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Chapter 1

EXECUTIVE SUMMARY

The project aim was the improvement, evaluation, and application of one
dimensional (1D) inversion and development and application of three dimen-
sional (3D) inversion to processing of data collected at waste pits at the Idaho
National Engineering and Environmental laboratory. The inversion methods
were intended mainly for the Very Early Time Electromagnetic (VETEM)
system which was designed to improve the state-of-the-art of electromag-
netic imaging of the shallow (0 to about 5 m) subsurface through electrically
conductive soils. They are also capable of processing data from other low
frequency systems, such as GEM-2 or GEM-3. The proposed objectives have
been achieved by developing new numerical modeling to more fully exploit
and interpret field data. We have not only processed VETEM data gathered
at Pit 9, but also have processed GEM-2 data gathered at Pit 10. The numer-
ical modelings performed include 1D and 3D model appropriate to the low
frequency electromagnetic system. A 1D inversion with the Distorted Born
Iterative Method (DBIM) has been developed and improved. A 3D inversion
based on the Born approximation was developed, followed by a 3D inversion
baed on DBIM. These methods offer significant 1D and 3D electromagnetic
imaging capabilities in the shallow subsurface, and now are available for use
at DOE sites that have shallow subsurface imaging needs. Products of this
research are documented in many papers, applicable to electromagnetic sub-
surface imaging, and suggest further research and development.
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Chapter 2

RESEARCH OBJECTIVES

Data processing is crucial to reconstruction of the subsurface imaging and
understanding the subsurface situation. Many DOE facilities are in need of
subsurface imaging in conductive zones. For example, the characterization
of waste pits, mapping the complex geological/hydrological framework of the
conductive zones, and the detection and characterization of metal and con-
crete structures. 1D inversion has been used as a matured technique for data
processing for a long time. The advantage of 1D model is its high efficiency,
and therefore it is suited for real-time processing and helpful to general eval-
uation of the subsurface situation. 3D model accounts for more physics of the
interaction of the electromagnetic waves with the buried objects and hence
is able to give more reliable information about the subsurface situation. The
disadvantage of the 3D model is that it is often time-consuming, especially
when rigorous model is used. The tradeoff may be the one that uses a sim-
ple model, such as Born approximation. Our first objective is therefore the
development of a 3D inversion method based on the Born approximation.
Also we are intended to develop a more rigorous 3D inversion method based
on DBIM. The application of DBIM leads to drastically large computational
overhead. The efficient forward modelling and localized inversion are pro-
posed to help cut down on expenditure. Besides the efficiency, people are
also concerned about the stability of the inversion method for practical ap-
plication, which is addressed by choosing the stabilizer appropriate to the
low frequency electromagnetic inversion.
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Chapter 3

METHODS AND RESULTS

Subsurface imaging has been of paramount interest in near-surface geophys-
ical explorations, environmental explorations, and detection of unexploded
ordinance. The associated imaging problem is quite challenging due to the
considerable loss in the earth and the limited-angle nature of data acquisition.
Most subsurface imaging systems fall into two broad categories: ground pen-
etrating radar (GPR) and electromagnetic induction (EMI) systems. Higher
operation frequencies suggest that GPR will have considerably better reso-
lution, yet GPR cannot penetrate lossy earth very well. On the other hand,
EMI sensors operate in the kilohertz frequencies, which yield a very poor
resolution. A very early time electromagnetic (VETEM) system is a com-
promise developed by the U.S. Geological Survey (USGS) that operates in
a “middle” frequency regime. This is a time domain system that employs a
ramp input, the energy of which is concentrated below 5 MHz.
In practice, a time domain, single transmitter-receiver pair traversing a region
of interest in unison is much more convenient and feasible to operate than
a multiple receiver system. Although the work here can be applied to the
latter case, we will mainly consider the former configuration.
The methods detailed in this chapter assume time-harmonic, frequency do-
main input. Hence, in the case of VETEM, we actually process the Fourier-
transform of measurement data, rather than the time domain waveforms
themselves.
In Section 3.1, we discuss the very early time electromagnetic (VETEM)
system and its calibration [1]. Then we present an experimental and a nu-
merical method to estimate the soil conductivity in Section 3.1.2. In Section
3.1.3, we detail the waveform processing before the actual inversion, which is
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indispensable because of practical problems concerning noise, slight config-
uration mismatches, inhomogeneous background, and the mostly inductive
transfer function of the data acquisition system. In Section 3.2, we give the
1D inverse solver for vertical magnetic dipole (VMD) and horizontal mag-
netic dipole (HMD) contributions at the receiver. In Sections 3.2.1 and 3.2.2,
we demonstrate the viability of 1D multifrequency inversion in 2D and 3D
environments, respectively, by employing 2D and 3D CGFFT forward solvers
to obtain synthetic data. The 1D inversion is then applied to VETEM data
obtained through measurements over a region of 40 m by 90 m and compare
our inversion with a shaded relief late-time image, which, we believe, is in
agreement with our inversion. We comment on the computational complexity
in Section 3.2.4.
In Section 3.3, we discuss how preprocessing is performed over subdomains
of the region of interest for a 3D inversion even though inverting the whole
domain by a 3D method would be prohibitively intensive. Formulation and
results of the rigorous 3D DBIM method are presented. Finally, some con-
clusions are drawn in Section 3.4.
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3.1 VETEM System and Data Preprocessing

The major motivation for the VETEM system is to penetrate into conductive
earth deeper than the ground penetrating radar while obtaining better reso-
lution in the first 5 m than the existing electromagnetic induction systems.
For this purpose, a ramp input, shown in Figure 3.1, is employed with most
of the spectral energy below 5 MHz. Also, the receiver is kept perpendicular
to avoid the direct coupling. The VETEM system is depicted in Figure 3.2.
Accurate 3D numerical simulations of similar enhanced systems can be found
in [2].
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Figure 3.1: The input ramp of VETEM and its spectrum.

3.1.1 System Function of the VETEM System

It is assumed that the VETEM system, consisting of two square loops, can
be lumped into two magnetic dipoles, which is expedient for numerical mod-
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Figure 3.2: The schematic diagram of the VETEM system with d = 2 m.

elling. However, it is equivalent to saying that the system function is a delta
function, which is evidently wrong. In order to be able to process the data in
1D, all 3D effects need to be approximately accounted for by a deconvolution
of the system function [3, 4]. This deconvolution is performed pointwise, and
provided that the computationally less intensive calibration is started before
the 1D inversion, calibration and inversion can be performed simultaneously.
Assuming that the system circuitry is linear, one can lump its effects such
that the transmitter and receiver antennas can be considered to be two mag-
netic dipoles. The VETEM system of USGS radiates most of its energy at
frequencies under 5 MHz [1], thus facilitating the dipole approximation. In
order to determine the system function, the VETEM system has been run
over a metal plate, in which case the resultant field can be expressed analyt-
ically. If we let L(ω) = S(ω)H(ω)R(ω) be the measured response, in which
H(ω) is the analytical impulse response, and R(ω) is the input current ramp,

we can obtain the system function as S(ω) = L(ω)
H(ω)R(ω)

. This system function
is then deconvolved from each measured waveform to rid the waveform of
spurious effects.
In the case of a ground plane, the response of the image can be analytically
expressed as

H(kr) = −IA

4π

eikr

r5
ρ |z+z′+2d1|f(kr),
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where f(x) = x2 + 3ix − 3 and r =
√

(z + z′ + 2d1)2 + ρ2 [5]. We note
that this system function will lump together effects due to circuitry and the
mostly inductive transfer function between the 3D loops, and hence will not
be identical to a 3D MoM simulation of the VETEM system.
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Figure 3.3: Calibration of the VETEM system. (a) Calibration waveform.
(b) Amplitude of the system function. (c) Phase of the system function. (d) Real
(solid) and imaginary (dashed) parts of the system function.

