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Disclaimer 
 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency thereof, 
nor any of their employees makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily agency thereof. The 
views and opinions of authors expressed herein do not necessarily state or reflect those of 
United States Government or any agency thereof. 
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Abstract 
 

In this project, we are developing new methods for interpreting measurements in 
complex wells (horizontal, multilateral and multi-branching wells) to determine the 
profiles of oil, gas, and water entry. These methods are needed to take full advantage of 
“smart” well instrumentation, a technology that is rapidly evolving to provide the ability 
to continuously and permanently monitor downhole temperature, pressure, volumetric 
flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and 
hence, to control and optimize well performance.   

In this first year, we have made considerable progress in the development of the 
forward model of temperature and pressure behavior in complex wells. In this period, we 
have progressed on three major parts of the forward problem of predicting the 
temperature and pressure behavior in complex wells. These three parts are the 
temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or 
laterals in the producing intervals, and in the build sections connecting the laterals, 
respectively. 
 Many models exist to predict pressure behavior in reservoirs and wells, but these 
are almost always isothermal models. To predict temperature behavior we derived 
general mass, momentum, and energy balance equations for these parts of the complex 
well system. Analytical solutions for the reservoir and wellbore parts for certain special 
conditions show the magnitude of thermal effects that could occur. Our preliminary 
sensitivity analyses show that thermal effects caused by near-wellbore reservoir flow can 
cause temperature changes that are measurable with smart well technology. This is 
encouraging for the further development of the inverse model. 
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1 Introduction 
 

Intelligent well completions are being increasingly used in complex wells 
(horizontal, multilateral and multibranching). Intelligent completions supply real time 
temperature and pressure profile measurements which can be used to determine flow rate 
profile, phases, reservoir productivity and fluid properties.  

The temperature prediction models for vertical well or inclined well have been 
studied extensively, however there is little work on horizontal wells. Temperature 
prediction models of vertical wells focus on the conductive heat transfer between the 
formation and the wellbore. Since in the vertical production system, temperature near 
surface is significantly different from the temperature at the deep producing zone, 
dominant heat transfer will be conduction and it is less difficult to describe temperature 
profile along the vertical well. 

Horizontal or nearly horizontal wells are usually surrounded by almost the same 
formation temperature. In development of a temperature model for this case, overlooking 
any effect might lead to misunderstanding of the temperature distribution. It is also true 
for the pressure profile. In horizontal wells, because there is little gravity pressure drop, 
any other term such as friction or momentum difference will be the dominant terms. In 
this problem, there exist two flow directions. One direction is the main flow which runs 
through the wellbore and the other stream is the inflow from the formation that flows in 
the radial direction. Therefore, the main difference between vertical and horizontal wells 
is that the equations must explain the effect of inflow. 

In this period, we have progressed on three major parts of the forward problem of 
predicting the temperature and pressure behavior in complex wells. These three parts are 
the temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore 
or laterals in the producing intervals, and in the build sections connecting the laterals, 
respectively. Detailed results for each of these regions are given in the following sections. 
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2 Executive Summary 
 
In this project, we are developing new methods for interpreting measurements in 

complex wells (horizontal, multilateral and multi-branching wells) to determine the 
profiles of oil, gas, and water entry. These methods are needed to take full advantage of 
“smart” well instrumentation, a technology that is rapidly evolving to provide the ability 
to continuously and permanently monitor downhole temperature, pressure, volumetric 
flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and 
hence, to control and optimize well performance.  This spatial and temporal measurement 
density is unprecedented in the oil industry, and offers the promise of revolutionary 
changes in the way complex wells are operated.  However, the key to realizing the value 
of smart wells is the efficient and accurate interpretation of the raw data being acquired.  
Converting this raw information about wellbore conditions into the useful knowledge of 
the phase flow profiles is the primary goal of this project. 

The specific objectives of the project are: 
1. Develop a model to predict temperature, pressure, and flow profiles in complex 

wells, including nominally horizontal laterals, variably-inclined build sections, wellbore 
junctions, each of which may have commingled fluids with different properties. 

2. Develop inverse methods to infer phase flow profiles (the distribution of oil, 
water, and gas inflow along a complex well) from continuously monitored data. 

In this first year, we have made considerable progress in the development of the 
forward model of temperature and pressure behavior in complex wells. In this period, we 
have progressed on three major parts of the forward problem of predicting the 
temperature and pressure behavior in complex wells. These three parts are the 
temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or 
laterals in the producing intervals, and in the build sections connecting the laterals, 
respectively. 

To develop the forward model of reservoir behavior, we began by deriving very 
general mass and energy balance equations for this system. The unique feature of this 
model compared with most models of reservoir flow is that it does not assume isothermal 
conditions. Instead, subtle energy effects that affect temperature including frictional 
dissipation and Joule-Thomson expansion are included. We obtained analytical solutions 
to the governing equations for non-isothermal reservoir flow that have been very 
informative. In particular, they show that larger enough thermal effects caused by flow in 
the near-well vicinity occur to be detectable with current downhole temperature 
measurements. 

A similar approach was taken to develop a model of temperature and pressure 
behavior in the producing laterals. General mass, momentum, and energy balance 
equations were derived to solve for the temperature, pressure, and flow profiles along the 
wellbore. A numerical solution to these equations was obtained which can be applied to a 
wide range of well flow conditions. We tested the numerical model against an analytical 
solution that we obtained for the special condition of constant inflow along the well, and 
found excellent agreement, validating the numerical model. The wellbore model shows 
that thermal effects generated by the wellbore flow itself are small, but changes that 
occur when inflow conditions vary may be detectable. 
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To model the temperature in the build sections connecting individual laterals, we 
adapted the Ramey equation to the condition of a changing wellbore inclination. We then 
developed energy balance equation applied at the junctions. The combination of these 
allows us to predict the temperature profile along all build sections, and above the 
junction  locations. This temperature model is now being coupled with a two-phase 
pressure drop algorithm to obtain both the pressure and temperature profiles in build 
sections. 
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3  Reservoir Model 
 
 
3.1 Background Information 
 
Horizontal Inflow Models.  Hydrocarbon production by means of horizontal wells has 
become popular during the past few decades.  Generally, horizontal wells are rarely 
perfectly horizontal; rather, they have many bends and curves with local inclinations over 
80 degrees from the vertical.  The horizontal length could be several thousands of feet 
long.  Horizontal wells provide larger contact area with the reservoir by increasing the 
surface area of the wellbore.  That means a higher production rate and larger drainage 
area compared to a vertical well.  In addition, more than one horizontal section could be 
drilled from the same vertical section to recover hydrocarbon from the same or different 
reservoirs.  These benefits draw attention to modeling the flow behavior of fluid into 
horizontal wells.  

There are many isothermal steady-state inflow models for horizontal wells.  They 
are much more complex than vertical well inflow models because the flow is constrained 
by the horizontal reservoir boundaries and more affected by permeability anisotropy.  
Certain assumptions must be made to derive an analytical model.  Butler (1994) derived a 
model for a fully-penetrating horizontal well by using conformal mapping.  Butler’s 
model for an isotropic reservoir is  
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Gringarten et al. (1973) and Ouyang et al., (1998) used Green’s functions (instantaneous 
source function) to solve the diffusivity equation.   The plane, line, and point sources are 
used with Newman’s product method to generate solution for reservoir flow.  The 
solution applies to steady-state flow by using long time approximation .  For a 
fully-penetrating horizontal well in rectangular reservoir, the pressure drop can be written 
as below 
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Symbols are defined in the Nomenclature.  The solution is not easy to couple with an 
energy equation to predict temperature.  It is presented here just for a comparison. 

A recent inflow model presented by Furui et al. (2003) is based on finite element 
simulations for a fully penetrating horizontal well.  The model is more simple, concise, 
and easy to couple with an energy balance.  The pressure drops in two flow regions 
(linear and radial flow) are  
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2
hyt = , the position of rt and yt are shown on the figure below 
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Fig. 3.1 Horizontal well flow geometry in a rectangular reservoir (Furui et. al., 2002) 

 
Temperature Logging. Non-isothermal flow models are usually found in the 
temperature log interpretation literature (Hill, 1990).  It has been recognized that gas 
entering a wellbore often creates a cooling due to Joule-Thomson expansion and water 
entry causes the heat increase.  The temperature change of fluids can be roughly 
determined from the Joule-Thomson coefficient KJT which is 
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for constant KJT,  where β  is the thermal expansion coefficient defined as 
p

T
V

V ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂ ˆ

ˆ
1 , T is 

temperature, V  is specific volume, Cˆ p is specific heat capacity and ρ  is the density of 

the fluid.  For an ideal gas, 
T
1

=β , 0=JTK   . For real gases at low pressure, Tβ >1, 

resulting in   .  Thus, a pressure drop 0>JTK )0( <∆p  causes cooling.  On the other hand, 
for liquid flow Tβ  <1,  .  Therefore, a pressure drop causes heating. 0<JTK

Most studies have focused on developing wellbore models for thermal changes 
caused by conduction and convection.  They also have assumed that the produced fluid 
enters the wellbore at the geothermal temperature.  Steffensen and Smith (1973) 
recognized the importance of the heating or cooling of the produced fluid before it enters 
the wellbore and developed models incorporating the Joule-Thomson coefficient.  
However; flow in permeable media does not fulfill isenthalpic conditions because there is 
also heat generated by friction between rock matrix and flowing fluids.  The amount of 
frictional heating is greatest near the wellbore where the pressure gradient is the largest 
(Hill, 1990).  

