
There are several important distinctions between the classes of “analytical” 
(exact, near and semi) and “purely numerical” solutions.  First, like 
numerical solutions, analytical benchmarks (with the exception of “exact”) 
contain unavoidable numerical error resulting from finite precision 
arithmetic and numerical approximation.  Unlike purely numerical solutions, 
however, the error associated with analytical benchmarks can be estimated 
and occurs at a level theoretically closer to the true transport solution.  For 
this reason, analytical benchmarks provide a higher standard of quality 
control than purely numerical solutions.  These benchmarks can effectively 
be used to uncover unknown numerical vagaries and coding errors, to assess 
the accuracy of purely numerical transport algorithms as well as to confirm 
proper algorithm performance.  The semi-analytical benchmarks to be 
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developed here, therefore, can serve as convenient standards to which 
numerical transport algorithms for neutron transport can be compared.  This 
is not to say that fine mesh numerical benchmarks are not as accurate as 
analytical benchmarks, but true confidence in their accuracy can only come 
from comparisons with semi-analytical benchmarks. 
 
Because of the requirement of analytical representations, only relatively 
simple or idealized problems can be considered as benchmarks until the 
recent development of the MGCSN method (Ch. IV).  For this reason, 
analytical benchmarks have the potential to verify only isolated segments of 
large comprehensive algorithms.  Thus, by verification of the components of 
an algorithm, some confidence in the entire operation of a code can be 
gained.  Inconsistencies and inaccuracies may still remain however because 
of the interfacing of components.  Because of their limited nature, semi-
analytical benchmarks have been criticized as being far too idealized to 
provide meaningful diagnostics.  It must be emphasized that even though the 
type of problems lending themselves to analytical solutions are usually much 
less complicated than the comprehensive problems for which a code has 
originally been designed, they still have diagnostic value.  Indeed, codes 
required to solve the comprehensive problems must also perform well for the 
simple problems. 
 
2. BENCHMARK CLASSIFICATION 
 
Since many benchmarks can be envisioned, a classification scheme has been 
established for reference purposes.  Each benchmark will be classified 
according to the eight categories as shown in Table 1. 
 
The first category (C1) specifies the type of particle considered which 
includes neutrons, photons, electrons, ions and molecules.  In future efforts, 
benchmarks problems could be expanded to include all particles indicated in 
C1.  Here, only neutrons will be considered in a transport setting.  Category 
2 (C2) specifies the geometry containing the field particles with which the 
neutrons collide.  At present, one- and two- dimensional geometries will be 
considered.  In general, the geometry can be infinite without surfaces, 1-D or 
2-D half-spaces with one surface and a 1-D finite (slab) medium with two 
surfaces.  The type of scattering kernel (isotropic, anisotropic, or general) is 
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Table 1 Benchmark classification 
 
C1.  SPECIFIC TRANSPORT FIELD 

 
C6.  SPATIAL AND/OR TEMPORAL SOURCE DISTRIBUTION  

NT 
 
Neutron transport 

 
L 

 
Localized (delta function)  

ND 
 
Neutron diffusion 

 
D 

 
Distributed  

RT 
 
Radiative transfer 

 
PT 

 
Pulsed in time  

EIT 
 
Electron and ion transport 

 
CT 

 
Continuous in time  

RGD 
 
Rarefied gas dynamics 

 
U 

 
Uniform  

C2. GEOMETRY 
 
C7.  NUMERICAL TREATMENT OF INDEPENDENT 
VARIABLES  

P 
 
Plane geometry (1D,2D) 

 
X(C,D) 

 
Position  (continuous, discrete)  

SP 
 
Spherical geometry (1D) 

 
A(C,D) 

 
Angle     (continuous, discrete)  

CY 
 
Cylindrical geometry 
(1D,2D) 

 
T(C,D) 

 
Time       (continuous, discrete) 

 
 

 
E(C,D) 

 
Energy    (continuous, discrete)  

SPECIFIC GEOMETRY QUALIFIERS 
 
C8.  NUMERICAL METHOD  

I 
 
Infinite medium 

 
NLTI 

 
Numerical Laplace transform inversion  

H 
 
Half-space 

 
NFTI 

 
Numerical Fourier transform inversion  

2H 
 
2 half-spaces 

 
FN 

 
FN method  

S 
 
Slab geometry 

 
IT 

 
Integral transport  

HE 
 
Heterogeneous slab 
geometry 

 
VM 

 
Variational method 

 
C3.  ANISOTROPY OF SCATTERING 
KERNEL 

 
RM 

 
Reconstruction from moments 

 
I 

 
Isotropic 

 
MC 

 
Multiple collision  

LE(L) 
 
Legendre expansion of order 
L 

 
RR 

 
Recurrence relation 

   
CAC 

 
Continuous analytical continuation  

C4.  ENERGY SPECTRUM 
APPROXIMATION 

 
EE 

 
Eigenfunction expansion 

 
OG 

 
One-group 

 
Other 

 
PN, AN, etc. 

 
MG 

 
Multigroup 

 
  

C 
 
Continuous 

 
  

C5.  ANGULAR SOURCE 
DISTRIBUTION 

 
 

 
I 

 
Isotropic 

 
  

B 
 
Beam 

 
  

D 
 
Distributed 

 
  

LE(L) 
 
Legendre expansion of order L 
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specified in C3 with the neutron energy spectrum approximation (one-group, 
multigroup, or continuous) given in C4.  The angular and spatial source 
distributions are given in C5 and C6, respectively.  Information on the 
numerical method is specified in C7 and C8, indicating which independent 
variables are treated either continuously (C) or discretely (D) in C7 and the 
particular numerical method used in C8. 
 
Each of the following four chapters represents a self contained benchmark 
study in which the theory is detailed and numerical results are reported.  For 
completeness some theoretical material is repeated.  The computational 
programs in FORTRAN 77 are available upon request from the PI.   
 

REFERENCES 
[Ganapol,1999a], J. Warsa, J. Dahl, S. Woolf and J. Garth, Analytical 
Benchmark Comparisons for Matrix Eigenvalue-, Symbolic-, p-adaptive-  
and Standard- SN  Formulations, ANS Math & Comp. Topical Meeting, 
Madrid, 1359(1999). 
[Ganapol,1999b], K. Parsons, A Heterogeneous Medium Analytical 
Benchmark , ANS Math & Comp. Topical Meeting, Madrid, 456(1999). 
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CHAPTER I 
 
ANALYTICAL STEADY STATE INFINITE MEDIA BENCHMARKS 
 
1. INFINITE MEDIUM BENCHMARK DESCRIPTION 
 
1.1. Physical Description 
The most fundamental spatial configuration for the transport of neutrons is 
the infinite homogeneous medium.  While conceptually, an infinite medium 
calls up a rather ordinary image of a large universe that is primarily of 
mathematical interest only, a closer look reveals a structure that can be 
useful in generating meaningful analytical transport benchmarks.  An 
infinite medium comes in many flavors as defined by the configuration of 
the source emission. For instance, if the source is planar, which is an 
infinitesimally thin and transversely infinite plane, the variation of the 
resulting flux is only longitudinal (say in the x-direction).  This is true since 
no surfaces or material discontinuities exist to influence particles otherwise.  
If the source is a point and is isotropically emitting in the same infinite 
medium, then the flow is radially outward giving rise to the well-known 
inverse r-squared behavior of the flux.  An infinite line source also exhibits a 
radial flow but is uniform axially in the direction of the source.  Of course, 
the main reason for these simple variations is that a homogeneous infinite 
medium has no distinguishing characteristics such as surfaces or material 
boundaries, other than a source position, to define a length scale.  For this 
reason, the dimensional variation of the flux variation in an infinite medium 
inherits the dimensionality of the source.  The flux from a plane source has 
variation only in the longitudinal spatial dimension; while, the flux for an 
isotropically emitting point source is uniform in angle at each radius.  With 
this in mind, it is possible to define several relatively simple source 
configurations to provide multi-dimensional flux variations.  This 
observation along with the analytical relations between fluxes in infinite 
media, allow for the development of a convenient tool to generate some 
rather comprehensive multidimensional analytical benchmark solutions.  
The generation of four simple 1-D and two 2-D benchmark solutions is the 
subject of this section. 
 
1.2. Mathematical Description: NT/P:I/LE/OG/I/L/X(C),A(C)/NFTI 
The theory begins with the solution of the one-group transport equation in a 
plane infinite medium with isotropic source emission 
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      ( ) ( ) ( ) ( )
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( )µ,xΨ  represents the angular flux distribution of particles traveling in the 

direction µ (with respect to the x-axis) at the position x (measured in mean 
free paths from the source plane) and emitted by a source at x = 0.  The 
Legendre moments of the scattering term in eq(1) are defined as  
    ( ) ( ) ( )µµµ ,

1 

1
xPdx ll Ψ≡Ψ ∫−

 
and the particle flux distribution is required to remain finite 
    ( ) ∞<Ψ

∞→
µ,xlim

x
 . 

Note that any order of anisotropy L is allowed and the number of 
secondaries is c.  If eq(1) is operated on by a Fourier transform, there results 

   ( ) ( ) ( ) ( )
2
1

2
,1

0
+Ψ=Ψ+ ∑

=

kPckik l

L

l
l µωµµ    (2) 

where the Fourier transform of the angular flux is 
    ( ) ( ) ,,  

 
µµ xedxk ikxΨ≡Ψ −∞

∞−∫  ; 
and for the scalar flux 
    ( ) ( )xedxk ikxΨ≡Ψ −∞

∞−∫  
 

   . 
The scalar flux solution, which is of primary interest, is therefore the 
inversion 
    ( ) ( )kedkx ikx

0

 
 

2
1  Ψ≡Ψ ∫

∞

∞−π
 . 

 
Manipulation of eq(2) yields the following set of equations for the 
transformed moments lΨ : 

   ( )[ ] ( ) ( ) ( )  1 
0

zzQkkLc j
j

l

L

l
jlljl −=Ψ−∑

=

ωδ    (3) 

for 0 ≤ ≤j L  where 

    ( ) ( ) ( )
L k d

P P
ikjl

j l=
+−∫

1
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1
µ

µ µ
µ

 
 , 

        z ik≡ 1 /  . 
and ( )Q zj  is the j-th order Legendre function of the second kind.  By 
projecting eq(2) over Legendre polynomials, a recurrence relation for the 
same transformed moments can also be obtained 
   ( ) ( ) ( ) ( ) 0111 lllll zklklkzh δ=Ψ+Ψ++Ψ −+     (4) 
with 
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         ll clh ω−+≡ 12  . 
The set of equations most conveniently solved, however, is neither eq(3) nor 
eq(4) alone but a combination of both, i.e., eq(3) with j = 0 and eq(4) for l = 
0,…L-1. 
 
The solution for the moments proceeds as follows.  For convenience define 

( ) ( )zk ll −Ψ≡Ψ  
to indicate the true dependence of lΨ .  Equation (4) can therefore be written 
as(Ganapol,2000) 

( ) ( ) ( ) ( ) 0111 lllll zzlzlzzh δ−=Ψ+Ψ++Ψ− −+  .  (5) 
Without loss of generality let its solution be of the form 

( ) ( ) ( ) ( )zzHzgz lll ρ−=Ψ     (6) 
where gl is the Chandrasekhar polynomial of the first kind that satisfies the 
homogeneous form of eq(5).  H and ρl are to be determined to satisfy eqs(5) 
and (3) for j = 0.  Furthermore, if we impose the condition 

( ) ( )zzH 0Ψ=  , 
then when eq(6) is introduced into eq(5) ρl  must satisfy 

( ) ( ) ( ) ( ) 01 11 =+++− −+ zlzlzzh llll ρρρ  .   (7) 
with starting value 

( ) 00 ≡zρ  . 
Equation (7) defines the ρl-polynomials, called the Chandrasekhar 
polynomials of the second kind.  ( )z0Ψ  is found by substitution of eq(6) into 
eq(3) with j = 0 to give 

     ( ) ( )
( )k
kgk

L

L

Λ
=Ψ

~
0  ,    (8a) 

where 

    ( ) ( ) ( )zgzQczk ll

L

l
lL ∑

=

−=Λ
0

1 ω    (8b) 

and 

    ( ) ( ) ( ) ( ) ( )zzQczzzQzgkg ll

L

l
lLL ρω∑

=

−≡=
0

0
~~ . (8c) 

( )Λ L z  is recognized as the usual dispersion relation for anisotropic scattering 
defined in terms of Chandrasekhar polynomials of the first kind.  Once this 
connection has been established, the simplifying relations of Inonu 
[Inonu,1973] can be used to give the remarkably compact representation 
   ( ) ( ) ( ) ( ) ( ) ( )[ ]zQzgzQzgLz LLLLL 111 ++ −+=Λ  .  (9) 
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Apparently, the role of the lρ -polynomials is to define the numerator ( )kg L
~  

of the zeroth moment transform of the.  Following the same procedure (see 
Appendix A) as Inonu’s, but for the lρ -polynomials, gives the 
corresponding condensed relation 
   ( ) ( ) ( ) ( ) ( ) ( )[ ]zQzzQzLzg LLLLL 111~

++ −+= ρρ     (10) 
and eq(8a) becomes 

   ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥

⎦

⎤
⎢
⎣

⎡
−
−

=Ψ
++

++

zQzgzQzg
zQzzQz

k
LLLL

LLLL

11

11
0

ρρ  .   (11) 

 

The scalar flux in plane geometry is therefore obtained from the following 
Fourier transform inversion: 

    ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
Λ
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∞

∞− k
kg

edkx
L

Likx
~

2
1   

 

π
 .   (12) 

This inversion can be evaluated either by analytical continuation of the 
integrand to pick up contributions from the poles (zeros of the dispersion 
relation) and branch cuts {[ i± , ∞± i )} or by numerical evaluation of the 
inversion integral directly.  The latter is the evaluation of choice since it 
avoids determining the zeros of the dispersion explicitly. 
 