The VETEM system has been run over a metal plate to obtain the calibration
waveform in Figure 3.3(a). This waveform reflects the physics when the
receiver loop is almost perfectly perpendicular or the tilt angle θ is slightly
nonzero. As soon as the current is turned off, induced currents start to
circulate in the opposite direction, which leads to the tail in the calibration
waveform. Yet, most other data from the VETEM system looks considerably
different. The tail due to Lenz’s effect is observed right after a negative-going
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ramp. Indeed, the negative-going ramp is due to a strong VMD primary
contribution, which is due to the tilt of the receiver coil.
According to our current calibration in Figure 3.3(b-d), the system function
manifests some capacitive effects, apart from the expected inductive coupling.

3.1.2 Background Estimation

One way to estimate the background at each measurement point is to use
the initial slope of VETEM waveforms [6]. We have found that the slope
is an increasing function of background conductivity. This can be readily
seen for the limiting cases of perfect conductor and perfect insulator. The
former will have exactly the same slope as the input ramp due to the image
source, whereas the latter will not induce any currents. In Figure 3.4, we
plotted several waveforms under different background conductivities. We
note that this estimation yields an average value for soil conductivity. That
is, in the presence of highly conductive scatterers, the soil conductivity will
be somewhat overestimated.
Although this method is quite simple, it requires a precise calibration. In-
stead, we propose the following method, which retains the computational
simplicity of the preprocessing stage [7].

1. Choose the highest possible frequency for which the dipole approxima-
tion is valid, yet the skin depth δ is as small as possible.

2. Since the skin depth is small, the subsurface scattered magnetic field
Hs can be ignored. Then we can write the total magnetic field in terms
of the estimated tilt angle θ as

−HP
z sin(θ) + HR

x (σb) cos(θ)−HR
z (σb) sin(θ) = f(σb) ≈ Hmeas, (3.1)

in which HP
z has an analytic expression, and HR

x , HR
z are expressed by

the Sommerfeld integrals (3.2) and (3.3), respectively.

3. Solve the equation f(σb)−Hmeas = 0 for the background conductivity
σb by using a root solver.

Convergence to the background value is rather fast when the error bound is
0.1 mS/m. Still, we note that the root solver yields an effective background
conductivity because we do not employ frequencies larger than 5 MHz in
order to retain the dipole approximation.

8



0 500 1000 1500 2000 2500 3000 3500

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

time (ns)

C
ur

re
nt

 (
A

)

5 mS/m
10 mS/m
15 mS/m
20 mS/m
25 mS/m
30 mS/m
35 mS/m
40 mS/m
45 mS/m
50 mS/m0 50 100 150 200

−0.01

0

0.01

0.02

0.03

0.04
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m, 1-m-deep scatterer is assumed. Background estimation could rely on the very
early time response, which is shown on the lower-left figure.

3.1.3 Raw Waveform Calibration

After the background conductivity is estimated, the VETEM system function
is deconvolved from the measured data. Because the receiving antenna is
never perfectly perpendicular, it is necessary to extract VMD primary field as
well as VMD and HMD half-space reflections from the measured data. In the
following expressions where the superscripts “R” and “I” denote reflected and
image fields, respectively, we extract the images from half-space reflections
by letting R12 = T12 − 1 and derive closed-forms for them by using the
Sommerfeld identity.
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HR
x = HI

x + HR′
x = −IA

4π

eik1r

r5
ρ |z+z′+2d1|f(k1r)−

IA

4π

∫ ∞

0
dkρ k2

ρ J1(kρρ) T12 eik1z(z+z′+2d1) (3.2)

HR
z = HI

z + HR′
z = −IA

4π

eik1r

r5

{
2r2(ik1r − 1)− ρ2f(k1r)

}
−

iIA

4π

∫ ∞

0
dkρ

k3
ρ

k1z

Jo(kρρ)T12e
ik1z(z+z′+2d1), (3.3)

where r =
√

(z + z′ + 2d1)2 + ρ2 and f(x) = x2 + 3ix− 3 [5].

Hence, the factor HR
x cos(θ) − (HR

z + HP
z ) sin(θ) is subtracted from the de-

convolved waveform where the VMD primary contribution HP
z is equal to

−HI
z with r =

√
(z − z′)2 + ρ2.

An antenna configuration that keeps the receiver perpendicular to the trans-
mitter is desirable to avoid direct coupling. However, even slight tilts can
result in considerable direct coupling. It is therefore important to estimate
these tilts and undo the primary coupling. This is achieved by noting that
unless the scatterers are perfectly conducting, the quasi-magnetostatic con-
tribution to the waveform is due to the direct coupling. The tilt angle can
be computed by noting that the field will be predominantly a magnetostatic
primary field for very low frequencies. Hence, by extrapolating the scattering
data to obtain the magnetostatic field Ho, the angle can be estimated. For
low frequencies, HP

z ≈ IA
4πρ3 . Therefore,

θ ≈ − sin−1

(
4πρ3Ho

IA

)
. (3.4)

This is readily seen by noting that the TE Fresnel reflection tends to zero as
the frequency goes to zero; i.e., half-space reflected and scattered fields do
not have any DC component. Nevertheless, this effect cannot be readily cap-
tured experimentally because the receiver loop has a small, finite resistance.
Denoting the induced voltage at the receiver by Vr = jωL′It, the current at
the receiver will be

Ir =
Vr

jωL + R
=

jωL′It

jωL + R
(3.5)
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provided that it has an inductance L and resistance R. It is readily seen
that the expression has a nonzero limit as ω goes to zero if and only if R
is zero. Hence, to estimate the extent of DC coupling, it suffices to employ
the lowest frequency for which ωL À R. For the VETEM waveforms, this
frequency has been in the 60-70 kHz range. Akin to (3.4), it suffices to note
the relationship Imeas = Icomp sin(θ) to find the tilt angle, in which Icomp is
obtained by magnetostatics.
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Figure 3.5: Waveforms simulated by a 3D MoM model compare very well with
most VETEM raw waveforms. Here, the receiver angle is 4o and σb = 30 mS/m.
A 1 m × 1 m, 1-m-deep scatterer is assumed. Constituents of the waveform are
also shown.

We show in Figure 3.5 that waveforms identical to VETEM raw waveforms
can be synthesized by a 3D MoM solver if the angle is nonzero. These look
quite similar to the actual raw waveforms in Figure 3.6(a). In this latter
figure, the preprocessing of actual waveforms can be followed in the time
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domain. Figure 3.6(b) shows the waveforms after the deconvolution of the
system function. Figure 3.6(c) is the computed VMD primary and HMD,
VMD reflected fields convolved with the measured ramp which need to be
subtracted from the waveform. The result of this subtraction is shown in
Figure 3.6(d). Corresponding reconstructions of the conductivity profile by
the 1D solver are in Figure 3.6(e).
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3.2 1D Inversion with the Distorted Born It-

erative Method
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Figure 3.7: The approximation of a local 3D problem by a 1D multilayer problem.
The transmitter (TX) and receiver (RX) loops are a VMD and a possibly tilted
HMD.

In the subsurface imaging of 3D large-scale buried structure, a small por-
tion of the 3D model can be locally simplified to a 1D model, as shown in
Figure 3.7. Here, a layered geometry is used to approximate the buried tar-
get in the relevant small region. The uppermost layer denoted by m = 2 is
fixed to the given soil parameters, and the region m = 1 corresponds to the
air half-space. The transmitter is a horizontal loop (VMD) and the receiver
is an almost vertical loop with a tilt angle θ. This is necessary because of
the practical problem of keeping the receiver loop perfectly vertical. The
multifrequency scattered field data obtained by the actual VETEM system
is inverted by using a 1D distorted Born iterative method (DBIM), which
utilizes the Born approximation while updating the background parameters
[8–12].
The method in 1D can be illustrated readily as follows. In the spectral
domain, the relevant 1D differential equation is

[
d2

dz2
+ k2

z

]
g̃z = −c δ(z − z′),
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in which g̃z is the Green’s function and c is a constant that can be easily
determined by matching the singularity at z = z′, i.e., when the source point
coincides with the observation point. A similar equation can be written for
the background medium:

[
d2

dz2
+ k2

zb

]
g̃zb = −c δ(z − z′).

