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EXECUTIVE SUMMARY 
The groundwater flow and radionuclide transport model characterizing the Shoal 

underground nuclear test has been accepted by the State of Nevada Division of Environmental 
Protection. According to the Federal Facility Agreement and Consent Order (FFACO) between 
the U.S. Department of Energy and the State of Nevada, the next steps in the closure process for 
the site are the model validation (or postaudit), the proof-of-concept, and the long-term 
monitoring stage. This report addresses the development of the validation strategy for the Shoal 
model, needed for preparing the subsurface Corrective Action Decision Document-Corrective 
Action Plan (CADD/CAP) and the development of the proof-of-concept tools needed during the 
five-year monitoring/validation period. The proposed approach builds on the previous model 
validation work conducted for the Central Nevada Test Area (CNTA). The CNTA validation 
approach is adapted and modified to the site-specific conditions and challenges of the Shoal area, 
which are significantly different from those at CNTA (faster transport rates are predicted for 
Shoal).  

Groundwater model validation definitions and literature debates are briefly discussed. 
Most of the literature debate is on the terminology and not on the process itself. No one disputes 
the importance and necessity of the model validation or evaluation process and no one disagrees 
on the concept of using an independent data set to test the model. The disagreement is on what 
the process should be called and what the implications are for the term used. This has resulted in 
a lack of focus on development of model validation processes or tools. Although there is rough 
agreement on the goal of the process, there is no agreement on or development of a uniform 
methodology for executing model validation. We postulate that there is an urgent need for a 
validation process that can be used to evaluate model performance and build confidence in its 
suitability for making decisions. This confidence building is a long-term iterative process and it 
is this process that should be termed model validation.  

The FFACO’s 10-step model validation process and the 12-step modeling protocol 
established in the hydrogeologic literature are discussed and contrasted. It is noted that one of the 
eliminated steps in the conversion from the hydrogeologic literature process to the FFACO 
process is the “model redesign” step. This model redesign step is a necessary complement to the 
model postaudit step, which appears in both processes. It is only meaningful to have a postaudit 
step together with the “possibility” for a model redesign step. Otherwise, there is no need for the 
model postaudit step. 

Previous model postaudit studies are reviewed and reasons for poor model performance 
are discussed. Based on these reviews and on the validation process proposed for CNTA, a 
similar validation approach for Shoal is proposed. The details of the proposed approach are not 
repeated here, but rather more explanation and discussion of some of the challenging aspects of 
the process are addressed as they apply to the Shoal model. In particular, more focus is placed on 
two main aspects: 1) the selection of the validation targets at Shoal, and 2) the selection of the 
acceptance criteria for the stochastic model realizations. 

Individual parametric uncertainty analysis is conducted to identify the contribution of a 
number of flow and transport parameters to the overall Shoal model’s output uncertainty. 
Validation targets are selected based on this analysis and the practical feasibility of measuring 
the selected targets in the field. For input parameters to the Shoal model, the analysis indicates 
that hydraulic conductivity is one of the important validation targets. On the output side, the 
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hydraulic head as well as the head gradient are viable validation targets. In addition, presence or 
absence of certain radionuclides at the locations of the validation wells can be used as validation 
targets. 

A few metrics are proposed to be used for the acceptance criteria for the conceptual 
model as well as for individual model realizations. These metrics are tested with well-known 
statistical tests and are shown to be reasonable acceptance measures for the model. Hypothetical 
scenarios are used to show how these metrics perform when field data are consistent with and 
support the existing model, or indicate model deficiencies. A hierarchical approach to determine 
whether the number of acceptable model realizations is sufficient is described by a decision tree. 
This decision tree is proposed for the acceptance of the realizations and for passing the first 
decision point on the validation approach. 
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1. INTRODUCTION 
The U.S. Department of Energy (DOE) and State of Nevada are working together through 

a Federal Facilities Agreement and Consent Order (FFACO) to identify sites in Nevada of 
potential historic contamination and implement proposed corrective actions based on public 
health and environmental considerations. This includes completing environmental corrective 
action activities at facilities where nuclear-related operations were conducted. The closure 
process involves thorough investigations of the potential impacts of facilities on public health 
and the environment, providing the information needed to choose appropriate remedies. For 
underground nuclear tests specifically, Appendix VI of the FFACO defines a Corrective Action 
Strategy to define boundaries around each test area that contain water that may be unsafe for 
domestic and municipal use. The strategy is to characterize groundwater flow and contaminant 
transport through modeling utilizing site-specific hydrologic data. 

Though the vast majority of underground nuclear tests occurred at the Nevada Test Site 
(NTS), a limited number of tests were conducted at other locations. The Project Shoal Area 
(PSA), about 50 km southeast of Fallon, Nevada, is the location of the Shoal test. Shoal was a 
12-kiloton-yield nuclear detonation that occurred on October 26, 1963 (U.S. DOE, 2000). The 
test was part of a program (Vela Uniform) to enhance seismic detection of underground nuclear 
tests in active earthquake areas. Figure 1 shows the location of the Shoal site relative to cities in 
Nevada. The nuclear device was emplaced 367 m below land surface, or about 65 m below the 
water table, in fractured granite. Details of the geology and hydrogeology at the site are provided 
elsewhere (Pohll et al., 1998, 1999a). Characterization of groundwater contamination resulting 
from the Shoal test is being conducted by DOE under the FFACO with the State of Nevada 
Division of Environmental Protection (NDEP) and the U.S. Department of Defense (Pohlmann et 
al., 2004). 

The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in 
September 1996 and described a plan to drill and conduct testing of four characterization wells, 
followed by flow and transport modeling. The resultant drilling is described in a data report (U.S. 
DOE, 1998a) and the data analysis and modeling in an interim modeling report (Pohll et al., 
1998). After considering the results of the modeling effort, DOE determined that the degree of 
uncertainty in transport predictions for Shoal remained unacceptably large. As a result, a second 
CAIP was developed by DOE and approved by the NDEP in December 1998 (U.S. DOE, 
1998b). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and 
quantification of methods of reducing uncertainty through data collection. This analysis is 
termed a Data Decision Analysis (DDA) (Pohll et al., 1999b) and formed the basis for a second 
major characterization effort at Shoal. The details for this second field effort are presented in an 
Addendum to the CAIP, which was approved by NDEP in April 1999 (U.S. DOE, 1999). Four 
additional characterization wells were drilled at Shoal during summer and fall 1999; details of 
the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et 
al. (2000). A key component of the second field program was a tracer test between two of the 
new wells (Carroll et al., 2000; Reimus et al., 2003). 

The objectives of the characterization effort of this field program include the evaluation 
of alternative conceptual radionuclide transport models in the saturated, fractured granite and the 
estimation of transport parameters for use in radionuclide transport models. To achieve these 
objectives, a cross-hole tracer test involving the simultaneous injection of both nonsorbing and 
sorbing solute tracers was conducted at the site in 1999 and 2000. A secondary objective of the 
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tracer test was to determine how well the field-scale transport behavior of a sorbing solute could 
be predicted based on laboratory derived sorption parameters. 

Reno

Ely

Las Vegas

Tonopah

Project
Shoal Area

NTS

 

Figure 1. Location of Project Shoal Area. 
 

As a result of the tracer test and the new characterization efforts of 1999 and 2000, a new 
groundwater flow and radionuclide transport model was developed and submitted to DOE in 
2001 (Pohlmann et al., 2001). This model report was subsequently revised in response to the 
comments of the Modeling Subcommittee of the Underground Test Area (UGTA) Technical 
Working Group and submitted to DOE and NDEP in 2003 (Pohlmann et al., 2002). Based on 
comments received from the NDEP, the model report was again revised and submitted to DOE 
and NDEP in 2004 (Pohlmann et al., 2004). 

The NDEP has concurred with the Shoal model of Pohlmann et al. (2004) and the natural 
next step in the closure process of the site is the development of the validation and long-term 
monitoring approaches for presentation in the Corrective Action Decision Document/Corrective 
Action Plan (CADD/CAP). This report discusses the validation approach for the Shoal model 
and builds on the analysis presented in Hassan (2003a, 2004a,b) for the Central Nevada Test 
Area (CNTA) model. The remainder of this report is organized as follows. In Section 2, a brief 
discussion of the meaning and the literature controversy regarding the term “model validation” is 
presented. Section 3 then discusses the link between the model validation process and the 
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FFACO (2000) model validation and postaudit steps. Section 4 presents a review of reported 
model postaudit studies and discusses the limitation of these postaudits. Section 5 briefly 
describes the proposed model validation process (adapted from Hassan [2003a]), then the 
selection of validation targets at Shoal using the results of parametric uncertainty analysis, and 
on the selection of validation criteria for the stochastic Shoal model. The report is summarized in 
Section 6. 

2. WHAT IS MODEL VALIDATION? 
The term validation has been the subject of literature debate for more than a decade. 

Many skeptics argue that the term should not be used, as it implies correctness and accuracy for a 
groundwater model that no one can claim. Regulators and decision makers should understand 
that there is no way to guarantee that a model-based decision is always correct, or that a model 
can ever be proven to be valid in the strictest sense of the term (van der Heijde, 1990). Many 
assert that it is impossible to validate a groundwater numerical model because such a claim 
would assert a demonstration of truth that can never be attained for our approximate solutions to 
subsurface problems (Oreskes et al., 1994). Anderson and Bates (2001) recently edited a book 
covering the issue of model validation in Hydrological Science. Summarized here are some of 
the quotes they presented from the skeptics and the opponents to the use of the term “validation.” 

“Absolute validity of a model is never determined” (National Research Council, 1999).  
“What is usually done in testing the predictive capability of a model is best characterized 

as calibration or history matching; it is only a limited demonstration of the reliability of the 
model. We believe the terms validation and verification have little or no place in groundwater 
science; these terms lead to a false impression of model capability. More meaningful descriptors 
of the process include model testing, model evaluation, model calibration, sensitivity testing, 
benchmarking, history matching, and parameter estimation. Use of these terms will help to shift 
emphasis towards understanding complex hydrogeological systems and away from building false 
confidence into model predictions” (Konikow and Bredehoeft, 1992). 

 “A modeling system can, in principle, never be validated. Instead of a full validation we 
can think of the degree of validity as the credibility of a given modeling system. The degree of 
validity of a modeling system is expressed in the first and most immediate place by the sum of 
all successful validation of all models that have been constructed and operated to date using the 
modeling system. As the number of such successful models increases, so the credibility of the 
system itself grows in strength. Behind this, most superficial of views, lies the assumption that 
the modeling system is in fact being improved on the basis of the operating experience; that it is 
functioning within its market, tracking the needs of that market and thus learning from this 
market. From this point of view, the development of a modeling system is not one that leads 
directly to a finished, rounded and complete product, but it is rather a process of adaptation 
through evolution. Thus, although the modeling system is indirectly a product, it is one that is 
constantly evolving, so that its evolution corresponds to a process” (Refsgaard and Storm, 1996) 

“The inherent uncertainties of models have been widely recognized, and it is now 
commonly acknowledged that the term 'validation' is an unfortunate one, because its root -valid -
implies a legitimacy that we may not be justified in asserting (Tsang, 1991, 1992; Anderson and 
Woessner, 1992a; Konikow, 1992; Konikow and Bredehoeft, 1992; Oreskes et al., 1994; 
Oreskes, 1998; Beck et al., 1997; Steefel and van Cappellen, 1998). But old habits die hard, and 
the term persists. In formal documents of major national and international agencies that sponsor 
modeling efforts and in the work of many modelers, 'validation' is still widely used in ways that 
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assert or imply assurance that the model accurately reflects the underlying natural processes, and 
therefore provides a reliable basis for decision-making. This usage is misleading and should be 
changed. Models cannot be validated” Oreskes and Blitz (2001). 

The above views consider the validation from the strictest definition of the word. That is, 
they refer to the validation as a demonstration of the accuracy of the model in representing the 
true system and they warn against misconception of the public about the meaning of the term. As 
discussed in Hassan (2004a), most models, if not all, are not being used to reveal the truth of a 
system. Of course it would be great if models could do so, but they simply cannot. Models are in 
many cases decision-making tools. When a model successfully passes a rigorous development, 
calibration, and testing process, it becomes a reasonable decision-making tool given the limited 
data used in the development process. Acknowledging the role of uncertainty, the model 
validation process is one crucial stage in the entire process that should be regarded as an 
additional filter for independent model evaluation. The fact is that most of the literature debate is 
on the terminology and not on the process itself. No one argues that the process is unimportant, 
unneeded, or useless and no one disagrees on the concept of using an independent data set to test 
the model. The disagreement is on what it is called and what the implications are for the term 
used.  

This lack of focus on development of model validation processes or tools is reflected 
clearly in Vogel and Sankarasubramanian’s (2003) discussion about the validation of watershed 
models. “When one considers the wide range of watershed models and the heavy emphasis on 
their calibration (Duan et al., 2003), it is surprising how little attention has been given to the 
problem of model validation. In three recent reviews of watershed modeling (Singh, 1995; 
Hornberger and Boyer, 1995; Singh and Woolhiser, 2002) and watershed model calibration 
(Duan et al., 2003), there was little attention given to developments in the area of model 
validation. Although there is rough agreement on the goal of model validation, no agreement 
exists on a uniform methodology for executing model validation.” 

There is an urgent need for a validation process that can be used to evaluate model 
performance and build confidence in a model’s suitability for making decisions. This confidence 
building is a long-term iterative process and it is the author’s belief that this process is what 
should be termed model validation. Model validation is a process, not an end result. That is, the 
process of model validation cannot always assure acceptable prediction or quality of the model. 
Rather, it provides safeguards against faulty models or inadequately developed and tested 
models. If model results end up being used as the basis for decision making, then the validation 
process indicates that the model is valid for making decisions (not necessarily an absolute 
representation of truth). 

Again, such a process should not be viewed as a mechanism for proving that the model is 
valid, but rather as a mechanism for enhancing the model, reducing its uncertainty, and 
improving its predictions through an iterative, long-term, confidence-building process. The 
process should contain trigger mechanisms that will drive the model back to the characterization-
conceptualization-calibration-prediction stage (i.e., back to the beginning), but with a better 
understanding of the modeled system. 

