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ABSTRACT 

The present report summarizes the work carried out between September 30, 2002 and 

August 30, 2003 under DOE research contract No. DE-FC26-00BC15305. 

During the third year of work for this project we focused primarily on improving the 

efficiency of inversion algorithms and on developing algorithms for direct estimation of 

petrophysical parameters.  The full waveform inversion algorithm for elastic property 

estimation was tested rigorously on a personal computer cluster. For sixteen nodes on the 

cluster the parallel algorithm was found to be scalable with a near linear speedup.  This 

enabled us to invert a 2D seismic line in less than five hours of CPU time.  We were invited 

to write a paper on our results that was subsequently accepted for publication.  We also 

carried out a rigorous study to examine the sensitivity and resolution of seismic data to 

petrophysical parameters.  In other words, we developed a full waveform inversion algorithm 

that estimates petrophysical parameters such as porosity and saturation from pre-stack 

seismic waveform data.  First we used a modified Biot-Gassmann equation to relate petro-

physical parameters to elastic parameters.  The transformation was validated with a suite of 

well logs acquired in the deepwater Gulf of Mexico. As a part of this study, we carried out a 

sensitivity analysis and found that the porosity is very well resolved while the fluid saturation 

remains insensitive to seismic wave amplitudes.  Finally we conducted a joint inversion of 

pre-stack seismic waveform and production history data.  To overcome the computational 

difficulties we used a simpler waveform modeling algorithm together with an efficient 

subspace approach.  The algorithm was tested on a realistic synthetic data set.  We observed 

that the use of pre-stack seismic data helps tremendously to improve horizontal resolution of 

porosity maps.  Finally, we submitted four publications to refereed technical journals, two 
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refereed extended abstracts to technical conferences, and delivered two oral presentation at a 

technical forum.  All of these publications and presentations stemmed from work directly 

related to the goals of our DOE project. 
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1.   INTRODUCTION  

This annual report describes work performed by the Institute for Geophysics and the 

Center for Petroleum and Geosystems Engineering, both with The University of Texas at 

Austin, between September 30, 2002 and August 30, 2003 under DOE research contract No. 

DE-FC26-00BC15305.  

Work performed by the Center of Petroleum and Geosystems Engineering includes 

joint inversion of pre-stack seismic data and fluid flow measurements. 

During the same funding period, the UTIG group conducted two main tasks: 

(a) Rigorous Evaluation of Parallel pre-stack waveform inversion code in the τ-p domain, 

(b) Theoretical development and numerical implementation of a pre-stack inversion code 

for direct estimation of petrophysical parameters. 

The section Results and Conclusions of this report provides a detailed technical 

summary of the above developments.  
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2.   EXPERIMENTAL 

There are no experimental components of the project to be included in this annual 

report.  The tasks and components of the project comprise the development of numerical 

algorithms and computer software.  Likewise, the project includes analysis and interpretation 

of both field and numerically simulated data.  All of these developments are summarized in 

the section Results and Conclusions of the report.  
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3.   RESULTS AND DISCUSSION  

3.A.  CENTER FOR PETROLEUM AND GEOSYSTEMS ENGINEERING 

3.A.1.  ABSTRACT 

Work performed by the Center for Petroleum and Geosystems Engineering comprised 

the joint inversion of reservoir production measurements and 3D pre-stack seismic data.  We 

developed an inversion approach for estimating hydrocarbon reservoir properties that jointly 

honor multi-offset seismic data and time records of fluid production measurements.  We 

consider the example of a synthetic reservoir model consisting of spatially heterogeneous 

sands saturated with oil and subject to water flooding.  Spatial discretization of the reservoir 

is performed with a set of non-overlapping and uniform rectangular blocks.  The objective is 

to estimate spatial distributions of porosity and permeability under the assumption that the 

initial water saturation is at capillary equilibrium.  A Biot-Gassmann rock physics/fluid sub-

stitution model is used to quantitatively link P-wave velocity, S-wave velocity, and bulk 

density to total porosity and fluid saturation.  Numerical experiments show that the enforce-

ment of a physics/fluid substitution model effectively constrains the solution space of the 

inversion thereby reducing non-uniqueness and hence providing a more accurate and stable 

estimation of the spatial distribution of porosity. 

Examples of inversion with noisy synthetic measurements indicate that the use of pre-

stack seismic data in conjunction with time records of fluid production can significantly 

improve the spatial resolution of reservoir parameters.  In particular, a good reconstruction of 

the spatial distribution of porosity is obtained when the mean value of porosity is above 10%.  

The synthetic examples also show that the joint inversion of pre-stack seismic data and 

water-oil ratio measurements does not provide a good estimation of the spatial distribution of 
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permeability.  Accurate and reliable estimation of permeability requires of a strong statistical 

correlation between permeability and porosity, or else of the use of additional independent 

data such as permanent in-situ pressure measurements or time records of bottom-hole 

pressure. 

The joint inversion of pre-stack seismic data and production measurements requires a 

significant amount of computations that cannot be approached with a naïve implementation 

of least-squares nonlinear optimization.  To circumvent this difficulty, we introduce a novel 

data subspace inversion approach that effectively compresses the data space and therefore 

substantially reduces computer memory and number of operations required to calculate the 

data sensitivity matrix.  The same approach can be used to perform the inversion of different 

combinations of data subspace vectors.  