Here, the background is also inhomogeneous. By subtracting one equation
from the other and noting that

k2
z = k2

zb + δk2,

we obtain [
d2

dz2
+ k2

zb

]
(g̃z − g̃zb) = −δk2 g̃z(kρ, z, z

′).

Finally, by invoking the background Green’s function on this equivalent cur-
rent, we arrive at

∆g̃z = g̃z − g̃zb =
1

c

∫

S
dz′′ g̃zb(kρ, z, z′′) g̃z(kρ, z

′′, z′) δk2(z′′), (3.6)

where S is the bounded region in which δk2 is allowed to be nonzero. The
above equation is in fact a nonlinear integral equation since g̃z is related to
δk2. By using the distorted Born approximation

g̃z(kρ, z, z′) ≈ g̃zb(kρ, z, z′),

the nonlinear equation can be linearized.
Given an initial guess of the inhomogeneous background, the 1D inverse
solver corresponding to the problem in Figure 3.7 can be written as

∆H = Hmeas−Hx(ρ, z) cos(θ)+Hz(ρ, z) sin(θ) =
M∑

m=3

Fm(ρ, z, z′)δk2
m, (3.7)

where Hx and Hz are respectively the computed scattered HMD and VMD
fields, which are free of half-space reflections, and δk2

m are the unknowns.
Here, M is the number of 1D layers, each dm meters thick, and Fm is the
Fréchet derivative corresponding to the mth layer. In the following expres-
sions, kmz =

√
k2

m − k2
ρ, k2

m = k2
o µm

(
εm + iσm

ωεo

)
; and Rij, Tij, R̃ij, T̃ij denote
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TE Fresnel reflection, transmission, generalized reflection, and generalized
transmission coefficients, respectively.
The scattered fields are given by

Hx =
(
−IA

4π

)∫ ∞

0
dkρk

2
ρJ1(kρρ)

[
T12R̃23T21e

ik2z(d2−d1)

1 + R12R̃23eik2z(d2−d1)

]

︸ ︷︷ ︸
R̃12−R12

eik1z(z+z′+2d1)(3.8a)

Hz =
(
− iIA

4π

)∫ ∞

0
dkρ

k3
ρ

k1z

Jo(kρρ)

[
T12R̃23T21e

ik2z(d2−d1)

1 + R12R̃23eik2z(d2−d1)

]
eik1z(z+z′+2d1).(3.8b)

Similarly, the Fréchet derivatives which contain two Green’s functions that
model induction current and scattering respectively are computed by the
following expressions:

Fm(ρ, z, z′) = Fmx(ρ, z, z′)− Fmz(ρ, z, z′) sin(θ) (3.9)

Fmx = −iIA

8π

∫ ∞

0
dkρ

k2
ρ

k1z

J1(kρρ)T̃1mT̃m1Im(kρ)e
ik1z(z+z′) (3.10)

Fmz =
IA

8π

∫ ∞

0
dkρ

k3
ρ

kmzk1z

Jo(kρρ)T̃1mT̃m1Im(kρ)e
ik1z(z+z′) (3.11)

Im(kρ) =
e2ikmzdm − e2ikmzdm−1

2ikmz

(
1 + R̃2

m,m+1(kρ)e
2ikmz(dm−dm−1)

)

+2R̃m,m+1(kρ)e
2ikmzdm(dm − dm−1), (3.12)

where we note that µ1
T̃1m

k1z
= µm

T̃m1

kmz
by reciprocity. Here, Im(kρ) is obtained

by an analytical integration of the z′′-dependent portion of (3.6), which is
possible since each layer is assumed to be homogeneous.
The Sommerfeld integrals are rapidly computed by a combination of Gauss-
Legendre and Gauss-Laguerre quadratures. Singularities are encountered in
(3.8b), (3.10) and (3.11). However, these singularities are easily removed
by extracting them from corresponding transmission coefficients; e.g, T12

k1z
=

2
k1z+k2z

. The decaying tails of the integrands are integrated by Gauss-Laguerre
quadrature which exploits its low frequency behavior, viz., ikz ≈ −kρ for
kρ À k. To be able to utilize this quadrature in the Fréchet derivatives even
when the transmitter and receiver are at the same level, z = z′ = 0, we note
that each of the generalized transmission coefficients, T̃1m and T̃m1, has an
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eik1zd1 factor, which leads to the same exponential factor as in (3.8a) and
(3.8b).

∫ ∞

0
dkρ kn

ρ f(kρ)e
ikz(z+z′+2d1) =

∫ αk

0
dkρ kn

ρ f(kρ)e
ikz(z+z′+2d1) +

∫ ∞

αk
dkρ kn

ρ f(kρ)e
ikz(z+z′+2d1)

≈
∫ αk

0
dkρ kn

ρ f(kρ)e
ikz(z+z′+2d1)

︸ ︷︷ ︸
Gauss-Legendre

+
∫ ∞

0
dk′ρ

[
k′ρ + αk

]n
f(k′ρ + αk)e−(k′ρ+αk)(z+z′+2d1)

︸ ︷︷ ︸
Gauss-Laguerre

(3.13)

The guided mode poles given by the roots of the guidance condition

1 + R12R̃23e
ik2z(d2−d1) = 0

can also be circumvented by deforming the integration path slightly below
the real axis. For the relevant low frequencies, 25-point Gauss-Legendre
and 15-point Gauss-Laguerre quadrature is adequate and readily yields the
required performance. In fact, the recursive computation of reflection and
transmission coefficients once for each frequency is the most time-consuming
step in a DBIM iteration.
To solve the 1D inverse problem, we seek the minimum of the functional

I =

∣∣∣∣∣
N∑

i=1

[
∆H i(ρ, z)−

M∑

m=3

δεmF εi
m(ρ, z, z′)−

M∑

m=3

δσmF σi
m (ρ, z, z′)

]∣∣∣∣∣

2

(3.14)

where N frequencies are employed in the reconstruction and F ε
m = k2

oFm and
F σ

m = ikoηoFm. A subsequent discretization, expansion, and minimization
yields


 F

ε† · Fε
+ γεD

† ·D F
ε† · Fσ

F
σ† · Fε

F
σ† · Fσ

+ γσD
† ·D




[
δε
δσ

]
=


 F

ε† ·∆H

F
σ† ·∆H




(3.15)
in which γε and γσ are Tikhonov regularization parameters and D is the regu-
larization matrix. The regularization parameters are chosen sufficiently large
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to filter out high-frequency profiles but no larger to avoid unnecessary itera-
tions. We have employed the same regularization parameters for simulation
and real data processing.
We define the object function as Õ = [δε, δσ]t and let

M =




F
ε

F
σ

√
γε D 0
0

√
γσ D


 . (3.16)

We also define a Hermitian weighting matrix A, which is utilized when lower
frequencies are more reliable for the initial iterations, especially when con-
siderably wideband frequency data is involved. With these definitions, (3.15)
can be written in the more succinct form

M
† ·




A 0 0
0 I 0
0 0 I




︸ ︷︷ ︸
M
′†

·M · Õ = M
′† ·




∆H
0
0


 . (3.17)

This reveals that the linear system can be solved by the CG method, which
improves computational complexity. The relevant forward and adjoint oper-

ators are respectively M and M
′†
. Also, unless A = I, the CG norm needs

to be redefined as

||a|| = a† ·



A 0 0
0 I 0
0 0 I


 · a. (3.18)