As described by a regulator (Shah Alam, 1998), regulators want to be certain that human 
health and the environment are being protected and general public participation is a key element 
in a regulatory decision making process for a contaminated site. Affected public should be able 
to comprehend and concur with the model in their terms. This is difficult to achieve without a 
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long-term commitment of evaluating and re-evaluating the model results (thus going through an 
iterative validation process) based on data collected for validation and for the long-term 
monitoring of the site. Most regulators understand modeling well enough to know that a model 
cannot be proven to be “correct.” Rather, they are seeking evidence that the model is sufficient 
for decision-making and that model predictions are being thoroughly tested against site-specific 
data. 

3. MODEL VALIDATION AND THE FFACO 
Appendix VI of the FFACO between the State of Nevada, DOE, and DoD describes a  

10-step model validation procedure. These ten steps are essentially extracted from a 12-step 
modeling protocol that was devised by Anderson and Woessner (1992b). Thus, the FFACO 
(2000) defines the model validation process as the performance of ten modeling steps based on 
Anderson and Woessner’s (1992b) description. To further explain this aspect, Figure 2 presents a 
side-by-side comparison of the 10-step model validation process as outlined in the FFACO 
(2000) and the 12-step modeling protocol of Anderson and Woessner (1992b), who assert that 
“each of these twelve steps builds support in demonstrating that a given site-specific model is 
capable of producing meaningful results, i.e., that the model is valid.” It should be mentioned 
that the how-to steps related to the FFACO (2000) model postaudit step and the link to the         
proof-of-concept monitoring are not mentioned in any quantitative manner in the FFACO 
(2000). 

Models are essential in performing complex analyses and in making informed 
predictions. However, no matter how sophisticated the modeling approach is, when applied to a 
subsurface flow and transport problem, it provides no more than a simplistic representation of 
very complex field conditions. In this regard, Konikow (1986) states that models should be 
considered as dynamic representations of nature, subject to further refinements and 
improvements. As new data become available (e.g., through new wells), model predictions can 
be evaluated, validated or invalidated, and then modified if necessary. As articulated by Ewing et 
al. (1999), no question exists that mathematical models can be extrapolated over time; however, 
the question remains as to whether these extrapolations actually capture the physical and 
chemical behavior of the geologic systems over extended time. Thus, geologic systems are 
extremely difficult to model over extended periods, and uncertainties are so large that careful 
attention has to be paid to possibilities of alternative conceptual models, incomplete descriptions 
of natural systems, and difficulty of describing future stresses and patterns correctly. With all 
these uncertainties, it is crucial to account for the possibility that the site-specific model being 
postaudited may not be perfect.   
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Figure 2. Comparison between the 10-step model validation process as outlined in the FFACO (2000) 
on the left and the 12-step modeling protocol and model validation process as outlined by 
Anderson and Woessner (1992b) on the right. 



 

 7

In discussing the strategy of scientific model building, Box (1979) explains how the 
model builder can go about knowing what aspects of the studied system to include and what to 
omit so that models that are illuminating and useful result from the model-building process. His 
argument is as follows. “It is fruitless to attempt to allow for all contingencies in advance so in 
practice model building must be accomplished by iteration. For example, preliminary graphical 
analysis of data, and careful thought about what is known about the system under study, may 
suggest a first model worthy to be tentatively entertained. From this model a corresponding first 
tentative analysis may be made as if we believed it. The tentative inferences made, like all 
inferences are conditional on the applicability of the implied model, but the investigator now 
quickly switches his attitude from that of sponsor to that of critic. In fact the tentative analysis 
provides a basis for criticism of the model. This criticism phase is accomplished by examining 
residual quantities using graphical procedures and sometimes more formal tests of fit. Such 
diagnostic checks may fail to show cause for doubting the model's applicability, otherwise it may 
point to modification of the model leading to a new tentative model and, in turn, to a further 
cycle of the iteration.”  

Box (1979) further makes the following analogy. “It should be remembered that just as 
the Declaration of Independence promises the pursuit of happiness rather than happiness itself, 
so the iterative scientific model building process offers only the pursuit of the perfect model. For 
even when we feel we have carried the model building process to a conclusion some new 
initiative may make further improvement possible. Fortunately, to be useful a model does not 
have to be perfect.” 

Bredehoeft (2003) also discusses the issue of modeling process. He indicates that good 
modeling is an iterative process. As new data are acquired, the model is revisited and adjusted 
(or recalibrated) so that the model predictions are consistent with all the data including the new 
data. The model becomes a living tool for analysis. With this paradigm, the modeling strategy 
changes; it requires continued monitoring and model updating. The iterative process is important 
in addressing the adequacy of the conceptual model. A mismatch between the model prediction 
and observed data should raise the issue of conceptualization: Is the mismatch a result of poor 
parameter adjustments or does it suggest that a rethinking of the conceptual model (Bredehoeft, 
2003). Part of the validation plan discussed later exactly addresses this issue. 

As modeling tools increase in complexity and ability to handle natural geologic 
variability, parameterization of the models becomes more difficult. The model complexity and 
the subsequent high-dimensional parameterization make objective calibration very difficult, if 
not impossible. The calibration process that is used to determine model parameters can be guided 
by the principle of parsimony. This principle implies that the best model is the simplest possible 
model that adequately describes the available data. Using the principle of parsimony, the model 
is kept as simple as possible while still accounting for the system processes and characteristics 
evident in the observations and while respecting other information about the system (Hill, 1998). 
The bottom line is, therefore, that one can strive for model parsimony as long as this does not 
impair the ability of the model to simulate or approximate observed data values (Perrin et al., 
2001).  

The principle of parsimony can also be used to differentiate between alternative 
conceptual models. In this context, the principle states that among all plausible models that one 
can use to explain a given set of experimental data, one should select the model that is 
conceptually least complex and involves the smallest number of unknown (fitting) parameters. 
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This principle was implemented in developing the conceptual models and in the calibration 
procedure for the Shoal model. Whether to simplify the model or add some complexities was 
always dependent upon the relevance of the simplified aspects to the issue of concern that 
derived the modeling effort in the first place. When it comes to model validation, the validation 
process as defined earlier in Section 1 will provide a mechanism for testing whether the 
parsimony principle was applied correctly or whether oversimplification led to major model 
deficiencies. 

Hassan (2003a, 2004a) presented a thorough review of groundwater model validation 
including definitions, literature debates, validation attempts, and proposed strategies. The 
literature review and the discussions presented in these studies make it clear that even the 
simplest deterministic subsurface model is very difficult to evaluate. This discussion and the 
debate in the literature on model validation make it essential that models be refined and updated 
whenever new information becomes available, especially if the new information represents        
site-specific data. In the context of performance assessment (PA) of proposed high-level waste 
repositories, Ewing et al. (1999) postulate that although PA is required as a condition for 
licensing certain waste-disposal sites, there is no a priori reason that the public or scientific 
community should uncritically accept a PA analysis; on the contrary, any PA analysis should be 
carefully scrutinized and improvements will inevitably result. These improvements cannot be 
made if the model postaudit stage outlined in the FFACO (2000) does not allow for revisiting 
and refining the model conceptualization and prediction based on newly collected field data.  

The validation process proposed for the CNTA groundwater flow and transport model 
(Hassan, 2003a, 2004a, b) is consistent with the 10-step FFACO (2000) strategy provided that 
the tenth step of model postaudit in that strategy is perceived as presented by Anderson and 
Woessner (1992b). Figure 3 shows the linkage between the FFACO closure process for Nevada 
offsite test areas and the 10-step modeling protocol with detailed conceptualization for the tenth 
step (the postaudit step). As can be seen from the figure, steps 1 to 9 of the FFACO modeling 
protocol or model validation strategy belong to the development stage that is represented in the 
figure by the top large box. Step 10 in the FFACO strategy (the postaudit) is expanded in          
Figure 3 and it represents the model validation process as conceptualized in this study. It is 
important to notice that the five-year proof-of-concept monitoring network development that is 
required in the FFACO (2000) can start once the development stage is completed and can be 
performed simultaneously with the model validation analyses, monitoring network development 
and the postaudit. As stated in the FFACO (2000), measurement of field parameters through this 
proof-of-concept monitoring network will be used to demonstrate that the model is capable of 
making reasonable predictions that fall within an acceptable level of confidence. This is what the 
lower loop in Figure 3 is designed to provide, which corresponds to the CAP, Closure Report 
(CR), and long-term stewardship stages of the closure process.  

When the monitoring network is installed, data collected, and tests performed for 
evaluating and validating the model, the question will arise as to how the model predictions 
compare to the collected field measurements. If the results indicate major model deficiencies, the 
process will be driven back to step 2 for model reconceptualization. This implies that steps 2 
through 9 of the modeling protocol (Anderson and Woessner, 1992b) and the FFACO model 
validation strategy will be repeated if needed and this repetition is considered as part of the 
model postaudit or model validation stage. Once the model postaudit step, the proof-of-concept  
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Figure 3. The linkage between the FFACO closure process and the 10-step modeling strategy and how 
the postaudit step (step number 10) leads to an iterative validation process.  
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stage, and confidence-building loop (model validation process) have been completed 
successfully and the model is deemed validated, the long-term monitoring network will be 
amended if necessary to provide sufficient surveillance for the site. Using the long-term 
monitoring data to re-evaluate the model over time is considered as a continuous model 
validation and postaudit process and is necessary for the long-time period of concern at these 
nuclear testing sites. Again, geologic systems are extremely difficult to model over extended 
periods of time, and uncertainties are so large that careful attention has to be paid to the 
possibilities of imperfect models.  

An attempt is made in Hassan (2003a, 2004a, b) to quantify the model validation process 
and this report adapts this validation process to the Shoal model. What is provided in Figure 4 
and discussed later in Section 5.1 is a detailed approach for performing this process in the case of 
stochastic numerical models that rely on Monte Carlo simulations, which is the case for the 
Shoal model. 

4. REVIEW OF POSTAUDIT STUDIES 
A postaudit of a numerical model compares the model’s predictions with field 

observations. Model postaudits test the predictive capabilities of groundwater models and shed 
light on their practical limitations. Postaudits can provide valuable perspectives on the use of 
numerical groundwater models to predict the behavior of groundwater systems. The predictive 
ability of numerical groundwater models is often, incorrectly, associated with a model’s ability 
to reproduce a calibration data set (Freyberg, 1988). Without assessing the model performance 
over the prediction period through a postaudit, it is not possible to make a general assessment of 
the predictive ability of numerical models, or to discover common reasons for poor performance 
(Stewart and Langevin, 1999).  

A number of studies have explored the predictive reliability of reasonably calibrated 
models by a posterior comparison between model predictions and observed data (e.g., Person and 
Konikow, 1986; Konikow, 1986; Freyberg, 1988). However, the few documented examples of 
postaudits of groundwater models (e.g., Konikow, 1986; Konikow and Person, 1985; Konikow 
and Swain, 1990; Alley and Emery, 1986; Stewart and Langevin, 1999) have not provided high 
confidence in the predictive accuracy of these models. These studies showed that prediction 
accuracy was moderate. For example, Stewart and Langevin (1999) suggest that the actual 
drawdown around a major well field in Florida exceeded model predictions by a factor of two. In 
their study, they postaudited a numerical groundwater flow model that was created in 1978 and 
revised in 1981 to predict the drawdown effects of a proposed municipal well field permitted to 
withdraw 30 million gallons per day from the Floridan Aquifer.  

In their postaudit, observed drawdowns were derived by taking the difference between 
pre-pumping and post-pumping potentiometric surface levels. Comparison of predicted and 
observed drawdowns suggested that actual drawdown over a 12-year period exceeded predicted 
drawdown by a factor of two or more. Analysis of the source of error in the 1981 predictions 
suggested that the values used for transmissivity, storativity, specific yield, and leakance were 
reasonable at the well field scale. Simulation using actual 1980 to 1992 pumping rates improved 
the agreement between predicted and observed drawdowns. The principle source of error was the 
assumption that water levels in a semiconfined aquifer would achieve a steady-state condition 
after a few days or weeks of pumping (Stewart and Langevin, 1999). Simulations using a version 
of the 1981 model modified to include recharge and evapotranspiration suggested that it could 
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take hundreds of days or several years for water levels in the linked Surficial and Floridan 
aquifers to reach an apparent steady-state condition, and that slow declines in levels continued 
for years after the initiation of pumping. 

Person and Konikow (1986) and Konikow (1986) recalibrated a groundwater flow and 
solute transport model of an irrigated stream-aquifer system because of the discrepancies 
between prior predictions of groundwater salinity trends during 1971 to 1982 and the observed 
outcome in February 1982. The original model was calibrated with a 1-year record of data 
collected during 1971 to 1972 in an 18-km reach of the Arkansas River Valley in southeastern 
Colorado. The model was improved by incorporating additional hydrologic processes (salt 
transport in the unsaturated zone) and through reexamination of the reliability of some input 
data. Extended simulations using the recalibrated model were made to investigate the usefulness 
of the model for predicting long-term trends of salinity and water levels within the study area. 
Person and Konikow (1986) found that predicted groundwater levels during 1971 to 1982 were 
in good agreement with the observed, indicating that the original 1971 to 1972 study period was 
sufficient to calibrate the flow model. However, the recalibrated solute transport model 
underestimated the observed 1982 groundwater salinity by about 10 percent when the 1971 to 
1972 surface water salinities were assumed to recur in succeeding years. Person and Konikow 
(1986) concluded that the calibration period (covering some seasonal variations in the river-
aquifer interaction and irrigation cycles) needed for accurate transport prediction is longer than 
that required for the flow model predictions. The metric used to judge the prediction accuracy of 
the model was the spatially averaged groundwater level for the flow model and the spatially 
averaged groundwater salinity for the solute transport model.  

Anderson (1968) constructed and calibrated a two-dimensional electric-analog model of 
an alluvial aquifer system in the Salt River Valley and the lower Santa Cruz River basin located 
near Phoenix, Arizona. As discussed in Konikow (1995), this model study represents one of the 
first well-documented, deterministic, distributed-parameter model analyses of a groundwater 
system. The model was constructed to determine the probable future effects of continued 
groundwater withdrawals in central Arizona. The model was based on the assumption that prior 
to 1923 an equilibrium existed in the aquifer in which recharge balanced discharge. The model 
was calibrated by adjusting aquifer properties and boundary conditions to match observed 
historical changes in water levels during 1923 to 1964. The model was then used to predict 
future water level changes as groundwater withdrawals from the aquifer continued. Water level 
measurements from 77 wells were used to evaluate the model predictions where the 1974 
predicted and observed water levels were compared. For these wells, the water table decline was 
predicted to average about 25 m after 10 years and ranged from 4.5 to 65 m. However, 
measurements of the actual change in water level in the same wells showed an average decline of 
only 2.7 m, and the observed change ranged from a decline of 28 m to a rise of 45 m. The 
relation between observed and predicted water level changes indicated poor predictive accuracy 
and the presence of a bias in the model predictions. Also, the data showed a relatively wide 
scatter, indicating that the model predictions were imprecise.  