 
3.A.2.  JOINT INVERSION OF PRESTACK 3D SEISMIC DATA AND TIME RECORDS OF FLUID 

PRODUCTION MEASUREMENTS: A NUMERICAL STUDY  

3.A.2.1.  Introduction 

Prediction of dynamic reservoir behavior depends on the accurate description of the 

spatial distribution of reservoir parameters.  Matching production data at each well is one of 

the most commonly used strategies for estimating spatial distributions of reservoir 

parameters.  Simulation of multi-phase fluid-flow behavior is inherently a highly nonlinear 

problem.  The corresponding production history matching is not only mathematically and 

computationally challenging, but also highly unstable and non-unique.  In particular, the non-

uniqueness of production history matching is prominent because production measurements 

are only available at limited well locations.  It is also common practice to acquire production 

measurements along a depth interval that includes several flow units in the same well.  



  DE-FC26-00BC15305 

~5~ 

Because of this, production measurements represent long vertical averages of reservoir 

properties that exhibit relatively low sensitivity to lateral variations of porosity, permeability, 

and fluid saturation.  Standard reservoir history matching procedures are based on 

geostatistical methods that populate petrophysical parameters in the inter-well region.  In so 

doing, a spatial covariance matrix is estimated from available rock-core and well- log data to 

enforce a degree of spatial smoothness for the geostatistically interpolated reservoir 

parameters.  The inversion consists of adjusting the free parameters of the spatial covariance 

matrix in order to numerically reproduce the measured time records of fluid production 

measurements (Chu et al., 1996; Wu et al., 1999).  Reservoir history matching practitioners 

usually resort to geostatistical procedures as a palliative for non-uniqueness and instability. 

Three-dimensional seismic data and seismic attributes have been used to guide the 

geostatistical interpolation of inter-well properties through co-kriging and stochastic  

simulation techniques.  More recently, geostatistical approaches have been used to invert 

reservoir petrophysical properties that simultaneously honor amplitude variations of post-

stack seismic data and well logs.  For example, Hass and Dubrule (1994), Behrens and Tran 

(1998), and Grijalba-Cuenca and Torres-Verdin (2000) applied geostatistical simulation and 

inversion to generate a set of reservoir models that honored the post-stack seismic data and 

the existing well logs.  The seismic data are laterally dense and hence can be used to fill the 

spatial gap between sparse well locations.  At the same time, several researchers have advo-

cated the use of pre-stack seismic waveform inversion to estimate petrophysical properties 

(Tarantola et al., 1984; Kolb et al., 1986; Mora 1987; Sen and Stoffa, 1991).  Pre-stack 

seismic data exhibit more degrees of freedom to estimate elastic and petrophysical 

parameters than post-stack seismic data.  For instance, pre-stack seismic data can provide 
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estimates of P-wave velocity, S-wave velocity, and bulk density, whereas post-stack seismic 

data can only provide estimates of P-wave acoustic impedance (the product of bulk density 

times P-wave velocity).  However, in similarity with production history matching, the inver-

sion of pre-stack seismic waveform data suffers from non-uniqueness and high 

computational cost.  Global minimization methods such as simulated annealing and genetic 

algorithms, which could be efficient for pre-stack seismic inversion, are not suitable for 

reservoir history matching because one cannot afford the numerous iterations entailed by 

such algorithms.  It would be necessary to resort to an impractical amount of computer time 

to repeatedly solve the multi-phase flow equations. 

In comparison to traditional reservoir simulation and seismic modeling techniques, 

little has been reported in the open technical literature on the quantitative use of pre-stack 

seismic data to constrain the process of reservoir history matching.  In this paper, we develop 

a data subspace approach for the joint inversion of pre-stack seismic waveform data and time 

records of fluid production measurements.  The proposed method differs from existing 

inversion approaches in several aspects.  First, unlike traditional inversion methods inverting 

P-wave and S-wave velocities, the proposed method focuses on estimating the spatial 

distribution of porosity, which is related to P- and S-wave velocities through a simple Biot-

Gassmann rock physics/fluid substitution model.  The physics/fluid substitution model can 

effectively constrain the solution space of the inversion thereby reducing non-uniqueness and 

hence rendering more accurate estimates of the spatial distribution of porosity.  Second, a 

new data subspace algorithm is developed to constructively combine pre-stack seismic 

waveform and production data in the estimation of realistic reservoir models.  The specific 

basis used to represent the data subspace vectors is chosen according to the type of available 
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measurements rather than according to the types of inversion parameter.  The outstanding 

advantage of the new data subspace inversion method is its low computational cost and 

computer memory requirements due to the reduction of both the number of sensitivity 

calculations and the size of the system of normal equations.  Thus, large-scale inversions can 

be approached in an efficient manner.  Third, an adjoint technique is adopted to generate the 

sensitivity matrix of production data with respect to reservoir parameters. 

We consider three types of 3D synthetic reservoir models to illustrate and assess the 

efficiency of our proposed inversion approach.  Synthetic reservoir models consist of 

spatially heterogeneous sands saturated with oil and irreducible water saturation.  The 

reservoir is subject to water injection with one injector and four producer wells.  We make 

the assumption that the initial water saturation is in capillary equilibrium and pose the 

inversion as the estimation of the spatial distributions of total porosity and permeability 

without imposing a statistical correlation between the two petrophysical parameters. 