1.3. Additional 1-D Sources 
With the explicit representation of the scalar flux in a plane infinite medium 
known, it is now possible to define flux variations for sources in other more 
complex and realistic infinite media settings. 
 
 A. Point source: NT/SP:I/LE/OG/I/L/X(C),A(C)/NFTI 
The flux from a point source is simply obtained from the plane/point 
transformation [Case, 1967] 

( ) ( )
dr

rd
r

rpt
Ψ

−=Φ
π2
1  

which gives from eq(12) 

( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
Λ

≡Φ ∫
∞

∞− kz
kg

edkr
L

Likr
pt

~

2
1   

 

π
 .    (13) 

 
 B. Shell source: NT/SP:I/LE/OG/I/L/X(C),A(C)/NFTI 
The point source flux can then be used to give the flux from a shell source of 
radius a.  If a point source is integrated over the shell of as shown  
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     a   r’   
          θ 
        r 
 
 
 
the flux at r is  

( ) ( ) ( )[ ]arar
r
aqar plplsh +Φ−−Φ=Φ 0,  .   (14a) 

For a normalization of one particle emitted over the entire shell area 

20 4
1
a

q
π

=  , 

we have 
( ) ( ) ( )[ ]arar

ar
ar plplsh +Φ−−Φ=Φ

π4
1,  .   (14b) 

 
 C. Solid spherical source: NT/SP:I/LE/OG/I/L/X(C),A(C)/NFTI 
The flux form a spherical shell source of radius r0 is obtained by integration 
of the shell source over the spherical source volume 

( ) ( )ardaqr sh

r

sp , 0

00 Φ=Φ ∫  . 
When eq(14a) is substituted into this expression, there results 

( ) ( )arda
rr

r pl

r

rsp −Φ=Φ ∫−
a 

4
1 0

0
3

0π
    (15) 

where the normalization 

3
0

0 4
1
r

q
π

≡  

has been defined along with a change of variable to condense the integration.  
When eq(12) is introduced into eq(15) and the integration order 
interchanged, the final expression becomes 
 

( ) ( )
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( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤
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∞

∞− 00
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k
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k
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L
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 .  (16) 

 
1.4. 2-D Sources 
The advantage of the Fourier transform approach is that multi-dimensional 
source can be constructed as will be demonstrated in this section. 
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 A. Finite line source: NT/CY:I/LE/OG/I/L/X(C),A(C)/NFTI 
 The flux at the position (ρ, z) from the finite line source shown is 
         a                                                  (ρ,z) 

r’   
              z 

ρ 
 
 
given by an integration of the point source flux 

( ) ( )rzdz pt

a

aDl ′Φ′=Φ ∫−
,2 ρ   

which becomes through a change of variable 
( ) ( ) ( ) ⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ++Φ+⎟

⎠
⎞⎜

⎝
⎛ −+Φ=Φ ∫ 22221

02 2
1, ωρωρωρ azazdz ptptDl  . (17) 

For this case, the normalization is the inverse of the line source length.  
Unlike the 1-D sources, one additional integration is required.  The 
integration in eq(17) will be performed by Gauss/Legendre quadrature to a 
high degree of accuracy as discussed below. 
 
 B. Ring source: NT/CY:I/LE/OG/I/L/X(C),A(C)/NFTI 
 In a similar fashion, the flux from the circular source shown is found 
 
        
         r’ 
             z 
               a     r 
 
to be 

( ) ( )( )θθ
π

ρ
π

cos2 1, 222

0
arrazdz ptCr −++Φ=Φ ∫  .  (18) 

where the normalization 

a
q

π2
1

0 ≡  

 
was used.  Again the integration will be performed numerically. 
 
1.5. Numerical Implementation 
 A. Numerical Fourier transform inversion 
The primary numerical procedure required for the numerical implementation 
of the six sources described above is the numerical Fourier transform 

-a
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inversion.  This algorithm has been described in a previous report 
[Ganapol,1991] and therefore will not be described further other than to say 
it is an efficient and accurate algorithm for the inversions of the image 
functions presented above. 
 
Because of the singular nature of the flux from both the plane and point 
sources, the most appropriate representations of the solutions are  

( ) ( ) ( )
( ) ( )⎥

⎦

⎤
⎢
⎣

⎡
−

Λ
+≡Ψ ∫

∞

∞−
zzQ
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kg

edkxEx
L

Likx
0

 

1

~

2
1

2
1   

π
  (19a) 
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−

zQ
kz

kg
edk
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er

L

Likr
r

pt 0

 

2

~

2
1

4
   

ππ
  (19b) 

where the uncollided fluxes have been explicitly computed.  Note that E1 is 
the exponential integral.  In this way, the singularities are isolated in the 
leading terms allowing the inversions to be determined more accurately. 
 
 B. Additional integration for 2-D sources 
The addition integrations in eqs(17) and (18) are performed using 
Gauss/Legendre (GL) integration of order Lm shifted to the appropriate 
intervals.  To expedite the integration and with an eye to accommodation of 
3-D sources, an interpolation assisted integration scheme has been devised.  
Since these integrations involve only the point flux, rather than evaluate this 
flux at all the integration abcissae, a simple interpolation scheme can be 
employed.  This is possible since the integrand depends only on the distance 
from a point on the source to the point where the flux is to be found.  By 
predetermining the range of these distances (nearest to farthest) for all edit 
points, ptΦ  can be calculated at nb points in-between.  Thus, the desired 
integration abcissae can be obtained from (polynomial) interpolation.  This 
procedure greatly reduces the computational effort but may not guarantee 
benchmark accuracy unless iteration on nb is required as to be discussed. 
 

C. Iteration on quadrature order and interpolation abcissae 
In order to guarantee benchmark quality results, an outer iteration on the 
quadrature order (Lm) and the number of interpolation abcissae (nb) has be 
instituted.  For simplicity, Lm and nb are set equal and the iteration counter 
applies to both.  These quantities are increased by two until the fluxes 
converge on the edit grid or the maximum number of iterations is reached.  
While benchmark accuracy (4- or 5- places) can be useful for 1-D problems, 
most likely this will not be necessary for multi-dimensional comparisons 
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since not more than three (or at most four digits) are expected from a 2- or 3-
D numerical transport algorithm. 
 
2. Program Notes and Desired Results 
A FORTRAN 77 program called TIELV1.f has been written to implement 
the numerical evaluation of the flux for the sources described above.  The 
program input and a sample problem are found in Appendix B.  Multiple 
cases can be accommodated with output from 1-D sources appropriate for 
(SigmaPlotTM) plotting written to file plt1.dat and for 2-D sources written to 
file plt2.dat (2-D) or plt3.dat (3-D). 
 
For best results and ease of use, the following considerations need to be 
taken into account when running TIELV1.f: 
 
1) The differential scattering cross section can be  

+ read in from supplied file wl.dat 
+ Henyey-Greenstein (ωl = gl) 
+ screened –Rutherford kernel 
+ elastic scattering kernel. 

2) Because the integrands in eqs(17) and (18) become more singular on 
approach to either the line or circular sources, the integration will eventually 
fail.  This breakdown occurs because the flux approaches infinity on 
approach to either of these sources.  For this reason, best results are obtained 
for edit points at least 0.05 mfp from the sources. 
3) For multiple cases, all cases will have the same spatial edit grid. 
4) The flux within a solid sphere is not determined and is therefore set to 
zero. 
5) The flux from a spherical source can be evaluated by both the direct (isrc 
= 4) and assisted (isrc = 41) integration schemes. 
 
The results of the first demonstration are given in Table 1. This demonstration 
considers the appropriateness of assisted (interpolated) integration versus 
direct integration for a spherical source of radius r0 = 1.  Four cases were run 
with the first three cases using direct integration with increasing quadrature 
order from 10 to 50 and the last case for assisted integration of order 50.  As 
can be observed, the direct and assisted integration schemes do indeed 
converge. 
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Table 1 
Demo 1: 1-D Spherical Source for the Two Integration Schemes 

        [H-G:g = 0.95 L = 20 c = 0.99] 
r\Lm(ISRC) 10(41) 25(41) 50(41) 50(4) 

   1.0000E+00   1.1155E-01   1.2147E-01   1.2156E-01   1.2159E-01 
   1.1000E+00   7.8594E-02   8.6607E-02   8.6615E-02   8.6614E-02 
   1.2000E+00   6.2022E-02   6.8673E-02   6.8683E-02   6.8683E-02 
   1.3000E+00   5.1197E-02   5.6512E-02   5.6523E-02   5.6522E-02 
   1.4000E+00   4.3598E-02   4.7610E-02   4.7620E-02   4.7620E-02 
   1.5000E+00   3.8091E-02   4.0802E-02   4.0813E-02   4.0813E-02 
   1.6000E+00   3.4008E-02   3.5438E-02   3.5449E-02   3.5449E-02 
   1.7000E+00   3.0959E-02   3.1118E-02   3.1129E-02   3.1129E-02 
   1.8000E+00   2.8625E-02   2.7576E-02   2.7587E-02   2.7587E-02 
   1.9000E+00   2.6771E-02   2.4628E-02   2.4640E-02   2.4640E-02 
   2.0000E+00   2.5135E-02   2.2147E-02   2.2159E-02   2.2159E-02 
 

The results for demonstrations 2 and 3 are shown in Figs. 1 and 2.  In Fig. 1, 
the flux variation for the four 1-D sources is shown.  The distinct nature of 
each source is clearly evident.  As the distance from the sources increases 
however, the fluxes for the spherical geometries merge.  The flux from the 
plane source remains different because of its transversely infinite extent.  
Figure 2 shows the 2-D flux from the upper half of line source. Near the 
source, the flux clearly outlines the (upper half) source extent with a gradual 
loss of spatial detail with distance from the source. 
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Appendix A 
An Alternative Representation for ( )~g zL  

 
 Following the procedure as outlined by Inonu [1], we begin with the 
recurrence relation for ( )ρ j z   
   ( ) ( ) ( ) ( )− + + + =+ −zh z j z j zj j j jρ ρ ρ1 01 1  . 
When this relation is multiplied by ( )zQ j  and summed from j=1 to L, there 
results 
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The term in curly brackets vanishes since it is the recurrence relation for 
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Appendix B 
Sample Problem Input and Output 

 The input description to TIELV1 is given below.  Also included is 
 

Table B.1 
Input Description 

c input description (file tielv1.dat)********************************** 
c line 0 case identification 
c 
c line 1 ncc    number of cases 
c        lmt    number of quadrature order iterations (10) 
c 
c line 2 nx     number of edit intervals between x0 and xl 
c        x0     initial edit point 
c        xl     final edit point 
c 
c note:if line 3 is not needed,enter one blank line 
c line 3 mz     number of z edit points (for isrc=5,6 only) 
c        z0     initial z edit point 
c        zl     final z edit point 
c 
c note: repeat for each of the ncc cases 
c line 4 iwl    1 read scattering coefficients (wl) from wl.dat file 
c               2 Henyey-Greenstein (H-G) kernel 
c               3 screened-Rutherford kernel 
c               4 neutron elastic scattering 
c        (note:if iwl<0 use transport correction) 
c        ga     g fo H-G and atomic mass for elastic neutron scattering 
c        llmx   scattering order 
c        w      number of secondaries 
c        a0     shell,sphere radius or half line length 
c        isrc   1  plane source 
c               2  point source 
c               3  shell source 
c               4  spherical source (by direct inversion) 
c               41 spherical source (by numerical integration) 
c               5  line source 
c               6  circular source 
c        mb0    initial quadrature order (20) 
c        err    desired relative error (1.0e-04) 
c ********************************************************************* 
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input and output for a sample problem.  The sample problem is for H-G 
 

Table B.2 
Sample Problem Input 

sample problem 
4 5                               /ncc,lmt 
10 0.01 4.0                      /nx,x0,xl 
2 0.1 10.0                      /mx 
2 0.95 10 0.9 1.0 3 20 1.0e-04 /iwl,ga,llmx,w,r0,isrc,mb,err 
2 0.95 15 0.9 1.0 3 20 1.0e-04 /iwl,ga,llmx,w,r0,isrc,mb,err 
2 0.95 20 0.9 1.0 3 20 1.0e-04 /iwl,ga,llmx,w,r0,isrc,mb,err 
2 0.95 25 0.9 1.0 3 20 1.0e-04 /iwl,ga,llmx,w,r0,isrc,mb,err 
 

Table B.3 
Sample Problem Screen Output 

begin case  1 
   iwl    ga     llmx     w         a0     isrc mb     err 
    2  9.500E-01  10  9.000E-01  1.000E+00   3  20  1.000E-04 
 quadrature order = 20 error=  0.000E+00 
 quadrature order = 22 error=  1.268E-04 
 quadrature order = 24 error=  6.560E-05 
 begin case  2 
    2  9.500E-01  15  9.000E-01  1.000E+00   3  20  1.000E-04 
 quadrature order = 20 error=  0.000E+00 
 quadrature order = 22 error=  1.248E-04 
 quadrature order = 24 error=  6.456E-05 
 begin case  3 
    2  9.500E-01  20  9.000E-01  1.000E+00   3  20  1.000E-04 
 quadrature order = 20 error=  0.000E+00 
 quadrature order = 22 error=  1.252E-04 
 quadrature order = 24 error=  6.467E-05 
 begin case  4 
    2  9.500E-01  25  9.000E-01  1.000E+00   3  20  1.000E-04 
 quadrature order = 20 error=  0.000E+00 
 quadrature order = 22 error=  1.252E-04 
 quadrature order = 24 error=  6.473E-05 
                                                                                 
  
 1-d Sources 
    x/case           1            2            3            4 
    error=      6.5601E-05   6.4563E-05   6.4666E-05   6.4728E-05 
   1.0000E-02   7.3027E-02   7.4197E-02   7.4012E-02   7.3992E-02 
   4.0900E-01   7.8143E-02   7.9200E-02   7.8923E-02   7.8943E-02 
   8.0800E-01   1.0533E-01   1.0499E-01   1.0476E-01   1.0492E-01 
   1.2070E+00   7.3611E-02   7.3498E-02   7.3328E-02   7.3433E-02 
   1.6060E+00   3.2381E-02   3.2708E-02   3.2649E-02   3.2652E-02 
   2.0050E+00   1.8808E-02   1.8942E-02   1.8942E-02   1.8939E-02 
   2.4040E+00   1.2284E-02   1.2322E-02   1.2327E-02   1.2326E-02 
   2.8030E+00   8.5925E-03   8.5956E-03   8.5984E-03   8.5984E-03 
   3.2020E+00   6.2931E-03   6.2870E-03   6.2879E-03   6.2880E-03 
   3.6010E+00   4.7667E-03   4.7599E-03   4.7600E-03   4.7601E-03 
   4.0000E+00   3.7052E-03   3.7001E-03   3.7000E-03   3.7000E-03 
  
 plot file plt1.dat:1-D sources 
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scattering for g=0.95 in a medium with c = 0.9 and for a shell source of 
radius 1.  The scattering order L was increased from 10 to 25 in increments 
of 5.  The input on file tielv1.dat is given in Table B.2 and the screen output 
in Table B.3.  Line 4 for each case is written followed by a convergence 
history as the quadrature order is increased from Lm = 20.  Each case is 
displayed in a column with the first line indicating the last estimated relative 
error converged or not.  The file plt1.dat is also written for plotting or to be 
a table. 
 