This postaudit example indicates the weakness of basing a prediction of aquifer responses 
on a single set of assumed parameters or future stresses (Konikow, 1995). Because the 
uncertainty of the 1965 to 1974 stresses was not assessed, it could not be known whether the 
actual 1965 to 1974 responses fall within some associated confidence interval. Hence, one 
cannot make a judgment based solely on these predictive errors as to whether the model was 
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“good” or “bad” (Konikow, 1995). In cases like this, it would be preferable to assess the 
uncertainty in estimated (or assumed) future stresses and then present the forecasts as a range of 
responses with associated probabilities of occurrence or confidence intervals. Because Anderson 
(1968) indicated correctly that the assumed stresses were probably greater than would occur, the 
predictions can be viewed as a “worst-case” scenario. From that perspective, the model 
predictions were reasonably accurate (Konikow, 1995). Interestingly, Anderson’s (1968) 
prediction of additional significant water table declines was one factor contributing to water 
management decisions and actions leading to reduced groundwater withdrawals after 1964, 
which in turn was a major source of predictive errors.  

Alley and Emery (1986) examined predictions of 1982 water-level declines and stream 
flow depletions for the Blue River Basin, Nebraska, made in 1965 using an electric analog 
model. The postaudit showed that the model underestimated the depletion of the stream flow and 
overestimated the decline of the groundwater levels. Analysis performed by Alley and Emery 
(1986) suggested that net groundwater withdrawals used in the analog simulation were too low. 
The model overestimated groundwater level declines because it assumed that all of the new 
groundwater withdrawals would come from storage in the aquifer, when in fact some water 
comes from induced recharge from the stream. Furthermore, they speculated that storage 
coefficients used in the model were too low. Alley and Emery (1986) concluded that the error in 
the prediction was a result of uncertainty in the conceptual model of the Blue River Basin.  

Lewis and Goldstein (1982) postaudited a two-dimensional groundwater flow and solute 
transport model that was developed and calibrated by Robertson (1974) and then used to predict 
flow and transport in a basalt aquifer beneath the Idaho National Engineering Laboratory. The 
flow model was calibrated to an assumed steady-state flow field and the transport model was 
calibrated to observed concentrations of chloride in groundwater in 1958 and 1969. Robertson 
(1974) then used the calibrated model to predict chloride and tritium concentrations in 1980. 
Through the postaudit study, Lewis and Goldstein (1982) found that the contaminant plumes 
predicted by the model extended farther downgradient than the actual plumes and attributed this 
deviation to the conservative worst-case assumptions in the model input, the simplicity of the 
conceptual model, and the inaccurate estimate of subsequent waste discharge and aquifer 
recharge conditions. The original model of Robertson (1974) viewed the aquifer as a continuous 
porous medium, and it is likely that the flow in this aquifer would be better approximated using a 
dual-porosity model that includes fracture flow as well as matrix diffusion (Anderson and 
Woessner, 1992a).  

Flavelle et al. (1990) presented another postaudit of a model that simulates the release of 
hydrogen ions from a tailings pile situated in glaciofluvial deposits in Ontario, Canada. The flow 
model of that study was calibrated to measured heads in 1989 within the inner part of the plume 
where pH was less than 4.8. The solute transport model was calibrated by matching plume 
position to observed position in 1983 and 1984 through varying the distribution coefficient. The 
calibrated model was then used to predict the plume distribution in 1989. Data collected in 1989 
showed that the model accurately predicted the pH values in the inner core of the plume but not 
at the outer edges. Flavelle et al. (1990) concluded that even though their site is one of the most 
thoroughly studied uranium tailings sites in Canada, the data were not complete enough for a 
successful model postaudit. 

In the study of Anderson and Lu (2003), they postaudited groundwater model predictions 
that were used to design an extraction-treatment-injection system at a military ammunition 
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facility located in western Tennessee, halfway between Memphis and Nashville. These 
predictions were evaluated using site-specific water-level data collected approximately one year 
after system startup. The water-level data indicated that performance specifications for the 
design, i.e., containment, had been achieved over the required area, but that predicted water-level 
changes were greater than observed, particularly in the deeper zones of the aquifer. Probable 
model error was investigated by determining the changes that were required to obtain an 
improved match to observed water-level changes. Anderson and Lu’s (2003) analysis suggested 
that the originally estimated hydraulic properties were in error by a factor of two to five. To 
determine the importance of these errors to the predictions of interest, the original and updated 
models were used to simulate the capture zones resulting from the originally estimated and 
updated parameter values. Anderson and Lu (2003) found that these capture zones were not 
significantly different in the shallow part of the aquifer where the contaminant plume was 
primarily located. Unlike the other postaudits, Anderson and Lu’s (2003) postaudit suggests that 
while the base model had errors that were revealed through the postaudit, the groundwater model 
contributed in a very positive way to designing a remedial system that achieved the project goals. 

Weaver et al. (1996) performed a postaudit on two groundwater flow models that were 
used to design a well array for a groundwater capture and containment system installed along the 
boundary of a manufacturing facility. The first model was an analytical model for which the 
postaudit indicated that the performance of the initial system design provided by this model did 
not meet expectations. This led to using a numerical model to design an enhanced system, for 
which detailed postaudit could not be performed, as the system was in place for a short period of 
time. However, a cursory review of the numerical model results versus observed conditions was 
performed. The results of the postaudit indicated that the deviations of the models’ predictions 
from actual water levels could be mainly attributed to changes in system conditions (pumping 
rates, variations in well efficiencies, and limitations on total available drawdown) and aquifer 
heterogeneity.  

An interesting discussion related to the postaudit concept is presented by Brown (1996). 
The previous studies all focused on evaluating the model and conducting the postaudit long after 
the model had been accepted and used for decision making. So, although the postaudit may 
enable the modeler to improve the model and benefit from the knowledge gained by the new 
field data, the improvement can only take place after actions have been taken that were based 
upon the prediction. Therefore, the postaudit is not something that helps a model withstand 
attempts at invalidation prior to decision making (Brown, 1996). An alternative to this type of 
model postaudit is the field postaudit that can be performed after the prediction but before the 
final decision is made based on the prediction. If some test of a modeling prediction is required 
prior to decision making, a field audit will provide information of a direct and relevant nature to 
evaluate the adequacy of the model’s prediction. This type of evaluation is what model sponsors 
and regulators usually call model validation. 

It can be seen that in general, postaudit studies found that errors in model predictions 
were caused by errors in the conceptual model and the failure to use appropriate values for 
assumed future stresses (Anderson and Woessner, 1992a). The lack of successful demonstrations 
that groundwater models can provide accurate predictions has led to a certain amount of 
skepticism regarding the utility of groundwater models as predictive tools. However, the 
common situation in these studies was that the calibrated model was used to predict system 
behavior under modified conditions (future predicted system stresses, modified boundary 
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conditions, or different parameter values). In particular, Freyberg (1988) showed that the ability 
of a calibrated parameter set of a groundwater flow model to reproduce observed data was not an 
indicator of the ability of that parameter set to predict system response under modified 
conditions. He reports that good calibration does not necessarily guarantee equally good 
prediction. 

Another common feature of the models previously postaudited is that they all, except 
Flavelle et al. (1990), dealt with transient flow conditions under external stresses (e.g., pumping, 
extraction-injection systems, interactions with changing surface water bodies). The steady-state 
flow conditions at both CNTA and Shoal and the long time frame of the predictions make the 
simple postaudit application inherent in previous studies inappropriate. This is further 
exacerbated by the fact that the CNTA and Shoal models are cast in a stochastic framework that 
provides the predictions as ranges of values as opposed to single deterministic values. The 
challenge is thus how to conduct a model postaudit (or a model validation process) for such 
stochastic predictions. 

In discussing the role of postaudits in model validation and after reviewing a number of 
posaudits that indicated poor model predictions, Anderson and Woessner (1992a) commented 
“All of the postaudits indicate that errors in the predictions could be attributed at least partly to 
errors in the conceptual model. Model validation, therefore, requires a good conceptual model. 
Herein lies a major difficulty because a good conceptual model requires accurate and complete 
field characterization. Field characterization is always incomplete, thereby introducing 
uncertainty into the conceptual model. Continual improvement of the conceptual model requires 
periodic collection of field data and a trial and error process of model improvement over many 
years. It is rare to find such a large commitment of time and money to a modeling effort.” Once 
again, this highlights the importance of the iterative process of model building, calibration, 
monitoring, validation, and refinement.  

Similarly, Konikow (1995) summarized the results of a number of model postaudits and 
commented “The postaudits show that predictions should be accompanied by an assessment of 
their reliability that is based on the uncertainty in all model parameters, including stresses and 
boundary conditions. A major value of the postaudit is that the evaluation of the nature and 
magnitude of predictive errors may itself lead to a large increase in the understanding of the 
system and in the value of a subsequently revised model. As new information become available, 
previous forecasts could and should be modified. Feedback from preliminary models not only 
helps an investigator to set improved priorities for the collection of additional data, but also helps 
test hypotheses concerning governing processes in order to develop an improved conceptual 
model of the system and problem of concern.”  

5. PROPOSED VALIDATION APPROACH FOR SHOAL 
Hassan (2003a, 2004b) proposed an approach for the validation process of stochastic 

numerical models. As mentioned earlier, the details of the process will not be repeated here, but 
rather more explanation and discussion of some of the challenging aspects of the process will be 
addressed as they apply to the Shoal model. In particular, the focus is on two main aspects: 1) the 
selection of the validation targets at Shoal, and 2) the selection of the acceptance criteria for the 
stochastic model realizations. However, for completeness, we briefly discuss the overall 
validation approach in Section 5.1, then follow it with the detailed analyses of validation targets 
and acceptance criteria. 
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5.1 Proposed Validation Approach 
The proposed plan for the validation process of the Shoal model accounts for the 

stochastic nature of the model and aims at building enough confidence in the model predictions 
before using these predictions to design the long-term monitoring network necessary for site 
surveillance. The focus of the proposed validation methodology is centered around the following 
three main themes: (1) testing how predictions of numerical groundwater flow and transport 
models of Shoal and the underlying conceptual models and assumptions are robust and 
consistent with regulatory purposes, (2) reevaluating and refining model predictions and 
reducing the uncertainty level based on data collected in the proposed field activities for model 
validation, and (3) linking validation efforts to long-term monitoring that benefits from and 
builds on the validation-phase field activities. 

Figure 4, adapted from Hassan (2003a), displays the step-by-step approach for 
performing the validation and postaudit processes for the Shoal model. There is one clearly 
defined point in the validation process where a significant revision of the model can be triggered. 
This trigger point occurs at Step 6, where the results may be determined to not meet regulatory 
objectives. All of the validation steps are described below. 

Step 1:  Identify the data needed for validation, the number and location of the wells, and the 
type of laboratory or field experiments needed. Well locations can be determined 
based on the existing model and should favor locations likely to encounter fast 
migration pathways. The monitoring design process (Hassan, 2003b) will be 
implemented to help select these locations. Other factors such as the location of 
contaminant and compliance boundaries, and the cost of drilling and collecting data 
have to be considered. Sequencing of data collection is also important, as is the 
ability to adjust the plan as information is gathered.  

Step 2:  Carry out the fieldwork to install the wells and obtain the largest amount of data 
possible from the wells. The data should include geophysical logging, head 
measurements, conductivity measurements, concentrations (e.g., checking for 
tritium or 14C), and any other information (e.g., temperature logs, fracture 
information) that could be used to test the model structure, input, or output.  

Step 3:  Perform the different validation tests that will help evaluate the different submodels 
and components of the model. The stochastic validation approach proposed by Luis 
and McLaughlin (1992) can be adapted and used to test the flow model output 
(heads) under saturated conditions. Other objective tests (e.g., goodness-of-fit tests) 
can be used for the heads to complement this stochastic approach that is based on 
hypothesis testing. Some data will be used to check the occurrence or lack thereof of 
failure scenarios (e.g., whether tritium or 14C exists much farther from the cavity 
than is predicted by any realization of the stochastic Shoal model). The philosophy 
here is to test each individual realization with as many diverse tests (in terms of the 
statistical nature of the test and the tested aspect of the model) as possible and have 
a quantitative measure of the adequacy of each realization in capturing the main 
features of the modeled system. It is important to note that goodness-of-fit results 
and other statistical results for the current realization will be used after analyzing all 
realizations to obtain some of the acceptance criteria measures, P1 through P5, 
which are discussed in detail in Section 5.3.  
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Figure 4.  Details of the proposed model validation and postaudit processes for the Shoal model with the 
selection criteria measures (P1 through P5) explained in Section 5.3. 
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Step 4: Link the results of the calibration accuracy evaluations performed during the         
model-building stage and the validation tests (step 3) for all realizations and sort the 
realizations in terms of their adequacy and closeness to the field data. A subjective 
element may be invoked in this sorting based on expert judgment and hydrogeologic 
understanding. The objective here is to filter out the realizations that show a major 
deviation or inadequacy in many of the tested aspects and focus on those that 
“passed” the majority of the tests and evaluations. By doing so, the range of output 
uncertainty is reduced and the subsequent effort can be focused on the most 
representative realizations/scenarios. To continue reducing the uncertainty level, a 
refinement of the conductivity or other input distribution can be made based on 
information collected from the validation wells. More details about the acceptance 
criteria for individual realizations and for the conceptual model are presented in 
Section 5.3. 

Step 5: Step 4 results will determine the forward path and guide the decision as to whether 
there is a sufficient number of realizations that attained a satisfactory high score 
(thus building confidence in the original model) and are considered sufficient for 
further analysis or whether this number of realizations is not sufficient in 
comparison to the realizations with low scores indicating that the original flow and 
transport models or their input parameter distributions need adjustment. 