 
3.A.2.2.  Production History Matching and Seismic Data Inversion 

Production history matching can be stated as an optimization problem: minimizing 

the misfit between the observed data, obsd , and the data simulated numerically for a given 

model, m.  Based on a simple Bayesian statistical rule, the model parameters can be inverted 

by minimizing the following objective function 

1 1
0( ) ( ) ( ) ( ) ( )T T

o M obs D obsJ C g C g− −= − − + − −m m m m m d d , (3.A.1) 

where m is the vector of reservoir parameters, DC is the data covariance matrix, MC is the 

model covariance matrix, and om  is an a-priori estimate of the reservoir parameters.  In 

equation (1), the model vector, m , is a finite-size vector that contains all of the unknowns 
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that completely describe the spatial distribution of reservoir parameters.  A convenient way 

to construct the model vector is ( )log ,
T

k φ=m  where k is absolute permeability and φ is 

total porosity.  We choose a logarithmic transformation for permeability because of two 

reasons: one is to naturally compress the wide variability of this parameter, and the second is 

to naturally enforce positivity for the estimated value.  The subscript obs in equation (3.A.1) 

is used to identify the available measurements, i.e., time records of fluid production 

measurements, one measurement per sampling time measured after the onset of production.  

When the number of unknown reservoir parameters is large and the number of 

independent degrees of freedom in the measurements is small, numerous combinations of 

parameters can equally satisfy the time records of fluid production measurements.  Therefore, 

the first additive term in equation (3.A.1) is intended to reduce the non-uniqueness of the 

solution as well as stabilize the estimation of m  in the presence of noisy data.  Precisely 

speaking, the first term leads the inversion toward a specific set of solutions in parameter 

space.  Inversion of pre-stack seismic data alone can be approached with the use of an 

objective function similar to that described by equation (3.A.1), except that the vector of 

unknown parameters would contain values of P-wave velocity, S-wave velocity, and bulk 

density.  In addition, the observed data would be described with a data vector obsd that would 

contain time-domain amplitudes of normalized vertical displacement for a particular source-

receiver distance. 

Generally, the Gauss-Newton nonlinear minimization algorithm is efficient for locat-

ing the local minima of a differentiable objective function.  The standard Gauss-Newton 

method requires repeatedly solving a normal system of equations for which the number of 

linear equations is larger or equal to the number of unknown parameters.  For the problem at 
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hand, we have far more unknown parameters than independent measurements.  Solving the 

system of linear equations becomes computational prohibitive.  In both geophysics and reser-

voir engineering areas, a modified Gauss-Newton approach is adopted for the minimization 

of equation (3.A.1), and this leads to the fixed-point iterated solution 

1
1 ,[ ] [ ( )]T T

o oM D Ml l l l obs l lC G C G C G g G−
+ = − + − + −m m d m m  (3.A.2) 

where Gl is the matrix of sensitivity coefficients calculated at the l-th iteration.  Because of 

the high computational cost required to calculate the sensitivity matrix of waveform data 

with respect to the unknown parameters, it would be impractical if seismic data inversion 

were conducted in a global 3D manner.  In this study, we adopt a local 1D seismic data 

inversion technique to reproduce the seismic amplitude measurements.  This is equivalent to 

assuming that the measured pre-stack seismic data is the response of a locally 1D medium 

consisting of horizontal layers.  Each pre-stack, or CMP seismic gather, is treated inde-

pendently to approach the inversion of a 1D medium.  The “mosaique” of 1D pre-stack 

seismic inversion is taken as the 3D spatial distribution of elastic parameters.  For the pro-

duction data, we apply the adjoint technique to compute the sensitivity of fluid production 

data to a perturbation of the vector of model parameters, m (Wu et. al, 1999).  At every 

iteration, we solve the linear system of equations given by  

[ ] ( )T
D l M l obs l l oC G C G g G+ = − + −x d m m  (3.A.3) 

for the model update vector, x.  In this formulation, the number of equations is equal to the 

number of measurements.  Such a modified Gauss-Newton method operates efficiently for 

cases where the size of the vector obsd  is small.  Specifically, the adjoint technique for 

computing sensitivities only solves an adjoint system with multiple right-hand sides, equal to 

the number of production data.  Since the number of production data is much less than the 
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number of unknown parameters, both computational cost and memory become affordable for 

generating and storing the sensitivity coefficient matrix of production data with respect to 

reservoir parameters.  However, for the inversion of pre-stack seismic data, if the sensitivity 

coefficients of each sample point of multi-offset gathers with respect to reservoir parameters 

were computed, the size of the sensitivity matrix would increase dramatically.  The high 

computational cost incurred by the large-size sensitivity matrix involved in the Gauss-

Newton iteration renders the minimization approach impractical.  Thus, the development of 

more efficient inversion algorithms becomes crucial when pre-stack seismic data and 

production data are combined for inversion.  In this paper, we make use of a new data 

subspace approach to efficiently assimilate the large amount of data input to the joint 

inversion of pre-stack seismic data and time records of fluid production measurements.  Our 

data subspace approach is different from Kennett et al’s (1988), Oldenburg et al.’s (1993) 

and Abacuioglu et al.’s (2001) in that we partition the data objective function based on the 

types of observed data rather than on the types of model parameters.  Therefore, not only can 

the dimensions of the sensitivity matrix be significantly reduced but also the direct 

computation of the sensitivity of individual data points with respect to model parameters can 

be avoided entirely. 