The convergence in scattering order is clearly observed.  As expected, the 
convergence is better further from the source.  The convergence in scattering 
order will be the subject of a future research effort. 



 22

 

Fig. 2 Demo 3: 2-D Line Source
          [H-G:g = 0.9 L = 20 c = 0.9 a = 1.0]
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CHAPTER II 
 
MULTIGROUP NEUTRAL PARTICLE TRANSPORT  
THEORY  
 
1. INTRODUCTION 
 
In the past, considerable attention was given to demonstrating that a theory 
of singular eigenfunctions existed for the solution to the multigroup 
transport equation [1-6].  This activity was a natural outgrowth of the many 
investigations concerning the one-group case that had been so elegantly 
treated by Case and Zweifel [7].  Some of the earliest considerations relied 
on knowledge of the solution form before attempting a theory.  In other 
words, the form of the singular eigenfunction solution had to be guessed.  In 
reviewing early attempts to develop a full-range multigroup singular 
eigenfunction expansion for general anisotropic scattering, the 
achievements, at best, were rather disappointing.  No explicit theory had 
been put forth until 1976 when, in a seminal work, the Larsen-Habetler 
technique was applied to the multigroup case with isotropic scattering[8,9].  
Anisotropic scattering was not treated however.  The primary motivation for 
this chapter is to show that a multigroup full-range expansion can indeed be 
obtained for the partial Green’s function in plane geometry from the Fourier 
transform approach.  The curiosity here is that the solution can be found 
without resorting to the relatively obscure mathematics associated with 
singular eigenfunctions and resolvant operators.  In addition, the Fourier 
transform approach yields a convenient expression of the solution suitable 
for numerical evaluation in a variety of geometrical settings as will be 
demonstrated. 
 
A firmly established Fourier transform theory, paralleling that of the one-
group case, will be presented for an isotropically emitting source in the 
multigroup plane geometry approximation.  Then by using the resulting 
image function in a numerical Fourier transform inversion, analytical 
benchmark quality scalar fluxes will be obtained in both plane and spherical 
geometries. 
 
In one-group transport theory, it is well known that the solution to the 
transport equation in an infinite medium obtained via singular 
eigenfunctions and from Fourier transforms are identical for isotropic 
scattering.  When higher order scattering is considered, the correspondence 
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was not at all apparent until recently [10,12].  In reference 10, it was shown 
that the Fourier transform image function leads to the singular eigenfunction 
solution when analytically continued into the complex plane even for 
general anisotropic scattering.  It is the intent of this presentation to apply 
similar reasoning to the multigroup case (limited to isotropic source 
emission) in order to extend the fundamental theoretical development of 
linear transport theory and partially “close the loop”.  In the process, as in 
Ref. 10, an image function appropriate for numerical inversion is obtained 
allowing for an accurate numerical evaluation of the partial Green’s function 
in plane and associated geometries. 
 
2. FOURIER TRANSFORM SOLUTION 
 
We begin with the following special form of the multigroup transport 
equation for the partial Green’s function in an infinite medium (isotropic 
source emission): 
 

      ( ) ( ) ( ) ( )qxxllC
L

l lPx
x

I rrr
 

2
1

 
02

1, δµµ
∂
∂µ +Ψ∑

=
=Ψ⎥⎦

⎤
⎢⎣
⎡ Σ+  (1a) 

 
for G groups.  The Legendre moment vectors are defined as 
 

( ) ( ) ( )µµµ ,1
1 xlPdxl Ψ∫−≡Ψ

rr
,   (1b) 

 
and the boundary condition is 
 

( ) ∞<Ψ
∞→

µ,xlim
x

r
 .   (1c) 

 
The group-to-group transfer matrix is Cl and the source vector q

r
 can include 

sources in all G groups 
 

[ ]Tqqqq G,...,2,1≡
r  . 

 
An underbar, i.e., M , indicates a matrix quantity.  ( )µ,xΨ

r
 is the G-

component angular flux vector; and for theoretical convenience, the G-group 
parameters have been normalized such that the original total cross section of 
group g (sg) is expressed as 
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( )gsmins
sgsg

Gg
min

min

≤≤
≡

≥≡

1

1  /σ
 

 
with the total cross section matrix represented by 

      [ ]gdiag σ≡Σ  . 

 
The Legendre scattering coefficients have also been appropriately modified. 
In addition, the spatial coordinate has been changed to the dimensionless 
coordinate 
 

     minsxx →  . 
 
Eq(1a) can be recast into the fundamental matrix form 
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where 
 

( ) ( ) qxx
rr

 ,, µµ Ψ=Ψ    (2b) 
 
and now ( )µ,xΨ  is the matrix solution.  With the application of the Fourier 
transform, 
 

( ) ( )µµ , , xikxedxk Ψ∫∞∞−≡Ψ  ,  (3) 
 
eq(2a) can algebraically be solved to give  
 

    ( ) [ ] ( ) ( ) [ ] 1
2
1

0
1

2
1, −−Σ+Ψ∑

=
−−Σ=Ψ IikkllC

L

l
lPIikk µµµµ . (4) 

 
In the following, a function of k or z will denote a Fourier transform. 
 
The representation of the transformed angular flux given by eq (4) is central 
to the analysis to follow.  It will subsequently be shown that the Fourier 
transform inversion 
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( ) ( )  , 
2
1, µ
π

µ kikxedkx Ψ−∫∞∞−≡Ψ ,  (5) 

 
leads to the singular eigenfunction expansion.  The approach taken is to 
specify the moments lΨ  used to reconstruct Ψ  from its Legendre 
polynomial expansion. 
 
In the usual way, projection over Legendre polynomials on the interval [-1,1] 
gives a set of moment equations 
 

( ) ( ) ( ) ( )Σ+ΨΣ∑
=

=Ψ zjVzkllCz
L

l
jlVzkj 0   

0
  (6a) 

where 
 

( ) ( ) ( ) ( ) ( )µµµµ ,1
12

1 zDlPjPdzljVzjlV ∫−≡Σ=Σ  (6b) 
with 
 

( ) [ ] 1, −−Σ≡ IzzD µµ  . 
 
Also, the new independent variable z has been defined as 
 

ikz /1≡  
 
giving the true functional relation of the solution to eq(6a) as 
 

( ) ( )zlkl Ψ≡Ψ  . 
 
Note that the (diagonal) matrix Legendre function of the second kind is 
defined by 
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 (7) 

 
The matrix inversion of eq(6a), in essence, provides the desired moment 
transforms; but essential features of the solution are hidden in so doing.  For 
this reason, only the specific case, j = 0 is considered 
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( ) ( ) ( ) ( )Σ+Ψ∑
=

Σ=Ψ zQzzllC
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l
zlQzz 0 

0
0    (8) 

 
coupled with moment equations.  The last equation can be written more 
concisely as 
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⎡ Σ− zQz

L

l
zllCzlQzIl 0 

0
  0,δ  . (9) 

 
A set of moment equations is obtained by projection of eq(2a) over 
 

[ ] ( )µµ jPIz −Σ  
 
on the interval [-1,1].  In the usual way, from the well known recurrence 
relation for Legendre polynomials 
 

( ) ( ) ( ) ( ) ( )µµµµ 11112 −+++=+ llPlPllPl ,  (10) 
 
the following recurrence relation for the moments results for Ll ≤≤0 : 
 
   ( ) ( ) ( ) ( ) ( ) 0.12111 lzlzllzllzllhz δ+−=−Ψ++Ψ++Ψ−  (11a) 
 
where 
 

( ) lCllh −Σ+≡ 12  .    (11b) 
 
The general, solution to this recurrence relation can be formulated as 
 

( ) ( ) ( ) ( )zlzzlGzl ρ−Ψ=Ψ 0   (12) 
 
where the matrix G-and ρ- polynomials satisfying 
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( ) ( ) ( ) ( )
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ρ

δρρρ  (13b) 

 
have been introduced.  It should be noted that an entirely parallel procedure 
to the one-group case is being followed here.  ( )z0Ψ  is obtained by 
substitution of the moment representation of eq(12) into eq(9) to give 
 

( ) ( ) ( )zLgzLz ˆ1
0

−Λ=Ψ    (14a) 
 
or more explicitly 
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To obtain eq(14b), the recurrence relation for G and ρ were used to 
condense the resulting expressions to those shown.  Equation (14b) will 
serve as the kernel from which all numerical results will come. 
 
3. SINGULAR EIGENFUNCTION SOLUTION 
 
We now consider the homogeneous form of eq(2a) 
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After a Fourier transform, eq(15) becomes 
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and upon projection over Legendre polynomials, we find 
 

( ) ( ) ( ) ( ) 0111 =−Φ++Φ++Φ− zllzllzllhz  .  (17) 
 
Since we began with a homogeneous equation, the normalization 
 
     ( ) Izl ≡Φ  
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can be defined in which case it is clear that 
 

( ) ( )zlGzl =Φ  .   (18) 
 
It is now convenient to construct the Legendre polynomial representation of 
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When eq(19) is introduced into the Legendre polynomial representation of 

( )µ,zΨ   
 

( ) ( ) ( )µµ lPzl
l

lz Ψ∑
∞

=

+
=Ψ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
 

0 2
12,  ,  (20) 

 
there results 
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It should be emphasized that both ( )µ,zΦ  and ( )µ,zR  are distributions when z 
is taken on the real line but otherwise are analytic functions in the z-plane. 
 
An alternative form for ( )µ,zΦ  can be obtained from the solution of eq(16), 
which takes some special care.  In particular, the solution can be written as 
 

( ) [ ] ( ) ( ) ( ) ( )zLzzllC
L

l
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=
−−Σ=Φ  ,  

0
1

2, µδµµµ  (22a) 

 
where 
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⎝

⎛

0 2
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with 
 

( ) ( ) ( )[ ] ,..., 1 GzdlPzdlPdiagDzlP ≡   (22c) 
 
for the diagonal matrix D.  In addition, ( )ΣzlP  satisfies the recurrence 
 

( ) ( ) ( ) ( ) ( )Σ−+Σ++=ΣΣ+ zlPlzlPlzlPzl 111 12 , (23) 
 
and the normalization of ( )µ,zΦ  to I has been used.  Note that the second 
term of the solution comes from the condition 
 

[ ] ( ) 0,  =−Σ µδµ zIz  
 
and that on the real line ( )∞<<∞− ν  
 

( ) ( ) ( ) ( )[ ]µνσδµνσδµνσδµνδ −−−= Gdiag ,...2,1,   . 
 
Equation (22a) has a striking resemblance to the case eigenfunctions but is 
in transform space.  
 
We are now in position to specify the Fourier inversion of eq(21a) noting 
that ( )µ,zΦ  is analytic [see eq(19)] and ( )z0Ψ  is sectionally analytic in the 
complex plane.  In addition, ( )µ,zR  is an analytic function of z [see eq(21b)]. 
 
4. FOURIER TRANSFORM INVERSION AND SINGULAR 
EIGENFUNCTION EXPANSION 
 
It now becomes a relatively straightforward exercise to perform a Fourier 
inversion of eq(21a).  For brevity, the full analysis is not presented here and 
the interested reader is referred to Ref. 12 for further details.  The final 
solution can be written as 
 



 31

( ) ( )
( ) ( ) qLMed

qLjMj
J

j
x

x

jx
e

r

rr

m

m

  1,1
0                              

 1 ,
1

,

/

/

⎥⎦
⎤

⎢⎣
⎡ −Φ∫±+

+−
±±Φ∑

=
±=Ψ

νµνν

µνµ

ν

ν

 (24) 

 
with +  for 0>x  and - for 0<x  and 
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( ) ( ) ( )[ ]xGdGxddiagDx θθ ,..., 11≡Θ  

where 
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. /1 ,/1    , 0
/1 ,/1    , 1
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⎪
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−∉
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gxdg σσ
σσ

θ  

 
All other symbols are defined in Ref. 12.  
 