Maubeuge et al. (1994) presented an interesting approach to production logging 
interpretation.  They acknowledged the decompression of the fluid and the frictional 
heating that occurs in the formation and developed a finite element numerical well model 
named MOTHER, a 2D radial symmetric single well model.  Only a single phase is 
flowing and its properties are considered constant for the liquids and are calculated by 
correlation for gases.  A standard analytical solution from well testing is used for the 
pressure distribution in reservoir.  The model was tested by matching its results with 
measurements from dynamic gauges (production logs).  The good fits in both pressure 
and downhole flow rate are obtained.  Nevertheless, MOTHER has not yet quantitatively 
fitted a temperature profile because it underestimates heating in case of an oil producing 
well.  Maubeuge et al. suggested the possibilities of further development by taking into 
account formation damage in the neighborhood of the well.  The energy equation used in 
MOTHER is  
 

t
pT

dt
dTcTKpTpTC totalpTtp ∂

∂
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rrrrrrrr uuu  (3.8) 

 
Equation 3.8 will later be compared with the energy equation presented in Section 3.2.2 
of this research. 
 
Distributed Temperature Measurement. Distributed temperature monitoring of 
downhole conditions in horizontal wells is an advanced measurement technology that  
can be used to obtain reservoir temperature information.  Fiber sensors now provide 
reliable temperature measurements with resolution less than 0.1 .  They can provide 
information at distance of up to 10 km, with a spatial resolution of 1 m, and with a 
measurement time of typically a few minutes (Sensonet Ltd, 2004).   

C0
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Fiber sensors have proven useful in many applications.  For example, in an Oman 
oilfield fiber sensors were installed in several long horizontal open-hole completion 
intervals of production and injection wells.  The results show that it is cost effective and 
less risky than conventional production logging in horizontal wells.  Analysis of the data 
has helped the understanding of flow in a horizontal producer and injector (Brown et al., 
2003).  Another application of this technology is to install sensors together with 
downhole mechanical instrumentation such as valves and inflow control devices.  
Distributed temperature devices at meter long intervals in the wellbore provide real-time 
data that help identify water flowing into a particular section.   Then, an action to shut in 
the zone is possible with remotely operated  hydraulic interval control values (Tolan et al., 
2001). 
 
3.2 Derivation of Governing Equations for Reservoir Flow 

 
The fundamental equations describing fluid flow in a reservoir are mass balance, 

Darcy’s law, and energy balance.  These equations are very general.  They are discussed 
and formulated to fit the scope of this study. 

 
3.2.1 Mass Balance 

 
A starting point for studying fluid flow is the mass balance.  It is the conservation 

of mass per unit area (perpendicular to the velocity vector) per unit time.  By 
understanding the mechanisms of mass flow, we can infer velocity and pressure 
distribution of fluid in space.  The velocity and pressure distribution will then be used in 
the energy equation. 

Lake (1989) formulated a mass balance that can apply directly to fluid flow in 
permeable media.  It is simplified here for steady state flow condition. 

  
( ) 0=⋅∇ ur

r
ρ  (3.9) 

where the auxiliary relation )( gku rr
rr

r ρ
µ

+∇⋅−= p  is derived from Darcy’s law. 

3.2.2  Energy Balance 
 
The law of conservation of energy is an extension of the first law of 

thermodynamics, which involves the difference in internal energy of two equilibrium 
states of a closed system because of the heat added to the system and the work done on 
the system. 

 
U∆  = Q+W (3.10) 

 
where  is the differential of the internal energy, U, and Q and W are the heat 
absorbed by the system, and the work done on the system.  

U∆
U∆  is the differential of the 

state variable U.  Q and W are not functions of state. 
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Fig. 3.2  Isenthalpic flow diagram 
  

 
The Joule-Thomson experiment can be explained by this law.  Assume that the 

throttle valve above is insulated so that no heat is transferred during the process.  And 
imagine this as a closed system with the same amount of gas entering and leaving the 
valve but both systems have different volumes (just like free expansion).  The gas 
initially has a pressure P1, temperature T1 and volume V1.  After it passes through the 
valve, its pressure is P2 and the volume is V2.  If the kinetic and potential energy change 
of the gas can be neglected, then the first law of this system can be written as U2-
U1=Q+W .  By neglecting any shaft work, and the system is insulated (Q=0).  W=P1V1-
P2V2 so that the above equation becomes U2+P2V2 = U1+P1V1  or  H2=H1. 
Thus, the Joule-Thomson experiment is an isenthalpic process.  The expression for Joule-
Thomson coefficient is shown in Eq. 3.6. 

The general form of the conservation of energies is derived rigorously in Bird et 
al. (2002) and presented here as 
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The terms from left to right are (1)rate of increase of energy (2)rate of energy by 

convection transport (3)energy by heat conduction (4) work done on fluid  by pressure 
forces (5) work done on fluid by viscous forces (6) work done on fluid by gravity forces. 
To express the energy equation in terms of measurable quantities (P,T, etc.), we can re-
derive the equation for permeable media starting from the fact that the change in 
combined energy flux vector is equal to zero for steady-state flow.   
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Substituting the combined energy flux vector, er , derived in Bird et al. (2002) which is  
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Neglecting the kinetic energy term ⎟
⎠
⎞
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2
1 vrρ and knowing from mass balance that vrρ   is 

constant, the equation becomes ( ) 0ˆ =⎟
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be expanded using a thermodynamic relationship 
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The  is frictional energy that converted from mechanical work (sometimes called the 
viscous dissipation heating).  Using the fact that 

vτ rrr
⋅

0=== yzxzxy τττ , the work done by the 

frictional forces is given by ( ) ( ) ( ) ( .zzyyxx v
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  Introducing the 

constitutive equation ( ),pzyx === τττ  the equation is simplified to ( ) ( ).vvτ rrrrrr
p⋅∇=⋅⋅∇   

The work done by the frictional forces is commonly represented by ( ),vr
r

p⋅∇  see Ingham 
et al. (1990) and Al-Hadhrami et al. (2002). 

In permeable media, the velocity in x-direction, vr  is replaced by superficial 

velocity, 
φ
ur .   And, the heat conduction term, T∇

rrr
K , is converted to effective heat 

conduction which combines both fluid and matrix.  Then, the equation becomes 
 

     ( ) 0=∇⋅∇−⋅∇+∇⋅−∇⋅+∇⋅ TppTpTC Ttp
rrrrrrrrrrrr Kuuuu βρ    (3.15) 

 
The first three terms combined describes the Joule-Thomson effect which 

includes convection transport, work done on fluid by pressure forces (heating), and 
thermal expansion (cooling).  The fourth term stands for the frictional heating. The last 
term is effective heat conduction which combines both fluid and matrix conduction.  

If we were to use the energy equation (Eq. 3.13) to describe the Joule-Thomson 
experiment, which is a steady state isenthalpic process with no heat conduction and 
frictional heating terms, we would arrive at  0=∇⋅−∇⋅+∇⋅ pTpTC p

rrrrrr uuu βρ  
In one dimensional flow (x-direction), the equation become 
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0=−+
dx
dpTu

dx
dpu

dx
dTuC xxxp βρ       ,which can be rearranged as  p
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The term 
pC

T
ρ

β 1−    is the Joule-Thomson coefficient, KJT.  This is a well-known 

relationship that describes the change in temperature of a fluid upon expansion in a 
steady state flow with neither heat nor work done on the system.  An example of this kind 
of process is a flow through an expansion valve.  
 
3.3 A Temperature Model for Slightly Compressible Fluid 

 
Consider a horizontal well fully penetrated through a rectangular homogeneous 

reservoir with no-flow boundaries at the top and bottom of the reservoir as shown in the 
figure below.  Flow in the reservoir is in the y-direction and the z-direction, the x- 
direction is the horizontal wellbore direction. 