The above procedure is then repeated by updating the inhomogeneous back-
ground and the associated Green’s function using the reconstructed param-
eters [13–15]. Although DBIM will not converge for highly conductive scat-
terers like metals, the reconstruction can still track the location of the strong
scatterer. This is depicted in Figure 3.8 where the contrast is 40 with respect
to a 22-mS/m background. Finally, we note that the above can be easily ex-
tended so that permeability as well as complex permittivity is reconstructed
provided the contrasts are small, i.e., the problem is not very nonlinear.
In principle, the above can be easily extended so that permeability as well as
complex permittivity is reconstructed. However, the TE reflection coefficient
involves permeability in a very nonlinear manner and the resulting linear sys-
tem is considerably ill-conditioned unless the perturbations in permeability
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Figure 3.8: The 1D solver can track the location of strong scatterers. Contrast
of the object is 40 with σb = 22 mS/m. When the scatterer is shallow, DBIM
manages to converge to the profile. When it is deeper, it tracks the position of the
scatterer successfully but not the profile.

are small. The distorted Born approximation in (3.7) will still be able to
linearize the problem if we let

δk2
m = ∆

(
µm

[
k2

oεm + ikoηoσm

])
≈ µmo∆

(
k2

oεm + ikoηoσm

)
+

[
k2

oεmo + ikoηoσmo

]
∆µm,

(3.19)
where the double subscripted parameters denote the parameters obtained
by the previous DBIM iteration. Akin to (3.16), the overall Fréchet matrix
becomes
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M =




F
ε · D(µ) F

σ · D(µ) F
µ

√
γε D 0 0
0

√
γσ D 0

0 0
√

γµ D


 . (3.20)

Here F
µ

is a matrix whose elements are established by multiplying the ele-
ments of F with corresponding complex permittivities, k2

oεmo + ikoηoσmo , D
is an operator that converts a vector to a diagonal matrix, and the object
function is Õ = [δε, δσ, δµ]t. For large scale applications, we opted to
employ the complex permittivity inversion since it is more benign and com-
putationally less intensive. More importantly, changes in permeability are
rare in practice.

3.2.1 Simulation of the 1D Solver in a 2D Environment

It is well known that the 1D DBIM inverse solver can easily handle 1D profiles
with contrasts less than 10 [16]. Yet it is crucial to know how it would behave
in a 2D or 3D environment to ensure its viability as a fast probing tool.
For this purpose, 11 transmitter-receiver pairs and 11 frequencies have been
simulated by using a 2D TM solver.
The contrast in Figure 3.9 is 20 with respect to a background of 5 mS/m.
Here, the 2-m spaced transmitter-receiver pair was simulated for 11 locations
along a distance of 20 m. At each point, 11 equally spaced frequencies from
0.5 MHz to 5.5 MHz were employed in the inversion. It is seen that the
horizontal resolution for the deepest object is not as good as the others due
to the diffusion of the field. However, the depth information for each is
approximately correct. Figure 3.10 illustrates a case where the 1D solver
forms a faded false image between the two actual scatterers. This is because
the scattering from the two objects adds constructively. Essentially, the 1D
solver is totally unaware of a second multiple scattering dimension.
Although even more multiple scattering in 3D exacerbates this problem, we
note that false images have lower contrasts than those of actual images and
that they form deep in the profile.

3.2.2 Simulation of the 1D Solver in a 3D Environment

Here, we provide a 3D simulation of a 2D metal object to verify the back-
ground estimation and inversion methods. In this simulation, a VMD trans-
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mitter and a HMD receiver pair traverse a 7m x 7m region. The receiver is
tilted by 2o toward the ground. At each point, a time domain measurement is
made. The time domain waveform is obtained by using the frequency-domain
solution of a 3D CGFFT solver performing 2D FFTs over the surface of a 2
m x 2 m metal plate, two opposite corners of which are located at (−1 m, −1
m) and (1 m, 1 m) in the plots. The problem is solved for 1024 frequencies
ranging from DC to 10 MHz at each point for a total of 196 pixels.
Any sufficiently high-frequency noise in Figure 3.11 does not pose an insur-
mountable problem for the reconstruction because 11 low frequencies up to
3.0 MHz are involved in the inversion. Because of the strong direct cou-
pling in the opposite direction, the scattering from the metal plate actually
decreases the magnitude and slope of the field before 2.0 µs in the figure.
The background is estimated by using the latter method in Section 3.1.2.
The estimated background at 5.0 MHz is around 18 mS/m, which approx-
imates the actual 20 mS/m as shown in Figure 3.12. We do not employ
higher frequencies for the estimation, mainly because the dipole approxima-
tion deteriorates and real data becomes a lot more noisy. The reconstruction
detects the metal plate at a depth of around 1.2 m. It is anticipated that the
1D solver would miss the multiple scattering at the corners of the plate and
detect a plate larger than the actual one.
Similar results are obtained for two close scatterers with contrasts of 5:1 and
5:2 as shown in Figure 3.13. Here, the background conductivity is 10 mS/m
and the simulated data is obtained by a 3D CGFFT electric flux forward
solver. The corresponding reconstruction is shown in Figure 3.14. Because
the receiver is collecting the near field with high spectral content, the objects
can be superresolved although the smallest wavelength in the data is 100 m
long. On the other hand, the higher contrast object appears to be shallower,
possibly because the multiple scattering enhancement to field amplitude is
accounted by a shallower layer.

3.2.3 Application of 1D Inversion to Field Data

The Denver Federal Center (DFC) is covered with mineralogical clay soils
that are quite conductive. GPR results there have generally proved disap-
pointing. East of the present Building 20 at the DFC, there is a dirt field
approximately 40 m by 90 m. The VETEM system was first set up and run
at that location merely to demonstrate procedures to be used at another site.
However, it was noticed that over the DFC field, VETEM produced strong
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and highly variable signals. We have since learned that the field is on the
site of a former WWII munitions foundry. Although the foundry building is
gone, many buried subsurface structures remain [17].
Although amplitude plots can help locate objects, they do not yield much
information concerning the depth of objects. Figures 3.15 and 3.16 contain
plots of our reconstruction, which clearly identifies many chambers and hall-
ways. It also compares well with the amplitude shaded relief in [17]. At
each measurement location, the depth where conductivity reconstruction at-
tains a maximum has been sampled to generate this plot. The site consists
of 17,665 waveforms each consisting of 8,192 time domain samples of the
receiver response digitized as a 4-byte integer. Including coordinate informa-
tion, this corresponds to over 250 Mbytes of data, which took around 3 hours
of user time to process on a 650-MHz Alpha workstation. This particular
reconstruction was done with 22 layers each 25-cm thick and 11 frequencies
ranging from 60 kHz to 3.05 MHz.
The 1D inversion solver is also used to process the VETEM data collected
at DOE Pit 9. The results is shown Figure 3.17.

3.2.4 Computational Complexity

The method has the modest memory requirements of a 1D inverse solver.
Hence, we will solely study computational complexity, which is predomi-
nantly due to the inverse solver rather than due to the calibration pro-
cess. Calibration consists of an FFT, background estimation by sampling
the waveform slope, deconvolution of the system function and two Sommer-
feld integrations for each waveform. Hence, the complexity of calibration is
Nw × [c1O(Ns log(Ns)) + c2], where Nw is the number of waveforms and Ns

is the number of time domain samples.
Because the number of DBIM iterations is contingent upon the strength and
shape of the scatterer, the complexity of the 1D solver which also depends on
the number of Sommerfeld integrals can be expressed as O

(∑Nw
i=1 NiNlNf

)
.