Suppose that numerical modeling errors can be neglected and that only measurement 

errors are of significance.  The model response and the measured data can be written as 

jijiji edg ,,, +=  for WNi L,1=  and DNj L,1= , (3.A.4) 

where e denotes the vector of measurement errors, Nw is either the number of traces or the 

number of producer wells, ND  is either the number of time samples for each seismic trace or 

the number of time samples of production data for each well.  Kennett’s reflectivity method 
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was used to generate the synthetic pre-stack waveforms in the space and time domains 

assuming no multiple reflections and no transmission losses.  As previously emphasized, 

under the assumption of a diagonal data covariance matrix, the inversion can be approached 

by minimizing the objective function defined by equation (3.A.1).  Under the assumption of a 

diagonal data covariance matrix, the second additive term in equation (3.A.1) can be 

rewritten as  

.
)d-(g

1 1
2
ji,

2
ji,ji,∑ ∑

= =

W DN

i

N

j σ     (3.A.5) 

The motivation for our new data subspace inversion approach comes from the central 

limit theorem.  This theorem states that the distribution of the sum of a large number of 

identically distributed random variables will be approximately normal, regardless of the 

characteristics of the individual distributions.  If the error between the observed data and the 

model predicted data falls within the range of one standard deviation, it then follows that 

1
11

1
2
,

2
,

1
→= ∑∑

==

dw N

j ji

ji
N

iwd
i

e

NN
u

σ
. (3.A.6) 

Based on this last property, the joint inversion problem can be stated as follows: 

Adjust the model parameters by making the limit defined by equation (3.A.6) approach one 

as closely as possible.  If the observed data are matched with the model predicted data, then 

the functional iu  should approach one.  Therefore, the objective function defined by equation 

(3.A.1) can be rewritten as 

( ) ( ) ( ) ( ) ( )1 1
1 0 0

T T
M MJ C C− −= − − + − −m u e u e m m m m  (3.A.7) 
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where BC denotes a weighting matrix that assigns relative importance to the various  trace 

offsets, and to the various production wells, and e is a unity vector given by (1, ,1)T= Λe .  It 

must be emphasized that only the sensitivities of the sub-objective function with respect to 

model parameters 
m
ui

∂
∂ are required for the minimization of the quadratic cost function defined 

by equation (3.A.7).  Because of this, the proposed data subspace method becomes superior 

to existing inversion methods as it entails much lower computational costs and computer 

memory. 

The gradient of sub-objective function could be computed using finite differences.  

However, such an approach is  not efficient because finite differences would require the 

computation of the sensitivities for each data point with respect to each unknown reservoir 

parameters.  In this paper, we extend the adjoint approach (Wu et al., 1999) to compute the 

gradient of the sub-objective function with respect to model parameters without explicitly 

calculating the sensitivities of the data with respect to the model parameters.  In the limit, if 

each observed sample point and each production data were chosen as a subspace, the data 

subspace approach would be equivalent to a standard Gauss-Newton minimization method.  

On the other hand, the proposed data subspace minimization method would become equi-

valent to the steepest descent algorithm if a single subspace vector were used for the 

inversion.  A trade-off between the convergence rate and the number of subspace vectors 

must be made in practice.  In particular, the choice of too few subspace vectors results in 

slow convergence.  Conversely, the use of too many subspace vectors suffers from the high 

cost of computing a large number of gradients of subspace vectors with respect to model 

parameters.  A practical alternative is to construct data subspace vectors that bear similar 

information.  For instance, the data subspace vectors could be constructed with water-oil 
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ratio data from a production well, amplitudes from a trace, or measurements taken from a 

particular time interval, etc.  In the following sections, the proposed data subspace inversion 

method is applied to the independent and joint inversion of pre-stack seismic data and time 

records of fluid production measurements. 

 
3.A.2.3.  On the Choice of a Model Covariance Matrix 

Under a Bayesian framework, a priori information about the spatial distribution of 

the unknown reservoir parameters can be enforced with the use of the model covariance 

matrix (Tarantola, 1987).  However, in most cases, the model covariance matrix may not be 

available due to the lack of a-priori knowledge about the model.  Often, the Laplacian or 

some other smoothing isotropic operator can be applied to regularize the unknown vector of 

model parameter (Tikhonov and Arsenin, 1977).  In particular, Tarantola (1987) showed that 

a first-order difference operator is analogous to enforcing a model covariance matrix (Oliver, 

1994).  For instance, an exponential model covariance function of the form 

'
' 2( ) exp( ),

z z
C z z

L
σ

−
− = −  (3.A.8) 

can be enforced  by minimizing the Sobolev functional norm 


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1
2

1
dz
df

dzLzfdz
L

f
σ

 , (3.A.9) 

where L is a measure of correlation length between different locations.  The variables z and 

'z  in equation (3.A.8) represent the spatial location of two discretization blocks, σ  denotes 

the variance of the reservoir parameters, and f is the parameter to be reconstructed (e.g., 

porosity and/or permeability).  The regularization parameter enforces a trade-off between the 

data misfit and the enforced model structure.  If the length L is too long, then the inverted 
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parameter will tend to be very flat.  If it is too small, then the role of the regularization 

function is negligible thereby leading to excessively oscillatory inverted parameters.  Without 

any a-priori information about the length of spatial correlation, we make use of a large L to 

control the change of model parameters. 

 
3.A.2.4.  Rock Physics/Fluid Substitution Model 

As mentioned earlier, instead of elastic parameters, our goal is to estimate block 

porosity and permeability values.  However, seismic waveform data are not explicitly related 

to porosity.  A rock physics/fluid substitution model allows one to establish a quantitative 

link between fluid-flow petrophysical parameters and effective elastic properties.  The basic 

equations for P-wave and S-wave velocities in isotropic, elastic non-porous media are given 

by 

ρ

µ
3
4

+
=

K
v p , (3.A.10) 

and 

ρ
µ

=sv , (3.A.11) 

where K is the rock’s bulk modulus (in turn a function of porosity, φ , of water saturation, 

wS , and of the mechanical properties of the rock’s solid skeleton), µ is shear modulus, and  ρ  

is bulk density.  The bulk density can be written as 

sowww SS ρφρφρφρ )1()1( −+−+= , (3.A.12) 

where ρw, ρo, and ρs are the densities of water, oil, and of the rock’s solid skeleton, 

respectively. 
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For simplicity, in this paper we assume a fluid model consisting of only water and oil.  