 

 
Fig. 3.3  Flow region in rectangular reservoir 

 
For steady state-flow, there are two flow regions (radial and linear) if the transitional 
flow region between linear and radial flow is neglected.  Proper boundary conditions for 
this model are 
 

1)  
2
YyatTT o ==  

 
2)   zeroapproachesrasfiniteisT
 

Y Y/2

To

h 

Y/2 
L
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3)  
2/2/ hyhr y

T
r
T

→→
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂  

 
4)   2/2/ hyhr TT →→ =
 
With these boundary conditions, mass and energy balances discussed earlier can be 
solved analytically, and the temperature of the fluid entering the horizontal wellbore is 
obtained. (See Appendix A for a detailed derivation) 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

TtTt

p

Tt

p

KkK
C

K
C

L
q

w
hatlinearw h

r
TT

βµρρ

π

ββ

4
4

2 2/
22  (3.16) 

 
 
Where 
 

β
22/

2
2/

1
2

21 ++= hmhm
hatlinear

ececT   (3.17) 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

TtTt

p

Tt

p

kKK
C

K
C

hL
qm βµρρ 4

4

2

1  (3.18) 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

TtTt

p

Tt

p

kKK
C

K
C

hL
qm βµρρ 4

4

2

2  (3.19) 

 

2/2/
2

2/2/
1

2/
2

2/

1 1221

22 )/2()/2()/2(
YmhmYmhm

hm
o

Ym
er

emem
emTeTmh

c ++ −
−−−

=
ββ

 (3.20) 

 

2/2/
2

2/2/
1

2/2/
1

2 1221

11 )/2()/2()/2(
YmhmYmhm

Ym
er

hm
o

emem
eTmhemT

c ++ −
−−−

=
ββ

 (3.21) 

 
 
To visualize the result, we can insert some typical parameters and plot the temperature 
distribution in the reservoir as below. 
 
q=   500 bbl/day,  1,000   bbl/day, 1,500 bbl/day, and 2,000 bbl/day 
Y=   8,100   feet 
rw=  0.5      feet 
h=  100      feet 
L=  1,000   feet 
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k=   200     md 
Cp=  0.52802  BTU/(lbm ) Fo

Viscosity =  1.7  cp 
Density=  50  lbm/ft3

KTt=  2     BTU/(hr ft ) Fo

To=  180   Fo

β =  0.000576  1/  Fo

180

180.5

181

181.5

182

182.5
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184.5

0 500 1000 1500 2000 2500 3000 3500 4000

Distance in Flow Direction (feet)

Te
m
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 ( 
F)

Rate 500 bbl/day
Rate 1,000 bbl/day
Rate 1,500 bbl/day
Rate 2,000 bbl/day

 
Fig. 3.4  Temperature of fluid flowing into a horizontal wellbore 

 
As shown in the model (Fig. 3.4), the temperature of fluid entering a well (Tw) depends 
on flow rate, drawdown pressure, type of fluid, and reservoir properties.  By varying 
these parameters, we would be able to match the measured temperature in a similar 
manner as history matching.  That means this analytical model must be coupled with a 
wellbore model together with multisegment technique to obtain temperature distribution 
along a horizontal wellbore. 
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4 Well Model 
 
 
4.1 Physical Problem Description of Producing Wellbore 
 

In development of the forward model, our objective is that given inflow rate 
information such as productivity index and reservoir pressure or inflow rate itself, to 
predict the temperature and pressure profile. Of course pressure profile will be used to 
know flow rate and temperature distribution. Therefore, we need to estimate the three 
unknowns that are flow rate, pressure and temperature along the wellbore with or without 
inflow. The physical system is shown in Fig. 4.1.  
 
 
 

 
Fig. 4.1 Physical system – Wellbore model 

 
 
4.2 Derivation of Governing Equations 
 

Since we have three unknowns, three equations will be necessary which should be 
mass, momentum and energy balance equation. In this problem, there are two different 
velocities. The main stream is flowing through the wellbore and the other is the inflow 
from the environment (reservoir). Derivation of the governing equations has been done in 
one dimension following a macroscopic method. 

 13



 
• Properties are considered to be averaged in cross section. 
• Averaged product can be product of averaged component e.g.  vv ρρ = . 
• Area averaged velocity is defined in microscopic coordinate as 

 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

Rrv

v

v
v
v

I

r

x

at
0

0

otherwise
0
0

θ

vr  (4.1) 

 
• Eddy flow is neglected and axial velocity is averaged in entire cross sectional area 

except wall boundary. At the wall boundary velocity is considered only in the 
radial direction.  

 
4.2.1  Mass Balance 
 
Total mass in at Rr = is 
 
( ) xRv

Rr ∆πρ 2  
 
Total mass in at xx = is 
 
( ) 2Rv x πρ  
 
Total mass in at is xxx ∆+=
 
( ) 2Rv xx πρ ∆+  
 
Accumulated mass over  in CV can be expressed t∆
 
( ) xR

ttttt
∆−

∆+==
2πρρ  

 
Equating these terms 
 
( ) ( )( ) tRvRvxRvxR xxxRrttttt ∆−+∆=∆− ∆+∆+==

222 2 πρπρπρπρρ  (4.2) 
or 
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( )
( ) Rr

xxxttttt v
Rx

vv
t

ρ
ρρρρ 2

+
∆

−
=

∆

− ∆+∆+==  (4.3) 

 
Taking  yields 0,0 →∆→∆ tx
 

( ) ( ) Rr
x v

Rx
v

t
ρ

ρρ 2
+

∂
∂

−=
∂
∂  (4.4) 

 
From the assumption of velocity (Eq. 4.1), it becomes 
 

( )
Iv

Rx
v

t
ρρρ 2

+
∂

∂
−=

∂
∂  (4.5) 

 
4.2.2  Momentum Balance 
 

We only need to consider momentum balance in the axial direction not in the 
radial direction.  
Momentum on the surface at Rr = is 
 
( ) xRvv Rrxxr ∆−⋅ πτρ 2  
 
Now we assume inflow is perpendicular to the axial direction (or from no slip 0=

Rxv  
assumption). Then, it becomes 
 
( ) ( ) ( ) xRxRxRvv RrxRrxRrxxr ∆−=∆−=∆−⋅ πτπτπτρ 2202  (4.6) 
 
Momentum at xx = is 
 
( ) 2Rpvv xxxxx πτρ −+⋅  
 
Momentum on is xxx ∆+=
 
( ) 2Rpvv xxxxxx πτρ ∆+−+⋅  
 
Gravity force is given by 
 

xRg ∆2sinθπρ  
 
Accumulated momentum over  in CV t∆
 
( ) ( )( ) xRvv tttxttx ∆− ∆+==

2πρρ  
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Applying macroscopic condition to stress tensors derived by Navier and Stokes, 
 
The stress tensor in the xx −  direction is 
 

( )
x

v
x

v
x

v
x

v
r

rv
rx

v xxxxrx
xx ∂

∂
=⎥⎦

⎤
⎢⎣

⎡
∂

∂
+−

∂
∂

=⎥⎦

⎤
⎢⎣

⎡
∂

∂
+

∂
∂

−
∂

∂
= µµµµµτ

3
40

3
221

3
22  (4.7) 

 
Stress tensor in rx −  direction is defined as 
 

( )
2

2
x

wRrx
fvρ

ττ ==  (4.8) 

 
Stress tensor in rr −  direction is intuitively 
 

0=rrτ  
 
Equating momentum yields 
 

( ) ( )( )
( ) ( ) ( ){ }( ) tRgpvvpvvxR

xRvv

xxxxxxxxxxxRrx

ttttt xx

∆−−+⋅−−+⋅+∆−=

∆−

∆+

∆+==

2

2

sin2 πθρτρτρπτ

πρρ
 

 (4.9) 
or 
 
( ) ( )( )

( ) ( )
θρ

τρτρ
τ

ρρ

sin2 g
x

pvvpvv
R

t

vv

xxxxxxxxxxx
w

ttttt xx

−
∆

−+⋅−−+⋅
+−

=
∆

−

∆+

∆+==

 (4.10) 

 
Taking , we have 0,0 →∆→∆ tx
 

( ) ( )
θρ

τρ
τ

ρ
sin2 g

x
pvv

Rt
v xxxx

w
x −

∂
−+⋅∂

−−=
∂

∂
 (4.11) 

 
We have averaged the velocity in cross sectional area, the image of the averaged 
velocities are shown in Fig. 4.2. The momentum correction factor α  for One-D area 
averaged velocity is suggested by White that is 
 

∫ ∫ ⎟
⎠

⎞
⎜
⎝

⎛=
π

θ
π

α
2

0 02
1 ddr

v
v

R

R x       
037.1~013.1   flowlaminar For 

3333.1   flowlaminar For 
=
=

α
α  (4.12) 
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Fig. 4.2 Averaged velocities for laminar flow and turbulent flow 

 
Taking into account this correction factor and averaged velocity, the momentum balance 
equation becomes 
 

( ) ( ) θρµαρρρ sin
3
422

g
x
v

xx
pv

R
fv

t
v

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂

+∂
−−=

∂
∂  (4.13) 

 
4.2.3  Energy Balance 
 
The combined energy flux vector defined by Bird et al. is 
 

[ ]

[ ] qvτv

qvπve

vvvvv

rrvvv

+⋅+⎟
⎠
⎞

⎜
⎝
⎛ +=

+⋅+⎟
⎠
⎞

⎜
⎝
⎛ +=

Hv

Uv

ˆ
2
1

ˆ
2
1

2

2

ρρ

ρρ
 (4.14) 

 
Where 
 

τδπ
vvv += p  

 
Total energy in at Rr =  
 

xRe
Rr ∆π2  

 
Total energy in at xx =  
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2Re
xx π  

 
Total energy out at  xxx ∆+=
 

2Re
xxx π

∆+
 

 
Work done by gravity 
 

2sin Rvg θπρ  
 
Let total accumulative energy be 
 

tEUv =⎟
⎠
⎞

⎜
⎝
⎛ + ˆ

2
1 2ρ  

 
Total energy in the control volume (CV) is  
 

xRExRUv t ∆=∆⎟
⎠
⎞

⎜
⎝
⎛ + 222 ˆ

2
1 ππρ  

 
Then accumulated energy over  in CV becomes t∆
 
( ) xREE

ttttt ∆−
∆+

2π  
 
The energy balance equation becomes 
 
( )