Here, Ni is the number of DBIM iterations for the ith waveform, Nl is the
number of layers, and Nf is the number of frequencies. Typically, Nl and Nf

are small, which renders the overhead of the linear equation solver negligible.
The basic strength of this method is that computational complexity increases
linearly with the size of the scanned area, i.e., Nw.
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Figure 3.9: The 1D solver in a 2D environment. (a) Profile input to the 2D
TM MoM solver. Discretization is 64 × 32 pixels for 20 × 5 m. σb = 5 mS/m.
(b) Although the line-source code fails to converge, it locates the objects with
only 11 frequencies, 0.5 – 5.5 MHz. The 2-m spaced transmitter-receiver pair was
simulated for 11 locations along a distance of 20 m. Final conductivity rather than
contrast is shown.
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Figure 3.13: True object profile at different depth cross sections.
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Figure 3.14: Reconstructed images at different depth cross sections.
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Figure 3.15: A relief of the substructures at the foundry site.

Figure 3.16: Depth of the substructures at the foundry site.
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Figure 3.17: The 1D DBIM relief image of the DOE Pit-9 site. The depths of
the buried objects range from 2.5 m to 4.0 m.
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3.3 3D Inversion by the Born Approximation

and the Distorted Born Iterative Method

In this section, we present the 3D inversion algorithm with DBIM [18]. The
Born approximation can be thought of as a special case of DBIM, therefore
will not be introduced separately.

3.3.1 Half-space Volume Integral Equation

An electric flux, D, formulation is used to cope with the large variations in
complex permittivity since the alternative discretization of J jumps across
conductivity discontinuities.
For the dielectric object buried under the ground surface, the volume integral
equation (VIE) can be written as

Einc(r) =
εb

εr(r)
D̃(r)− k2

b

∫

V
dr′[G

P

b (r, r′) + G
R

b (r, r′)] · χ(r′)D̃(r′), (3.21)

where the subscript b denotes the ground half-space; the superscripts P ,R
represent the primary and reflected fields respectively; and εb, εr(r) are the
relative permittivities of the earth and the buried object. Here, D̃(r) and
χ(r) are defined as

D̃(r) =
D(r)

εbε0

, χ(r) =
εr(r)− εb

εr(r)
. (3.22)

The Green’s functions are given by

GP
b (r, r′) =

[
1 +

∇∇
k2

b

]
gP (r, r′) (3.23)

and

GR
b (r, r′) = (x̂x̂ + ŷŷ)gR

TE + ẑẑgR
TM + 1

k2
b
[∇s∇sg

R
EM1(r, r

′)−
ẑ ∂

∂z
∇sg

R
TM(r, r′) +∇ ∂

∂z
ẑgR

TM(r, r′)]. (3.24)

In the above, gP (r, r′) is the scalar Green’s function for the primary field in
the earth
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gP (r, r′) =
eikb|r−r′|

4π|r− r′| , (3.25)

and gR
TE(r, r′), gR

TM(r, r′), and gR
EM1(r, r

′) are the scalar Green’s functions for
the reflected field in the earth. The latter are

gR
TE,TM,EM1(r, r

′) =
i

8π2

∫ +∞

−∞

∫ +∞

−∞
dks

RTE,TM,EM1

kbz

eiks|rs−r′s|−ikbz(z+z′),

(3.26)
where RTE and RTM are the reflection coefficients for TE wave and TM
wave from region b, the earth half-space, to region a, the air half-space. The

reflection coefficient REM1 is defined as
k2

b

k2
s
RTE +

k2
bz

k2
s
RTM . kb = k0

√
εb is the

wave number in the earth. kbz is its vertical component, kbz =
√

k2
b − k2

s .

k2
s = k2

x + k2
y. ∇s = x̂∂x + ŷ∂y, ks = x̂kx + ŷky, and rs = x̂x + ŷy.

Using the weak-form discretization in [19] to transform (3.21) into its linear
system counterpart, we obtain seven integrals to compute the magnetic po-
tentials by the induced current. Three of these are related to the induction
terms

Ai
ss =

∫

V
dr′[gP (r, r′) + gR

TE(r, r′)]χ(r′)D̃s, s = x, y (3.27)

Ai
zz =

∫

V
dr′[gP (r, r′) + gR

TM(r, r′)]χ(r′)D̃z. (3.28)

The others are due to the charge terms

Ac
uv =

∫

V
dr′[gP (r, r′) + gR

EM1(r, r
′)]χ(r′)D̃v, u, v = x, y (3.29)

Ac
zs =

∫

V
dr′[gP (r, r′)− gR

TM(r, r′)]χ(r′)D̃s, s = x, y. (3.30)

The components Ac
uz, u = x, y, z are the same as Ai

zz and are therefore ob-
tained directly from (3.28). For the primary field, the above integrals are
convolutions of the respective Green’s functions with the induced currents;
whereas for the reflected fields, they are convolutions in the x and y directions
and correlations in the z direction [20, 21].
The iterative method used to solve the resulting linear system is the stabilized
biconjugate gradient (Bi-CGSTAB) method [22], also referred to as BCGS
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for brevity in literatures. BCGS generally converges more rapidly than the
conjugate gradient (CG) and biconjugate gradient (BiCG) methods.

3.3.2 3D Half-space Distorted Born Iterative Method

We use the complex conductivity instead of the complex permittivity because
conduction currents are predominant over induction currents for the VETEM
frequency range. The complex conductivity is defined as

σ̃ = σ − iωεrε0, (3.31)

where the tilde is used to discriminate between the complex conductivity
and the real conductivity. In the following, the tilde will be dropped for
simplicity; therefore, the conductivity will be of complex form implicitly.
Once the induced current is already known, the scattered magnetic field is
obtained by

Hs(r) · α̂R = α̂R ·
∫

V
dr′∇×Ge(r, r

′)δσ(r′) · E(r′), (3.32)

where α̂R is the polarization of the receiver in the VETEM system, and
δσ(r) is the conductivity perturbation with respect to the background. If
the background is a half-space, ∇ × Ge is obtained by the evaluation of
Sommerfeld integrals. In the ensuing iterations for which the background is
inhomogeneous, ∇×Ge is computed numerically by the BCGS-FFT method.
The scattered magnetic field is the measurement data required for inversion.
In the distorted Born iterative method, a successive linearization strategy is
utilized. Suppose the conductivity profile obtained in the last iteration is
σ(l), referring to Equation (3.32), and neglecting higher order terms, we have

δHs(l)(r) · α̂R = α̂R ·
∫

V
dr′∇×G

(l)

e (r, r′)δσ(l+1)(r′) · E(l)(r′), (3.33)

where E(l) is the total internal electric field, which is computed in the pres-
ence of the conductivity profile σ(l) obtained in the earlier iteration. Here,

G
(l)

e (r, r′) is the dyadic Green’s function in the conductivity profile σ(l). The
incremental field δHs(l)(r) is

δHs(l)(r) = Hs(r)−Hs(l)(r), (3.34)
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where Hs(rR) is the scattered field due to the true conductivity profile, i.e.,
the measurement data, and Hs(l)(rR) is the scattered field due to the conduc-
tivity profile σ(l) computed after the internal field E(l) is obtained. Explicitly,

Hs(l)(r) · α̂R = α̂R ·
∫

V
dr′∇×G

(0)

e (r, r′)[σ(l)(r′)− σ(0)(r′)] · E(l)(r′), (3.35)

where G
(0)

e (r, r′) is the Green’s function in the half-space, and σ(0) is the
conductivity of the earth, σb.
Discretizing the support of the unknown object into a number of uniform
pixels, and expanding the conductivity correction δσ(l+1) in terms of a pulse
basis defined over the set of the pixels, we can write (3.33) as

b = K · a. (3.36)

Here, b is the measurement data,

b = α̂R · [δHs(l)(rR1), δH
s(l)(rR2), . . . , δH

s(l)(rRM
)]t, (3.37)

in which M is the number of individual measurements. The vector a consists
of the conductivity corrections,

a = [δσ
(l+1)
1 , δσ

(l+1)
2 , . . . , δσ

(l+1)
N ]t, (3.38)

where N is the number of pixels. Here, K is the sensitivity matrix composed
of Fréchet derivatives associated with the individual pixels,