The rock’s bulk modulus K of the saturated rock can be estimated from Gassmann’s equation 

(Nur and Wang, 1998), namely, 

fss

b

s

b

b

KKK
K

K
K

KK
φφ

µ
+



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 −−
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
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


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 +=

11

1

3
4

2

, (3.A.13) 

where the subscripts b, s, and f stand for bulk, solid and fluid, respectively.  We remark that 

Gassmann’s equation makes three basic assumptions: First, the rock is homogeneous, and 

isotropic.  Second, the pore space is completely connected.  Third, the Gassmann’s equation 

is valid only at low frequencies (<100 Hz).  The porosity, elastic properties, and water 

saturation relationships summarized by equations (3.A.10) through (3.A.13) quantitatively 

link the wave equation with the two-phase fluid-flow equation.  Because of this, in principle, 

the porosity distribution can be estimated by jointly inverting time records of fluid 

production measurements and pre-stack seismic data.  The sensitivity of pre-stack seismic 

data to total porosity can be readily derived from the chain rule once the Fréchet derivatives 

of seismic data are obtained with respect to P-wave velocity, S-wave velocity, and bulk 

density.  In this study, the derivatives of pre-stack seismic data with respect to P-wave 

velocity, S-wave velocity, and bulk density are computed numerically using finite 

differences. 

 
3.A.2.5.  Numerical Studies of Feasibility 

3.A.2.5.1.  Synthetic Reservoir Model  

The synthetic reservoir model, displayed in Figure 3.A.1, consists of spatially 

heterogeneous, hydrocarbon-bearing sands embedded in a shale background.  Spatial 
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dimensions of the reservoir are 1260 ft × 1260 ft × 900 ft in the x, y, and z directions, 

respectively.  The model is discretized with a set of 21×21×30 cubic blocks in the x, y, and z 

directions, respectively.  Block sizes are uniform in each direction and equal to 60 ft.  

Reservoir thickness is assumed uniform and equal to 60 ft.  Each block is defined with 

specific values of permeability and porosity.  Block permeabilities are homogeneous, yet 

vertically anisotropic, with the vertical permeability assumed to be one-tenth of the 

horizontal permeability.  For the case of permeability, the inversion is posed to yield esti-

mates of horizontal permeability; the corresponding vertical permeability is equal to one 

tenth of the horizontal permeability.  Therefore, in this paper the nomenclature permeability 

and horizontal permeability are used without distinction. 

 

Figure 3.A.1.  Graphical description of the synthetic 3D reservoir model.  Well locations are 
indicated with vertical lines penetrating through the reservoir.  The injection well is located 
close to the center of the reservoir.  There are four production wells symmetrically located 
around the injection well. 
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A five-spot well pattern is used to sweep the hydrocarbons saturating the reservoir 

volume.  The central well is used for water injection while the remaining wells are dedicated 

to oil production.  Well locations are shown in Figure 3.A.2.  The injector well is located in 

the center of the block [x, y] = [13,11] and four producers, numbered 1 through 4, are located 

in the center of the blocks [10, 6], [16, 6], [16, 16], and [10, 16].  The total flow rate at each 

producer is fixed at 900 STB/D and the flow rate at the injector is fixed at 400 STB/D.  Two-

phase relative permeability and capillary pressure curves are employed in the forward 

modeling of fluid-flow measurements and these are shown in Figures 3.A.3 and 3.A.4, 

respectively.  Relative permeability and capillary pressure curves are assumed constant for 

all the discretization blocks. 

Spatial distributions of permeability and porosity for the discretization blocks in the 

synthetic 3D reservoir model are assigned by means of geostatistical simulation.  In so doing, 

the mean of the log-permeability is assumed to be 4.0 with a variance equal to 0.2.  The mean 

of the porosity is assumed to be 0.2 with a variance equal to 0.0004.  Logarithmic permeabil-

ity and porosity are assigned a spatial variogram range equal to 600 ft.  Each layer is assumed 

to exhibit a spherical variogram model.  No correlation is assumed between the porosity and 

log-permeability.  Block permeabilities and porosities are generated using unconditional 

simulation computed from Cholesky decomposition of the covariance matrix and are shown 

in Figures 3.A.5 and 3.A.6, respectively.  Measurements input to the inversions are simulated 

numerically from the geostatistically generated permeability and porosity models.  Errors in 

the measurements are assumed independent.  Details of the reservoir fluid and rock 

properties together with the characteristics of the reservoir’s spatial architecture are described 

in Table 3.A.1. 



DE-FC26-00BC15305 

~18~ 

Fluid production measurements were simulated from the time interval between 500 

and 1000 days after the onset of water injection.  During the simulation time, water 

breakthrough occurs after 600 days.  In all cases, synthetically generated water-oil ratio 

measurements were contaminated with additive random Gaussian noise.  The standard devia-

tion of the noise was assumed equal to 5% of the observed data.  

 
Figure 3.A.2.  Plan view and cross section of the reservoir model shown in Figure 3.A.1.  The 
plan view indicates locations of the injector and producer wells together with the geometrical 
dimensions of the reservoir.  A regular Cartesian grid inserted within the reservoir indicates 
the location, dimensions, and number of discretization blocks used to describe the spatial dis -
tribution of reservoir properties.  Vertical dimensions of the reservoir and of the discretization 
blocks are shown om the cross-section. 
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Figure 3.A.3.  Water-oil relative permeability curves used in the numerical simulation of the 
water-oil system.  
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Figure 3.A.4.  Capillary pressure curve used in the numerical simulation of the water-oil 
system. 