( ) txRvgReRexRe

xREE

xxxxxRr

ttttt

∆∆+−+∆=

∆−

∆+

∆+
222

2

sin2 θπρπππ

π
 (4.15) 

or 
 
 
( )

θρ sin2 vg
x

ee

R
e

t

EE xxxxx
Rr

ttttt
+

∆

−
+=

∆

− ∆+∆+  (4.16) 

 
Taking  0,0 →∆→∆ tx
 

θρ sin2 vg
x

e
R

e
t

E x
Rr

t +
∂

∂
−=

∂
∂

 (4.17) 

 
Now, we have 
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( ) ( )

( )[ ] ( ) 0

ˆ
2
1 2

−⋅−−+=

⋅−⋅−+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=

RxrxRrRrt

RrrrRxrxRr
R

rRr

vqvpE

vvqvHve

τ

ττρρ
 (4.18) 

From the assumption, 
 
( ) 0=⋅= IwRxrx vv ττ  
 
Noting that IR

AA =  
 

( )( ) IIIItRr qvpEe ++=  (4.19) 
 
Also 
 

( ) xrxrx
x

xt

xrxrxxxxx

qvv
x

v
vpE

qvvvHve

+⋅−
∂

∂
−+=

+⋅−⋅−⎟
⎠
⎞

⎜
⎝
⎛ +=

τµ

ττρ

3
4

ˆ
2
1 2

 (4.20) 

 
xrτ  is only defined at the wall ( Rr = ) though,  is zero other than the wall. Also at the 

wall, radial velocity ( )  is perpendicular to 
rv

IRr vv = wτ  direction. Therefore 0=⋅ rxr vτ . 
Applying averaged velocity, we have 
 

( ) xtx qv
x
vvpEe +

∂
∂

−+= µ
3
4  (4.21) 

 
Substituting Eqs. 4.19 and 4.21 into Eq. 4.17 gives 
 

( )( )[ ] θρµ sin2
3
4 vgqvpE

R
qv

x
vpE

xt
E

IIIItxt
t ++++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−+
∂
∂

−=
∂

∂
 (4.22) 

 
To estimate  tE
 

pdpTdTCHv

pHvppUvUvE

T

T

p

p
p

t

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫ ∫ ⎥

⎦

⎤
⎢
⎣

⎡
−+++=

−⎟
⎠
⎞

⎜
⎝
⎛ +=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=⎟

⎠
⎞

⎜
⎝
⎛ +=

0 0

1
2
1

ˆ
2
1ˆ

2
1ˆ

2
1

02

222

ρ
β

ρ
ρ

ρ
ρ

ρρ

 (4.23) 

 
Considering small change from 0H  
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( ) ( )( ) pppTTTCHvE pt −−−+−+⎟
⎠
⎞

⎜
⎝
⎛ += 0002 1

2
1 βρρ  (4.24a)  

or 

( ) ( )( )0002 1
2
1 ppTTTCHvpE pt −−+−+⎟

⎠
⎞

⎜
⎝
⎛ +=+ βρρ  (4.24b) 

 
Where  will be ( )ItE
 

( ) ( ) ( )( ) IIIpIIt pppTTTCHvE −−−+−+⎟
⎠
⎞

⎜
⎝
⎛ += 0002 1

2
1 βρρ  (4.25a) 

or 

( ) ( ) ( )( 0002 1
2
1 ppTTTCHvpE IIpIIIt −−+−+⎟

⎠
⎞

⎜
⎝
⎛ +=+ βρρ ) (4.25b) 

 
We can also obtain same results by integrating Two-D cylindrical equations for pipe flow. 
It is shown in Appendix C. 
 
4.2.4  Steady State Equations 
 

The profile in the wellbore is determined by the environmental (reservoir) 
condition. We have derived unsteady state equations as a general form though it takes 
only a few seconds to minutes to get a steady state condition in the wellbore. Considering 
the time scale in reservoir, we can say the wellbore flow is always in steady state. 
 
For steady state, the mass balance equation becomes 
 

( ) ( II vRdx
vd ρ )ρ 2

=  (4.26) 

 
The momentum balance equation is 
 

( ) θρραρ sin
22

g
dx

vd
R

fv
dx
dp

−−−=  (4.27) 

 
After substitution of mass balance, we obtain 
 

θρρραρ sin22

g
dx
dvvvv

RR
fv

dx
dp

II −⎟
⎠
⎞

⎜
⎝
⎛ +−−=  (4.28) 

 
The energy balance becomes 
 

( )( )[ ] θρµ sin2
3
40 vgqvpE

R
qv

x
vpE

dx
d

IIIItxt ++++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−+−=  (4.29) 
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Substituting Eqs. 4.24 and 4.25 yields 
 

θρρρµρρ sinˆ
2
12

3
4ˆ

2
10 22 vgqvHv

R
qv

x
vHv

dx
d

IIIIIIx −⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−+−=  

 (4.30) 
 
Where 
 

( )
⎟
⎠
⎞

⎜
⎝
⎛+=⎟

⎠
⎞

⎜
⎝
⎛ 223

2
1

2
1

2
1 v

dx
dv

dx
vdvv

dx
d ρρρ  (4.31) 

 
From mass balance (Eq. 4.26) 
 

( )
dx
dvvvv

Rdx
dvvv

R
vv

dx
dv

dx
vdv IIII

222222 12
2
1

2
1

2
1 ρρρρρρ

+=+=⎟
⎠
⎞

⎜
⎝
⎛+  (4.32) 

 
Similarly, 
 

( ) ( )
II vR

H
dx
Hdv

dx
vdH

dx
Hdv

dx
vHd ρρρρρ 2ˆˆˆˆˆ

+=+=  (4.33) 

 
Substitution gives 
 

( ) ( )

0sin2
3
4

ˆˆ2ˆ222

=−+−+

−+−−−

θρµ

ρρρρ

vgq
Rdx

dq
dx
dvv

HHv
Rdx

Hdv
dx
dvvvv

R
v

I
x

IIII
II

 (4.34) 

 
Let’s think about the boundary pressure, , shown on the figure below. Ip
 

Ip  

p  

 
 

Fig. 4.3 Boundary pressure 
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The boundary conditions are given at just outside of the wellbore, inflow is driven by the 
difference between wellbore pressure and reservoir pressure. So the pressure at the pipe 
surface can be assumed to be the same as the wellbore pressure. Then, we have  
 

ρρ =I  (4.35) 
 
The enthalpy difference is 
 

( ) ( )( ) ( TTCppTTTCHH IpIIIpI −=−−+−=− β
ρ

11ˆˆ ) (4.36) 

 
Also, a small enthalpy difference is given as 
 

( )dpTdTCHd Ip β
ρ

−+= 11ˆ  (4.37) 

 
Finally, the energy balance equation is 
 

( ) ( )
( ) 0sin22

3
41 222

=−+−+

−+−
∂
∂

+−−−−

θρρ

ρ
µρβρ

vgq
R

TTCv
R

vv
R
v

dx
dq

x
v

dx
dvv

dx
dpTv

dx
dTvC

IIpI

I
Ix

p
 (4.38) 

 
Viscous shear stress between fluids and heat flux between fluids are too small to take into 
account. Then we have 
 

( ) ( )
( ) 0sin22

1 222

=−+−+

−+−−−−

θρρ

ρ
ρβρ

vgq
R

TTCv
R

vv
R
v

dx
dvv

dx
dpTv

dx
dTvC

IIpI

I
I

p
 (4.39) 

 
Solving for temperature gradient, 
 

( ) ( )
( ) θ

ρ

ρ
β

sin122

11 22

g
C

q
vCR

TT
v

v
R

vv
v

v
RCdx

dv
C
v

dx
dp

C
T

dx
dT

P
I

P
I

I

I
I

PPP

−+−+

−+−
−

−=
 (4.40) 

 
Joule-Thomson coefficient is defined as 
 

JT
P

K
C

T
=

−
ρ

β 1  (4.41) 
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Conductive heat flux from the surroundings can be estimated using the heat transfer 
coefficient, U , of the completion, 
 

( TTUq )II −=  (4.42) 
 

And  

PvCR
U

ρ
2

1  is called relaxation distance ( )A= . 

 
Substituting into Eq. 4.40 yields 
 

( ) ( )TT
Av

v
R

gvv
v

v
Rdx

dvv
dx
dpCK

Cdx
dT

I
I

I
I

PJT
p

−⎟
⎠

⎞
⎜
⎝

⎛ ++⎟
⎠

⎞
⎜
⎝

⎛ −−+−=
12sin11 22 θ  

 (4.43) 
 

Now we can infer what causes temperature increase or decrease. The first term 
on the right-hand side of Eq. 4.43 is the Joule-Thomson effect. The second and third 
terms are the temperature decrease due to kinetic energy changes. The fourth term 
represents the work done by gravity force.  The convective heat transfer is expressed by 
the fifth term and the conductive by sixth. 
If there’s no inflow to the system, the equation would be 
 

( TT
A

g
dx
dvv

dx
dpCK

Cdx
dT

IPJT
P

−+⎟
⎠
⎞

⎜
⎝
⎛ −−=

1sin1 θ )  (4.44) 

 
This equation is same equation as the one derived by Shoham for non-producing 
wellbore temperature prediction. 
 