K = (Kij)M×N , Kij = α̂R ·
∫

Vj

dr′∇×G
(l)

e (rRi
, r′) · E(l)(r′, rTi

). (3.39)

The ill-posedness of the inverse scattering problem inhibits a direct solution
of (3.36). Hence, one considers the following optimization problem:

Φ(a) = (K · a− b)† ·Wd · (K · a− b) + γa† ·Wm · a, (3.40)

where γ is the regularization parameter and the superscript † denotes the
conjugate transpose. The weighting matrix Wd applies a larger weight to
the data which are more sensitive to the unknown parameters. Thus nor-
malized, the data becomes much less dependant on the frequency and on the

33



distance from the inversion domain. The other matrix, Wm, regularizes the
ill-conditioned system. The weighting matrices are defined as [23]

Wd = diag




√∑

j

|Kij|2

 , (3.41)

Wm = diag




√∑

i

|Kij|2

 . (3.42)

From (3.40), one obtains

(K† ·Wd ·K + γWm) · a = K† ·Wd · b. (3.43)

The solution of (3.43) is sought by the use of the conjugate gradient (CG)
method. The CG method is less sensitive to the ill-conditioning of the linear
system than a direct solver. Moreover, the matrix-matrix product K† ·Wd ·K
is avoided by CG. When the size of Equation (3.36) is small, the singular value
decomposition is preferred since the singular value spectrum helps determine
the optimal regularization parameter [24].
After a is solved for, the conductivity profile is updated via

σ(l+1) = σ(l) + δσ(l+1). (3.44)

If the incremental field δHs(l+1) due to σ(l+1) is small enough to within the
specified tolerance, the iterations stop. Otherwise, the above linearization is
repeated to successively update the conductivity profile until the tolerance
is satisfied. The 2-norm

err =
‖δHs(l+1) −Hs‖

‖Hs‖ (3.45)

is used to describe the distance between the simulated data and the real
measurement data.
The selection of the regularization parameter follows a practical rule, i.e.,

γl = γ0q
−l, l = 0, 1, . . . , lmax. (3.46)

Generally γ decreases with the progress of iteration. When, however, err
does not drop, γ will be amplified instead of reduced by the factor of q in the
next step. In the inversion of the VETEM data, γ0 is selected between 1.0
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to 100.0, while the contraction factor q is selected between 1.25 to 5.0. This
heuristic rule is similar to the one used in the Levenberg-Marquart algorithm.
In the above, E(l)(r′, rTi

) is the total internal electric field in the conductivity
profile σ(l) obtained in the last iteration due to the transmitter located at rTi

.
Here, the transmitter is approximated by a magnetic dipole with moment IA,

E(l)(r′, rTi
) = −iωµ0IA∇×G

(l)

m (r′, rTi
) · α̂T , (3.47)

where α̂T is the polarization of the transmitter. If σ(l) = σ(0) or σb, G
(l)

m (r′, rTi
)

is computed by the evaluation of Sommerfeld integrals. Generally, when the
background medium is inhomogeneous, it is computed numerically by the
BCGS-FFT method.
Direct computation of∇×G

(l)

e (rRi
, r′) is prohibitively time-consuming; hence,

we resort to the reciprocity theorem to lower the computational load. In in-
homogeneous media [13]

H(r) =
∫

dr′µ−1(r)∇×Ge(r, r
′)µ(r′) · J(r′). (3.48)

By duality, for the magnetic current source

E(r) = −
∫

dr′ε−1(r)∇×Gm(r, r′)ε(r′) ·M(r′). (3.49)

We consider nonmagnetic media, so µ−1 and µ cancel each other in (3.48).
Here, the electric current J1(r) is inside V1, which is in the earth, whereas the
magnetic current M2(r) is enclosed in V2 above the ground. The magnetic
field excited by J1(r) is

H1(r) =
∫

V1

dr′∇×Ge(r, r
′) · J1(r

′), (3.50)

where the observation point is assumed to be in the earth. Likewise, the
electric field excited by M2(r) is

E2(r) = −εa

εb

∫

V2

dr′∇×Gm(r, r′) ·M2(r
′), (3.51)

where it is assumed that the observation point is in the air. Here, εa and
εb are relative permittivities of the air and the earth, respectively. It follows
from the reciprocity theorem that 〈M2,H1〉 = −〈J1,E2〉. Then,
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∫

V2

∫

V1

drdr′M2(r) · ∇ ×Ge(r, r
′) · J1(r

′) =

εa

εb

∫

V2

∫

V1

drdr′J1(r
′) · ∇′ ×Gm(r′, r) ·M2(r). (3.52)

Hence,

∇×Ge(r, r
′) =

εa

εb

[∇′ ×Gm(r′, r)]t. (3.53)

Substituting (3.47) and (3.53) into (3.39), we have

Kij = −iωµ0IA
εa

εb

α̂R ·
∫

Vj

dr′[∇′×G
(l)

m (r′, rRi
)]t ·∇×G

(l)

m (r′, rTi
) · α̂T . (3.54)

Equation (3.54) indicates that for each data point, only two calls to the
forward solver are needed to calculate the derivatives of the data with respect
to all the pixels. The first calculates the internal electric field generated by
a magnetic point source with moment IA at the transmitter, whereas the
second calculates the internal electric field generated by a unit magnetic
point source at the receiver. Repeating this process for all data points and
all frequencies, the sensitivity matrix K is filled efficiently.

3.3.3 Localized 3D Inversion

A naive implementation of the localized inversion may lead to undesired
results when there is strong coupling from the surrounding domains. As
shown in Figure 3.18, when V1 and V2 are close to the subdomain V , the
response is distorted, especially around the edges of V . However, when the
inversion is performed over V , the effects of V1 and V2 are not considered by
the algorithm. Thus, the inversion algorithm is misled by the data associated
with V and false images are produced. This effect is appropriately named as
an “edge effect.”
Two practical methods are used to suppress the edge effect. The first is to use
weighting for measurements. One possible choice is cos2(x

2
), where x is the

normalized distance from the subdomain center. If the radius of the smallest
sphere encompassing all the data points associated with the subdomain V
is a with center at (xc, yc), then for any data at point (x, y), the normalized

distance is

√
(x−xc)2+(y−yc)2

a
.
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Figure 3.18: The effect of surrounding objects on the local inversion area.

The second method involves the use of a larger inversion area, as shown
in Figure 3.18. The new area Ω encompasses the original Ω0 in the radial
direction. The added size in each direction should not be less than the
characteristic distance of the VETEM tool, i.e., the 2-m distance between
the transmitter and the receiver.