5a. If the number of realizations with low scores is very large compared to the total 
number of model realizations (The P1 measure discussed in Section 5.3), it could be 
an indication that the model has a major deficiency or conceptual problem or it 
could be that the input is not correct. In the latter case, it may be that the model is 
conceptually good, but the input parameter distributions may be skewed one way or 
another. Generating more realizations and keeping those that fit the validation 
criteria can shift the distribution to the proper position. This can be done using the 
existing model without conditioning or using any of the new validation data. If the 
model has a major deficiency or conceptual problem, generating additional 
realizations will not correct it and continued failure per the validation criteria (see 
Section 5.3) will be obvious. The importance of the distinction between 
conceptualization problems and inappropriate input distributions has been discussed 
by Bredehoeft (2003). He states that one should carefully ask the question of 
whether the mismatch between the model and the field observations is a result of 
poor parameter adjustments or does it suggest that the conceptual model be 
revisited. The use of different metrics such as P1 and P2 discussed in Section 5.3 
provides a tool for making this distinction. 

5b. If the number of realizations with high scores is found sufficient, this indicates that 
the model does not have any major deficiencies or conceptual problems. This 
determination will be made according to a number of metrics as detailed in the 
validation criteria section. These metrics are tested and supported by statistical 
hypothesis testing and provide good evaluation criteria for the model realizations. 
Based on the realizations retained in the analysis and deemed acceptable, a 
contaminant boundary will be calculated and compared to the original contaminant 
boundary. This comparison will be presented for reference by decision makers in 
step 6. 
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Step 6:  Once the model performance has been evaluated per the acceptance criteria, the 
model sponsors and regulators have to answer the last question in Figure 4. This 
question will determine whether the validation results meet the regulatory objectives 
or not. This is the trigger point that could lead to significant revision of the original 
model. 

6a. If the answer to the question posed is no, then the left-hand side path in Figure 4 
begins with an evaluation of the investigation strategy, consistent with the process 
flow diagram in Appendix VI of the FFACO. If the original strategy is deemed 
sound, a new iteration of model development will begin, using the data originally 
collected for validation, and steps 1 to 6 will be eventually repeated. Whatever 
strategy is selected, the CADD/CAP will be amended before execution. 

6b. If the answer to the question posed is yes, validation is deemed sufficient and the 
model is considered adequate or robust. 

Numerical groundwater models, and in particular stochastic models, are very complex 
and modifying or changing any aspect of the model may produce unanticipated consequences in 
a different aspect of the model. To get the best outcome of the validation process, one needs to 
both consider the different details separately and take the broader view of the entire model while 
working step-by-step through the different decisions and trade-offs.  

It can be seen and expected that the process of validating a site-specific groundwater 
model is not an easy one. Throughout the structured process described above, there may be a 
desire to confirm that the work is on the right track. The way to this confirmation is the 
cumulative knowledge gained from the different stages of the validation process. That is, a set of 
independent tests and evaluations will provide knowledge about the model performance, and the 
test results will provide some incremental, but additive, pieces of information that will be of 
importance. While there are no guarantees of success (attaining a conclusive outcome about 
model performance), the combined presence of these different results and evaluations sharply 
improves the odds that one can make a good decision about the model performance. 

Two aspects of the validation process are explained in detail in the following subsections. 
These are the validation targets for the Shoal model, and the acceptance criteria for determining 
the sufficiency of the number of acceptable realizations. It should be emphasized here that the 
proposed validation targets and the acceptance criteria may need to be changed depending on the 
type of data that can be obtained and the practicality of collecting certain types of information. In 
other words, from a statistical point of view, one would desire to obtain a large number of head 
measurements for example, but the practical limitations may render this desire unrealistic. 
Therefore, the tools and tests to be used and the targets to be analyzed must consider the role 
they play in the model as well as practical considerations.    

5.2 Validation Targets 
To select the validation targets at Shoal, a multi-parameter uncertainty analysis is 

performed to identify the sensitivity of contaminant boundaries to various parameters. One 
should distinguish between sensitivity analysis and uncertainty analysis. Sensitivity analysis is 
the systematic investigation of the model responses to extreme values of the model input or to 
drastic changes in the model structure (Kleijnen, 1999). Sensitivity analysis can support 
validation: such analysis shows whether factors have effects that agree with the modeler’s prior 
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qualitative knowledge (for example, faster transport rates result from lower fracture porosity). 
Unfortunately, not all subsurface processes have effects with known signs; yet, many do have 
factors with known signs. Sensitivity analysis further shows which factors are important. If 
possible, information on these factors should be collected for validation purposes (Kleijnen, 
1999).  

Related to sensitivity analysis is uncertainty analysis. Uncertainty analysis also runs a 
simulation model for various combinations of input parameter values. Uncertainty analysis is 
performed when the input parameter values of the simulation model are not accurately known, 
and thus uncertainty analysis samples from a pre-specified probability distribution for these 
parameters. The simulation results for uncertainty analysis are commonly presented as ranges of 
values with associated probabilities or confidence intervals. Uncertainty analysis can be 
performed for individual parameters and for combinations of parameters. When it is desired to 
determine the impact of uncertainty in an individual parameter on the model output, the input 
values for that parameter are generated from its respective probability distribution while keeping 
all other model parameters at fixed values. In a combined parametric uncertainty analysis, all 
uncertain model parameters are simultaneously sampled from their respective probability 
distributions.   

The numerical model of groundwater flow and transport at Shoal requires quantitative 
descriptions of numerous aspects of the conceptual model including fracture geometry and 
hydraulic properties, groundwater recharge, matrix diffusion, and rates of radionuclide release 
from glass puddles in the cavity. All of these components contribute to the transport predictions, 
but the most critical are those that determine the pattern and magnitude of groundwater velocities 
and, as a consequence, influence the travel times of radionuclides away from the cavity. Large-
scale flow and transport models have shown that the results of radionuclide transport calculations 
are most profoundly impacted by parameters that affect travel time (Pohll et al., 1999a; 
Pohlmann et al., 1999; Hassan et al., 2002). Naturally, all of the flow and transport parameters 
are subject to the uncertainties that are always present when representing subsurface conditions. 
These parametric uncertainties are incorporated and carried through the Shoal numerical 
modeling process, and are therefore ultimately included in predictions of the contaminant 
boundaries.  

Though the Shoal model presented by Pohlmann et al. (2004) analyzed combined 
parametric uncertainty, sensitivity of the transport predictions to individual parameter 
uncertainties was not assessed. Thus, the following analysis presents the results of individual 
parametric uncertainty analysis and the impact on an estimated contaminant boundary for 14C. 
Carbon-14 is selected because of the long half-life (thus minimum decay in the 1,000-year 
regulatory time frame) and because it does not adsorb onto the solid matrix, thereby representing 
one of the main elements determining the shape and extent of a contaminant boundary (Pohll et 
al., 2003). The use of 14C in this analysis will yield contaminant boundaries that are similar, but 
not identical, to the contaminant boundary calculated using the entire test inventory by Pohll and 
Pohlmann (2004). Note that the 14C boundary analysis presented here is based on the regulatory 
Maximum Contaminant Level (MCL) of 2,000 pCi/L. 

The components of the Shoal groundwater flow and transport model that incorporate 
uncertainty are listed below. It should be noted that the shear zone and hydraulic divide are 
considered to be no-flow boundaries with known geometry and are therefore treated as 
deterministic aspects of the model (Pohlmann et al., 2004). 
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1. Orientation of fracture zones 

2. Spatial continuity of fracture zones 

3. Hydraulic conductivity of fracture zones 

4. Hydraulic conductivity of intervening zones of small random fractures 

5. Hydraulic conductivity of the cavity and damaged zone 

6. Recharge from precipitation entering the top surface of the model 

7. Flux originating from upland recharge that enters the up-gradient vertical face of the 
model 

8. Porosity of fracture zones 

9. Porosity of the cavity  

10. Porosity of the damaged zone around the cavity 

11. Rate of nuclear glass dissolution in the cavity 

12. Diffusion of radionuclides between fractures and matrix 

All these parameters were explicitly considered uncertain in the Shoal model analysis 
except the hydraulic conductivity of intervening zones of small random fractures that was 
considered as a calibration parameter and the matrix diffusion parameter that was spatially and 
temporally varying (Pohlmann et al., 2004). Although a statistical distribution for the hydraulic 
conductivity of the intervening small fractures is not directly specified, it is indirectly handled as 
an uncertain parameter via the automated calibration process. Similarly, the matrix diffusion 
parameter was varying in space and in time based on the spatial variability of the velocity field 
and the residence time of each particle in the fractures (implicitly uncertain). However, it was 
based on deterministic values of the fracture spacing, the fracture retardation, the matrix 
retardation, fracture porosity, matrix porosity, and molecular diffusion coefficient. These values 
were obtained by calibrating the transport model to the Shoal tracer test data (see Appendix D in 
Pohlmann et al. [2004] for more details.)  

Hereafter, Pohlmann et al.’s (2004) model is referred to as the base-case model. Not all 
of the model parameters listed above are included in the individual parametric uncertainty 
analysis performed here. The flux from the upgradient face, and nuclear melt glass dissolution 
rate is the calibration parameter of hydraulic conductivity of small fracture zones. These 
parameters have limited usefulness as model validation targets because they would be difficult to 
quantify even with further field work. Other parameters included in the individual uncertainty 
analysis that are similarly ill-suited for validation are the conductivity of the cavity and damaged 
zone, porosity of the cavity and damaged zone, and length of fracture zones. For example, the 
lengths of fracture zones have been extensively studied through geologic mapping of the land 
surface at Shoal. It is therefore unlikely that further data collection would provide information 
that differs from the model because virtually all of the visible fractures have been mapped. 
Therefore, five flow parameters and four transport parameters are selected to perform the 
individual parametric uncertainty analysis. Table 1 shows the nine cases and the notation to be 
used in the results discussion presented later in this section.  
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Table 1. Uncertainty cases for five flow parameters and four transport parameters. Two flow realizations 
are selected to run the transport parameter uncertainty analyses: a) one of the fastest realizations 
in the base-case model, and b) the realization with the least root mean squared error (RMSE) in 
the base-case model.  

 

The analysis of parametric uncertainty independently evaluates the selected uncertain 
components of the model, producing a comparison of the relative contribution of each to the 
overall output uncertainty. The output uncertainty for the base case and for all the uncertainty 
cases is obtained in terms of an estimated 14C contaminant boundary. However, virtually any 
model result can be used as the output metric. The analysis proceeds by running the calibrated 
model in Monte Carlo mode for each of the individual uncertain parameters that are under 
consideration; all of the other uncertain parameters are held at constant values that are 
representative of their distribution. For each uncertain parameter, the Monte Carlo values are 
chosen from the input parameter distributions used in the contaminant-boundary model 
(Pohlmann et al., 2004). However, only 500 realizations are used for this uncertainty analysis (to 
reduce computational time) as opposed to the 1,000 realizations used in Pohlmann et al. (2004) 
due to the large number of cases studied here. This does not impact the results, the interest is in 
the relative contribution of each uncertain parameter to the overall output uncertainty of the 
model.  

For each of the uncertain flow parameters (Case 1 through Case 5), the MODFLOW-
2000 flow solver is run to generate a set of flow realizations that incorporate the uncertainty in 
each targeted flow parameter. These flow realizations are then used to model the radionuclide 
transport with the transport parameters held fixed at their mean values for all flow cases. When 

Case

Fracture 
Orientation 

(both 
orientations)

Fracture 
Length (both 
orientations)

Cavity 
K  (all 3 
zones)

Fracture 
K Recharge Fracture 

Porosity
Cavity 

Porosity

Damage 
Zone 

Porposity

Matrix 
Diffusion Comments

1 Uncertain Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

2 Fixed Uncertain Fixed Fixed Fixed Fixed Fixed Fixed Fixed

3 Fixed Fixed Uncertain Fixed Fixed Fixed Fixed Fixed Fixed

4 Fixed Fixed Fixed Uncertain Fixed Fixed Fixed Fixed Fixed

5 Fixed Fixed Fixed Fixed Uncertain Fixed Fixed Fixed Fixed

6a Fixed Fixed Fixed Fixed Fixed Uncertain Fixed Fixed Fixed

7a Fixed Fixed Fixed Fixed Fixed Fixed Uncertain Fixed Fixed

8a Fixed Fixed Fixed Fixed Fixed Fixed Fixed Uncertain Fixed

9a Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Uncertain

6b Fixed Fixed Fixed Fixed Fixed Uncertain Fixed Fixed Fixed

7b Fixed Fixed Fixed Fixed Fixed Fixed Uncertain Fixed Fixed

8b Fixed Fixed Fixed Fixed Fixed Fixed Fixed Uncertain Fixed

9b Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Uncertain

Base 
Case

Spatially 
and 

temporally 
varying

Uncertain

Uncertain transport 
parameters using 
one of the fastest 
flow realizations in 
the base case 
model

Uncertain transport 
parameters using 
the flow realization 
with the smallest 
RMSE in the base 
case model

Uncertain flow 
parameters that 
require generating 
500 flow 
realizations each

Parameters
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the effects of uncertain transport parameters are studied, a single realization of the flow field is 
used and the transport problem is solved 500 times with the uncertain transport parameter value 
being drawn from the respective parameter distribution. The selection of the flow realization to 
be used for these analyses is based on criteria discussed in the results section. The results of the 
uncertainty analysis for the five flow cases and the four transport cases will be analyzed for their 
relative impact on the overall uncertainty in the size of the contaminant boundary. The 14C 
contaminant boundary is calculated using an unclassified estimate of 14C mass for the Shoal test 
(0.24 Curies), based on data from Smith (2001). In that report, Smith presents the average source 
term for the UGTA tests on Pahute Mesa (about 85 tests). The average Pahute Mesa source term 
for 14C is about 7.3 Curies. However, when this value is scaled by the ratio of tritium (3H) source 
terms (the unclassified 3H estimate for Shoal relative to the average 3H source term of Pahute 
Mesa), the resulting 14C source term for Shoal is about 0.24 Curies. 
5.2.1 Uncertain Flow Parameters 

The five flow parameters considered here are the fracture orientation, the fracture length 
that indicates the continuity of fractures, the hydraulic conductivity, K, of the cavity and 
surrounding zones (three conductivity values), the hydraulic conductivity of fractures, and the 
recharge at the domain top. The fracture orientation plays an important role in determining how 
far from the cavity radionuclides can migrate. When fractures are oriented parallel to the general 
flow direction from the cavity outward, the migration distance increases. However, if the 
fractures are oriented normal to that flow direction, migration distances decrease. Therefore, the 
uncertainty associated with the fracture orientation may impact the contaminant boundary and 
lead to uncertainty in its extent. In the base-case model (Pohlmann et al., 2004), four sets of 
fractures were chosen to represent the distribution of orientations for one of the flow categories 
(Flow Category 2 according to Pohlmann et al. [2004]), which represents zones of strongly 
oriented, large fractures. These fracture sets have the most well-defined orientations and contain 
the highest proportion of the total fractures. Flow Category 1 (Pohlmann et al., 2004) is assumed 
to have no preferred spatial orientation. For those cases in which the fracture orientation was 
kept fixed (i.e., deterministic), conditioned fracture orientations were set to the mean orientations 
for each class, and unconditioned fractures were first randomly sampled to determine the class, 
and then the mean orientations were applied. 