5. NUMERICAL IMPLEMENTATION AND DEMONSTRATION 
 
While determining the solution directly in terms of singular eigenfunctions 
is theoretically satisfying, it is not so from a numerical viewpoint.  To use 
the above analysis to gain some numerical leverage, a demonstration will 
now be performed.  The scalar flux as represented by the first moment 
 

( ) ( )    0 
2
1 qzikxedkx

rr
Ψ−∫∞∞−≡Ψ

π
  (25) 

 
where ( )z0Ψ  is given by eq(14b) will be evaluated.  The evaluation is 
performed via a numerical Fourier transform inversion as described in the 
author’s various publications.  The only new feature is an iteration on the 
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Gauss/Legendre quadrature order until each point is below a desired relative 
error. 
 
The demonstration will be for a full scattering matrix with relatively high 
order anisotropy (up to L = 20).  A fictitious set of cross sections is 
generated by 
 

( )110
)1(2

,,

)1(2

+′+
+′

=′

+
=Σ

ggG
gl

agsclggC

G
g

g
  (26) 

 
where a Henyey-Greenstein scattering phase function with asymmetry factor 
ga has been assumed. 
 
Table 1 shows a comparison of the inversion for 5 desired errors ε.  This 
table is presented in order to provide confidence in the inversion algorithm 
as implemented in the FORTRAN code mg.f.  The problem considered was 
for 5 groups, g a= 0.95, cs = 0.95 and L = 10 for point source emission (see 
below).  For all edit points, the fluxes are calculated to a higher accuracy 
than desired for all groups.  This indicates the effectiveness of the quadrature 
order iteration. 
 
Typically, as the scattering becomes more forward peaked, the scattering 
order L needs to be large and the inversion has increasing difficulty in 
converging.  To attempt to improve the solution, a Wynn-epsilon algorithm 
was applied to the sequence of solutions specified by the order L of the 
scattering approximation.  This algorithm makes use of the acceleration 
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1
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where SL is the scalar flux at an edit point for the scattering order 
approximation L.  The elements )(

1
L

k+ε  are subsequent approximations of the 
approach of the flux to its limit as L approaches infinity.  Table 2 shows a 
comparison with and without acceleration for scattering orders up to 20 near 
and far from the source.  The accelerated values (shaded columns) are 
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improved over the original values especially near the source.  However, they 
also begin degrade at high scattering order far from the source.  
Improvement by acceleration will be a subject of continued investigation. 
 
The scalar flux from a plane source at x = 0 in group 3 is shown in Fig.1 for 
several degrees of decreasingly forward scattering (ga = 0.95 to 0).  The 
effect of anisotropy is surprisingly small.  
 
Finally, the scalar flux from a point source is displayed in Figs. 2a,b.  This 
flux is given by the plane/point transformation 
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Again the effect is very small except near the source. 
 
6. CONCLUSION 
 
The solution to the multigroup neutron transport equations for isotropic 
source emission has been obtained as a singular eigenfunction expansion 
through a Fourier transform approach.  This approach avoids the relatively 
obscure mathematics associated with singular eigenfunction and resolvant 
operators.  For this reason, what has been presented has significant 
educational value.  The resulting expression for the scalar flux was 
numerically evaluated using a numerical Fourier transform inversion.  
Selected results have been presented to demonstrate that benchmark quality 
is achieved and that relatively modest multigroup problems of 10 groups and 
moderately high order scattering (L = 10) can be treated.  Computational 
times on an Ultra 5 Sun workstation for any of the benchmarks were modest 
with the last computation for the point source taking under 10 minutes. 
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Table 1 
Desired Numerical Error 
G= 5  ga = 0.95   cs = 0.95 

 
ε = 1.0e-02 

x\Gp 1 2 3 4 5 
1.0000E-03 3.2217E+00 1.5293E-02 1.3938E-02 1.2789E-02 1.1822E-02 
2.5008E+00 2.7280E-02 1.2494E-03 8.9233E-04 6.8751E-04 5.5713E-04 
5.0005E+00 4.9471E-03 2.4660E-04 1.6932E-04 1.2818E-04 1.0296E-04 
7.5003E+00 1.6085E-03 8.1883E-05 5.5642E-05 4.1945E-05 3.3626E-05 
1.0000E+01 7.0303E-04 3.6073E-05 2.4416E-05 1.8377E-05 1.4721E-05 

 
ε = 1.0e-03 

1.0000E-03 3.2192E+00 1.5269E-02 1.3917E-02 1.2770E-02 1.1804E-02 
2.5008E+00 2.7298E-02 1.2494E-03 8.9231E-04 6.8749E-04 5.5711E-04 
5.0005E+00 4.9477E-03 2.4673E-04 1.6938E-04 1.2822E-04 1.0299E-04 
7.5003E+00 1.6085E-03 8.1893E-05 5.5647E-05 4.1948E-05 3.3628E-05 
1.0000E+01 7.0303E-04 3.6074E-05 2.4416E-05 1.8377E-05 1.4721E-05 

 
ε = 1.0e-04 

1.0000E-03 3.2194E+00 1.5272E-02 1.3918E-02 1.2770E-02 1.1804E-02 
2.5008E+00 2.7298E-02 1.2494E-03 8.9231E-04 6.8749E-04 5.5711E-04 
5.0005E+00 4.9477E-03 2.4673E-04 1.6938E-04 1.2822E-04 1.0299E-04 
7.5003E+00 1.6085E-03 8.1893E-05 5.5647E-05 4.1948E-05 3.3628E-05 
1.0000E+01 7.0304E-04 3.6074E-05 2.4416E-05 1.8377E-05 1.4721E-05 

 
ε = 1.0e-05 

1.0000E-03 3.2193E+00 1.5272E-02 1.3918E-02 1.2770E-02 1.1804E-02 
2.5008E+00 2.7298E-02 1.2494E-03 8.9232E-04 6.8749E-04 5.5711E-04 
5.0005E+00 4.9477E-03 2.4673E-04 1.6938E-04 1.2822E-04 1.0299E-04 
7.5003E+00 1.6085E-03 8.1893E-05 5.5647E-05 4.1948E-05 3.3628E-05 
1.0000E+01 7.0304E-04 3.6074E-05 2.4416E-05 1.8377E-05 1.4721E-05 

 
ε = 1.0e-06 

1.0000E-03 3.2193E+00 1.5272E-02 1.3918E-02 1.2770E-02 1.1804E-02 
2.5008E+00 2.7298E-02 1.2494E-03 8.9232E-04 6.8749E-04 5.5711E-04 
5.0005E+00 4.9477E-03 2.4673E-04 1.6938E-04 1.2822E-04 1.0299E-04 
7.5003E+00 1.6085E-03 8.1893E-05 5.5647E-05 4.1948E-05 3.3628E-05 
1.0000E+01 7.0304E-04 3.6074E-05 2.4416E-05 1.8377E-05 1.4721E-05 
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Table 2 
Comparison of Accelerated and Unaccelerated 

G = 10  ga =0.75  cs = 0.95 
 

x =0.01 
 gp 2 gp 10 

L\Gp Original Accelerated Original Accelerated 
   1  1.4135E-02  1.4135E-02  8.1778E-03  8.1778E-03 
   2  1.7242E-02  1.8118E-02  9.5230E-03  9.7878E-03 
   3  1.5620E-02  1.6176E-02  8.8616E-03  9.0796E-03 
   4  1.6533E-02  1.6204E-02  9.2139E-03  9.0916E-03 
   5  1.5993E-02  1.6196E-02  9.0163E-03  9.0883E-03 
   6  1.6322E-02  1.6322E-02  9.1308E-03  9.1308E-03 
   7  1.6116E-02  1.6196E-02  9.0628E-03  9.0882E-03 
   8  1.6248E-02  1.6197E-02  9.1039E-03  9.0884E-03 
   9  1.6163E-02  1.6196E-02  9.0787E-03  9.0883E-03 
  10  1.6218E-02  1.6196E-02  9.0943E-03  9.0883E-03 
  11  1.5225E-02  1.6196E-02  8.9078E-03  9.0883E-03 
  12  6.5794E-03  1.6197E-02  7.6393E-03  9.0884E-03 
  13  5.6287E-01  1.6196E-02  8.5951E-02  9.0883E-03 
  14 -2.0771E-01  1.6197E-02 -1.8916E-02  9.0885E-03 
  15 -8.9231E+01  1.6196E-02 -1.2155E+01  9.0882E-03 
  16 -7.8038E+04  1.6197E-02 -1.1275E+04  9.0885E-03 
  17 -1.6303E+04  1.6196E-02 -2.2076E+03  9.0883E-03 
  18 -4.1913E+03  1.6197E-02 -6.2490E+02  9.0884E-03 
  19 -2.0172E+01  1.6196E-02  3.2386E+01  9.0883E-03 
  20 -3.3334E+07  1.6197E-02 -5.0189E+06  9.0884E-03 

  
x =10.0 

   1  3.4441E-05  3.4441E-05  7.3952E-06  7.3952E-06 
   2  3.4338E-05  3.4339E-05  7.3885E-06  7.3885E-06 
   3  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
   4  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
   5  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
   6  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
   7  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
   8  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
   9  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  10  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  11  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  12  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  13  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  14  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  15  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  16  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  17  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  18  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  19  3.4339E-05  3.4339E-05  7.3885E-06  7.3885E-06 
  20  3.4340E-05  3.4339E-05  7.3887E-06  7.3885E-06 
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Fig 2b. Near point source
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CHAPTER III 
 

A HETEROGENEOUS MEDIUM ANALYTICAL BENCHMARK 
 
1. INTRODUCTION 
Assurance that particle transport methods are efficiently implemented and that 
current codes are adequately maintained is a major challenge facing today’s 
power reactor and weapons communities.  As used here, an analytical 
benchmark refers to highly accurate evaluations of analytical representations of 
solutions to the neutral particle transport equation.  The primary advantage of an 
analytical benchmark is that its numerical evaluation occurs at the level of the 
solution rather than at the level of the integro-differential Boltzmann equation 
itself.  Numerical evaluation generally occurs after the transport equation has 
been solved theoretically to obtain a solution representation continuous in the 
independent variables thus, in principle, avoiding discretization error altogether.  
Because of the requirement of an analytical solution however, only relatively 
limited transport scenarios can be treated.  To some this may seem to be a major 
disadvantage of analytical benchmarks.  To the code developer, simplicity by no 
means diminishes the usefulness of these benchmarks since transport codes must 
perform adequately for simple as well as comprehensive transport scenarios.  
Thus, comparisons to analytical benchmarks always provide diagnostic 
information about any comprehensive transport code by either uncovering errors 
or assessing performance.  As will be demonstrated with this benchmark, the 
nature of transport problems that can be treated has become progressively more 
advanced since analytical benchmarks in neutron transport theory first appeared 
in 1953 [Case, 1953]. 
 
The benchmark considered, in this presentation, is for 1-D steady state 
monenergetic (one-group) neutral particle transport in an anisotropically 
scattering heterogeneous medium.  A new Fourier transform inversion, to be 
employed in the Green’s Function Method (GFM), generates the required 
analytical solution representation.  This method effectively specifies the Green’s 
function for a 1-D plane parallel medium, which when integrated over 
appropriate (unknown) boundary sources, gives the solution representation for 
the angular flux within a finite medium.  The resulting integral equations are 
solved for the unknown boundary fluxes which then allows the determination of 
the interior fluxes via quadrature.  A heterogeneous medium is accommodated 
through iteration of the boundary fluxes.  A similar (but not the same) algorithm 
can be found in reference [Benoist, 1996].  The main difference between the 
algorithms is the use of a monomial expansion for the exiting fluxes rather than 
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the solution to an integral equation as proposed below.  In addition, a more 
accurate numerical inversion is employed in this work and BLUE is available to 
the transport community. 
 
2. THE GREEN’S FUNCTION METHOD: THEORY 
 

2.1. Neutron transport equation in a slab: Placzek’s Lemma 
 Only the transport of neutrons will be considered in the remainder of this 
presentation; however, the analysis remains valid for photon transport in the 
gray approximation and for electron transport for screened-Rutherford scattering 
with appropriate redefinition of the interaction parameters. 
 
 In general, we are interested in the solution to the following 1-D 
monoenergetic neutron transport equation: 

   ( ) ( ) ( )xllP
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l lx
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where the flux moments are defined as 
    ( ) ( ) ( )µµµ ,1 

1 xlPdxl Ψ∫−≡Ψ  .    (1b) 
The flux Ψ is to be determined for neutrons at the position x traveling in the 
direction µ resulting from sources at the slab boundaries for a slab of thickness 
a.  General anisotropic scattering is assumed through a truncated (at L) Legendre 
polynomial (Pl) series expansion (with coefficient ωl) of the differential 
scattering cross section.  The number of secondaries per collision is ω and all 
distances are measured in terms of the total mean free path.  Equation (1a) is to 
be solved with known fluxes illuminating the slab surfaces 

( ) ( ) ( ) ( ) . 0   ,, 0,   , ,0 <−=Ψ>=Ψ µµµµµµ RFaLF   (1c) 
From the well-known lemma of G. Placzek [Case, 1953], the boundary 
conditions can be replaced by an equivalent volume source of the form  

  ( ) ( ) ( ) ( ) ( )axaxxS −Ψ−Ψ≡ δµµδµµµ ,,0,     (2b) 
to give the following transport equation: to be solved: 

  ( ) ( ) ( ) ( )µµω
ω

µ
∂

∂
µ ,

02
,1 xSxllP

L

l lx
x

+Ψ∑
=

=Ψ+ ⎥⎦
⎤

⎢⎣
⎡  . 