4.3 Model Development 
 

In the last section, we derived three equations to be solved for three unknowns. 
The 3 unknowns are ; and the 3 equations are Tpv ,,
 

( ) ( Iv
Rdx

vd ρ )ρ 2
=  (4.26) 

 

θρρραρ sin22
g

dx
dvvvv

RR
fv

dx
dp

I −⎟
⎠
⎞

⎜
⎝
⎛ +−−=  (4.28) 

 

( ) ( TT
Av

v
R

gvv
v
v

Rdx
dvv

dx
dpCK

Cdx
dT

I
I

I
I

PJT
P

−⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −−+−=

12sin11 22 θ )  (4.43) 
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For a real fluid, thermodynamic properties are dependent on pressure and temperature 
such as  
 

( Tp, )ρρ =  (4.45) 
 

( Tp, )µµ =  (4.46) 
 

( TpCC pp ,= )

)

 (4.47) 
 

( Tp,ββ =  (4.48) 
 
And we have a rate dependent property which is friction factor 
 

( )ε,, Re,Re wNNff =  (4.49) 
 
To solve this problem, we consider the following numerical method. Then to validate 
numerical model we develop an analytical solution with some simplifications. 
 
4.3.1 Iterative Numerical Method 
 

Numerically, we divide the wellbore into cells and consider  as average 
values in the cells as shown in below figure. 

Tpv ,,

i-1 i i+1 

  111 ,, −−− iii Tvp  
111 ,, +++ iii Tvp  iii Tvp ,,

 
Fig. 4.4 Cell image 

 
The procedure is as follows: 
 
1. Start with 3 known variables iii Tvp ,,  
2. Assume  1+iT
3. Assume , calculate all properties with assumed temperature and pressure. 1+ip
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4. Calculate  from Mass balance using forward finite difference:  1+iv
 

( ) ( )i
i

i
iI

i

i
i vv

R
xv

11
1

2

++
+ +

∆
=

ρ
ρ

ρ
ρ

 (4.50) 

 
For estimation of , we suppose (productivity index) and  (reservoir pressure) to be Iv J Rp
known, then inflow velocity is calculated as 

 

( ) ( )
xR
ppJ

v iRi
iI ∆

−
=

π2
 (4.51) 

 
Then, the velocity is estimated by 

 
( )

1

1
1

1
21

2

+

−
−

+
+ +

−
=

i

i
i

i

iiRi
i v

R
ppJ

v
ρ
ρ

ρ
ρ

π
 (4.52) 

 
5. Calculate  from momentum balance 1+ip
 

( ) ii
i

iiiiIi
iiiii g
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vv
vvv

RR
fv

x
pp

θρρρα
ρ

sin2 112
1 −⎟

⎟
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x
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fv

xp i +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

−
+−−∆= +

+ θρρρα
ρ

sin2 1
2

1  (4.53) 

 
Friction factor and momentum correction factor are rate dependent. Therefore, if   
 

( ) 2100
2

Re <=
i

ii
i

Rv
N

µ
ρ

 (Laminar flow), then 

 
3333.1=α  

 
riction factor with inflow is calculated by Ouyang’s correlation which is  F

 
( ) ( )( )6142.0

Re,0430.01
iwioi Nff +=   (4.54) 

 
here is the friction factor without inflow, and is the wall Reynolds number. w  0f wNRe,

They can be computed as 
 

( )
i

iI
iw

Rv
N

µ
ρ2

Re, =  (4.55) 
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( ) ( )i
i N

f
Re

0
16

=  (4.56) 

 

( ) 2100
2

Re >=
i

ii
i

Rv
N

µ
ρ

In case if   (turbulent flow), then,  

 
013.1=α  

 
( ) ( )( )3978.0

Re,0153.01
iwioi Nff −=  (4.57) 

 
or turbulent flow, friction factor is calculated by Chen’s Equation F
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ii
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hen, compare the calculated pressure and guessed pressure. Until they match, procedure 

ergy balance 

T
3, 4 and 5 are repeated. 
6. Calculate 1+iT  from en
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ii
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ii

TT
Av

v
R

gvv
v

v
Rx

vv
v

x
pp

CK
C

xTT

12

sin11 2211
1 θ

 (4.59) 

gain, if temperature is not the same as the assumed one, we need to go back to he 

wing flow chart (Fig. 4.5). 

.3.2 Validation of Prediction Model 

Even if we wrote numerical code and the method looked perfect mathematically, 
that res

consider incompressible flow, no pipe inclination 
(horizo

  
A  t
process 2 until convergence is achieved. 
The whole procedure is shown in the follo
 
4
 

ult can never be assured unless compared with an analytical solution. Here we 
solve the equations for a simplified case with some assumptions in order to have a means 
to check the numerical model results. 

To simplify the problem, we 
ntal) and inflow is uniform along the wellbore. Also, we assume thermal 

properties such as viscosity are constant, which is appropriate for most liquids.  
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Fig. 4.5 Program flow chart 
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Velocity Profile 
 
Mass balance is given as 
 

( ) ( Iv
Rdx

vd ρ )ρ 2
=  (4.60) 

 
Since fluid is incompressible, 
 

Iv
Rdx

dv 2
=  (4.61) 

 
Integrating yields 
 

∫∫ = dxv
R

dv I
2  

 
Applying the boundary condition, at 0,0 == vx , the solution of velocity can be obtained. 
 

xv
R

v I
2

=  (4.62) 

 
Pressure Profile 
 
Substituting Eqs. 4.61 and 4.62 into the momentum balance equation (Eq. 4.29), we have 
 

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛−= xx

R
fv

Rdx
dp

I αρ 22 2
2

 (4.63) 

 
For an inflow rate of 50 [bbl/d/ft] along the producing well, the flow rate profile will be 
as shown in Fig. 4.6. Friction factor values corresponding to this flow profile (viscosity 
1.7 [cp], density 50 [lb/ft3]) are shown in Fig. 4.7.  For most of the well, friction factor is 
constant, so we assume it constant for the entire well. Also another rate dependent 
property that is momentum correction α  is almost 1 for both laminar and turbulent case. 
Therefore, letting 1=α  and integrating Eq. 4.63, gives 
 

∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛−= dxxx

R
fv

R
dp I 22 2

2

ρ  (4.64) 

 
At the toe, , pressure is , then we obtain the solution to the pressure profile as 0=x 0pp =
 

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛−= 23

2

0 3
2 xx

R
fv

R
pp Iρ  (4.65) 
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Fig. 4.6  Flow rate profile with uniform inflow 
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Fig. 4.7 Generated friction factor value with given flow rate profile 
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Temperature Profile 
 
With the above simplifications, the energy balance equation becomes 
 

( ) ( TT
vCR
U

v
v

R
vv

v
v

RCdx
dv

C
v

dx
dpK

dx
dT

I
P

I
I

I

PP
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⎠

⎞
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⎝

⎛
++−+−=

ρ
221 22 )  (4.66) 

 
We have assumed thermal properties are constant including the Joule-Thomson 
coefficient η . After substitution of Eqs. 4.61, 4.62 and 4.63, we obtain a 1st order linear 
differential equation of the form 
 

( ) ( )xqTxp
dx
dT

=+  (4.67) 

 
Where 
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mxp 1
1=  (4.68) 
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mxmxmxq 1
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 (4.72) 
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The solution is 
 

⎥⎦
⎤

⎢⎣
⎡ +∫∫= ∫

−
CqdxeeT

pdxpdx
 (4.74)  

 
Integrations in the equations are 
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1

1
1

m
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x
mdxxp
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Putting those into the equation yields 
 

1
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At , 0=x T  has a finite value, therefore 0=C . Let  ( ) ITT =0 , then, we have 
 

IT
m
m

C
4

1=′  (4.78) 

 
Finally, the solution is  
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+
= 1
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Comparisons with Numerical Solutions 
 

As mentioned earlier, the validity of the prediction model has to be tested. The 
physical values used are shown in Table 4.1. The validation of velocity, pressure and 
temperature is shown by Figs. 4.8 – 4.10, which compared the numerical and analytical 
results for the conditions of Table 4.1. The comparison is very good and within the 
expected error of the numerical solution. 
  

 
 

Table 4.1 Sample values of properties 
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Fig. 4.8 Velocity profile comparison with prediction model 
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Fig. 4.9 Pressure profile comparison with prediction model 
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Fig. 4.10 Temperature profile comparison with prediction model 

 
In analytical calculation, friction factors were generated after obtaining velocity 

profile. Then mean value was used for the solution. That averaged friction factor was 
adapted to numerical calculation. 