Case # 1 
In uncertainty case # 1, the fracture orientation for the two flow categories are considered 

uncertain while fixing all other flow parameters (and subsequently transport parameters) at their 
best estimate or mean values. The empirical orientation distribution used in Pohlmann et al. 
(2004) is used here to draw the values of the fracture orientation for each realization. Figures 5 
and 6 display the impact of the fracture orientation uncertainty on the 14C contaminant boundary 
and the associated uncertainty. Transport simulations and contaminant boundary computation are 
performed in the same manner described in Pohlmann et al. (2004).  

Figure 5 shows the uncertainty case # 1 compared to the base-case model of Pohlmann et 
al. (2004). The uncertainty case has few realizations with larger RMSE than the base-case 
model, but the range of RMSE for the uncertainty case is smaller than the base case. For the 
plume extent, it is clear that the base-case model has a much larger uncertainty range compared 
to the fracture orientation uncertainty case. If one removes the fastest two realizations in the 
uncertainty case, it can be concluded that the uncertainty range of the plume extent for the         
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base-case model is at least four times larger than that for the uncertainty case. It is important to 
note that the plume extent is obtained by determining the y coordinate of the farthest cell where 
the maximum 14C concentration in the x-y projection over 1,000 years is above zero and then 
subtracting the y coordinate of the working point. 

 

 

Figure 5. Comparison between the base-case model and the fracture orientation uncertainty case # 1 in 
terms of the root mean square error (RMSE) of the head results for each flow realization and 
the plume extent expressed as the distance between the working point and the farthest point 
traveled by any particle in the transport simulations. 

 

Figure 6 shows the impact on the contaminant boundary and its uncertainty. The subplots 
a), b), and c) show the different two-dimensional projections of the three-dimensional 
contaminant boundary volume. Again, these are computed in the same manner described in 
Pohlmann et al. (2004). These subplots compare the contaminant boundaries of the base-case 
model, which are plotted to scale and in the correct cavity location indicated by the red square, to 
those of the uncertainty case # 1, which are shifted from their right location to clarify the 
comparison. The contaminant boundaries of the uncertainty case are, however, drawn to scale in 
terms of their size so that they could be directly compared to the base-case model.  
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Figure 6. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The uncertainty case # 1 is drawn to scale, but is spatially shifted 
on the plots for comparison to the base-case model (Pohlmann et al., 2004).  

 

The subplot d) shows the area of the x-y projection of the contaminant boundary obtained 
at the 5th, 10th, …, 99th confidence levels. This subplot provides an easy way to compare the 
impact of individual uncertain parameters to the impact of having all parameters as uncertain on 
the contaminant boundary uncertainty. The steeper the curve, the more uncertain the resulting 
contaminant boundary is. If one assumes no uncertainty, the 500 (or the 1,000) realizations will 
give the same exact result and the contaminant boundary area will be the same at all confidence 
levels (i.e., horizontal line in subplot d). 

It is clear that the contaminant boundaries are smaller in area for the uncertainty case at 
the 90th and 95th confidence levels. It is also clear from subplot d) that the base-case model has a 
much larger degree of uncertainty than the uncertainty stemming from the fracture orientation 
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alone. Therefore, fracture orientation contributes to the overall uncertainty but to a small extent. 
New field data on fracture orientation would not thus yield significant reduction in the overall 
model uncertainty. This aspect, added to the difficulty of better characterizing fracture 
orientations at Shoal, means that the fracture orientation is not a useful validation target.  

Case # 2 

The fracture continuity expressed by fracture length is the second uncertain parameter 
that requires new flow realizations. The fractures and fracture networks are the principle 
pathways of water and contaminants through an otherwise impermeable or low-permeability 
rock such as the granite at Shoal. Field and laboratory experiments in natural fractures have 
demonstrated strong evidence of highly preferential flowpaths in individual fractures and 
fracture networks (Neretnieks et al., 1982; Neretnieks, 1993). Field data, for example from large-
scale investigation of fracture flow in a granite uranium mine at Fanay-Augeres, France, show 
four orders of magnitude difference between the largest and smallest injection flow rates despite 
very good fracture connectivity (Berkowitz, 2002). Cacas et al. (1990a, b) concluded that the 
high degree of heterogeneity is due to a broad distribution of fracture conductivities, and that it 
overwhelmingly governs flow and transport behavior. Therefore, the nature of fractures, their 
connectivity and conductivity distribution, the surrounding porous rock and its characteristics, 
and the combined effect of fractures and porous matrix on groundwater flow and contaminant 
transport make the analysis significantly different than for classical porous media.  

As discussed by Berkowitz (2002), studies of well tests often report that of a large 
number of fractures intersecting a well, only one or two actually transmit fluid. For example, at 
the Fanay-Augeres site in France, it was found that only 0.1 percent of the fractures contributed 
to flow on a large scale (Long and Billaux, 1987). Thus, the question of fracture connectivity is 
of prime importance to flow and contaminant transport in fractured systems and to interpretation 
of data from single and multiple well tests. Even domains that appear to be heavily fractured may 
not in fact be well connected (Berkowitz, 2002). In percolation theory terminology, the salient 
question one has to ask here is whether the fracture network is above the percolation threshold 
(i.e., connectivity of fractures is sufficient to permit flow through the network from point A to 
point B) or conversely near the percolation threshold and thus poorly connected. Again, this 
question is of paramount importance when it comes to interpreting and using well test data in 
fractured geologic units. 

At Shoal, the spatial persistence of fracture features was quantified using a digitized map 
of fractures observed at land surface (Pohll et al., 1998). Although fractures are not truly linear 
features, they were treated as linear so that an average strike could be calculated for each 
fracture. A bimodal distribution of strike orientations resulted and the data were grouped as 
follows (Pohlmann et al., 2004): 

• Group1: Strike of 0 to 70 and 130 to 180 degrees East of North 

• Group2: Strike of 70 to 130 degrees East of North 

Fracture lengths in Group 1 are described by a lognormal distribution with mean length 
of 572 m and a natural log standard deviation of 0.86 m. Group 2 contained very few fractures, 
so a uniform distribution having a range of 100 to 750 m was used. The distribution of fracture 
lengths along the dip direction was assumed to be identical to the distribution of lengths along 
the strike direction. In the uncertainty case # 2, the fracture lengths along the dip and the strike 
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are kept uncertain and are generated from the respective distributions, while fixing all other flow 
and transport parameters as seen in Table 1. Figures 7 and 8 illustrate the results of this 
uncertainty case. 

 

 

 

Figure 7. Comparison between the base-case model and the fracture length uncertainty case # 2 in terms 
of the root mean square error (RMSE) of the head results for each flow realization and the 
plume extent expressed as the distance between the working point and the farthest point 
traveled by any particle in the transport simulations. 

 

As can be seen from Figure 7, the base-case model has a wider range of uncertainty 
compared to the fracture length uncertainty case. This is reflected in both the head RMSE and 
the plume extent. In terms of the RMSE, the base-case model has both higher and lower RMSE 
than the uncertainty case. This is because the base-case model has more parameter combinations 
that would lead to both better and worse calibration results than the uncertainty case where all 
parameters are fixed except the fracture lengths. 
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Figure 8. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The uncertainty case # 2 is drawn to scale, but is spatially shifted 
on the plots for comparison to the base-case model (Pohlmann et al., 2004). 

 

Figure 8 displays the contaminant boundary maps at the 50 percent, 90 percent, and 95 
percent confidence levels (subplots a, b, and c) as well as the change in the contaminant 
boundary area as a function of the confidence level (subplot d). The results are very similar to 
uncertainty case # 1, indicating that the uncertainty in fracture lengths minimally contributes to 
the overall model uncertainty. This can probably be attributed to the fact that all generated values 
for fracture lengths provide very well connected networks of fractures in the simulation domain 
(i.e., way above percolation threshold even for the smallest fracture lengths). Therefore, 
changing the fracture lengths above the connectivity threshold does not significantly change the 
migration distances away from the cavity. Given this result and the relative abundance of 
fracture data available for the Shoal site, the fracture length is deemed well characterized, and 
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any new information on fracture lengths will not significantly reduce model uncertainty or help 
the model validation/postaudit process. 

Case # 3 

Uncertainty case # 3 has the hydraulic conductivity of the cavity zone and the two zones 
surrounding it as uncertain. Three spherical zones are identified around the Shoal working point 
and are approximated in the base-case model by a rectangular grid (Pohlmann et al., 2004, 
Figure 3.1). The first zone represents the cavity and chimney. Values of K for the cavity and 
chimney are chosen from a random distribution and are assigned randomly to the cells 
corresponding to the cavity and chimney; no spatial correlation within this region of the model is 
assumed. The mean of this distribution is taken to be 43.0 m/d, which is about two and one half 
orders of magnitude higher than the mean of the K distribution of the undisturbed granite (the 
fracture conductivity studied in case # 4). A log10-normal distribution having a mean and 
standard deviation of 1.6 and 0.18 m/d, respectively, is used for the simulations. This zone is also 
given a porosity distribution with a higher mean as will be discussed in case # 7 below. The 
second zone extends from approximately 1 to 2 Rc from the working point with Rc being the 
cavity radius that is about 26.0 m at Shoal. This zone is also assigned K values that are 
substantially higher than that of the undisturbed granite. These K values are chosen from a 
distribution having a mean of 8.6 m/d. A log10-normal distribution having a mean and standard 
deviation of 0.94 and 0.26 m/d, respectively, is used for the simulations. Zone 3 begins the 
transition from the highly disturbed, near-cavity region, to the unaffected rock. This zone extends 
from 2 to 4 Rc from the test and is assigned K values at the upper end of the distribution from 
which the K values of the undisturbed granite are selected. The distribution of K values assigned 
to this zone has a mean value of 0.86 m/d. A log10-normal distribution having a mean and 
standard deviation of -0.063 and 0.26 m/d, respectively, is used for the simulations. 

In this uncertainty case, the conductivity values for these three zones are kept uncertain 
while fixing all other flow and transport parameters. For each realization, the K value for each of 
the three zones is drawn at random from their respective distributions as described above. The 
flow problem is solved for each realization followed by the transport simulations for 14C.           
Figures 9 and 10 show the results of this uncertainty case. As can be seen from Figure 9, the 
uncertainty in the three K values yields a small range of calibration accuracy (in terms of RMSE) 
and a small uncertainty in the plume extent.  

Figure 10 indicates a smaller contaminant boundary for this case compared to the          
base-case model at the 90th and the 95th confidence levels. The uncertainty in the contaminant 
boundary produced by the uncertainty in K values of the three zones around the cavity is again 
much smaller than the overall uncertainty built into the base-case model as shown in subplot d) 
of Figure 10. Since these three zones are small in scale relative to the migration distances of 
radionuclides from the cavity, their impact on the contaminant movement is small and thus they 
contribute very little to the overall output uncertainty of the model. With the difficulty (or 
impossibility due to the high risk involved) of characterizing the conductivity close to the cavity 
and the minor impact on the model output, these K values are not suitable for being validation 
targets.  
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Figure 9.  Comparison between the base-case model and uncertainty case # 3 (conductivity of cavity and 
the surrounding zones) in terms of the root mean square error (RMSE) of the head results for 
each flow realization and the plume extent expressed as the distance between the working 
point and the farthest point traveled by any particle in the transport simulations. 

Case # 4 

Here, the conductivity of the fractured, undisturbed granite is the only uncertain 
parameter. In the original model, two fracture flow categories are used to characterize the 
fracture flow system at Shoal. Flow Category 1 represents the small and less conductive 
fractures, whereas Flow Category 2 is designed to represent the more conductive portions of the 
granite. This latter flow category is represented in the model by a log10-transformed triangular 
distribution with the minimum at -5.0 (i.e., Kmin = 1.0×10-5 m/d), the maximum at 0.0 (i.e., Kmax = 
1.0 m/d), and the mean at -2.5 (i.e., Kmean = 3.2×10-3 m/d). The mean of this distribution is 
consistent with the calibrated K values obtained from the transient numerical analysis of cross-
hole pumping during the 320-day tracer test conducted at HC-6 and HC-7 (3.4×10-3 m/d) and the 
regional flow model for Shoal (6.9×10-3 m/d). In addition, the range of the K distribution for 
Flow Category 2 captures the full range of the field data. The K values for Flow Category 1 were 
obtained during model calibration using the methodology described in Pohlmann et al. (2004). 
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Figure 10. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The uncertainty case # 3 is drawn to scale, but is spatially shifted 
on the plots for comparison to the base-case model (Pohlmann et al., 2004). 

 

Hydraulic conductivity values are assumed constant for each fracture in the simulated 
domain and no spatial correlation is assumed within either flow category. Every cell within a 
given individual fracture zone simulated in Flow Category 2 is assigned the same value of K that 
is chosen from the distribution described above. Likewise, every cell in Flow Category 1 of a 
given realization is assigned the same value of K as determined during model calibration that 
relies on the generalized likelihood uncertainty estimate methodology. 

The conductivity value for the Flow Category 2 is drawn from the log-transformed 
triangular distribution, and during the flow simulations, the K value of Flow Category 1 is 
adjusted as the calibration parameter. The results of this uncertainty case are exhibited in Figures 
11 and 12. 
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Figure 11. Comparison between the base-case model and uncertainty case # 4 (fracture conductivity) in 
terms of the root mean square error (RMSE) of the head results for each flow realization and 
the plume extent expressed as the distance between the working point and the farthest point 
traveled by any particle in the transport simulations. 

 
Unlike the previous three cases, this uncertainty case shows that fracture conductivity is a 

major contributor to the overall model uncertainty. By far, it is the most important parameter 
driving the output uncertainty. As shown in Figure 11, the fracture conductivity alone produces a 
range of RMSE and a range of plume extent that are only slightly narrower than the range 
produced by the base-case model having all 11 flow and transport parameters as uncertain. Since 
the flow velocity in fracture Flow Category 2 is directly proportional to the hydraulic 
conductivity assigned to these fractures, the range of output uncertainty is derived by the 
uncertain velocity stemming from the conductivity uncertainty. 