 
2.2. Solution representation via Green’s functions 
A solution representation is obtained by first expressing the Green’s 

function in plane-parallel geometry as the solution to the following transport 
equation: 
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with moments ( )0; µxlG  and finiteness condition ( ) ∞<
→∞ 0;, µµxG

x
lim .  Then 

multiplying eqs(3) by the source ( )µ ′′− ,xxS  and integrating over all µ′′  and x gives 
a representation of the solution in terms of the Green’s function 
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1, xGxxSxddx  .   (4) 
By substitution of S from eq(2b) along with the decomposition of the Green’s 
function into collided (Gc) and uncollided components, performing the 
integrations over the delta functions and replacing x by 0+ and a-, eq(4) becomes 
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The corresponding scalar flux is obtained by integration over µ. 
 
Once the Green’s function has been determined, eqs(5) are solved as coupled 
integral equations for the exiting fluxes.  Thus, to this point, the two numerical 
methods associated with the Green’s function method are the determination of 
the Green’s function and the solution to two coupled integral equations. 
 
For future convenience in treating heterogeneous slab geometry, the incoming 
flux at x=0 will be assumed to contain a monodirectional component which is 
separated from the diffuse component 
       ( ) ( ) ( )µµµδαµ LFLLF ~

0 +−=  . 
When substituted into eqs(5), we obtain the following modified integral 
equations for the boundary fluxes: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )µµµµµµµµµµ

µµµµµµµµµµ

µµ
µ

µµµαµµµ
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where ( )µ ,xcΨ  is the collided component in the decomposition 

   ( ) ( ) ( )µµµδ
µ

αµ  ,0
0/

 , xc
x

eLx Ψ+−
−

=Ψ  . 
 

2.3. Determination of the Green’s function: Theory 
When eq(3) is operated on by a Fourier transform, there results 

         ( ) ( ) ( ) ( ) ( )00;
020;,1 µµδµµω

ω
µµµ −+∑

=
=+ klGlP

L

l lkGik  ,  (7a) 

where the transformed moments are 
   ( ) ( )0;  

0;  µµ xlGikxedxklG −
∫

∞
∞−≡     (7b) 

and the Fourier transform of the flux is defined by 
   ( ) ( ) 0;,  

0;, µµµµ xGikxedxkG −
∫

∞
∞−≡  .    (7c) 

Note, that in this presentation, the transformed Green’s function is implied when 
the argument is either k or z.  Once the image functions are known explicitly, the 
angular and scalar Green’s functions are determined from their respective 
inversions as 

( ) ( ) 0;,  
2

1
0;, µµ

π
µµ kGikxedkxG ∫

∞
∞−≡ , ( ) ( )0;  

2

1
0;  µ

π
µ kGikxedkxG ∫

∞
∞−≡ . 

Since the image functions are much too complicated for the inversions to be 
performed analytically in terms of special functions, a numerical inversion will 
be employed. 
 
When eq(7a) is divided by ( )µik+1  and projected over the Legendre polynomials, 
the following closed system of equations is obtained for the transformed 
moments: 

   ( ) ( ) ( ) ( )
01

0
0;

00;
µ

µ
µωωµ

ik

jP
klGkjlL

L

l lkjG
+

+∑
=

=    (8a) 

for Lj ≤≤0  with the matrix elements defined as 

   ( )
( ) ( )

µ

µµ
µ

ik
lPjP

dkjlL
+

∫−=
1

1 
1

2

1  .     (8b) 

In principle, eq(8a) can be solved for the transformed moments through matrix 
inversion. While this approach has proven to generally result in an accurate 
numerical algorithm for low order scattering (L < 5), theoretically it is less than 
satisfying since the transform of the moments is not expressed explicitly.  For 
this reason, an alternative formulation will be followed to obtain an explicit 
moment representation through the solution of a recursion relation. 
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A recurrence relation satisfied by the moments can be obtained by projection of 
eq(7a) over the Legendre polynomials 
  ( ) ( ) ( ) ( ) ( ) ( )0120;10;110; µµµµ lPlzkllGklGlklGlzh +=−++++   (9) 
where 

       ikz /1 ≡  and   12 lllh ωω−+≡  . 
 

From a rather involved derivation making use of Chandrasekhar polynomials of 
the first (gl) and second (ρl) kinds [Inonu, 1970] and an auxiliary transport 
solution for isotropic source emission, the following new representation of the 
transform of the l-th moment is obtained [Ganapol, 1998]: 

      ( ) ( ) ( ) ( ) ( )
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⎪
⎬
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⎪
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µ
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where 

      ( ) ( ) ( ) ( )0,00,0; µµµ zLhzGzLgzLf −−−−≡− , ( ) ( )
( )zL

zLg
zG

Λ
≡

ˆ
0  

( ) ( ) ( ) ( ) ( ) ( )[ ]zLQzLzLQzLLzLg 111ˆ +−++≡ ρρ , ( ) ( ) ( ) ( ) ( ) ( )[ ]zLQzLgzLQzLgLzL 111 +−++≡Λ  

( ) ( ) ( )zlg
L

l lPlzLg ∑
=

≡
0

, µωµ , ( ) ( ) ( )zl
L

l lPlzLh ρµωµ ∑
=

≡
0

, . 

LQ  is the Legendre function of the second kind of order L and the 
Chandrasekhar polynomials of the first and second kinds satisfy the following 
recursion relations: 
  ( ) ( ) ( ) ( )− + + + =+ −zh g z l g z lg zl l l l1 01 1 , ( ) 10 ≡zg    (11a) 
  ( ) ( ) ( ) ( ) 01 11 =+++− −+ zlzlzzh llll ρρρ , ( ) ( ) 1  ,0 10 ≡≡ zz ρρ  . (11b) 
A superscript L on the moment Gl indicating scattering order has been included 
for clarity of the analysis to follow. 
 

While eq(10) is explicit, it is mainly of theoretical interest and is not 
particularly useful for numerical purposes.  The numerical difficulty lies in the 
polynomial nature of the subtracted terms which leads to catastrophic round off 
error.  Thus, an alternative representation has been sought.  After some lengthy 
algebra, we find 
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where ( )0,;0 µµkG  is the transformed solution for isotropic scattering 
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The transformed scalar flux is found simply by integration 
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with 
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To the author’s knowledge, these image functions in the above forms have never 
before been published. 
 
3. THE GREEN’S FUNCTION METHOD: NUMERICAL 
IMPLEMENTATION 
 3.1. Numerical Fourier Transform Inversion 
 The evaluation of the following improper integral constitutes the 
numerical Fourier inversion: 
           ( ) ( )kfikxedkxf   

2

1
  ∫

∞
∞−≡

π
 ;    (14) 

k is a real variable.  For clarity, the image function has been defined with an 
overbar.  Integrals of this type are well known to be difficult to numerically 
evaluate because of the infinite integration range compounded by the unending 
oscillations of the integrand.  Needless to say, special care must be exercised. 
 
By noting that ( )[ ]kfRe  and ( )[ ]kfIm  are even and odd functions of k respectively, 
the inversion integral can be rewritten as 
   ( ) ( )[ ] ( ) ( )[ ] ( ){ }kxkfkxkfdkxf sinImcosRe  

0
1

  −∫
∞≡

π
 .  (15) 

From a change of variable and reformulation of the improper integral as an 
infinite series, there results for 0≠x   
      ( ) ( ) ( )( )[ ] ( ) ( )( )[ ] ( ){ }∑

∞

=
+−+∫−≡

0
sin/Imcos/Re  

01
1

  
j

uxjufuxjufduj
x

xf πππ
π

 . (16) 

The integrals in each term are to be evaluated by a shifted Gauss/Legendre (GL) 
quadrature of order mb.  The convergence of the infinite series is accelerated 
through the Wynn-epsilon algorithm [Graves, 1972] which is the primary reason 
that this numerical procedure can be used at all. 
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For the special case 0=x , a change of variables gives 

( )
( ) ⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−

+

−
∫−=

t

t
f

t
dtf

1

1
Re21

11
1

2
0

π
 .    (17) 

This integral is evaluated as a GL-quadrature on the interval [-1,1].  In this way, 
the apparent singularity is effectively ignored.  This expression is numerically 
advantageous since it does not involve an infinite series evaluation.  For this 
reason, an algorithm has been crafted around eq(17) to evaluate the angular 
Green’s function for 0≠x  as will be discussed. 
 

3.2. Fourier inversion 
The Green’s function determination (collided contribution only) is 

partitioned into 4 components depending on the sign of the independent 
variables x and µ. These components correspond to the 4 quadrants ++,+-,-+,-- 
for x an µ respectively.  In particular, to determine the exiting angular fluxes 
[eqs(6)], only the Green’s functions in quadrants 1 and 4 are required.  This 
approach provides a distinct numerical advantage in which the numerically 
convenient Green’s function evaluation at 0=x  can be utilized as will now be 
demonstrated. 
 
The infinite medium Green’s function solution can be reformulated as two half-
space problems connected at the interface ( 0=x ) by a source condition.  
Assuming that the Green’s function at 0=x  is known results in the following 
integral equation between the Green’s functions of quadrants 1 and 4: 

( ) ( ) ( )
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For completeness, the representation of the Green’s function at 0=x  is 
repeated here 
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Thus, with the knowledge of ( )0;,0 µµ−
cG  and ( )µµ ′;,xcG  (in the first quadrant), 

eq(18) can be solved for ( )µµ ′−− ;,xcG  (in the fourth quadrant).  By approximating 
the integrals in terms of a shifted GL-quadrature of order Lm, eq(18) can be 
recast as the matrix equation 
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   (19) 

where 
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( ) ( ) ( ) ( )jxcGjGjxcGjG µµµµµµ ;,4  ,  ;,1 −−≡≡  . 

Note that x and µ are just parameters in this formulation. 
 
Similarly, the scalar flux is obtained from integration of eq(18) over µ 
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Therefore, from a knowledge of ( )0;,0 µµ−
cG  and ( )µ ′;xcG , ( )µ ′− ;xcG  is obtained 

as the solution of 
( )[ ] ( )

( ) ( ) ( )lG
mL

l jlcGlljcGlx
e

mL

l l

lG
mL

l jlcGlllj

µµµµωµ
µ

ω

µµµµωδ

1 
1

;,0;0
/

1
                  

2 
1

;,0,

∑
=

−+−−
∑
=

=

=∑
=

−+

  (21) 

with 
( ) ( ) ( ) ( )

 

;2,;1 jxcGjGjxcGjG µµµµ −≡≡  .  

 
3.3. Solution for the exiting angular and scalar fluxes 
A. Exiting angular fluxes 

 Rather than solve the coupled integral equations [eqs(6)] directly for the 
exiting angular fluxes, they can be manipulated into two uncoupled integral 
equations.  If ( )µ±r  is defined as 

( ) ( ) ( )µµµ ,,0 −+
± Ψ±−Ψ≡ ar cc  ,    (22) 

eqs(6a) and (6b) can be added and subtracted to give 
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% %

( ) ( ) ( )0 , ; , ;  G a rc cµ µ µ µ µ+ ′ ′ ′′− − ± − ±⎡ ⎤⎣ ⎦
 
When the integrals are approximated by a GL-quadrature and µ is evaluated at 
the abscissa, the following matrix equations result: 
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Finally, the fluxes are recovered from 

( ) [ ] ( ) [ ]
2

,  ,
2

,0
jrjr

jac
jrjr

jc
−−+

=−−Ψ
−++

=−+Ψ µµ    (24b) 

 
 B. Interior scalar flux 
 The interior scalar flux is obtained from eq(6a) as 

( ) ( ) ( )

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]. ,;,0;1 

0                               

;;~1 
0                    

0;0/
0;0

µµµµµµ

µµµµµµ

µ
µ

µµα

′Ψ′−−+′−+Ψ′−∫ ′′−

−′−′+′′∫ ′′+

+−−
−

−=Ψ ⎥⎦
⎤

⎢⎣
⎡

acxaGcxGd

xaGRFxGLFd

xaG
a

exGLx

 (25) 

A reduction in numerical effort is achieved for uniform spatial edit intervals by 
evaluating ( )xΨ  and ( )xa −Ψ  simultaneously.  Since 
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and if 
( ) ( ) ( )xaxxq −Ψ±Ψ≡±  , 

then adding and subtracting eqs(25) and (26) gives 
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Therefore 

( ) ( ) ( )[ ]
2

xqxqx −+ +
=Ψ ,     ( ) ( ) ( )[ ] 

2
xqxqxa −+ −

=−Ψ  , 

and the evaluation of ( )xΨ  is required at only half the number of edit points for 
uniform spatial edit intervals. 
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 C. Auxiliary functions 
 Several auxiliary functions are required in order to evaluate the integrands 
for the Fourier inversions for the angular and scalar fluxes.  In the evaluation of 
eqs(12) and (13), both the Legendre function of the second kind and the 
Chandrasekhar g-polynomial are necessary.  The Legendre function of the 
second kind for a complex variable z is evaluated via the usual recurrence 
relation.  The recurrence is run in the forward direction for 1<z  and in the 
backward direction for 1>z .  The g-polynomial is obtained from eq(11a) in the 
forward direction.  Note that the ρ-polynomial is not required and is mainly of 
theoretical interest. 
 
4. COMPUTATIONAL STRATEGIES 

4.1. Evaluation of Fourier transforms 
 In order to make the BLUE analytical benchmark as efficient as possible, 
special treatment of the evaluation of eqs(12) and (13) is required for the Fourier 
inversion.  In particular, for a given quadrature order and position x, all complex 
quantities independent of µ and µ0 need be calculated only once for each desired 
edit and stored.  Thus, the necessary lQ  and lg  are determined once per x saving 
a significant amount of computational effort given the heavy reliance on 
iteration required for benchmark quality results. 
 
 4.2. Global L2 and Linf relative errors 
 One possible measure of error used to specify the accuracy of a 
benchmark is the global L2 error.  Global, here, refers to a macroscopic error 
over either the angular or spatial edit grids.  The L2-error is defined as over an 
edit grid and between iterations 
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where k indicates the kth iterate and the summation is over either the angular or 
spatial edit grids.  This expression holds for both inner slab and outer quadrature 
iterations, which are to be discussed in the following sections. 
 