3.3.4 Validation of 3D Inversion with Synthetic Data

In the following, the notation δ denotes the skin depth, equal to the reciprocal
of the imaginary part of wave number, or 1.0/Im(k). Mean skin depth is
defined as δm =

∑K
k=1 δk/K, which is the arithmetic average of the skin

depths related to the frequencies used in an inversion process. The notation
d is the estimated burial depth, which is the depth of the bottom of buried
objects, defining the lower boundary of the area to be reconstructed. The
burial depth is chosen according to the mean skin depth calculated with the
knowledge of frequencies and the background conductivity. The height of the
VETEM system h is 0.53 m above the ground surface.
First the inversion code is tested on synthetic data. The original model is
shown in Figure 3.19. There are two conductive boxes buried in the earth,
the sizes of which are both 2 m × 3 m × 1 m. The burial depths are 3 m and
2.5 m respectively. The shallower one has a conductivity of 0.05 S/m and the
deeper one 0.1 S/m. The earth conductivity is 0.01 S/m. The permittivity

37



Figure 3.19: The true model used to generate the synthetic data. Two conductive
objects of the same size are embedded in the resistive earth; the deeper one is more
conductive than the shallower one.

remains constant everywhere and is set to 16. The background conductivity
and the permittivity are assumed known in the inversion. The six frequencies
ranging from 0.062 ∼ 3.052 MHz with the sampling step of 0.299 MHz are
in line with those used in the field data processing, as mentioned in the
introduction.
The synthetic data is generated using the forward solver BCGS-FFT, and
then is read into the DBIM code as input. The mean skin depth δm for this
case is 7.0 m. However, we assume the burial depth is 4.5 m for simplicity,
which is larger than the actual value. The area to be inverted is 8 m × 8 m
× 4 m, the bottom of which is at the chosen burial depth. It is separated
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into 16 × 16 × 8 pixels, the conductivities of which are to be solved for
in the inversion. The data are sampled in a horizontal plane with size 8
m × 8 m below which is located the inversion area, and totally 6 × 8 × 8
synthetic data are obtained. The position of data point (xi, yj) is obtained
by xi = (i− 0.5), yj = (j − 0.5), i, j = 1, . . . , 8.
The number of unknowns of the resulting equation is 2048, while the number
of data is 384, and therefore it is greatly unbalanced and underdetermined.
The problem is first solved using the noise-free data, and with thirteen it-
erations, an inverted model is obtained as shown in Figure 3.20. The error
err = 0.97% when the code stops. Here, γ0 = 4.0× 10−2, q = 2.5. It is seen
that the magnitude of conductivity is not fully recovered, but the two boxes
are clearly resolved, and their relative position is correctly recovered.
The same data set is also processed using the Born approximation (BA)
method. The key to the success of BA is the selection of the regularization
parameter γ. Figure 3.21 presents the L-curve which is used for the selection.
Note that the misfit is calculated by not only the Born approximation, but
also the rigorous solution BCGS-FFT. It is interesting that the optimal γ
from the two curves are the same. The optimal γ(= 1.64 × 10−4) is then
used in BA and the result is shown in Figure 3.22. It is seen that the image
become blurred. Though the two objects are still resolved, their burial depth
and their relative position are not fully recovered.
The data are then contaminated with 5% random error and are reprocessed
by the DBIM code. It is found that after eight iterations, the code converges
to 4.8% and stops. The history is shown in Figure 3.25. The inverted profile
is shown in Figure 3.23. Obviously the image appears to be more vague
than the noise-free case, but still better than the BA image even though
no noise is added therein. We then add 10% random error to the original
data and this time, the image looks more blurred, especially the vertical
resolution, which becomes even worse. However, compared to the BA image,
it is still of seemingly better horizontal resolution. The history is also plotted
in Figure 3.25. It is seen that the two iteration procedures progress smoothly
and descend steadily to until the prescribed stopping criterion is fulfilled. In
these two cases, γ0 = 0.1, q = 2.5.
Theoretically, DBIM has a second order convergence and is faster than the
Born iterative method. BA does not consider the multiple scattering inside
objects which renders a non-negligible contribution to the measurement for
high contrast buried objects, as has been shown previously. Therefore, when
it comes to processing the data from susceptible high-contrast objects, it is
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Figure 3.20: The model reconstructed with the distorted Born iterative method
using the data without contamination. Here, γ0 = 4.0× 10−2, q = 2.5.
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Figure 3.21: L-curve generated by the Born approximation and the rigorous
solution BCGS-FFT. The left curve with solid squares is generated by the BCGS-
FFT method, and the right curve with hollow circles is generated by the Born
approximation. The point corresponding to the optimal regularization parameter
is enclosed by a large hollow circle.
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Figure 3.22: The model reconstructed with the Born approximation method
using the data without contamination. Here, γ = 0.164× 10−4.
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Figure 3.23: The model reconstructed with the distorted Born iterative method
using the data with 5% random error added. Here, γ0 = 4.0× 10−2, q = 2.5.
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Figure 3.24: The model reconstructed with the distorted Born iterative method
using the data with 10% random error added. Here, γ0 = 4.0× 10−2, q = 2.5.
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Figure 3.25: The iteration histories for the DBIM processes in Figure 3.23 and
Figure 3.24.

better that DBIM is used to achieve a high-resolution subsurface image.
For the noisy data processing, the DBIM code generally reconstructs the
model fairly well even when the data are contaminated by the random error
up to 10%. The relative position and the relative conductivity are recov-
ered in the image. The horizontal resolution appears to be better than the
vertical resolution. Increasing the spanning and sampling of the data in the
horizontal direction and the sampling in frequency is expected to improve the
reconstructed image. However this may increase the computational overhead
substantially, and therefore is avoided in this research.

3.3.5 Application of 3D Inversion to Field Data

DOE Pit 9 complex is one of many DOE facilities where man-made wastes
are buried underneath. The electromagnetic measurement using the VETEM
system has been performed at the Pit 9 complex to survey the burial situation
of the underground wastes. The original data are in time domain. Fourier
transform is used to convert the data to frequency domain[6, 24]. Six frequen-
cies are selected, ranging from 0.062 MHz to 3.052 MHz with the sampling
step of 0.299 MHz, from the broad frequency spectrum. The principle for
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the selection is that the number of selected frequencies is made small while
preserving the information as much as possible.
The conductivity σb and the relative permittivity εrb of the earth are 0.03 S/m
and 16 respectively, which are estimated from the high frequency component
of the measurement data that is assumed to contain negligible contribution
from buried objects. Readers are referred to [6, 24] for details. The mean
skin depth δm for such background media is 4.0 m. As a result, such burial
depth as 5.0 m is assumed which ensures that the signal coming below this
depth has no appreciable contribution to the measurement data.
The measurement area is 72 m × 25.315 m. The magnitude of the data cor-
responding to the six frequencies are plotted in Figure 3.26. Different scales
are used for different frequencies to present the details. Notice that the data
at 0.062 MHz does not correlate well with the data at other frequencies. Also
notice that at the middle, lower and slightly right part ([25 m, 55 m] × [0 m,
8 m]), the data consistency is seemingly poor. There are many factors which
may affect the data quality, such as the measurement cart wobbling over the
unlevel ground surface, the tilt of the transmitter-receiver, the inconsistent
calibration factors for different regions, and the environmental electromag-
netic noise, to mention a few. These factors invariably worsen the data.
For example, the inconsistent calibration factor undesirably renders the same
data look different, and consequently leads to some apparently artificial line
features as is shown in the data. And the tilt of the transmitter-receiver
results in a strong effect especially on the low frequency data. When the
frequency becomes lower, the direct coupling between the transmitter and the
receiver, even if their tilt angle is pretty small, becomes increasingly larger.
Therefore it easily corrupts the useful component of the data. Considering
that it is the scattered field data that are used, the situation becomes even
worse because the erroneous signal accounts for a larger part than in the total
field data. However quantitative evaluation of their effects proves difficult
which may well be treated in the future.
For the DBIM code to be applicable, the measurement is partitioned into
thirty uniform subdomains. The original size of each subdomain is 7.2 m ×
8.4383 m × 5.0 m and the partition is 8 × 8 × 10. By using this subdomain
data, the reconstruction domain is then augmented by two pixels at each side
in the x and y direction respectively, therefore the actual partition is 12 ×
12 × 10, and the actual size is accordingly increased to 10.8 m × 12.6575 m
× 5.0 m. The number of unknowns in the new partition for each subdomain
is 1440. For each subdomain and each frequency, there are 60 data points.
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Figure 3.26: The magnitude of the measurement data of the DOE Pit 9 complex
for the whole measurement area.
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Figure 3.27: The augmented area and the data points used for the conductivity
image reconstruction of the DOE Pit 9 complex. The data points are enclosed by
the original area.