  



 

 32

 

Figure 12. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The fracture conductivity uncertainty case # 4 is drawn to scale, 
but is spatially shifted on the plots for comparison to the base-case model (Pohlmann et al., 
2004). 

 
The unclassified 14C contaminant boundaries shown in Figure 12 indicate that the 

uncertainty in the fracture conductivity yields larger boundaries compared to the base-case 
model. It also yields slightly more uncertainty than the base-case model as shown by the 
comparison in subplot d) of Figure 12. In the base-case model, the uncertain fracture 
conductivity is normally combined with other uncertain parameters, which yields different 
results than when all parameters are fixed at their means and only the fracture conductivity is 
changing. That is, when other parameters are uncertain and in the absence of any restriction on 
parameter correlations, high fracture conductivity values in the base case may be accompanied 
by high fracture velocity values and vice versa which yield less uncertainty and smaller travel 
distances than when the high fracture conductivity values in this uncertainty case are always 
associated with the mean fracture porosity. 
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It is apparent that the fracture conductivity is an important parameter impacting the 
results of the flow and transport model at Shoal. It can thus be considered as one of the 
validation targets for the purpose of narrowing down the range of uncertainty for that parameter 
and the resulting contaminant boundary uncertainty. Thus, fracture conductivity measurements 
should be considered as validation targets. Multiple measurements in each new well are desirable 
and should be considered when feasible. 

Case # 5 

The recharge entering the top surface of the model domain is the last flow parameter 
studied in this uncertainty analysis. Recharge to the groundwater system by infiltration of 
precipitation through the land surface is a critical parameter controlling the velocity and direction 
of groundwater flow. Precipitation is thus expected to be the driving factor determining how 
much recharge can occur. However, recharge to the groundwater system is constrained by the 
observed hydraulic properties of hydraulic conductivity and head distribution. For example, a 
recharge rate too high relative to the hydraulic conductivity of the aquifer results in modeled 
water levels far higher than those observed in the field. The Data Decision Analysis of Pohll et 
al. (1999b) identified uncertainty in recharge as a significant contributor to overall model 
uncertainty. As a result, recharge was one of the parameters treated stochastically in the        
base-case flow model (Pohlmann et al., 2004). Recharge is applied evenly over the top of the 
model domain with the value for each realization selected from a triangular distribution ranging 
between 0.05 and 0.70 cm/yr.  

The recharge model employed in Pohlmann et al. (2004) uses the most recent and 
accurate recharge data in combination with a robust statistical model and it is in general 
agreement with the vadose zone model of Pohll (1999), which suggests that these two methods 
are more favorable as compared to the Maxey-Eakin recharge model and the thermal profile 
methods. Given the uncertainties in all models, a parsimonious model seems appropriate. 
Therefore, a triangular distribution is chosen to represent the potential range of recharge over the 
model domain as 0.05 to 0.70 cm/yr.  

Using this distribution, the flow model is run with all other parameters fixed at their mean 
values. However, the hydraulic conductivity of fracture Flow Category 1 (small fractures) is 
again used as a calibration parameter and is adjusted automatically during the flow simulation. 
The hydraulic conductivity of Flow Category 2 is kept fixed at its mean value. The results of this 
uncertainty case are shown in Figures 13 and 14. 

Figure 13 shows that the recharge uncertainty case produces both smaller and larger 
RMSE than the base-case model in only a few realizations. In most of the realizations, the range 
of the head RMSE in the recharge uncertainty case is very similar to that for the base-case 
model. The plume extent, however, does exhibit a much smaller range in the recharge 
uncertainty case than the base-case model. Although recharge impacts the groundwater flow 
velocity, fixing the K value of Flow Category 2 reduces the range of velocity variability induced 
by the variability in recharge. It is important also to note that recharge variability alone produces 
a maximum plume extent of about 1,000 m across all realizations, whereas the base-case model 
produces a maximum plume extent of about 1,800 m. It is also of interest to note that this 
uncertainty case includes one realization that has a very small RMSE that is smaller than the best 
realization of the base-case model. This realization is further analyzed in the discussion of the 
transport parameters uncertainty results.  
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Figure 13. Comparison between the base-case model and uncertainty case # 5 (recharge uncertainty) in 
terms of the root mean square error (RMSE) of the head results for each flow realization and 
the plume extent expressed as the distance between the working point and the farthest point 
traveled by any particle in the transport simulations.  

 
Figure 14 shows the resulting contaminant boundary maps and how they compare to the 

base-case model. Interestingly, the uncertainty in the recharge value yields minor uncertainty in 
the contaminant boundaries. Only between the 90 percent and the 99 percent confidence levels 
does uncertainty appear in the results. So despite what one might expect, the recharge variability 
contributes insignificantly to the contaminant boundary uncertainty. In terms of the contaminant 
boundary size, the recharge uncertainty case yields very small sizes compared to the base-case 
model. Therefore, recharge may not be considered as a validation target. However, if new 
temperature logs or other data provide independent recharge values, then these values could be 
used to confirm or invalidate the range of recharge used in the model. 
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Figure 14. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The recharge uncertainty case # 5 is drawn to scale, but is spatially 
shifted on the plots for comparison to the base-case model (Pohlmann et al., 2004). 

 

5.2.2 Uncertain Transport Parameters 

Four transport parameters are considered in this analysis. These are the fracture porosity, 
the cavity porosity, and the damaged zone porosity. These are shown in Table 1 presented 
earlier. To run the uncertainty analysis for any of these parameters, a single flow realization 
needs to be selected and the transport problem solved for different values of the parameter being 
studied. The flow realization selected for the analysis has a major influence on the results. 
Therefore, two criteria were used and two realizations selected to run the analysis for transport 
parameters. First, one of the fastest flow realizations was used in the base-case model. About 88 
realizations were identified in the base-case model where particles reached the northern domain 
boundary. Note that individual particles reaching the end of the domain do not necessarily equate 
to a concentration exceeding the MCL, and thus do not necessarily lead to inclusion in the 
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contaminant boundary. Among these realizations, the one with the least RMSE was selected. 
This realization is used for cases 6a, 7a, 8a, and 9a as shown in Table 1. 

The second criterion used to select a flow realization is the goodness of fit in the 
calibration process. Based on the RMSE of the modeled heads, the base-case flow realization 
that has the least RMSE value was selected. This realization is the basis for the transport 
parameters uncertainty analyses presented in cases 6b, 7b, 8b, and 9b as shown in Table 1 and 
discussed below. As mentioned earlier, one of the flow realizations in uncertainty case # 5 
attained an RMSE value smaller than this selected realization. Although not shown here, we ran 
the transport uncertainty analyses was run using that realization. It was found that the 
contaminant boundary did not exceed the cavity area for all cases and with no uncertainty. The 
reason for this result is the fact that this realization produces very flat head gradients around the 
cavity, which lead to very low velocities in the cavity vicinity. Therefore, regardless of the value 
of any transport parameter, these low velocities inhibit the particle migration and lead to small 
contaminant boundaries.  

Cases 6a and 6b 

In case 6, the fracture porosity is considered uncertain where all other transport 
parameters are fixed at their mean values. The base-case flow realization # 284 that produces fast 
flow velocities is used for case 6a, whereas realization # 610 with the least RMSE is used for 
case 6b. Similar to the base-case model, the effective fracture porosity value is selected from a 
lognormal distribution that is used to describe the empirical distribution determined from the 
numerical analysis conducted using the tracer test results (Reimus et al., 2003). The lognormal 
distribution has a mean of 0.025 and a standard deviation of 0.023. The 90 percent confidence 
interval ranges between 0.005 and 0.07 (Pohlmann et al., 2004).  

Figure 15 shows the contaminant boundary results for case 6a and Figure 16 shows the 
results for case 6b. These figures compare the contribution of the fracture porosity to the model 
output uncertainty to the contributions of all uncertain flow and transport parameters as 
incorporated into the base-case model. It can be seen that the fracture porosity contributes 
significantly to the uncertainty in the contaminant boundary, especially in case 6a with a fast 
flow realization. In case 6b, however, the fracture porosity does not produce as much uncertainty 
as it does in case 6a. In both cases, the flow is mainly controlled by one set of fractures that do 
not change between realizations, as only one flow realization is used and only the fracture 
porosity is changed.  

To better grasp the contribution of fracture porosity (or any other transport parameter) to 
the overall model uncertainty, one would ideally repeat the simulations conducted here using 
other “representative” realizations of the base-case model that span the range of all possible flow 
scenarios. Then one would compute the average uncertainty by, for instance, averaging the 
curves in subplot d) of Figures 15 and 16 together with all other results based on a sufficiently 
large number of representative realizations. This, however, is computationally prohibitive. 

 



 

 37

 

Figure 15. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The fracture porosity uncertainty case # 6a is drawn to scale, but is 
spatially shifted on the plots for comparison to the base-case model (Pohlmann et al., 2004). 

 

Field characterization efforts in 1999 and 2000 provide additional information on fracture 
porosity as a validation target. A long-term, sustained and substantial effort was expanded 
through a two-well tracer test to provide information on fracture porosity andf transport behavior 
at Shoal (Reimus et al., 2003). This effort substantially reduced prior uncertainties in porosity, 
but similar reduction is unlikely in future efforts due to uncertainties in field configuration 
(orientation and contribution of fractures to the test) and approximations required in the analysis. 
Also, given that any tracer test in a fractured medium will likely span a short travel distance 
compared to the migration distances simulated for the 1,000-year regulatory time frame, 
representative fracture porosity on a large scale is very difficult to impossible to obtain. Thus, 
given the uncertainty of the measurement, length of time to obtain, and large cost, fracture 
porosity is not an optimum validation target. However, other field measurements (e.g., 3H or 14C 
concentration measurements) may indirectly help reduce the range of plausible values of fracture 
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porosity. These measurements may confirm the predicted presence or absence of these elements 
in certain locations, thereby indicating what velocity range may be plausible for such findings. 

 

 

 

Figure 16. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The fracture porosity uncertainty case # 6b is compared to the 
base-case model (Pohlmann et al., 2004). 

 

Cases 7a and 7b 

The cavity porosity is the uncertain parameter for this case. The Shoal nuclear test 
created a cavity that collapsed and formed a rubble chimney. The chimney did not propagate to 
the land surface (i.e., there is no collapse crater). The cavity radius is reported to be 26 m 
(Hazelton-Nuclear Science, 1965). The top of the chimney is located 108.5 m above the test 
location. Borg et al. (1976) reported a range for cavity and chimney porosity of 18 to 35 percent 
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for competent rocks such as granite, basalt, and indurated tuffs. In the base case transport model, 
uncertainty is incorporated using Borg’s values as endpoints for a uniform distribution of 
porosity in the cavity and chimney. Thus, the porosity value is randomly selected from this 
uniform distribution and assigned to the eight model cells representing the cavity, and the 
overlying 16 cells that represent the chimney through the water table (Pohlmann et al., 2004). 

Using the same flow realizations as the previous case, the results of the cavity porosity 
uncertainty was obtained, as shown in Figures 17 and 18. The two figures indicate that minor 
differences exist between the contaminant boundaries at the 50 percent, 90 percent, and 95 
percent confidence level. This leads to the conclusion that the cavity porosity uncertainty does 
not add to the model’s overall uncertainty. Again, because of the locality of the cavity and 
chimney, the uncertainty in their porosity value does not impact far field transport as does other 
parameters such as conductivity and fracture porosity. This parameter is thus not a major 
contributor to the output uncertainty and thus cannot be considered as a validation target.  

Cases 8a and 8b 
The next spherical zone around the cavity represents the damaged zone of highly 

disturbed rock that is assigned a range of hydraulic conductivity roughly an order of magnitude 
higher than the highest end of the range assigned to the fractured granite. Consistent with this 
conceptualization of a damaged zone, the porosity of these cells are assigned random values 
from a uniform distribution having endpoints of 0.07 to 0.18, substantially higher than the 
undisturbed rock, but lower than that of the cavity (Pohlmann et al., 2004). 

The uncertainty analysis for the damaged zone porosity is performed on the same two 
flow realizations as before. The results of the 500 realizations are summarized in Figures 19 and 
20. Similar to the cavity porosity case, the damaged zone porosity contributes very little to the 
overall uncertainty of the model. However, the damaged zone porosity impacts the contaminant 
boundary uncertainty more than does the cavity porosity. These results added to the fracture 
porosity uncertainty (Case # 6) are consistent with the conceptual model of Shoal. The gradual 
transition from the cavity outward is reflected in a gradual increase in the porosity contribution 
to the model uncertainty as one moves from the cavity/chimney area to the damaged zone to the 
undisturbed rock. Once again, none of these three porosity values could be better characterized in 
the field and thus are not considered as targets for the validation process. 

Cases 9a and 9b 
The transport simulations for the base-case Shoal model included the process of matrix 

diffusion. The process was incorporated into the random-walk particle-tracking (RWPT) method 
using a particle transfer approach. Although similar transport models for the CNTA site utilized 
the particle transfer approach developed by Liu et al. (2000), more accurate methods have been 
developed recently and were used in the Shoal transport model. These methods were based on 
the studies of Hassan (2002), Liu et al. (2002), Hassan and Mohamed (2003), Pan and 
Bodvarsson (2002), and Pan et al. (2001). 
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Figure 17. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The cavity porosity uncertainty case # 7a is compared to the base-
case model (Pohlmann et al., 2004). 

 
 
In the base-case model, Pohlmann et al. (2004) adopted a Markov chain model to 

simulate the particle transfer between the fracture and matrix waters. This Markov chain model 
is extended to simulate the particle transfer across the fracture/matrix interface by coupling the 
“active diffusion range” as developed by Pan and Bodvarsson (2002) into the model. The 
advantage of this approach is that it allows a relatively large time interval (∆t), which 
dramatically reduces the computation time. The model also allows for multiple fractures within a 
single grid cell, which effectively increases the effective fracture-matrix interface area. As 
mentioned earlier, the different parameters affecting the transfer probability were obtained by 
calibration to the Shoal tracer test data and then kept constant in all realizations. 
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Figure 18. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The cavity porosity uncertainty case # 7b is drawn to scale, but is 
spatially shifted on the plots for comparison to the base-case model (Pohlmann et al., 2004). 