In addition to the L2 error, Linf-error, called the maximum relative error for the 
angular or scalar fluxes between iterations, is defined as the maximum relative 
error occurring over the angular or spatial edit grids respectively.  The maximum 
relative error is more conservative then the L2 relative error. 
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4.3. Outer quadrature iteration 

 As is evident, an analytical benchmark requires numerical evaluation as 
does any solution to the transport equation.  Both the determination of the 
Green’s functions and the exiting fluxes requires numerical quadrature.  The 
difference, however, between an analytical benchmark and a corresponding 
numerical transport solution, say as given by an SN algorithm, is that errors 
associated with an analytical benchmark are more easily controlled 
automatically than those resulting from spatial and angular discretizations. 
 
To ensure benchmark quality results, a compound iterative strategy is followed.  
The desired benchmark solution is recalculated by increasing the quadrature 
order used to determine the Green’s functions and the exiting fluxes until 
convergence.  This is the first of two iteration schemes and is called the outer 
quadrature iteration.  In this iteration, the quadrature order Lm [i.e., in 
eqs(19),(21) and (24a)] is advanced until the exiting angular fluxes on the 
angular edit grid have converged to the desired relative error.  Upon angular flux 
convergence, the interior scalar flux is then determined with increasing 
quadrature order until convergence on the spatial edit grid.  “Engineering 
convergence”, defined as the agreement between two consecutive 
approximations to within a specified global L2 or Linf relative error as defined 
above, terminates the computation. 
 
 4.4. Inner slab iteration 
 The theory and numerical implementation discussed in sections I and II 
have been concerned with a single homogeneous medium.  An iterative strategy 
has been devised to treat a heterogeneous medium consisting of contiguous 
homogeneous slabs.  The slabs are connected through the boundary conditions 

RFLF ,~ .  For a particular slab, the incoming flux at 0=x  is the transmitted flux 
from the adjacent slab say to the left, and at ax =  the reflected flux from the 
adjacent slab to the right.  Similarly, the exiting fluxes from the slab of interest 
are the sources for adjacent slabs.  Since only the boundary conditions at the 
slabs bordering on a vacuum are known, an iterative procedure, called the slab 
inner iteration, has been specified to determine the unknown interior surface 
sources.  The slab inner iteration is performed within each quadrature iteration.  
At each step of the inner iteration, the boundary conditions are updated.  In 
general, the inner iteration need not be taken to convergence since the quadrature 
order has not yet fully converged.  For a full benchmark calculation, a maximum 
of 15 inner slab iterations is allowed. 
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5. Benchmark Demonstrations 
5.1. Multiple slabs demonstration 

 A multiple slab benchmark was run for slabs with the following material 
properties: 
 

Slab a ω g L 
1 1.0 0.95 0.8 10 
2 0.1 0.15 0.1 3 
3 4.0 0.90 0.6 8 
4 2.0 0.30 0.7 7 

 
A Henyey-Greenstein (H-G) scattering kernel of order L has been assumed 
(ωl=gl ).  Table 1 shows the scalar flux within the four slabs for two cases for a 
normally incident source on the left boundary of slab 1.  The first case is for a 
desired relative error of 10-5 while the second case is for a relatively large 
quadrature order (45) and is expected to be correct to all digits shown.  In 
general, the accuracy of the first case is as expected in comparison with the 
second.  A slight discrepancy in the last place at the first and last slab boundaries 
(almost within the desired relative error) can be observed in the first case 
however.  This discrepancy is eliminated with higher quadrature order. 
 

5.2. Benchmark Comparisons with ONEDANT and MCNP 
 A deep penetration problem for a 150mfp thick homogeneous slab was 
chosen for comparison purposes. This problem stresses any numerical method 
since the neutrons experience 23 orders of attenuation from surface to surface.  
The slab is assumed to be primarily scattering with ω = 0.9 and to have a mildly 
forward peaked H-G kernel with g = 0.6 and L = 10.  A unit source is normally 
incident on the left surface.  For the analytical benchmark calculation, the 
medium was divided into 5 regions for efficiency of convergence.  Apparently, 
the benchmark could not handle 23 orders of attenuation directly.  Since an 
iterative procedure for the surface sources is used, partitioning the slab requires 
convergence for smaller interior slabs which is less demanding than for the 
entire slab.  ONEDANT calculations were performed for several numerical 
configurations.  In particular, the medium was divided into 15000 mesh cells 
each of thickness ∆x=0.01mfp and standard quadrature sets of double Gauss 
(DG) for N=96 and N=200 were used.  Cases using Lobotto sets were also run.  
In addition, several new features were introduced to make the comparisons more 
meaningful.  Specifically, the angular edit grid was added to the quadrature set 
with (near) zero weights in order to avoid the need to interpolate between 
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quadrature angles.  Also an attempt was made to standardize the source direction 
to be perpendicular (µ = 1) to the free surface.  Thus, µ = 1 was input with (near) 
zero weight and the source was, for some cases, specified to be at this quadrature 
point.  Finally, both the diamond difference (DD) and linear discontinuous (LD) 
spatial differencing schemes were tested. 
 
Tables 2a,b,c show angular exiting and scalar flux comparisons where the ANB 
column is the analytical benchmark.  All digits shown are believed to be correct.  
The column labeled SLD200+ is the result for Lobatto quadrature with LD and 
with edit angles added at zero weight.  Except for the grazing angle (µ = 0), the 
agreement with ANB is excellent.  Even better agreement is observed for 
column SLD200* using a standard double-Gauss quadrature with the source 
introduced at µ = 1.  Both LD-ONEDANT results seem to have some difficulty 
at µ = 0.  This has been traced to the lack of a fixup mechanism for LD 
calculations.  For a DD approximation with a set-to-zero fixup, (and for DGN = 
96 and the source perpendicular given in column SDD96*), the discrepancy 
seems to have disappeared.  Column RDD96 is included to show the standard 
ONEDANT result with linear interpolation between quadrature directions in 
order to obtain fluxes in the edit directions and for the source at the SN direction 
closest to 1.  The accuracy is greatly reduced for this case.  Similar agreement is 
observed for the transmitted flux; however, flux fix-up caused oscillations for 
some cases at µ = 1 and, as a result, no value was available.  MCNP 
calculations, run for almost 2 weeks, are also included in the tables.  At best only 
3 digits of accuracy are obtained for the MCNP angular fluxes.  This most likely 
results from a limitation of the current tally when angular fluxes are desired.  
The tally is subdivided into angular bins and the angular flux is the current in an 
angular bin divided by the average direction.  Within each angular bin, it is not 
possible to use the actual directions for the divisor. 
 
Table 2c shows the interior scalar flux comparison.  Again excellent agreement 
is observed for the SLD200+ and SLD200* cases except near the surfaces.  The 
MCNP results are not high precision because of an inherent limitation of the 
surface flux tally in slab geometry.  Particles that intersect the surface flux tally 
surfaces at grazing angles activate this slight degradation in tally precision. 
 
 
 
 
 



 53

REFERENCES 
[Benoist, 1996] P. Benoist, A. Kerchaff and R. Sanchez, Ann. Nucl. Ener., V23, 
1033(1996). 
[Case, 1953] K. Case, F. deHofman and G. Placzek, Introduction to the Theory 
of Neutron Diffusion, LASL report, (1953). 
[Ganapol, 1998] B. Ganapol, Presentation at the 70th birthday celebration for 
V.C. Boffi, Roma, April, 1998, in press, TTSP. 
[Graves, 1972] P. R. Graves-Morris, Ed., Pade’ Approximants, IOP, London, 
(1972). 
[Inonu, 1970] E. Inonu, Jour. Math Phys., v11, 568(1970). 



 54

 
Table 1 Four-Slab Demonstration 

Scalar Flux 
x err = 1.0e-05 Quad Order = 45

slab=  1   
0.00000E+00 1.34659E+00 1.34660E+00 
2.00000E-01 1.45854E+00 1.45855E+00 
4.00000E-01 1.51248E+00 1.51248E+00 
6.00000E-01 1.53920E+00 1.53920E+00 
8.00000E-01 1.54489E+00 1.54489E+00 
1.00000E+00 1.50835E+00 1.50836E+00 

slab=  2   
1.00000E+00 1.50837E+00 1.50836E+00 
1.02000E+00 1.47672E+00 1.47672E+00 
1.04000E+00 1.45601E+00 1.45599E+00 
1.06000E+00 1.44165E+00 1.44162E+00 
1.08000E+00 1.43386E+00 1.43387E+00 
1.10000E+00 1.43881E+00 1.43881E+00 

slab=  3   
1.10000E+00 1.43881E+00 1.43881E+00 
1.90000E+00 1.38505E+00 1.38505E+00 
2.70000E+00 1.14057E+00 1.14057E+00 
3.50000E+00 8.78584E-01 8.78584E-01 
4.30000E+00 6.32282E-01 6.32282E-01 
5.10000E+00 3.72041E-01 3.72043E-01 

slab=  4   
5.10000E+00 3.72045E-01 3.72043E-01 
5.50000E+00 2.11853E-01 2.11853E-01 
5.90000E+00 1.34346E-01 1.34346E-01 
6.30000E+00 8.77821E-02 8.77822E-02 
6.70000E+00 5.81507E-02 5.81507E-02 
7.10000E+00 3.81154E-02 3.81155E-02 
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Table 2a Deep Penetration Problem: a=150mfp, L=10, ω=0.9 
           Table 2a: Reflection 

µ ANB SLD200+ RDD96 SDD96* SLD200* MCNP*
-1.0 0.439438 0.439436 0.438841 0.439438 0.439438 -- 
-0.8 0.468676 0.468674 0.468577 0.468676 0.468676 0.4680
-0.6 0.491836 0.491832 0.492291 0.491836 0.491836 0.4922
-0.4 0.518433 0.518425 0.518452 0.518435 0.518435 0.5179
-0.2 0.499727 0.499710 0.500071 0.499727 0.499727 0.4995
 0.0 0.395614 0.396395 0.397550 0.395614 0.396862 -- 
*Source at µ0=1 
+Lobatto quadrature 

Table 2b Transmission x 1023 
µ ANB SLD200+ RDD96 SDD96* SLD200* MCNP*

0.0 1.18640 1.18868 1.19038 -- 1.19007 -- 
0.2 1.93253 1.93246 1.93095 1.93243 1.93253 1.9363
0.4 2.62817 2.62813 2.62631 2.62803 2.62815 2.6330
0.6 3.42320 3.42316 3.42091 3.42302 3.42318 3.4267
0.8 4.39503 4.39498 4.39195 4.39479 4.39499 4.4017
1.0 5.63563 5.63555 5.62665 5.63535 5.63555 -- 
 

Table 2c Scalar Flux 
x ANB SLD200+ RDD96 SDD96* SLD200* MCNP*

0.05 1.54580 1.54569 1.54664 1.54568 1.54569 -- 
0.95 1.66667 1.66666 1.66715 1.66666 1.66666 -- 
10.0 1.00460-01 1.00460 1.00384 1.00460 1.00460 1.0048
50.0 8.33981-08 8.33982 8.33326 8.33969 8.33983 8.3422

100.0 2.08521-15 2.08521 2.08354 2.08514 2.08521 2.0864
149.95 3.40420-23 3.40392 3.40115 3.40377 3.40392 -- 
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CHAPTER IV 
 
A NEW 1D-MULTIGROUP DISCRETE-ORDINATES ALGORITHM 
FOR NEUTRON TRANSPORT 
 
1. INTRODUCTION 
 
Simplicity and versatility are the hallmarks of the discrete ordinates (SN) 
numerical algorithm for neutron transport calculations.  The method 
amounts to a convenient bookkeeping scheme for the neutron population as 
one sweeps in specified directions across a spatial domain.  The method is 
generally considered one of brute force in that spatial and angular 
discretization is required.  Therefore numerical errors resulting from 
discretizations are inherent in the method; and for this reason, the SN 
method has always been considered an approximate numerical scheme.  The 
question naturally arises as to the possibility of constructing a fine-mesh 
multigroup SN approximation of similar or higher accuracy to a semi-
analytical benchmark.  If possible, then benchmark solutions could easily be 
generated and confidence in the SN method reinforced.  In this presentation, 
a numerical variant of the SN algorithm will be devised in an attempt to 
eliminate both spatial and angular discretization errors and thus produce a 
truly accurate and converged numerical SN algorithm.  The methodology 
couples a Romberg iterative strategy with a Wynn-epsilon acceleration to 
generate 4-and higher place accuracy for the group angular fluxes exiting 
and within a homogeneous slab medium.  The Romberg iteration is based on 
knowledge of the spatial error induced by spatial discretization.  Knowing 
that the error tail behaves like a power series in mesh spacing and by halving 
the mesh spacing and manipulating the tail, higher order terms can be 
eliminated.  Thus, the solution can be made increasingly more accurate with 
relatively little effort.  Wynn-epsilon (Wε) acceleration can then be applied 
to any quantity determined by the SN algorithm.  The Wε acceleration is 
based on the Pade’ approximant of an infinite series having the appropriate 
limit of a sequence of approximations and, though somewhat unpredictable, 
can be shown to be a most effective nonlinear accelerator. 
 
We begin with a discussion of the two basic components of the new 
MGCSN algorithm.  Next, the derivation of the algorithm is considered in 
full detail.  It is noted that the approximate spatial nature of any 1D SN 
solution is determined by how the spatial integral over a mesh cell is to be 
approximated.  This is a consequence of the inheritance of the integration 
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error by the solution itself.  We conclude with a demonstration of the 
accuracy of the algorithm and several applications with relevant cross 
sections to assess algorithmic efficiency.  Included is a discussion of how the 
MGCSN algorithm can be applied to critical systems. 
 