 



DE-FC26-00BC15305 

~20~ 

 
Figure 3.A.5.  Graph depiction of the true spatial distribution of porosity. 

 

 
Figure 3.A.6.  Graph depiction of the true spatial distribution of log-permeability [log (md)] . 
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Table 3.A.1.  Summary of fluid and reservoir properties used to 
construct the synthetic reservoir model and to numerically simulate 
time records of fluid production data 

 Property Values 
Water density 62.40 lb/ft3 

Oil density 52.88 lb/ft3 
Water viscosity 1.00 cp 
Oil viscosity 0.92 cp 
Water compressibility 3.20×10-6 psi-1 
Oil compressibility 1.00×10-5 psi-1 
Water formation volume factor 1.00 RB/STB 

Fluid 

Oil formation volume factor 1.16 RB/STB 
Initial water saturation 0.19 
Residual oil saturation 0.23 

Porosity 

Gaussian probability 
distribution with mean 0.19 

and standard deviation 
0.020 

Permeability 

Gaussian probability 
distribution with log - mean 
4.0 and standard deviation 

0.45 
o
rwk  end point of water relative 

permeability 
0.20 

o
rok  end point of oil relative 

permeability 
0.90 

yx kk /  ratio of two principal 

permeability directions 
1.00 

Reservoir 

zx kk / ratio of horizontal 
permeability and vertical 
permeability  

0.10 

Number of gridblocks 21×21×30 
Gridblock size 60×60×30 ft 
Injection rate 900 STB/D 
Production rate 4000 STB/D 
Perforation All layers 
Number of production wells  4 
Number of injection wells  1 

Simulation 

Distance between injector and 
producers 350 ft 

 
3.A.2.5.2.  Inversion of Time Records of Fluid Production Data 

In the following numerical example, we investigate the use of water-oil ratio (WOR) 

measurements for the quantitative estimation of spatial distributions of permeability and 

porosity.  In general, WOR data constitute a relatively late-time measurement in the produc-
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tion life of a reservoir.  Until the water breakthrough occurs in one or more production wells 

WOR information remains nonexistent.  After water breakthrough, the ratio of the volumetric 

production rates of water and hydrocarbon components is measured at surface conditions.  

Hence, in this paper we focus on conventional WOR measurements acquired on a well-to-

well basis.  

As emphasized earlier, history matching is essentially a non-unique process.  

Traditionally, non-uniqueness can be mitigated by incorporating a-priori information into the 

inversion.  The a-priori information could be well- log data, rock-core data, or geological 

information.  Mathematically, statistical correlation properties of reservoir parameters can be 

imposed through the use of a model covariance matrix, Cm, and by initializing the inversion 

with an educated model, mo.  Without any a-priori information about porosity and perme-

ability, we make use of a first-order differential regularization strategy to impose a degree of 

smoothness of the unknown spatial distributions of porosity and permeability.  For the exam-

ple cases considered in this paper, the inversion was initialized with uniform values of 

porosity and permeability for all of the discretization blocks.  As can be observed in Figures 

3.A.7 and 3.A.8, the inverted distributions of porosity and permeability do not compare well 

with the true distributions even though the production data are matched within 5% (see 

Figures 3.A.9–3.A.12).  Note that significant spatial variations in the inverted parameters 

occur only near the wells.  The inverted distributions are highly influenced by the actual 

values of porosity and permeability in the vicinity of wells since the fluid flow rates are 

extremely sensitive to these block parameters (Wu et al., 1999).  Poor reconstructions of the 

spatial dis tributions of permeability and porosity, together with a good match of WOR 

measurements, clearly indicate the high level of non-uniqueness in the inversion of WOR 
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data.  It must be pointed out that, due to the non-uniqueness of the inverse problem, the 

choice of parameter covariance matrix heavily influences the final inverted model.  Without 

a-priori information, the selection of the degree of model smoothness remains strictly 

subjective.  In this paper, the choice of a model covariance matrix is driven by the subjective 

choice of a smooth spatial solution while the production data are matched.  Accordingly, we 

assumed a lateral correlation length equal to ten discretization blocks and a vertical 

correlation length equal to one discretization block.  

 
Figure 3.A.7.  Graphical description of the spatial distribution of log-permeability estimated 
from the inversion of time records of water-oil ratio.  [log (md)]. 
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Figure 3.A.8.  Graphical description of the spatial distribution of porosity estimated from the 
inversion of time records of water-oil ratio. 
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Figure 3.A.9.  Comparison of the measured and numerically simulated time record of water-
oil ratio (WOR) for the production Well No. 1.  The measured data were contaminated with 
5% additive Gaussian random noise. 
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Figure 3.A.10.  Comparison of the measured and numerically simulated time record of water-
oil ratio (WOR) for the production well No. 2.  The measured data were contaminated with 
5% additive Gaussian random noise. 
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Figure 3.A.11.  Comparison of the measured and numerically simulated time record of water-
oil ratio (WOR) for the production well No. 3.  The measured data were contaminated with 
5% additive Gaussian random noise. 
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Figure 3.A.12.  Comparison of the measured and numerically simulated time record of water-
oil ratio (WOR) for the production well No. 4.  The measured data were contaminated with 
5% additive Gaussian random noise. 

 
3.A.2.5.3.  Synthetic Elastic Model 

The second test example was designed to appraise the sensitivity of pre-stack seismic 

data to the spatial distribution of porosity.  Petrophysical parameters were transformed into 

corresponding block elastic parameters using the Gassmann’s effective medium equations.  