 

Here, the impact of uncertainty stemming from matrix diffusion parameters is evaluated. 
The fracture spacing parameter is selected as the uncertain parameter but any other parameter 
could also be used for this purpose. A lognormal distribution with mean -0.938 and a standard 
deviation of 0.7 is used for the fracture spacing, which yields values for this parameter with a 
mean of 0.5 m (equivalent to the deterministic values used in the base case) and a range of about 
0.05 to 2.5 m. This range leads to uncertainty in the transfer probability and, in turn, it changes 
the strength of matrix diffusion from one realization to another. Figures 21 and 22 show the 
results of this uncertainty case. 
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Figure 19. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The damaged zone porosity uncertainty case # 8a is drawn to 
scale, but is spatially shifted on the plots for comparison to the base-case model (Pohlmann et 
al., 2004). 

  

Case 9a shows that the effect of uncertainty in matrix diffusion is enhanced by the set of 
strong fractures having high velocities, as was the case for previous parameters (i.e., cases 6a, 7a, 
and 8a). The results, however, exhibit less sensitivity to matrix diffusion compared to other 
transport parameters such as damaged zone porosity and fracture porosity. Case 9b, which used 
the flow realizations having the least RMSE, shows very little sensitivity to the matrix diffusion 
parameter. So, given these results and the fact that matrix diffusion parameters were obtained by 
calibration to the tracer test data, the matrix diffusion parameter would not be considered as a 
useful validation target.  
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Figure 20. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The damaged zone porosity uncertainty case # 8b is drawn to 
scale, but is spatially shifted on the plots for comparison to the base-case model (Pohlmann et 
al., 2004). 

 

5.2.3 Selection of Validation Targets 
Tsang (1987) highlights the importance of the choice of the measurable quantities that are 

to be used for validation purposes, as there are measurable quantities that are almost impossible 
to use for model validation (e.g., point and instantaneous concentration data). The averaged 
solute concentration over a large region and over a period of time is a more relevant quantity for 
certain purposes such as determining the effectiveness of geological isolation of nuclear or toxic 
waste (Tsang, 1987).  

Most of the model components (conceptual model, mathematical model, computer code, 
and input data) contain some degree of uncertainty due to lack of perfect knowledge about the 
subsurface conditions no matter how well the system is characterized. Furthermore, experimental 
results (e.g., field measurements) that are designed for model validation studies contain some 
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errors or uncertainty. The validation tests should consider these sources of uncertainty, they 
make it difficult to ascertain whether or not the model results agree with the experimental data; 
the more uncertain the data are, the more difficult it is to conclude that the model is acceptable 
(Davis et al., 1991). However, these uncertainty effects should be viewed in terms of whether or 
not they affect the quantity of regulatory interest. In some cases, input uncertainty may have 
minor impact on the resulting regulatory quantity such as the size and location of the water 
volume having contaminant concentration exceeding a certain threshold (Pohll and Mihevc, 
2000). These effects should therefore be carefully studied prior to designing the validation study, 
which was the subject of the analysis presented in this section.  

 
 

 

Figure 21. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 
confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The matrix diffusion uncertainty case # 9a is drawn to scale, but is 
spatially shifted on the plots for comparison to the base-case model (Pohlmann et al., 2004). 
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Figure 22. Contaminant boundary maps for 14C delineating the areas exceeding 2,000 pCi/L at different 

confidence levels. Subplot a) shows the x-z (or elevation) map, subplot b) shows the y-z map, 
subplot c) shows the x-y map, and subplot d) shows the x-y contaminant boundary area at 
different confidence levels. The matrix diffusion uncertainty case # 9b is drawn to scale, but is 
spatially shifted on the plots for comparison to the base-case model (Pohlmann et al., 2004). 

 

Based on the results of the individual parametric uncertainty analysis presented above, 
hydraulic conductivity is the most viable validation target on the input side of the model. 
Fracture porosity is a similarly sensitive target, but obtaining porosity data is quite difficult and 
the data remain subject to large uncertainties due to both test constraints and complexity of 
interpretation. On the output side, the hydraulic head as well as the head gradient are viable 
validation targets. In addition, presence or absence of certain radionuclides at the locations of the 
validation wells will be used as validation targets. However, point concentration measurements 
may not be helpful for the validation as much as the determination of the presence or absence of 
radionuclides (i.e., the binary aspect of radionuclide presence as opposed to the value of their 
concentration). Also, if geophysical logging or other information could be gathered about the 
fracture sizes and intensity as a function of depth in each of the new validation wells, they can be 
used as validation targets for the purpose of conditioning the model and reducing the uncertainty 
built into the fracture characteristics in the model.  
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One should not also eliminate the possibility to obtain new data that would help in 
narrowing down the range of recharge values used in the model. For example, temperature logs 
in the new wells to be drilled for validation can be utilized to derive independent values of 
recharge and thus can help validate and subsequently constrain the distribution of recharge used 
in the model. Although recharge did not impact the model output dramatically, the constraints on 
its impact imposed by changing the conductivity of Flow Category 1 (intervening zones of small 
random fractures) during the calibration process contribute to this result. With this type of 
correlation, an independent recharge value can be used to validate the range of selected recharge 
and K1 values as produced by the calibrated flow model. 

5.3 Acceptance Criteria 
Davis et al. (1991) discuss some acceptance criteria when validating performance 

assessment models. To declare that a model is acceptable or adequate for a specific regulatory 
requirement, the model structure, as well as the model input data, has to be acceptable. Model 
structure should reflect how the real system behaves. All assumptions inherent in the conceptual 
model should be justified using site-specific information and field data collected for validation 
purposes. Accepting the model structure implies that the model results will exhibit a system 
behavior that is independent of the input data used. That is to say that changing the input data for 
a structurally accepted model only changes the output results in a quantitative sense but not in a 
qualitative sense.  

To declare that the model input is adequate, one has to build confidence in the model over 
a wide range of experimental conditions. That is, by changing the conditions under which the 
laboratory or field validation experiment is performed (e.g., different flow or pumping rates), the 
model predictions can be compared to a wide range of input conditions that will help build 
confidence in model input. When changing experimental conditions and thus some portions of 
the input data for the model, the adequate model should predict the experimental results with a 
reasonable accuracy without changing other input data. If other input data are correlated to those 
changing conditions, then the model input should reflect this type of correlation to accept the 
model input and declare the model not invalid. 
5.3.1 Proposed Acceptance Criteria 

According to the validation plan shown in Figure 4, the first set of analyses using the field 
data collected for validation purposes will yield results that will be evaluated to determine the 
path forward. The first “if” statement in the validation approach pertains to whether a sufficient 
number of realizations attained satisfactory scores on how they represent the field data used for 
calibration (old) and for validation (new). The determination of whether sufficient number exists 
will be based on five criteria with the decision made in a hierarchical manner as will be 
discussed later. The five criteria are summarized below. 

1. Individual realization scores (Sj, j = 1, …, number of realizations), obtained based on how 
well each realization fits the validation data, will be evaluated. The first criterion then 
becomes the percentage of these scores, P1, that exceeds a certain reference value. 

2. The number of validation targets where field data fit within the inner 95 percent of the 
probability density function (pdf) of these targets as used in the model (P2) is the second 
criterion. 
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3. The results of hypothesis testing to be conducted using the stochastic perturbation 
approach of Luis and McLaughlin (1992) as described in detail in the validation report of 
Hassan (2003a) (P3).  

4. The results of linear regression analysis and other hypothesis testing (e.g., testing error 
variance based on calibration data and based on validation data) that could be feasible 
(depending on the size of the data set obtained in the field), P4.  

5. The results of the correlation analysis where the log-conductivity variance is plotted 
against the head variance for the targeted locations and the resulting plot for the model 
are compared against the field validation data (P5).  

The hierarchical approach to make the above determination is described by a decision 
tree. This decision tree for the acceptance of the realizations and for passing the first decision 
point on the validation approach is shown in Figure 23 below. It begins with evaluating Sj and 
determining whether the percentage of realizations with scores above the reference value, P1, is 
more than 40 percent, between 30 percent and 40 percent, or less than 30 percent. If the number 
is more than 40 percent, it is deemed sufficient. If it is between 30 percent and 40 percent or less 
than 30 percent, then the second criterion, P2, is used as shown in Figure 23.  
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  > 40% < 30%

> 50% Between 40% and 50%
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The number
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Figure 23. A decision tree chart showing how the first decision (step 6) in the validation plan will be 
made and the criteria for determining the sufficiency of the number of acceptable realizations. 
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The second criterion represents the number of validation targets where the field data lie 
within the inner 95 percent of the pdf for that target as used in (input) or produced by (output) 
the Shoal model. Then if P1 is between 30 percent and 40 percent and P2 is between 40 percent 
and 50 percent or if P1 is less than 30 percent but P2 is greater than 50 percent, the number of 
realizations is deemed sufficient. If P1 is less than 30 percent and P2 is less than 40 percent, then 
the remaining three measures, P3, P4, and P5, are used to determine whether the model needs 
revision or whether more realizations can be generated to replace some of the current 
realizations. In this latter case, it may be that the model is conceptually good but the input 
parameter distribution is skewed one way or another and by generating more realizations and 
keeping the ones that fit the above criteria, the distribution attains the proper position. This can 
be done using the existing model without conditioning or using any of the new validation data 
(i.e., no additional calibration). The rationale for selecting the above thresholds (30 percent to 40 
percent for P1 and 40 percent to 50 percent for P2) is described through an example and when 
these metrics are evaluated with statistical hypothesis testing later in this section. 

 

5.3.2 Single Validation Target Illustration 

The first criterion is to compute the number of realizations with scores Sj above a 
reference value. To demonstrate how this reference value is computed, assume there is only one 
validation target (e.g., the head measurement in one interval in one well). Figure 24 shows the 
pdf for this head value as produced by the stochastic Shoal model where the triangles represent 
the 2.5th, 50th, and 97.5th percentiles and the circle indicates a hypothesized field measurement, 
ho. The reference value and the score for any individual realization for this simple case are 
computed as 

 

 

Figure 24. The head distribution (or pdf) as obtained from the Shoal model with the 2.5th, 50th, and 97.5th 
percentiles shown with the green triangles and the hypothesized field data shown by the red 
circle. 
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where j is the realization index and it varies from 1 to NMC (number of Monte Carlo 
realizations) with NMC being 1,000 realizations for the Shoal model. This leads to all 
realizations with absolute errors smaller than (|ho - h2.5|) or (|ho - h97.5|), whichever is smaller, 
attaining a score higher than the reference value. Figure 25 below shows the resulting scores and 
how they compare to the reference value, RV, as obtained from the above equations.  

 

 

Figure 25. Realizations scores, Sj, relative to the Reference Value, RV, for the single validation target case 
presented in Figure 24. The P1 value here is 97.4 percent (= 974/1,000). 
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It can be seen from Equations (1) through (3) that the maximum value that RV or Sj can 
attain is 1.0. Thus, if the observed value, ho, is equivalent to the 2.5th or the 97.5th value, P1 
becomes zero because RV becomes 1.0 and all Sj values will be less than 1.0. Also, if the 
observed value is found to be less than h2.5 or greater than h97.5, P1 will be automatically set to 
zero. In such cases, one may conclude that the model output is skewed toward higher or lower 
values than indicated by field data. However, this does not necessarily indicate conceptual 
problems and it may be an indication of incorrect input parameter distributions. The other tests 
and evaluations can help identify the reasons for this output skewness. When the measured value 
coincides with the mean value (or 50th percentile) of the target output, h50, then P1 will 
approximately be 95 percent indicating that 95 percent of the realizations attained scores higher 
than RV.  

5.3.3 Testing the Efficacy of P1 for a Single Validation Target  

To investigate the P1 metric for the case of a single validation target, a distribution form 
is assumed for the model output. For simplicity, it is assumed that the model predictions follow a 
standard normal distribution with zero mean and unit variance, so h50 = 0.0, h2.5 = -1.96, and h97.5 
= 1.96. The performance of this metric is tested for a range of measurement values (hypothesized 
values for the single field data point) between -10.0 and +10.0. For each one of these 
hypothesized values, the RV can be obtained according to Equation (1) and the results are shown 
in Figure 26. The RV metric decreases rapidly as the observation value approaches the median, 
h50. When the measured value lies outside the middle 95 percent of the output distribution (i.e., 
outside the range [-1.96, 1.96]), the RV is not computed, since P1 becomes zero. Also, as shown 
in the figure, when ho equals -1.96 (h2.5) or 1.96 (h97.5), RV equals 1.0. Due to the exponential 
form in Equation (2), all Sj values will be less than 1.0, resulting in a zero value for P1 when ho is 
at the 2.5th or 97.5th percentile.  

 

Figure 26. The Reference Value, RV, for the single validation target case as a function of the measured 
field value. 
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The next step is to calculate the Sj score for each Monte Carlo realization, with Sj being a 
similar measure to the RV, but using individual realization predictions. The Sj score is compared 
to the RV score and the relative number of Sj values that exceed the RV are tallied to obtain P1. 
The Sj values and the corresponding P1 value were tallied for a range of single observation 
values in the range [-10, 10] as shown in Figure 27. 

Figure 27 also compares the P1 metric to the t-distribution with one degree of freedom. 
The t-distribution is commonly used to test the statistical differences among means when the 
variance of the distribution is not known. The distribution plotted with green in the figure simply 
shows the value of the significance level, α, at which each observation on the range [-10, 10] 
would be rejected in a hypothesis testing that evaluates the statistical difference between the 
mean of the model output (assumed standard normal distribution) and each observed value 
(assuming that each observed value represents a distribution with only one [n = 1] sample). The 
one-degree of freedom used in this plot is not exactly correct, as the degrees of freedom are 
actually n - 1 = 0.  

 

Figure 27. The P1 metric, student t-distribution, and the results of hypothesis testing using the Z test. 

 
To avoid this limitation, the Z test that is commonly used for the same purpose is 

employed, but it assumes that the variances of the distributions are known. An assumption is 
made that each observation is a mean of a normal distribution and each output realization 
represents a mean of a normal distribution. For each observation value, the following hypothesis 
is then tested: 
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Then the proportion of Monte Carlo realizations where the null hypothesis, H0, above is not 
rejected is plotted against each observation value as shown with the red line in Figure 27.  