Basically, in finite-difference method, the accuracy of the model will be the order 
of the grid size . In addition, this model uses an iterative method in each step. 
However, from above observations, we can conclude the developed prediction model 
yields accurate profiles of temperature and pressure. 

x∆

 
4.4 Results and Discussion 
 
4.4.1 Example Calculation 
 

We have developed the prediction model and the accuracy of the model is 
confirmed by an analytical solution for a simplified case. Now we can predict the profiles 
with realistic, more complicated cases such as compressible fluid, variable fluid 
properties, inflow as a function of wellbore pressure etc. 

We show an example case of a compressible fluid. Inflow will be determined by 
productivity index and pressure difference between wellbore and reservoir. The example 
properties are shown in Table 4.2. The results are shown in the following figures. 
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Table 4.2 Properties in example calculation 
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Fig. 4.11 Predicted flow rate profile 
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Fig. 4.12 Predicted pressure profile 
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Fig. 4.13 Predicted temperature profile 
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The temperature increase in this case is smaller than the incompressible case. This 
is caused by the smaller pressure drop. With smaller pressure drop, Joule-Thomson effect 
is smaller. As expected, in both cases, the temperature increases as flow rate increases.  

The overall temperature increase is out about 0.3 ºF. This amount is very small 
and would make it difficult to determine the flow rate only from the temperature increase. 
However we can get more information from the shape of the temperature curve and 
pressure profile. When we move on to the inverse problem, we should know more about 
sensitivity. We will through more examples, changing various data. 
 
4.4.2 Comparisons of Several Cases 
 

From the previous example, it’s seen that a large pressure drop causes 
temperature increase due to Joule-Thomson effect. For the next case, we assume that the 
toe pressure is 200 psi lower than before. As a comparison, the previous data are also 
shown in the figures. 
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Fig. 4.14 Inflow rate profile comparison 
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Fig. 4.15 Flow rate profile comparison 
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Fig. 4.16 Pressure profile comparison 
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Fig. 4.17 Temperature profile comparison 

 
This comparison shows the heel pressure difference between the two cases is 647 [psi]. 
And as can be seen, the temperature profile is significantly different. The temperature 
difference between the toe and the heel is 1.37 [F]. 

Those experiments are performed in uniform reservoir temperature because 
geothermal temperature is not considered to be different at the same depth. However, it is 
possible that if there is higher formation damage or lower permeability in specific regions, 
outside temperature distribution will be different even for the same depth. Hence, inflow 
from lower permeability zone is likely to have higher temperature than the other region 
because of frictional heating in the porous media. We next consider the situation shown 
in Fig. 4.18. 

In this situation, formation temperature is distributed non-uniformly. In the 
middle there is hotter region due to the lower permeability with a 200 ft length. We 
assume the productivity of lower permeability region is 50% of the other zone. Inflow, 
flow rate, pressure and temperature profiles are shown in followings. 
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Fig. 4.19 Inflow profile with damage zone 
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Fig. 4.20 Flow rate profile with damage zone 
 
 

5680

5700

5720

5740

5760

5780

5800

5820

0 100 200 300 400 500 600 700 800 900 1000

Distance from the toe [ft]

Pr
es

su
re

 [p
si

]

 
 

Fig. 4.21 Pressure profile with damage zone 
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Fig 4.22 Temperature profile with hot region 
 

 
In pressure profile, we barely find the discontinuity which is cased by the damage 

zone. This tells that 200 [ft] length low productivity zone little affects pressure drop. On 
the other hand, temperature is increasing with flow rate. Before hitting the hotter zone, a 
slight temperature increase can be observed. At the hotter region, the temperature profile 
becomes discontinuous and higher. An interesting thing is that the wellbore fluid requires 
some distance to reach the same temperature as the environment. Before obtaining same 
temperature, the wellbore fluid encounters normal temperature zone and gets cooler and 
starts heating again. 

As a final example, we will see the case with production intervals, using same 
productivity index but there assuming two distinct production intervals. We set 
productivity as twice as the base case to have close amount of production. The production 
scheme is shown in Fig. 4.23. 
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Fig. 4.23 Production scheme 
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Fig. 4.24 Inflow profile with production intervals 
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Fig. 4.25 Flow rate profile with production intervals 
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Fig. 4.26 Pressure profile with production intervals 
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Fig. 4.27 Temperature profile with production intervals 
 

As expected, temperature change is still small although. The important finding is 
that between production intervals, the profiles have discontinuities. Different intervals 
have different temperature curve. In the pressure profile, that discontinuity is also 
observed.  

 
4. 5 Conclusion of Well Model 
  
 The prediction model has been developed. That model yields flow rate, pressure 
and temperature profile along the producing wellbore with given productivity index of 
reservoir and boundary pressure of the wellbore. The governing equations have been 
derived for compressible fluid, so it can work for gas reservoir also. However, for gas, all 
the fluid properties will highly depend on pressure and temperature such as viscosity. The 
model should retain those functions in next stage. As a conclusion, the prediction model 
presented in this report works very well. That has been certified by comparison with 
analytical solution. Analytical solution is derived by simplifying the situation though, the 
numerical model can work more complicated situation. On the other hand, if we can 
regard the problem as simple one, the analytical solution may be used for it. Using 
analytical solution to express temperature profile will make inverse problem much easier. 
 As can be seen, temperature change in the wellbore is usually very small due to 
small geothermal change. From those results, inverse problem looks difficult only by 
quantity analysis. Even though, we have observed the discontinuities of temperature 
profile and those observations provide us valuable information other than flow rate. Also 
we can see discontinuities in pressure profile. It is necessary to collect sensitivity of any 
condition for more understanding. The relationship between fluid properties, reservoir 
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condition and temperature and pressure profile have to be studied in future. Only by 
quantity of temperature change, inverse must be tough problem. But systematizing those 
parameters will make the interpretation of flow profile possible. 
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5. Model Development for Build Section 
 

The build section problem has two parts. First, we seek a method to calculate the 
temperature and pressure profile of a build section with any arbitrary well trajectory. The 
methods developed must be applicable to the multiphase flow conditions expected in 
most build sections. Second, we analyze the temperature and pressure behavior at 
wellbore junctions where the production streams from individual laterals are commingled. 
 
5.1 Temperature Profile for Single Phase Flow 
 

Ramey23 made an energy balance for the fluid by assuming single-phase flow and 
constant angle through the fluid trajectory wellbore. 

 
Energy Balance for Wellbore Fluid 
 

Temperature difference between the wellbore fluid and the surrounding formation 
results in energy exchange. The model is derived from the total energy-balance equation 
over a control volume of length dz at a distance z from the wellhead shown in Fig. 5.1., 
where the distance coordinate, z, is positive in the downward direction, inclined at an 
angle, θ ,to the horizontal. Assuming steady-state conditions and no work done by or to 
the flowing fluid. The amount of heat enters the element at (z + dz) by convection, while 
conduction from the formation adds Q to the element. In the same way, heat leaves the 
element z by convection, adding potential and kinetic energies to the heat energy of the 
fluid. Thus, 
 
 

w
Q

dz
dv

Jg
v

Jg
g

dz
dH

cc

±=++
θsin  (5.1) 

 
where the enthalpy term in Eq. 5.1 is a function of pressure and temperature and is 
defined as 
 
 

dpCKdTCdH pJTfp −=  (5.2) 
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Fig. 5.1 Control volume 
 
 
 
Substituting Eq. 5.2 into Eq. 5.1, it becomes 
 

⎥
⎦

⎤
⎢
⎣

⎡
−−±+=

dz
dv

Jg
v

Jg
g

w
Q

Cdz
dpK
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dT

ccp
JT

f θsin1  (5.3) 

 
The rate of heat flow at steady state condition from the wellbore fluid to the 

cement/earth interface is defined as, 
 

( )wbftoto TTUrQ −−= π2  (5.4) 
 
assuming resistances offered by the tubing wall, tubing insulation, tubing casing-annulus, 
casing wall, and cement are in series, and, except for the annulus, the only energy 
transport mechanism is conductive heat transfer. 
 