Seismic data were simulated as locally 1D pre-stack gathers.  Accordingly, the synthetic 

subsurface model consists of a 900-ft thick sand layer embedded in a background shale with 

the top interface between shale and sand located at a depth of 4000 ft.  Simulation of seismic 

data was performed assuming 10 source-receive offsets with a uniform receiver spacing 

equal to 1260 ft and a constant time sampling rate of 2ms in the interval from 0 to 1.64 

seconds.  Pre-stack gathers were assumed to include source-receiver angles from 4.5 to 45 

degrees.  The synthetic seismograms were generated assuming a zero-phase Ricker wavelet 

of central frequency equal to 35 Hz.  All the synthetic pre-stack seismic data were corrected 

for normal moveout.  
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Figure 3.A.13 shows the Ricker wavelet used in this study.  Zero-mean Gaussian 

random noise of standard derivation equal to 5% of the seismic waveform amplitude was 

added to the simulated pre-stack seismic data.  The noisy data were inverted using the new 

data subspace algorithm discussed earlier.  Details of the assumed petrophysical properties 

and of the acquisition parameters for the seismic data are described in Tables 3.A.2 and 

3.A.3, respectively. 
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Figure 3.A.13.  Graphic representation of the Ricker wavelet used in the simulation of pre-
stack seismic data. 

 
Table 3.A.2.  Descriptions of the bulk modulus, shear modulus, 
and bulk density of the rock and fluid constituents assumed in the 
construction of the synthetic reservoir model. 

Propert ies 

Dry bulk 
modulus 

(Gpa) 

Shear 
modulus 

(Gpa) 
Density 
(g/cm3) 

Sand  38.12 30.70 2.65 

Water 2.25 - 1.0 

Oil 1.57 - 0.847 
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Table 3.A.3.  Summary of the characteristics of the pre-stack seismic data used in this 
paper to generate synthetic waveforms. 

Properties Values Properties Values 

Wavelet type  Zero-phase Ricker 
wavelet Number of samples 1024 

Central frequency 35 Hz Simulation time 2  s 

Sampling interval 0.002 s Number of sand layers 30 

Number of offsets at 
each location 10 Number of shale 

layers 50 

Angle intervals 4.5 degree Thickness of each 
sand layer 30 ft 

Distance between 
two adjacent offsets 49 ft Thickness of each 

shale layer 80 ft 

 
3.A.2.5.4.  Inversion of Pre-stack Seismic Data 

We assume that the petrophysical parameters of the shale layers are known.  The 

thirty layers comprising the sand zone located between 4000 ft. and 4900 ft. are the target 

layers of unknown elastic and petrophysical properties.  Local 1D synthetic seismograms 

were generated for the 80- layer model.  Inversions were conducted using the ten traces 

simulated from local 1D models.  The 3D model is built as a “mosaique” of the sequential 

inversion of local 1D models.  A model covariance matrix, Cm, was enforced by the inversion 

with entries calculated directly from equation (3.A.8) assuming that 2σ  in that equation is 

equal to actual variance of porosity used to construct the synthetic reservoir model.  The data 

covariance matrix, CD, on the other hand, was constructed as a diagonal matrix with positive 

entries.  Unlike standard approaches, where the entries of the diagonal of CD represent the 

variance of the measured data, here the entries of the diagonal are used as weighting factors 

that assign a relative importance to the various offsets included in an individual CMP gather. 
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Figure 3.A.14 graphically describes the inversion results obtained with the data 

subspace method designed to invert the spatial distribution of porosity.  The estimated spatial 

distribution of porosity successfully reproduces the main features of the original distribution 

in both the lateral and vertical directions.  Recall that we assumed that a-priori information 

about porosity was not available and that the inversion was initialized with a uniform 

distribution (see Figure 3.A.15).  Despite the lack of a-priori information about the spatial 

distribution of porosity, a very good reconstruction is attained by the inversion of pre-stack 

seismic data.  Using histograms, one can further appraise the closeness between the 

distributions of inverted and true porosity.  Figures 3.A.16 and 3.A.17 show histograms of 

the true porosity and of the porosity inverted from pre-stack seismic data.  The two 

histograms are almost identical. 

 
Figure 3.A.14.  Graphic depiction of the spatial distribution of porosity inverted from pre-
stack seismic data. 
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Figure 3.A.15.  Graphic depiction of the spatial distribution of porosity used to initialize the 
inversion of pre-stack seismic data. 
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Figure 3.A.16.  Graphic depiction of the statistical distribution of porosity values in the 
synthetic reservoir model. 
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Figure 3.A.17.  Graphic depiction of the statistical distribution of porosity values in the 
reservoir model inverted from pre-stack seismic data 

 
In Figure 3.A.18, we show a comparison of the synthetic seismograms for a CMP 

gather, which were computed from the inverted porosity distribution as well as from the 

corresponding gather simulated from the true porosity distribution.  The match between the 

two-waveform data sets is good even though the initial guess for porosity is that of a constant 

value.  The fit of the seismic data achieved by the inversion can also be quantitatively 

assessed with the correlation coefficient between the observed data and the data simulated 

from the inverted model.  The correlation coefficient varies between -1 and 1.  It is equal to 1 

when there is a perfect match between the two data sets.  Figures 3.A.19 and 3.A.20 display 

maps of correlation coefficient between the pre-stack seismic data simulated for the initial 

model and from the porosity model rendered by the inversion.  As displayed in 

Figure 3.A.20, most of the correlation coefficients are above 0.90 after the inversion 

successfully matches the input pre-stack seismic waveform data. 
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(a)  

(b)  
Figure 3.A.18.  Comparison of the measured and simulated seismic traces for a single CMP 
gather: Panel (a) shows the measured seismic data and panel, (b) shows the numerical 
simulated seismic data.  The measured data were contaminated with 5% additive Gaussian 
random noise. 