The original area, the augmented area and the data positions are shown
in Figure 3.27. Totally, the number of data is 360, therefore the resulting
equation is still underdetermined.
It turns out that the combined image from the images for the thirty subdo-
mains takes on apparent artifacts along the interfaces between adjacent sub-
domains. We thus introduce the sliding window method (SWM) to suppress
the strong effect. SWM is still the localized inversion, but the subdomains
overlap each other, the only difference from the original localized inversion.
In SWM, the inversion area is likened as a processing window, which moves
along either the edge or the diagonal of the subdomains, and therefore form-
ing new subdomains which overlap the original ones. The centers of new
subdomains are on the center of edges or vertices of the original subdomains.
Figure 3.28 shows four possible patterns of sliding, out of a total of eight
being used. By using SWM, there are sixty-five more subdomains to be
processed, about two times more than when it is not used.
In the inversion, the initial regularization parameter γ0 = 0.1, and the con-
traction factor q = 2.5. The maximum iteration count is 10. It takes about
5-10 mins for each iteration to run in our Pentium 4, 2.4 GHz personal com-
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Figure 3.28: Four patterns for sliding of the sliding windows. The boxes with
solid line are original sudomains. The boxes with dashed line are new subdomains
created by sliding the processing window.

puter, so the time for processing each subdomain is 75 to 90 mins in the same
computer.
Combining the images from all subdomains needs interpolation since one
point can belong to different subdomains simultaneously. Bi-linear interpola-
tion is used to achieve this goal. The combined image is shown in Figure 3.30.
The scattered field data generated synthetically from the reconstructed pro-
file is shown Figure 3.29. Compared to the measurement data in Figure 3.26,
it is seen that they are different in terms of the magnitude. However, their
patterns are basically consistent, implying that they are correlated well to
each other. The relative large discrepancy in the magnitude comes from the
stopping criterion used in the inversion. It stipulates that the iteration stops
when the iteration number exceeds ten regardless of the difference between
the synthetic data and the measurement data. This is sensible considering
the apparently large uncertainty and inconsistency in the measurement data.
Generally, when the code stops, it is found that err is between 0.4 ∼ 0.7,
and for some cases it can be up to 0.9. For example, for the subdomains
falling in the middle, lower and slightly right part ([25 m, 55 m] × [0 m, 8
m]), the err becomes much higher, which reflects the larger inconsistency in
the measurement data in this area. The large inconsistency between different
frequencies makes it hard for the optimization process to find a solution to
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Figure 3.29: The scattered field data generated synthetically from the recon-
structed conductivity profile of the DOE Pit 9 complex.
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match all the data.
The same VETEM data set was processed previously using BA, and the
result is shown in Figure 3.31. Comparison with the previous result shows
that the present image looks better. Not only the artifacts are suppressed
substantially, but also the resolution is improved greatly. The image is rich
in more details amenable to the analysis of the space variance of the buried
objects. From the image, it can be seen that there are high conductive objects
buried under the left part of the measurement area, the burial depths of which
are between 2 ∼ 4 m. Under the right part are the buried objects with even
higher conductivity, and their burial depths are between 1 ∼ 3 m. Notice
that the image at z = −1.75 m assumes relative lower conductivity and
smaller correlation compared to the adjacent two profiles at z = −1.25 m
and z = −2.25 m, which may mean the existence of something interesting
at this depth, for example, something which tends to separate the regions
above and below this depth.
The two 3D inversion solvers are also applied to process the GEM-2 data
collected at DOE Pit 10. Figure 3.32 and Figure 3.33 are respectively DBIM
result and the Born inversion result. The depth at the top of each sub-figure
is pseudo depth, which is inversely proportional to the square root of the
frequency. It is seen that the two profiles are similar to each other, but in
the DBIM profile, the conductivity contrast is much higher, meaning that
the resolution is higher and the objects are easier to identify. Note that the
original data have 17 frequencies and 771 measurement points. For efficiency,
only 5 frequencies and 100 points are used for both the Born inversion and
the DBIM inversion.

3.4 Conclusions

Computational complexity is a crucial element of inverse scattering. However
high the quality of a reconstruction scheme may be, computational complex-
ity may make real-world use impossible or dramatically restrict computa-
tional area. The 1D inversion scheme scales linearly with computational
domain and is therefore promising for large scale geophysical exploration. It
is even feasible to apply on-site inversion.
The practical benefits of the 1D method are as follows:

• The simple transmitter, receiver setup performs a single, time domain
measurement at each point.
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Figure 3.30: The subsurface conductivity image at the DOE Pit9 complex re-
constructed using the distorted Born iterative method.
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Figure 3.31: The subsurface conductivity image at the DOE Pit9 complex re-
constructed by the inversion using the distorted Born iterative method.
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Figure 3.32: The subsurface conductivity image at the DOE Pit9 complex re-
constructed by the inversion using the distorted Born iterative method.
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Figure 3.33: The subsurface conductivity image at the DOE Pit9 complex re-
constructed by the inversion using the distorted Born iterative method.

• The method can study very large computational domains with O(N)
computational cost.

• Background is estimated at each observation point, thus facilitating the
study of inhomogeneous background.

• The method is highly parallelizable by virtue of its 1D nature and its
embarrassing parallelism.

• Preprocessing is computationally less intensive than the inversions them-
selves and is independent of the type of inversion to follow.

To achieve more reliable subsurface image, two kinds of 3D inverse solver
are developed which are used to process the VETEM data and the GEM-2
data. The forward solver is based on the D formulation BCGS-FFT. The
advantage of D formulation is its continuity along the polarization direction,
which gives a better convergence than using J formulation.
When high conductive objects exist, DBIM is preferred than the Born ap-
proximation. The Fréchet derivatives are computed rapidly with the use of
the reciprocity theorem, which is otherwise computationally demanding.
The comparison with the Born approximation result shows that the image
obtained by DBIM is sharper and clearer. The future direction for the re-
search will include finding more efficient forward algorithm as well as more
efficient inverse algorithm for high conductive buried objects.
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Chapter 4

PUBLICATIONS

The processing of VETEM data using Born Inversion and DBIM, together
with the forward modeling work, have been funded by DOE since 2001.
During this period, a number of related papers have been published, listed
as follows:

1. G. L. Wang, W. C. Chew, T. J. Cui, A. A. Aydiner, D. L. Wright
and D. V. Smith, “3D near-to-surface conductivity reconstruction by
inversion of VETEM data using the distorted Born iterative method,”
Inverse Problem, submitted in April 2004.

2. G. L. Wang and W. C. Chew, “Formal solution to the electromagnetic
scattering by a buried sphere,” Radio Science, accepted in July 2004.

3. T. J. Cui, A. A. Aydiner, W. C. Chew, D. L. Wright and D. V.
Smith,“Three-Dimensional Imaging of Buried Targets in Very Lossy
Earth by Inversion of VETEM Data,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 41, pp. 2197-2210, Oct. 2003.

4. T. J. Cui, W. C. Chew, A. A. Aydiner and Y. H. Zhang, “Fast-forward
solvers for the low-frequency detection of buried dielectric objects,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 41, pp.
2026-2036, Sep. 2003.

5. T. J. Cui, W. C. Chew, A. A. Aydiner, D. L. Wright and D. V.
Smith, “3D imaging of buried targets in very lossy earth by inversion
of VETEM data,” IEEE Trans. on Geoscience and Remote Sensing,
submitted in June 2002.
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6. T. J. Cui and W. C. Chew, “Diffraction tomographic algorithm for the
detection of three-dimensional objects buried in a lossy half-space,”
IEEE Transactions on Antennas and Propagation, vol. 50, pp. 42-49,
Jan 2002.

7. T. J. Cui, W. C. Chew, A. A. Aydiner, D. L. Wright and D. V. Smith,
“Detection of buried targets using a new enhanced very early time
electromagnetic (VETEM) prototype system,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 39, pp. 27022712, Dec. 2001.
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