And the radial heat transfer from the cement/earth interface to the surrounding 
earth is 
 

( ) ( eiwb
e TT

tf
k

Q −−≡
π2 ) (5.5) 

 
Combining Eqs. 5.4 and 5.5 yields 
 

θ
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Te 
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Q
L
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dz 
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( eif
p TT

A
wC

Q −−≡ )  (5.6) 

 
Substituting Eq. 5.6 into Eq. 5.3, we have 
 

( )
dz
dpK
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JgC
v
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g

A
TT
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JT
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±=
θsin  (5.7) 

 
Assumptions made in this derivation are compressible fluid, kinetic energy 

change in wellbore is negligible, flowing friction is negligible, the radiation and 
convection coefficients are negligible and can be ignored for calculation of overall heat 
transfer, and because steel has a high thermal conductivity, the thermal resistance of the 
pipe and casing are negligible compared with the thermal resistance of the fluid in the 
casing-tubing annulus. Also, for a single phase liquid flow, the static head loss equals the 
total pressure gradient, since liquid density variation with pressure is usually very small, 
thus 
 

θρ sin⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

cg
g

dz
dp                   (5.8) 
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Combining Eqs. 5.7 and 5.9, the final energy balance equation is 
 

( )
A

TT
dz

dT eiff −
±=  (5.10) 

 
where we assume that the undisturbed formation temperature, Tei, varies linearly with 
depth and can be expressed as 
 

( ) θsinGeibhei gzLTT −−=  (5.11) 
 
Substituting Eq. 5.11 into Eq. 5.10, the energy balance equation becomes 
 

( )[{ θsin1
Geibhf

f gzLTT
Adz

dT
−−−= ]} (5.12) 

 
Eq. 5.12 is a first-order linear differential equation and can be integrated. The resulting 
solution is 
 

( )
A

LzCAgTT Geif
−

++= expsinθ  (5.13) 
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Or, with Eq. 5.11, 
 

( ) ( )
A

LzCAggzLTT GGeibhf
−

++−−= expsinsin θθ  (5.14) 

Q 
L

 
 

Fig. 5.2 Different boundary conditions 
 
 
Boundary Conditions 
 

Fluid entry coming from the formation, shown in Fig. 5.2, has the properties such 
as at the bottom hole (z = L) fluid temperature and geothermal temperature are the same 
at fluid entry from formation (Tf = Teibh) has the following integral factor, 

 
θsinGAgC −=  (5.15) 

 

z 

dz 

Tf 

Flow Direction 
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dz 
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Substitute Eq. 5.15 to 5.14, we have 
 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−−−−= A
A

LzzLgTT Geibhf exp1sinθ  (5.16) 

 
For each pipe segment, as shown in Fig. 5.2., which has a constant angle which is 

different from the segment below it, the fluid temperature at the entrance to the segment 
is equal to the fluid temperature at the exit of the last segment. For this condition, the 
integral factor, C, can be defined as 

 
( ) θsinGeif AgTknownTC −−=  (5.17) 

 
Then, 
 

( )[ ] ( )
A

LzAgTknownTAgTT GeifGeif
−

−−++= expsinsin θθ  (5.18) 

 
Overall Heat Transfer Coefficient for Casing Flow  

 
It is assumed that the radiation and convection coefficients are negligible and can 

be ignored for calculation of overall heat transfer. Because in general steels have higher 
thermal conductivities compared with cement, the thermal resistance of the casing is 
negligible compared with the thermal resistance of the cement. The overall heat transfer 
coefficient, U, for the flow in the casing is 

 
( ) 1

/ln12
−

⎥
⎦
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ci k
rr
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U  (5.19) 

 
and the relaxation distance parameter, A, is 
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If  f(t) rciU is large compared to the thermal conductivity, ke, then A simplifies to 
 

( )
e

p

k
tfwC

A
π2

=   (5.21) 

 
For long times,  f(t) can be approximated 
 

( ) ( ) 53.3272.0 +−= wbrtf   (5.22) 
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Angle Changes along Build Section 
 

To derive the temperature equation for the curved build section, we considered 
the trajectory follows the path of a curve (a quarter of a circle), and divided the true 
vertical depth of build section in equal segments. Knowing the distance from vertical and 
horizontal section, which would be the radius of a circle as shown in Fig. 5.3.The angles 
for different segments were calculated as follows: 

 
 

 

θ6 
 

θ5 
 

θ4 
 

θ3 
 

θ2 
 

θ1 
 

 
Fig. 5.3 Variable angle calculation 

 
 

654321 θθθθθθ ≠≠≠≠≠   (5.23)  
 

654321 DDDDDD =====   (5.24) 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++++

=
R

DDDDD 12345arcsinβ   (5.25) 

 
and 
 

( ) RX ×= βcos1   (5.26) 
 
For the first segment, 
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1
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For other segments, 
 

nn τθ −= 180   (5.28) 
 

⎟⎟
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⎞
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⎝

⎛ −
= −

n

nn
n D

XX 1arctanτ   (5.29) 

 
5.2 Temperature at Junctions 

 
The McKinley’s mixing method15 can be applied to a junction with two streams 

mixed at the junction resulting in an enthalpy balance given by 
 

( ) ( ) 0222111 =−+− TTCwTTCw mpmp   (5.30) 
 
where temperature of mixture can be expressed as 
 

2211

222111

pp

pp
m CwCw

TCwTCw
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+
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 The heat capacity of a mixture, Cpm, is defined as 
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5.3 Results and Discussion 
 
5.3.1 Temperature Profile along the build section 

 
Temperature profiles considering constant angle (90o, 45o, 25o, 10.5o) and variable 

angle along the build section were calculated using the data given in Table 5.1. From the 
results shown in Fig. 5.4, it can be seen that taking a constant angle of 45o through the 
build section would result in underestimating the temperature while taking a constant 
angle of 90o could result in overestimating the temperature at the end of the build section 
compared with the temperature profile using variable angles.  

 
5.3.2 Temperature Profile along the Build Section and Mixed Zone 

 
In the next cases, temperature profiles from two laterals that are joined at a junction 

were calculated using the enthalpy balance applied at the junction, then the temperature 
profile of the main wellbore above the junction was calculated. 

 
Geothermal Gradient oF/ft 0.027

Cpo, Btu/lbmoF 0.49
Wellbore diameter, in 7.5

Outside Casing diameter, in 5.5
Inside Casing diameter, in 5.05

Thermal Conductivity of cement, Btu/D ft oF 96.5
Thermal Conductivity of earth, Btu/D ft oF 33.6

Flow rate of oil, STB/D 200
oAPI 35

Oil Gravity 0.85
Oil Density, lbm/ft3 53.03

Temperature at Z=0, oF 237.2
Radious from lateral to vertical, ft 1500
The dimensionless time function 2.51

Oil Flow Rate, lbm/sec 0.69
Overall Heat Transfer Coefficient, Btu/lbm oF ft2 1479.54

Coefficient A, ft 343.55  
 

Table 5.1 Properties used in calculation of temperature profiles 
 
 

 53



0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

1200.0

1300.0

1400.0

1500.0

190.0 195.0 200.0 205.0 210.0 215.0 220.0 225.0 230.0 235.0 240.0

Temperature, oF

D
ep

th
, f

t

Geothermal Constant Angle 90o Constant Angle 45 Constant Angle 25 Constant Angle 10.52 Variable Angle
  

 
Fig. 5.4 Comparison of predicted temperature profile with constant angles and 

variable angle along build section 
 
 
Same Heat Capacities and Flow Rates for Both Streams 

 
Temperature profiles with same heat capacities and flow rates for each lateral 

(condition1: constant angle, condition 2: variable angle) were calculated using the data 
given in Table 5.2. The results for this case are shown in Fig. 5.5, where it can be seen 
that both laterals reach the same value of fluid temperature before mixing because of 
similar conditions and after mixing the difference between geothermal and fluid 
temperature increases because of the increase in flow rate after mixing both streams.  
 
 

 54



Condition 1 Condition 2 Junction (Condition 3)
Geothermal Gradient oF/ft 0.03 0.03 0.03

Cp1, Btu/lbmoF 0.49 0.49 0.49
Wellbore diameter, in 7.5 7.5 7.5

Outside Casing diameter, in 5.5 5.5 5.5
Inside Casing diameter, in 5.05 5.05 5.05

Thermal Conductivity of cement, Btu/D ft oF 96.5 96.5 96.5
Thermal Conductivity of earth, Btu/D ft oF 33.6 33.6 33.6

Flow rate of oil, STB/D 100 100 200
oAPI 35 35 35

Oil Gravity 0.85 0.85 0.85
Oil Density, lbm/ft3 53.03 53.03 53.03

Temperature at Z=0, oF 237.2 237.2 237.2
Radious from lateral to vertical, ft 1500 1500 1500
The dimensionless time function 2.51 2.51 2.51

Oil Flow Rate, lbm/sec 0.34 0.34 0.69
Overall Heat Transfer Coefficient, Btu/lbm oF ft2 1479.54 1479.54 1479.54

Coefficient A for Casing Flow, ft 179.17 179.17 358.33
Temperature at the junction, oF 200.87  

 
Table 5.2 Properties used in calculation of temperature profiles for two laterals with 

same heat capacities and flow rates mixed at junction 
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Fig. 5.5 Temperature profiles for two laterals with same heat capacities and flow 

rates mixed at junction 
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Different Heat Capacities and Flow Rates for Both Streams 
 
Temperature profiles with different heat capacities and flow rates for each lateral 

(condition1: constant angle, condition 2: variable angle) were calculated using the data 
given in Table 5.3. The results for this case are shown in Fig. 5.6, where it can be seen 
that both laterals reach different values of fluid temperature at the moment of mixing 
because of differences in heat capacities and flow rates for each one. In this case the 
mixed stream temperature is between each temperature stream and then, the mixed 
stream presents a bigger difference between geothermal and fluid temperature.  