2. THEORY 
 
2.1. Romberg and Wynn-epsilon accelerations 

A. Romberg Acceleration  
The Romberg acceleration toward a limit [1], say of an algorithm based 

on a mesh spacing as the mesh spacing tends to zero, requires knowledge 
that the algorithm is of the form 

  ( ) ......2
3

1
21 ++++= ++ kkk hKhKhKhAA   (1) 

( )hA  is the numerical algorithm, h is the mesh spacing, jK , j = 1,2,… are 

unknown coefficients and A is the exact limiting value as h tends to zero. For 
example, the following table indicates k for several well-known numerical  

 
TABLE 1. EXAMPLES OF DISCRETE ALGORITHMS 

Algorithm ( )hA  k 
Trapezoidal Integration 
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algorithms where ( )jj xII ≡ . 
 
Consider the kth order approximation of the form 

   ( ) ⎟
⎠

⎞
⎜
⎝

⎛ +++= 1
1

kk hOhKhAA ,   (2) 

then for                 

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ +++= 12/12/ kk hOhKhAA ;  (3) 

and through elimination of K1, there results 

2/hh →
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where a new more accurate algorithm has now been constructed of the form 

( ) ( ) ( )
12

2/2

−

−
≡

k

k hAhA
hB  .    (5) 

Algorithm B(h) is of order k+2.  The elimination of 
j

K  is continued until a 

desired order is reached.  Note that Romberg acceleration is always 
initialized by the original numerical algorithm from which a more accurate 
approximation is to be obtained. 
 
As an example, the following integral representation of the Henyey-
Greenstein scattering kernel 
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is to be evaluated to 9 places via the midpoint integration rule 

( ) ( )( ) .........2/ 4
2

2
1 ++++=∫ hKhKbahgxgdx

b

a
. (7) 

The evaluation is shown to be 9-place accuracy as anticipated.  It is natural 
to then ask--Has the Romberg acceleration actually contributed to reducing 
the error that would have been present with the midpoint rule alone?  To 
answer this question, the error of the original midpoint algorithm was 
determined.  It was observed that the midpoint algorithm itself gives better 
than the desired accuracy.  Therefore the additional Romberg acceleration 
was indeed not necessary for this case.  Next, consider numerical 
differentiation.  The numerical algorithm to be applied is the Complex Step 
Method (CSM) which gives the following evaluation for a derivative: 
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The CSM is to be applied to evaluate 
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to 9-places.  Again to address the necessity of the Romberg acceleration, the 
error associated with just the CSM was investigated.  It was observed that at 
some points the relative error was as large as 10-3.  Thus, the Romberg 
acceleration is necessary to achieve the desired accuracy (10-9) for this case.  
The Romberg acceleration will be applied to accelerate the inner sweeps of 
the standard SN algorithm. 
 

B. Wynn-epsilon Acceleration 
The Wynn-epsilon algorithm [2] is a nonlinear accelerator of a 

sequence  
    ,....2,1, =jS j     (10) 

to its limit 
    jSS lim=∞ .    (11) 

The algorithm is the recurrence 
 

 
 
 
 
 
 
 
 
 
 

that produces the following tableau: 
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The diagonal elements, indicated by the arrow, are interrogated for 
convergence. 
 
While it is beyond the scope of this presentation to derive the Wε algorithm, 
it can be motivated from the following analysis.  Let cn  be the forward 
difference 

nnn SSc −≡ ++ 11 .    (14) 
Next, form the power series 

( ) n

n
nzczf ∑≡
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= 0
    (15a) 

which has the desired limit 
( ) ∞= Sf 1 .     (15b) 

It is now possible to approximate the power series by a Pade’ approximant 
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Finally it can be shown [2] that the diagonal of the tableau is the k/k Pade’ 
approximant 

[ ]( )1/0
2 kkk =ε .    (17) 

The Wε algorithm will be tested on the following Legendre polynomial 
expansion: 
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l

l PPgh ′∑=′
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where the sequence of partial sums, 
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= 02
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is to be accelerated to its limit.  Table 2 shows the progression toward the 
limit for 1=′µ  , 1=µ  ,and g = 0.999.  Iterations from 1 to 30 and 62 to 92 
are shown.  The Wε accelerated value, the original partial sum and the error 
of the Wε value are indicated.  The Wε algorithm is applied using only the 
last 5 iterates for prediction.  This is done to avoid using initial terms that are 
known to be inaccurate.  Observing the original sequence shows only a mild 
trend at best toward the limit.  In contrast, the Wε entries shows 3- to 4-place 
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convergence after 30 iterations with continued remarkable progress to 5- or 
6- place terms after 90 iterations.  This demonstration indicates how efficient 
the Wε acceleration can be.  A smoother approach to the limit can be 
achieved if more iterates are taken for prediction.  The Wε algorithm will be 
applied to the inner iterations of the SN algorithm and to the outer angular 
quadrature iteration. 
 
3. DERIVATION OF THE MGCSN ALGORITHM 
 
3.1. Transport Setting 
We begin with the usual multigroup neutron transport equation  
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 [ ] [ ]. ,...2,1,       ,,...2,1, GggdiagGggdiag =Σ≡Σ=≡ νν  (20d) 
 
Isotropic scattering has been assumed in each of the G groups for a slab of 
width a.  A (plane) beam source in group s in direction µ0 impinges on the 
left face and vacuum borders the right face for all groups giving the 
following boundary conditions: 

 
( ) ( )
( ) 0                    ,0,

0    ,0,0

<=

>−=

µµφ

µµµδµφ
rr

rr

a
se

  (20e) 

with 



 62

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡

0
....
1
....
0
0

s
ser  .    (20f) 

The medium is composed of fissionable material and is assumed to be 
subcritical. 
 
The most straightforward approach is to partition the flux into an uncollided 
and collided contribution which satisfies 
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and whose solution is 
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The uncollided contribution leads to a first collided scattering source of the 
form 
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The collided contribution therefore satisfies 
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which will be to focus of the MGCSN method. 
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             Table 2 Demonstration of Wε Acceleration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     0  5.0000E-01  5.0000E-01  1.5540E+78 
     1  9.4955E-01  9.4955E-01  4.7343E-01 
     2  1.3063E+00  1.3063E+00  2.7312E-01 
     3  1.5419E+00  1.5419E+00  1.5276E-01 
     4  1.6454E+00  1.6454E+00  6.2934E-02 
     5  8.1117E-01  1.6250E+00  1.0285E+00 
     6  9.1760E-01  1.5051E+00  1.1598E-01 
     7  9.9448E-01  1.3225E+00  7.7311E-02 
     8  1.0497E+00  1.1193E+00  5.2568E-02 
     9  1.0890E+00  9.3616E-01  3.6127E-02 
    10  1.1161E+00  8.0590E-01  2.4289E-02 
    11  1.1329E+00  7.4843E-01  1.4838E-02 
    12  1.1408E+00  7.6856E-01  6.9202E-03 
    13  1.1416E+00  8.5631E-01  6.7887E-04 
    14  1.1376E+00  9.8982E-01  3.4990E-03 
    15  1.1313E+00  1.1401E+00  5.6077E-03 
    16  1.1245E+00  1.2771E+00  6.0562E-03 
    17  1.1185E+00  1.3749E+00  5.3639E-03 
    18  1.1140E+00  1.4169E+00  3.9666E-03 
    19  1.1116E+00  1.3978E+00  2.2275E-03 
    20  1.1110E+00  1.3247E+00  4.9475E-04 
    21  1.1120E+00  1.2143E+00  9.2178E-04 
    22  1.1141E+00  1.0901E+00  1.8319E-03 
    23  1.1165E+00  9.7697E-01  2.1984E-03 
    24  1.1189E+00  8.9654E-01  2.0943E-03 
    25  1.1207E+00  8.6320E-01  1.6414E-03 
    26  1.1218E+00  8.8159E-01  9.7963E-04 
    27  1.1221E+00  9.4608E-01  2.5730E-04 
    28  1.1217E+00  1.0423E+00  3.8484E-04 
    29  1.1207E+00  1.1501E+00  8.4200E-04 
    30  1.1195E+00  1.2481E+00  1.0647E-03 

    62  1.1182E+00  1.2176E+00  2.6251E-05 
    63  1.1182E+00  1.1527E+00  4.7513E-05 
    64  1.1183E+00  1.0822E+00  1.0615E-04 
    65  1.1185E+00  1.0201E+00  1.3965E-04 
    66  1.1187E+00  9.7859E-01  1.4370E-04 
    67  1.1188E+00  9.6560E-01  1.1985E-04 
    68  1.1189E+00  9.8320E-01  7.4702E-05 
    69  1.1189E+00  1.0274E+00  1.8443E-05 
    70  1.1189E+00  1.0890E+00  3.7281E-05 
    71  1.1188E+00  1.1555E+00  8.1739E-05 
    72  1.1187E+00  1.2136E+00  1.0721E-04 
    73  1.1185E+00  1.2519E+00  1.1020E-04 
    74  1.1184E+00  1.2632E+00  9.1732E-05 
    75  1.1184E+00  1.2456E+00  5.6784E-05 
    76  1.1183E+00  1.2030E+00  1.3165E-05 
    77  1.1184E+00  1.1442E+00  3.0106E-05 
    78  1.1185E+00  1.0813E+00  6.4655E-05 
    79  1.1185E+00  1.0266E+00  8.4396E-05 
    80  1.1186E+00  9.9106E-01  8.6530E-05 
    81  1.1187E+00  9.8133E-01  7.1789E-05 
    82  1.1188E+00  9.9903E-01  4.4056E-05 
    83  1.1188E+00  1.0402E+00  9.4718E-06 
    84  1.1188E+00  1.0965E+00  2.4838E-05 
    85  1.1187E+00  1.1563E+00  5.2223E-05 
    86  1.1186E+00  1.2078E+00  6.7810E-05 
    87  1.1185E+00  1.2410E+00  6.9314E-05 
    88  1.1185E+00  1.2493E+00  5.7283E-05 
    89  1.1184E+00  1.2315E+00  3.4812E-05 
    90  1.1184E+00  1.1916E+00  6.8412E-06 
    91  1.1185E+00  1.1376E+00  2.0877E-05 
    92  1.1185E+00  1.0805E+00  4.2957E-05 

 j     Sj(Wε)             Sj                      e(Wε)                    j       Sj(Wε)             Sj                e(Wε) 

Henyey-Greenstein :   1,   0.9,   0.999gµ µ′ = = =
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3.2. The MGCSN Method 
Since the scattering is assumed to be isotropic, a straightforward collocation 
can be used for angular discretization.  Here, we use the Double Gauss 
quadrature 

( ){ }; 2 1 0,   1,2NP m Nm mµ µ µ≡ ± − = =  (24) 

as the discrete directions giving 
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where mω  are the quadrature weights.  The m-subscript represents the 
angular discretization with 
 

 ( ) ( )mxcxcm µφφ ,
rr

≡  .   (25b) 
To arrive at a spatial discretization, we first uniformly discretize the slab 
width into mesh cells of size h and then integrate eq(25a) over a mesh cell 
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The j-subscript represents the flux at the interval edges.  If we were to follow 
common practice, the integral of the flux over interval h would be related to 
the interval edge fluxes in some way.  Usually, the integral is considered to 
be the cell centered flux and is related to the edge flux by a simple average.  
This is the well-known diamond difference approximation.  Here, we adopt a 
more general view where the integration is interpreted as a quadrature 
approximation of a given order k 

 ( ) ( ) ......2
3

1
21 ++++++=∫ khKkhKkhKhIxcm

h
dx

rr
φ  (27) 
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where ( )hI
r

 is the quadrature rule.  Note the connection to the Romberg 
algorithm.  The integration over the source is explicit 

  ( ) jsUjx
ejx
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h

dx
rrr
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Since the quadrature over the interval is the sole spatial approximation, the 
desired solution will also possess the same form of the error tail.  In 
particular 
 .....2

3
1

21,, ++++++= khkhkhjcmjcm αααφφ
rr

  (29) 

where φ
r

 is the SN approximation.  If a trapezoidal rule is assumed, then k is 
2 and 
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and the “diamond difference” approximation emerges (the over bar is 
suppressed) 
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But more importantly, any integration rule can be put in place with a higher 
error order for more accuracy.  With the trapezoidal rule, we know the order 
of the error (k = 2) and the form of the error tail of the solution is given by 
eq(27).  With this knowledge, a Romberg iterative scheme can be applied to 
eq(27) to successively eliminate higher order error terms.  This is an 
extension of Richardson’s extrapolation as applied previously to the 
transport equation [3]. 
 
Thus, the SN algorithm serves as the basis for the Romberg algorithm.  
Transport sweeps with source iteration are performed in the usual manner, 
for 0≥µ  
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for 0<µ  
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To accelerate the convergence of the inner iterations, Wε acceleration can be 
applied since the inner iterations should tend to a limit. 
 
The final element of the MGCSN method is an attempt to converge in the 
angular quadrature order.  This is seldom if ever included as a standard 
feature in an SN code.  The order N of the angular approximation is 
increased until convergence with convergence accelerated through the Wε 
accelerator.  The Wε scheme uses only the last 5 Romberg converged values 
for prediction.  More Romberg converged iterates could be used, but it is felt 
that the last 5 values are the most accurate. 
 