The plots in Figure 27 provide an indication of how the P1 test compares against standard 
statistical tests. According to the figure, one would accept all model realizations for any of the 
observed values [-10, 10] based on the student t-test. In other words, if the t-test is used, one 
would not reject any of the model realizations until approximately the absolute value of the 
observation is well above 10 (at the 95 percent confidence level). On the other hand, the P1 
measure and the Z-test both indicate decreasing proportions of acceptable realizations as one 
deviates from the median of the model output distribution, which is zero in this test case. At the 5 
percent significance level and if the observed value coincides with the median of the model 
output, only 95 percent of the realizations are deemed acceptable using the P1 measure and the  
Z-test. When the observed value deviates from the median, the proportion of acceptable 
realizations drops faster using the P1 measure compared to the Z-test. For example, 40 percent or 
more of the model realizations would be accepted using the Z-test for any observation value in 
the range [-2.22, 2.22], whereas the P1 measure gives this level of acceptance for a narrower 
range of observation values [-1.07, 1.07]. 

At first glance it appears that the two methods (the P1 measure versus the Z-test or the t-
test) are in large disagreement. But Type I error (rejecting a model realization when in fact it is a 
good one) versus Type II error (accepting a poor model realization) must be considered. The P1 
metric is essentially reducing the Type II error at the expense of Type I error. As discussed by 
Sargent (1990), the probability of Type I error is called model builder’s risk, whereas the 
probability of Type II error is called model user’s risk, and in model validation, model user’s risk 
is extremely important and must be kept small. As a result, it is believed that the restrictiveness 
of the P1 measure helps minimize Type II error and thus reduces the model user’s risk (both 
DOE and/or NDEP) at the expense of increasing the model builder’s risk (supposedly the 
research team evaluating the model). 

5.3.4 Multiple Validation Targets Illustration 

For the general case of having N validation targets, the above equations should be 
modified to account for these different validation targets. In this case, the RV and the individual 
scores, Sj, will depend on the sum of squared deviations between each observation, ho, and the 
corresponding h2.5 or h97.5. The equations thus become 
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For demonstration purposes and as an example, assume the hypothetical case that data are 
collected on 18 validation targets. These, for example, could be conductivity data in three wells, 
three measurements each (i.e., 9 intervals) and head data for the same intervals. For each one of 
these targets, the current stochastic Shoal model provides a distribution of values, as each 
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realization of the model has different values for these targets than other realizations. It is then 
assumed that the values of the field data are known (one realization is picked at random to 
provide an example observation for all targets.) Figures 28 through 30 show the results of this 
example (Example 1) where P1 is found to be about 76.7 percent. In this case, P2 is not checked 
for and the sufficiency of the number of realizations having acceptable scores is accepted. Note, 
however, if P2were checked, it would be about 94 percent (=17/18).   

 

Figure 28. Example 1 showing the pdf distributions for validation targets 1 through 9 with the 2.5th, 50th, 
and 97.5th percentiles shown with the green triangles and the hypothesized field data shown by 
the red circles. 

 
Using another set of random values to hypothesize the field data, a different result is 

obtained as shown in Figures 31 through 33 for Example 2. In this case, both P1 and P2 are less 
than 40 percent (since the number of validation targets where the red circles are between the 2.5th 
and the 97.5th percentiles is only 2, or approximately 11 percent). In this case, the additional 
hypothesis tests and linear regression evaluations will be performed to assert whether the model 
needs to be revised or if the parameter distributions need to be modified.  
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Figure 29. Example 1 showing the pdf distributions for validation targets 10 through 18 with the 2.5th, 
50th, and 97.5th percentiles shown with the green triangles and the hypothesized field data 
shown by the red circles. 

 

In example 1 above, the field data values are hypothesized to be equivalent to one of the 
model realizations. That is, the values of the 18 validation targets are obtained from one single 
realization and assumed to represent field data collected for the validation analysis. In spite of 
assuming field values that exactly match one of the model realizations, the P1 metric was found 
to be about 76.7 percent. This value is obviously dependent on which realization is selected. 
Therefore, the above example was repeated 1,000 times with each of the model realizations 
assumed to represent the field data in one of those times. The P1 metric is obtained for these 
1,000 experiments and its mean value was found to be about 43 percent. Given that the actual 
field data to be collected for the validation analysis are very unlikely to exactly match any of the 
Shoal model realizations, the 30 percent -40 percent threshold for P1 is considered realistic. In 
other words, if one, on average, obtains 43 percent for P1 when one of the model realizations is 
assumed to match real field conditions, one can safely assume the model conceptually valid if P1 
is between 30 percent and 40 percent when using the actual validation data. 
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Figure 30. Example 1 showing individual realization scores, Sj, relative to the Reference Value, RV; the 
P1 value here is about 76.7 percent (= 767/1,000). 

 
5.3.5 Testing the Efficacy of P1 for Multiple Validation Targets  

 A numerical experiment is performed to evaluate the P1 metric for the case of multiple 
validation targets. The experiment is run as follows: 

1. A model is assumed to produce multiple outputs, each following a standard normal 
distribution with zero mean and unit variance. 

2. To test the sensitivity of the P1 metric, 30 observations are randomly selected, with the 
mean value of each observation being constant. A range of observation means is used to 
determine at what point the model will be rejected. The mean of each observation set is 
tested over the range -4.0 to 4.0 (i.e., -4.0, -3.9,...,4.0). 

3. For each mean value, 30 observations are randomly drawn from a normal distribution 
with the mean equal to the current mean value (i.e., -4.0, -3.9, …, 4.0) and a standard 
deviation = 1.0. 

4. The RV value for the 30 validation targets is computed using Equation (5). 

5. For each observation mean, the scores Sj for 10,000 realizations of a model (model is 
assumed to be standard normal) are computed and the metric P1 is obtained according to 
Equation (3). 

6. Steps 3 through 5 are then repeated for each observation mean in the range [-4.0, 4.0]. 
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Figure 31. Example 2 showing the pdf distributions for validation targets 1 through 9 with the 2.5th, 50th, 
and 97.5th percentiles shown with the green triangles and the hypothesized field data shown by 
the red circles. 

 

The purpose of this experiment is to determine the point at which a model will be 
considered invalid. Each observation set represents data that are either close to the model 
predictions (i.e., mean values close to zero), or poor fitting data with mean values far away from 
zero. This experiment allows us to compare the rejection region for using a simple hypothesis 
test (i.e., Z-test) versus the P1 measure. 

Due to the random nature of the distributions generated in the above procedure, the above 
experiment was repeated 100 times and the average results are shown in Figure 34. The blue dots 
in the figure represent the results for the P1 metric, the red line shows the results of the Z-test that 
is similar to the test conducted for the single validation target case, the magenta line represents 
the mean value (of 100 values) of the P1 metric at each observation mean, and the black line 
represent a normal distribution that best fits the P1 results. 
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Figure 32. Example 2 showing the pdf distributions for validation targets 10 through 18 with the 2.5th, 
50th, and 97.5th percentiles shown with the green triangles and the hypothesized field data 
shown by the red circles. 

 

For the Z-test, each output realization is assumed to represent a mean of a normal 
distribution. For each observation mean value, the following hypothesis is tested: 
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Then, the proportion of Monte Carlo realizations (assumed 10,000 in this experiment) 
where the null hypothesis, H0, above is not rejected is plotted against each observation mean as 
shown with the red line in Figure 34. According to the figure, the t-test would suggest that all 
model realizations are accepted if the mean value of the observations was inside the range [-2.2, 
2.2] at 95 percent. The P1 criterion has a narrower acceptance region ([-1.6, 1.6] according to the 
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black or magenta line), again suggesting that the P1 metric is overemphasizing (i.e., trying to 
reduce) Type II error. Therefore, the P1 criterion is more stringent than typical hypothesis tests 
and provides a useful method to test multiple validation targets, which is a more difficult task 
with standard hypothesis test procedures. 

 

Figure 33. Example 2 showing individual realization scores, Sj, relative to the Reference Value, RV. The 
P1 value here is about 5.1 percent (= 51/1,000).  

 

It is important to note that according to P1 and the Z-test, decreasing proportions of 
acceptable realizations are obtained as one deviates from the median of the model output 
distribution (zero in this test case.) At a 5 percent significance level and if the observed mean 
value coincides with the median of the model output, 95 percent of the realizations are deemed 
acceptable using the Z-test, whereas only 60 percent of the model realizations are deemed 
acceptable using the P1 measure. Therefore, a rejection region of less than 30 percent for the P1 
criteria is very stringent and should not be confused with the 95 percent confidence interval used 
for presenting the output uncertainty. 
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Figure 34. The P1 metric (blue), its mean (magenta), its best-fit normal distribution (black) student t 
distribution (green), and the results of hypothesis testing using the Z-test (red) for the multiple 
validation targets case. 

 

5.3.6 Testing the Efficacy of P2 for Multiple Validation Targets  

A numerical experiment is constructed to test the efficacy of the P2 metric as follows: 

1. A model is assumed to produce output according to a standard normal distribution. 

2. Observations are assumed to follow a normal distribution with mean µ and unit variance. 
The numerical experiment chooses mean values µ from an observation distribution range 
-4.0 to 4.0 (i.e., -4.0, -3.9, …, 4.0).  

3. For each mean value, a random sample of 30 observations is drawn from a normal 
distribution with the mean equal to the current mean value (i.e., -4.0, -3.9, …, 4.0) and a 
standard deviation equal to 1.0. 

4. Each of the 30 observations is then compared to the model’s distribution N (0,1) to 
determine what percentage falls outside of the 95 percent confidence interval (i.e., -1.96 
to 1.96).  

5. The process is repeated for all observation means [-4.0, 4.0]. 
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Due to the random nature of the distributions generated in the above procedure, the above 
experiment was repeated about 100 times and the results are shown in Figure 35. The figure 
shows that if 50 percent is chosen as the rejection threshold for the P2 metric, then the model 
would be accepted for µ = [−1.96, 1.96]. This is a very interesting result, as one might initially 
think that 95 percent should be the acceptance threshold, but 50 percent yields the same 
acceptance region as a standard t-test at a 95 percent confidence level.  

 

 

Figure 35. The P2 metric (blue) and its mean (magenta) for the multiple validation targets case. The black 
lines show that at the 50 percent threshold, the acceptance region is [-1.96, 1.96], which is the 
same acceptance region for a standard t-test at the 95 percent confidence level.  

 

6. SUMMARY AND CONCLUSIONS 
Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface 

environment makes uncertainty an integral component of groundwater flow and transport 
models, which dictates the need for continuous monitoring and improvement. Building and 
sustaining confidence in closure decisions and monitoring networks based on models of 
subsurface conditions require developing confidence in the models through an iterative process.  

The definition of the model validation-model postaudit process is reaffirmed here in a 
way similar to Hassan (2003a). Namely, it is postulated that the model validation process is a 
confidence building and long-term iterative process. Model validation should be viewed as a 
process, not an end result. That is, model validation cannot always assure acceptable prediction 
or quality of the model. Rather, it provides a safeguard against faulty models or inadequately 
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developed and tested models. If model results end up being used as the basis for decision 
making, then the validation process indicates that the model is valid for making decisions (not 
necessarily a true representation of reality). 

This report attempts to reconcile the differences between the FFACO’s (2000) 10-step model 
validation process and the 12-step modeling protocol established in Anderson and Woessner’s 
(1992b) book and adopted in many other hydrogeologic references. It is argued here that if the 
modeling process is to contain a model postaudit stage, it implies iterative model building, 
calibration, simulation, validation, monitoring, and re-characterization. Without a model 
reconfiguration and refinement possibility, the model postaudit step is meaningless. This is 
simply because the postaudit step requires comparisons be made between model predictions and 
newly collected field data. This comparison is unnecessary if one does not consider the 
possibility of revising the model, which gives rise to an iterative process of model building, 
evaluation, and refinement.  

Following Hassan (2003a, 2004b), an approach is proposed for the validation process of 
the stochastic Shoal model. The proposed approach aims at building confidence in the model 
predictions.The focus of the proposed validation methodology is on testing how the predictions 
of the groundwater flow and transport models of Shoal and the underlying conceptual models 
and assumptions are robust and consistent with regulatory purposes, and on linking validation 
efforts to long-term monitoring that benefits from and builds on the validation-phase field 
activities. As the approach is similar to that proposed for CNTA in Hassan (2003a), the details of 
the approach are not repeated here, but rather more explanation and discussion of some of the 
challenging aspects of the process are addressed as they apply to the Shoal model. In particular, 
two main aspects are analyzed here. These are the selection of the validation targets at Shoal, and 
the selection of the acceptance criteria for the stochastic model realizations. 

To select the validation targets at Shoal, a multi-parameter uncertainty analysis is 
performed to identify which flow and transport parameters the contaminant boundaries are most 
sensitive to. Five flow parameters and four transport parameters are selected for this analysis. 
These are the fracture orientation, the fracture lengths, the cavity and disturbed zone 
conductivity, the fracture conductivity, the recharge, the cavity porosity, the damaged zone 
porosity, fracture porosity, and matrix diffusion. The analysis proceeds by running the calibrated 
model in Monte Carlo mode for each of the individual uncertain parameters that are under 
consideration; all of the other uncertain parameters are held at constant values that are 
representative of their distribution. The output uncertainty for the base case mode (Pohlmann et 
al., 2004) and for all the uncertainty cases is obtained in terms of the 14C contaminant boundary. 

The results of the uncertainty analysis indicate that hydraulic conductivity contributes 
significantly to the overall output uncertainty, far more than any other flow or transport 
parameter. This implies the need to consider the hydraulic conductivity of the fractured granite at 
Shoal as one of the validation targets at the input side of the model. The contribution of all other 
input parameters to overall uncertainty is less and with the added difficulty to measure these 
parameters in the field, they are not considered as viable validation targets. At the output side of 
the model, hydraulic head and head gradients can be used as validation targets. Also, the 
presence or absence of radionuclides at locations in the downgradient direction can be used as 
another validation target (i.e., presence of contaminants where model predicts none or vice 
versa). Also, fracture mapping in wells and temperature logs may provide independent 
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information about certain aspects that can be tested for the model such as fracture distribution 
and recharge distribution. 

During the validation process, a question arises as to the sufficiency of the number of 
acceptable (in terms of conformity with validation data) model realizations. A hierarchical 
approach is proposedto make this determination. This approach is based on computing five 
measures or metrics, following a decision tree, to determine if a sufficient number of realizations 
attain satisfactory scores on how they represent the field data used for calibration (old) and used 
for validation (new).  

The first two of these measures are applied to hypothetical scenarios assuming field data 
consistent with the model or significantly different than the model results. In both cases, it is 
shown how the two measures would lead to the appropriate decision about the model 
performance. Standard statistical tests are used to evaluate these measures with the results 
indicating that they are appropriate measures for evaluating model realizations. 
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