 
 
 
 

Condition 1 Condition 2 Junction (Condition 3)
Geothermal Gradient oF/ft 0.03 0.03 0.03

Cp1, Btu/lbmoF 0.6 0.49 0.55
Wellbore diameter, in 7.5 7.5 7.5

Outside Casing diameter, in 5.5 5.5 5.5
Inside Casing diameter, in 5.05 5.05 5.05

Thermal Conductivity of cement, Btu/D ft oF 96.5 96.5 96.5
Thermal Conductivity of earth, Btu/D ft oF 33.6 33.6 33.6

Flow rate of oil, STB/D 300 200 500
oAPI 35 35 35

Oil Gravity 0.85 0.85 0.85
Oil Density, lbm/ft3 53.03 53.03 53.03

Temperature at Z=0, oF 237.2 237.2 237.2
Radious from lateral to vertical, ft 1500 1500 1500
The dimensionless time function 2.51 2.51 2.51

Oil Flow Rate, lbm/sec 1.03 0.69 1.72
Overall Heat Transfer Coefficient Btu/lbm oF ft2 1479.54 1479.54 1479.54

Coefficient A for Casing Flow, ft 664.95 358.33 1023.28
Temperature at the junction, oF 210.48  

 
Table 5.3 Properties used in calculation of temperature profiles along build section 

and junction with different heat capacities and flow rates 
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Fig. 5.6 Predicted temperature profiles for two laterals with different heat capacities 

and flow rates mixed at junction 
 

 
5.4 Conclusions of Build Section Model 

 
Calculating the temperature profile with variable angle along the build section 

considering that the trajectory follows the path of a curve (a quarter of a circle) gives 
realistic results that can improve the development of a forward model of wellbore fluids 
temperature and pressure. For single phase flow at every junction in a multilateral well, 
commingling of fluid streams with different temperatures can be modeled using the 
mixing method applying an enthalpy balance at the junction. 
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6 Conclusions 
 
The work to date on the forward model of temperature and pressure behavior in 

complex wells has been divided into the three physical parts of the system: the reservoir, 
the producing laterals, and the build sections connecting laterals and the main wellbore. 
Conclusions regarding each part of this system are: 

Reservoir: Both Joule-Thomson expansion and frictional heating in the near wellbore 
region can create temperature changes of several degrees, though often in opposite 
directions (Joule-Thomson cooling and frictional heating). This level of temperature 
change is easily detectable with current smart well hardware.  

Lateral flow: Thermal effects in the wellbore itself are small and may not be 
detectable in many cases. However, when a change in inflow conditions along the lateral 
occurs, noticeable and measurable inflections occur in the wellbore temperature profile. 
Coupling of the lateral model with the reservoir model will allow us to explore this in 
detail. 

Build section: The temperature in the build section can be predicted by adapting the 
Ramey Equation to the complex , variable-inclination geometry of a typical build section. 
Mixing effects at junctions are sometimes very pronounced, suggesting that flow rate 
from individual laterals may be obtainable from the temperature in the vicinity of the 
junction. This effect depends strongly on the trajectories of the laterals. 

 58



7 Nomenclature 
 
A   relaxation distance 

pC   specific heat capacity 
er   combined energy flux vector 

tE   total energy 
f   friction factor 

( )tf   time function 
g   gravity acceleration 

cg   conversion factor, 32.17 lbm-ft/lbf-s2 

Gg   geothermal gradient 
h   reservoir thickness 
H   enthalpy 
J   productivity index 
J   mechanical equivalent of heat 
k   Permeability 

cemk   thermal conductivity of cement 

ek   thermal conductivity of earth or formation 

TtK   Total thermal conduction coefficient 
L   total measure well depth 

ReN   Reynolds number 

wNRe,   wall Reynolds number 
p   pressure 

q  flow rate 
q
r   heat flux 
Q   heat transfer rate per unit length of wellbore 
R   radius 
R   distance from lateral and main wellbore 
t   time 
T   temperature 

wT   temperature of fluid entering a wellbore 

eiT   formation temperature at initial condition 

eibhT   static formation temperature at the bottom hole 
ur   Darcy velocity 
U   internal energy 
U   heat transfer coefficient 
v   velocity 
V̂   specific volume 
w   wellbore mass flow rate 
W  Work 
Y  Length of reservoir 
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z   variable well depth from surface 
 
α   momentum correction factor 
β   thermal expansion coefficient 

ijδ   Kronecker delta 
ε   relative roughness of pipe 
µ   viscosity 
πr   molecular momentum flux vector 
ρ   density 
φ   Porosity 
θ   angle from horizontal 
τ   dummy variable of integration 
τ
rv   stress shear tensor 
 
Subscripts 
 
ci   casing inside 
co   casing outside 
cem   cement 
e   earth, formation 
I   inflow 
i   cell number 
m   mixed stream 
o   oil 
r   r-coordinate 
R   reservoir 
ti   tubing inside 
to   tubing outside 
x   x-coordinate 
w   well location 
wb   wellbore 
θ   θ-coordinate 
1  stream 1 
2   stream 2 
 
Superscripts 
o   original 
 
Overlines 
 
X   average 
X̂   per unit mass 
X
r

  vector 
X
rr

  tensor 
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Appendix A  : Temperature Model for Slightly Compressible Fluid 
 

As can be seen in Fig. 3.3, there are two flow regions, radial and linear. First 
consider linear flow region.  The pressure relationship is described by Darcy’s law as: 
 

dy
dpku y µ

−=           (A.1) 

 
And the above equation can be expressed for slightly compressible fluid as: 
 

dy
dpk

Lh
q

µ
−=

2
         (A.2) 

 
The energy balance is expressed in the following form: 
 

0=∇⋅∇−⋅∇+∇⋅−∇⋅+∇⋅ TppTpTC p TtKuuuu
vvrrrr βρ     (A.3) 

 
In one dimensional Cartesian coordinate (y-direction), the equation becomes 
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Substituting Eq. A.2 into Eq. (A.4) and rearranging gives 
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Solving the second order ordinary differential equation gives 
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Applying boundary conditions, 0TT =  at  
2
Yy =  and the effective heat transfer of radial 

flow and linear flow are equal at 
2
h , i.e. 

linearradial dy
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the integration constants (c1,c2).   is geothermal temperature at outer boundary.   Then, 
c

0T
1 and c2 are determined as below 
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At 
2
hy =  is the boundary of radial flow region, the temperature is 
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By substituting the linear temperature at 
2
h  into the radial solution derived in Appendix B.  

The temperature profile in the radial flow region is 
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Appendix  B : Temperature Model for Slightly Compressible Fluid in Radial Coordinate 
System 
 
Consider a steady state radial flow in a homogeneous reservoir with thickness, , as 
shown in figure below. 

h

 

h 

 
Fig. B.1 Radial flow direction 

 
The pressure relationship is described by Darcy’s law as 
 

dr
dpkur µ

−=           (B.1) 

 
And Eq. B.1 can be expressed for slightly compressible fluid as: 
 

dr
dpk

rh
q

µπ
−=

2
         (B.2) 

 
The energy balance which is derived earlier is expressed in the following form. 
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 radial coordinate system, the Eq. B.3 becomes In
 

012 =⎟
⎠
⎞

⎜
⎝
⎛−+−

dr
dTr

dr
d

r
K

dr
dpu

dr
dpuT

dr
dTuC Ttrrrp βρ     (B.4) 

 
y substituting Eq. B.2 into Eq. B.4 gives B
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olution to this second order differential equation is S
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pply the first boundary condition which is that A T is finite as r  approaches zero.  So, the 

 constant of integration 1c  must be zero.  The Eq. B.6 becomes
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ppling the second boundary condition which isA  0TT =  at err = , then  can be 2c

evaluate 
 

21
02

m

erb
dTc ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −=          (B.10) 

 
inally, substituting Eq. B.10 into Eq. B.9 the solution of the differential equation yields F
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Appendix C : Another Derivation of Governing Equation for Producing Wellbore 
 
In 2-D cylindrical coordinate, flow equations are given by Tannehill 
 
Mass balance equation 
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Radial direction 
 

( ) ( ) ( 01
=−+⋅

∂
∂

+−⋅
∂
∂

+
∂

∂
rrrrxrrx

r pvvr
rr

vv
xt

v
τρτρ

ρ )     (C.3) 

 
Viscous stress tensors are defined by Navier-Stokes 
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Energy balance equation 
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Considering same velocity distribution assumption as 
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Integrations of those equations are followings; 
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Then, we have 
 

( ) ( II vRx
v

t
ρ )ρρ 2

+
∂

∂
−=

∂
∂         (C.10) 

 
Momentum balances are 
 

( ) ( ) ( ) 0sin1
=−−⋅

∂
∂

+−+⋅
∂
∂

+
∂

∂
θρτρτρ

ρ
gvvr

rr
pvv

xt
v

rxrxxxxx
x   (C.11) 

 

 70



( ) ( ) ( 01
=−+⋅

∂
∂

+−⋅
∂
∂

+
∂

∂
rrrrxrrx

r pvvr
rr

vv
xt

v
τρτρ

ρ )     (C.12) 

 
We are not interested in momentum balance in r direction so only axial direction 
momentum balance equation will be considered. Taking area integral of x direction 
momentum balance gives 
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Viscous stress shear stresses are from the assumption  
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From the assumption that inflow is perpendicular to the axis at the pipe wall 
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Wall friction Wτ  is defined as 
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Substituting and dividing gives 2Rπ
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Integration of energy balance gives 
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Neglecting viscous shear of r, 0=rrτ , and ( ) 0==Rrrxxv τ  yield 
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Then, we have 
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Obtained Eqs. C.10, C.17 and C.19 are the same Eqs. derived by using macroscopic 
method. 
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