Thus, with both acceleration algorithms, there is no guessing as to which is 
the proper quadrature order or spatial discretization to use; and true 
algorithmic convergence can eventually be reached for most cases. 
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3.3. Flow Diagram Summary of the MGCSN Algorithm 
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      Begin 
 Romberg 

Apply Wε Acceleration to Sweeps 

Add Column to Tableau 

h         h/2 
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N             N+2 
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4. DEMONSTRATION 
 
4.1. Convergence Trends 
As a demonstration of the convergence of the CSN method in the one group 
approximation, various relative error scenarios for the exiting current at the 
source surface 

    ( )∫≡
1

0
,0 µµµφdfR     (32) 

have been determined for a perpendicular source striking a slab of 2mfp 
thickness and 0.95 number of secondaries.  The relative errors are plotted as 
scatter curves in Fig.1.  Since SN calculations are required to specify each 
level of the Romberg tableau for a given quadrature order N, the relative 
error associated just with the last two SN calculations at convergence of the 
Romberg acceleration is displayed as the hexagonal (light green) symbol 
scatter plot.  This provides one measure of an unaccelerated result.  
Apparently, no better than about 6 digit agreement (10-6 relative error) 
between SN iterates is possible independently of the SN order.  The 
Romberg converged value also agrees with the SN value to about 6 digits as 
shown as the hexagonal symbol scatter plot (dark red/white) but may possess 
more accuracy as we shall see.  The Romberg iteration typically converged 
at 512 or 1024 spatial intervals.  Next, we examine the variation of the 
relative error of the SN calculation at the smallest mesh (when the Romberg 
acceleration has converged) with quadrature order N as shown by the 
diamond (pink) scatter plot.  As seems evident, excellent convergence to 
about 10-10 error is achieved just with the SN algorithm alone.  However one 
must be cautioned since this measure only compares SN to SN and not to the 
converged Wε  value, which is supposedly the correct one.  In particular, 10 
digit agreement does not necessarily mean that they are all the correct digits.  
When SN values are compared to the converged Wε values given by the 
(red) square scatter plot, it is observed that the SN values have saturated and 
indeed are not at a 10-10 error, but at 10-7 accuracy.  In comparing just the 
relative error of the Romberg converged values (green triangle scatter plot), 
a significant decrease in error is observed with quadrature order indicating 
the power of the Romberg algorithm.  To verify that the converged Romberg 
values are indeed near the true result, their relative error with respect to the 
Wε values is shown as the black circle scatter plot which exhibits a similar 
downward trend.  The advantage of the Wε algorithm is realized when the 
relative error of successive Wε values (blue triangle) is compared to the 
previous scatter plot.  Using the Wε algorithm reduces (in a somewhat 
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erratic way) the relative error by a factor of about 10 to its lowest value.  
Thus, it can be concluded that the error reduction in the reflectance would 
not be possible without the application of the two acceleration schemes 
together. 
 
4.2. Comparison to a Semi-Analytical Benchmark 
As a second demonstration, again consider the slab of width 2mfp in the one 
group approximation as above and determine the transmittance 

    ( )
1

,
0

nT d aµµφ µ≡ −∫     (33) 

as well as the reflectance to a relative error of 10-10.  In the last section, it 
was supposed that the Wε converged value was the correctly converged 
value.  This conjecture could easily be contested however without additional 
proof.  Recall that if the Romberg and Wε schemes had not been applied, 
one would have concluded that the SN algorithm itself converged to 10 
places as N was increased to 50 with 512 intervals.  Only after comparison 
with the Wε algorithm would this conclusion be shown false.  But is the Wε 
value the truly converged value?  One way to gain some confidence is 
through comparison to an equally accurate value.  Fortunately, the BLUE 
code [4] exists which can be made to produce such accuracy.  The BLUE 
code is based on the Green’s Function Method, which in a rather involved 
mathematical procedure to generate an analytical representation of the flux 
using the Green’s function and Placzek’s lemma—a very different method 
from the CSN algorithm. 
 
A comparison of the Wε and BLUE values and the most accurate SN values 
is shown in Table 3.  The accuracy of the Wε values is confirmed (at least 
for this case).  From experience with analytical benchmarking, it is the 
conclusion of the author that this confirmation will also hold for the multi-
(few) group case.  Thus, the relatively unsophisticated CSN bookkeeping 
algorithm can be made to give highly accurate benchmark results with 
significantly less computational effort than a semi-analytical benchmark. 
 

Table 3 Benchmark Comparison 
Method Rf Tn 
GFM 4.287236043e-01 4.093083959e-01 

CSN:N/Lx:44/1024 4.287236043e-01 4.093083959e-01 
SN:N/Lx:44/1024 4.287235412e-01 4.093084747e-01 
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In Fig. 2, the CSN and BLUE scalar fluxes are compared.  The CSN scalar 
flux is not an accelerated value but that of the most accurate SN calculation.  
Provision will eventually be made for converged angular and scalar fluxes. 
 
4.3 Some Multigroup Demonstrations 
As a test of the full MGCSN method several one group and few group 
examples will be presented.  Here, the intent is only to demonstrate 
consistent and reasonable results can be obtained and not to demonstrate the 
limits of the method.  All cases considered are found in the excellent 
benchmark compilation of eigenvalue benchmarks published by Sood, 
Forester and Parsons [5]. 
 

A. One-group 
The nuclear properties of the materials for the one group cases 

considered are contained in Table 4. 
 

Table 4 One Group Nuclear Parameters 
Material ν Σf(cm-1) Σs(cm-1) Σt(cm-1) 2rc(cm) 
Pu239 2.84 0.0816 0.225216 0.32640 4.513502 
U235 2.70 0.06528 0.248064 0.32640 5.745869 

 
The first example is for a bare plutonium slab of thickness 2cm which is 
well below the critical thickness.  CSN will be run in the decoupled 
multigroup mode.  In this mode, each group represents a one group 
calculation decoupled from all the others.  In this way, many multigroup 
cases can be accommodated in a single MGCSN run.  Figure 3, shows the 
variation of the scalar flux across the slab when the scattering cross section 
is reduced with all other parameters fixed.  A reduction of the flux results as 
the scattering cross section is reduced because of the increased absorption as 
would be expected. 
 
Unfortunately, there are no published values with which to compare the 
CSN results but there is a sanity check involving criticality that can be 
applied that provides some confirmation of proper algorithmic operation.  
Since the critical thickness of the slab for the given parameters is known, 
one might ask --What happens when a fixed source steady state computation 
is applied to a critical system?  If the calculation is performing properly, 
some indication of physical incompatibility should emerge.  This conjecture 
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will now be tested by varying the fission cross section through the value that 
gives criticality (Σfc = 0.0816) for a bare PU slab 
 
       Σf = 0.07, 0.08, 0.08159, 0.08161, 0.09. 
 
Figure 4 shows the resulting scalar flux through criticality indicating nothing 
at all unusual.  The flux seems to increase with no unphysical behavior.  
However, observing the exiting currents shown in Table 5a, indicates 
unphysical negative values on the high side of criticality.  When the appro- 
 

Table 5a Pu Near Criticality 
Σf Rf Tn 

0.07 6.5530E-01 8.2988E-01 
0.08 4.8387E+00 5.0051E+00 

0.08159 7.7541E+02 7.7558E+02 
0.08161 -7.7566E+02 -7.7549E+02 

0.09 -9.2603E-01 -7.6920E-01 
 
ach is refined, the unphysical values persist as shown in Table 5b.  If the 
current showed unphysical behavior, why was this not also shown in the  
 

Table 5b Pu Near Criticality (refined) 
Σf Rf Tn 

0.081598  3.8733E+03  3.8735E+03 
0.081599  7.7378E+03  7.7380E+03 
0.081601 -7.7031E+03 -7.7028E+03 
0.081602 -3.8818E+03 -3.8816E+03 
0.081603 -2.5870E+03 -2.5868E+03 

 
scalar flux?  The reason is that the scalar flux is not derived from converged 
angular fluxes but from the most accurate values of the SN calculation.  
Remarkably, criticality is sensed only after the application of the Romberg 
and Wynn-epsilon accelerations.  To verify this Table 5c shows converged 
values of the angular flux at the first and last quadrature directions.  The 
unphysical behavior is now evident.   
 
To see that the apparent indication of criticality by the CSN method is not a 
fortuitous occurrence, the same analysis was performed on a bare U235 slab 
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Table 5c Angular Flux 
Σf φ(0,1) φ(α,Ν) 

0.07 1.1591E+00 1.0997E+00 
0.08 8.7190E+00 8.6506E+00 

0.08159 1.4046E+03 1.4046E+03 
0.08161 -1.4052E+03 -1.4052E+03 

0.09 -1.7079E+00 -1.7869E+00 
 

Table 5d U235 Near Criticality 
Σf Rf Tn 

0.05 4.0746E-01 4.9122E-01 
0.06 1.1750E+00 1.2469E+00 

0.06527 6.1424E+02 6.1430E+02 
0.06529 -6.1283E+02 -6.1277E+02 

0.07 -1.2784E+00 -1.2208E+00 
 
(Σfc = 0.06528) as shown in Table 3d with the identical outcome around the 
critical fission cross section. 
 
From this investigation, we can conclude that the CSN method is sensitive to 
criticality through its accelerations—an interesting result indeed! 
 

B. Two-groups 
The 2-group bare Pu239 slab is considered next (Problem 45 in [5]).  

Figure 5 shows the two-group fluxes for sources alternately in each group.  
The expected symmetry is observed. 
 

D. Six-groups 
The final case considered is for six groups.  A special cross section set 

has been devised and is found in Tables 59-64 in reference 5.  The set is 
constructed such that there is possible down or up scatter to two adjacent 
groups and groups [1,6], [2,5], [3,4] are equivalent.  Therefore, for 
symmetrically placed sources within the group structure, symmetrical results 
in energy are expected.  This is seen to be the case for a 2cm thick slab as 
shown in Fig. 6 where the corresponding groups fall on top of each other. 
 
 The MGCSN method can also be used to predict the critical thickness for  
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Table 6a Subcritical for a =6.35cm 

Gp Rf Tn 
1  1.6982E+02  1.6963E+02 
2  4.8900E+01  4.8684E+01 
3  9.3814E+00  9.3474E+00 
4  9.3814E+00  9.3474E+00 
5  4.8900E+01  4.8684E+01 
6  1.6982E+02  1.6963E+02 

 
Table 6b Supercritical for a =6.36cm 

Gp Rf Tn 
1 -2.6026E+02 -2.6046E+02 
2 -7.4533E+01 -7.4756E+01 
3 -1.4322E+01 -1.4357E+01 
4 -1.4322E+01 -1.4357E+01 
5 -7.4533E+01 -7.4756E+01 
6 -2.6026E+02 -2.6046E+02 

 
this case.  As shown in Tables 6, positive and negative exiting currents are 
given by a = 6.35 and 6.36 respectively.  If two additional cases are run and 
the reciprocal of the reflectance for groups 1,2 and 3 is plotted against a, Fig. 
7 results which seems to most remarkably pinpoint the critical thickness if it 
is assumed to occur at infinite flux.  At this point, the determination of the 
critical thickness is conjecture; however, verification is planned. 
 
5. CONCLUSIONS AND FUTURE EFFORT 
 
In this presentation, only the fundamentals of the MGCSN method have 
been given.  There remain several issues that must be addressed after which 
the MGCSN method could possibly be viewed as one of the most effective 
methods for generating highly accurate 1D transport solutions ever devised.  
As shown, the numerical solution retains the simplicity of the SN algorithm 
and with little extra effort can be made to render semi-analytical benchmark 
quality solutions.  The algorithm is built around two powerful acceleration 
techniques that enable sequences to reach their limits most efficiently.  The 
accuracy of the method has been demonstrated as well its application to few 
group cases. 
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Still, however, there are some unanswered questions such as: 
 

+ How can fluxes be obtained at specific spatial edit points? 
+ Can DSA be incorporated into the inner iteration strategy to further 
speedup the computation? 
+ How does the algorithm fair for anisotropic scattering? 
+ Can CSN be coupled to a numerical Laplace transform inversion to 
generate time dependent results? 
+ Does a CSN/GFM hybrid make sense? 
+ What about multidimensions? 

 
These and other issues will be addressed as the MGCSN method matures 
through application. 
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Fig. 1 Comparison of various relative errors
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FIg.2 Comparision to the BLUE analytical benchmark
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Fig. 3  Variation of Σs for Pu239 with a = 2 and Σt = 0.32640
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Fig. 4  SN scalar fluxes for Pu239 through critical
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Fig. 5  Two group bare Pu slab of  thickness 2 cm
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Fig. 6 Six-group calculation with sources in groups 2 and 5
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Fig. 7 Approach to criticality for 6-group case
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CONCLUDING REMARKS 
The original tasking for this grant was the following: 
 

Task 1: 1-D Benchmarks 
1.1 One-group Heterogeneous Media 

+ single slab 
+ heterogeneous slab 

1.2 Multigroup Heterogeneous Media 
+ single slab 
+ heterogeneous slab 

 1.3 Infinite Media 
+ line source 
+ shell source 
+ solid spherical source 

 
Task 2: Multi-D Benchmarks 

 2.1 One-group infinite media  
+ finite line source 
+ partial spherical shell source 

 2.2 Multigroup infinite media 
+ finite line source 
+ partial spherical shell source 

 3.3 Infinite Media general 
  + Helical line source demonstration 
  + General line source 
 
Essentially, the first task was entirely completed and is reported here.  The 
theory for all of Task 2 is currently in place and will at a later date be 
published as archival journal articles.  Unfortunately, the duration of the 
project was not enough to complete Task 2 in publishable form. 
 
The following conference proceedings originated from this work: 
 

 “Multigroup Neutral Particle Transport Theory Revisited: The Development of an Analytical 
Benchmark,”  PHYSOR02, Seoul, Korea (2002) 
 
 “Analytical Radiation Transport Benchmarks for the Next Century,” Trans. Am. Nucl. Soc., 
86, 172-174 (2002) 
 
 “An Analytical Multigroup Neutral Particle Transport Benchmark,” Trans. Am. Nucl. Soc., 87, 
174-177 (2002) 
 
“A 3-D Source Transport Benchmark,” Trans. Am. Nucl. Soc., 87, 177-180 (2002) 

 
 