 



  DE-FC26-00BC15305 

~33~ 

 
Figure 3.A.19.  Plan view of the statistical correlation between the observed pre-stack seismic 
data and the pre-stack seismic data simulated from the uniform reservoir model used to 
initialize the inversion. 

 

 
Figure 3.A.20.  Plan view of the statistical correlation between the observed pre-stack seismic 
data and the pre-stack seismic data simulated from the inverted reservoir mode. 
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Once the block porosities are inverted, P-wave and S-wave velocities can be 

calculated using Gassmann’s equation.  Figure 3.A.21 is a composite plot of P- wave velocity 

obtained from the inversion of pre-stack seismic data.  There are three panels in that figure.  

Panel (a) shows the vertical profile of P-wave velocity used to initialize the inversion, 

Panel (b) shows the profile of P-wave velocity rendered by the inversion of seismic 

waveform data, and Panel (c) shows the original profile of P-wave velocity.  Figure 3.A.22 

shows similar comparison panels for vertical profiles of S-wave velocity.  In both cases, the 

reconstructed and original profiles exhibit a good visual correlation.  

(a) (b) (c) 

 
Figure 3.A.21.  Vertical profiles of P-wave velocity:  (a) Initial velocity, (b) true model, and 
(c) estimated model from waveform inversion 
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(a) (b) (c) 

 
Figure 3.A.22.  Vertical profiles of S-wave velocity: (a) Initial velocity, (b) true model , and 
(c) estimated model from waveform inversion. 

 
The vertical resolution of pre-stack data is governed by the relative difference 

between the seismic wavelength and the layer thickness.  Different central frequencies were 

used to assess the vertical resolution of pre-stack data to estimate porosity.  Figure 3.A.23 

shows the spatial distribution of porosity estimated from synthetic seismic data generated 

with a Ricker wavelet of central frequency equal to 20 Hz.  It is found that the vertical and 

lateral resolution of the inverted distribution of porosity are still high compared to the 

porosity distribution estimated from seismic data generated with a Ricker wavelet of central 

frequency equal to 35-Hz. 
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Figure 3.A.23.  Graphic depiction of the spatial distribution of porosity inverted from pre-
stack seismic data assuming a low frequency Ricker wavelet (central frequency=20 Hz). 

 
In the previous models, porosity values used in Gassmann’s equation for the 

calculation of P-wave and S-wave velocities exhibit a Gaussian distribution with a mean 

equal to 0.2.  Next we consider the inversion of a spatial distribution of porosity that exhibits 

a lower value of average porosity.  Figure 3.A.24 shows the true porosity distribution.  The 

mean of this porosity distribution is 0.08.  A comparison between the true porosity 

distribution and the inverted porosity distribution (shown in Figure 3.A.25) reveals that the 

inverted porosity distribution does not properly reproduce the features of original porosity 

distribution.  For completeness, Figure 3.A.26 shows one of the pre-stack CMP seismic 

gathers input to the inversion.  This figure indicates that the variation of seismic amplitude 

with offset is not significant compared to that shown in Figure 3.A.18 for a larger value of 

average porosity.  The lack of measurable seismic amplitude variations with offset explains 

why the inversion rendered a porosity distribution that correlates poorly with the original 

distribution of porosity. 



  DE-FC26-00BC15305 

~37~ 

 
Figure 3.A.24.  Graphic depiction of the spatial distribution of porosity for the case of a tight 
synthetic reservoir model. 

 

 
Figure 3.A.25.  Graphic depiction of the spatial distribution of porosity inverted from pre-
stack seismic data simulated for the case of the tight reservoir model shown in Figure 3.A.23. 
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Figure 3.A.26.  Simulated pre-stack CMP gather for the case of the tight reservoir model 
shown in Figure 23. 

 
3.A.2.5.5.  Assessment of the Data Subspace Method 

In the preceding section we described the mathematical basis of the data subspace 

method.  The choices of the sub-objective function and the calculation of the subspace 

vectors are the primary factors that control the efficiency of the proposed inversion method.  

A tradeoff must be made between CPU time and computer memory.  If all of the observed 

data were grouped together, then the data sub-space method would turn into the steepest 

descent method, which entails low computer memory requirements at the expense of low 

rates of convergence.  If each data point (or sample point) was selected to represent a single 

data sub-space vector, then the proposed data sub-space inversion would be equivalent to the 

Gauss-Newton minimization method.  Too few or too many data sub-space vectors are not 

proper choices.  In our studies, we found that the selection of data sub-space vectors by 

producer wells and by seismic offsets was an efficient choice.  Figure 3.A.27 shows the 

convergence of the objective function as a function of iteration number for the two cases. 
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Figure 3.A.27.  Evolution of the cost function used for inversion as a function of iteration 
number.  The cost function is constructed using the data subspace algorithm described by 
equation (3.A.6).   Case A and Case B correspond to different porosity models used to 
initialize the inversion. 

 
It can be observed that, after a few iterations, the inversion converges to an optimal 

solution.  Occasionally, variations in the initial guess model result in diverse inverted spatial 

distributions due to the non-uniqueness and instability of the inversion.  However, for the 

inversion of pre-stack seismic data, we used different initial guess models but the inverted 

models remained very similar.  Figure 3.A.28 shows the spatial distribution of porosity 

inverted from an initial spatially uniform porosity distribution chosen far from the mean of 

the original porosity distribution.  We observe that the estimated porosity distribution is 

almost identical to that of the original case thereby indicating the stability of the inversion. 
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Figure 3.A.28.  Graphical description of the spatial distribution of porosity inverted from pre-
stack seismic data simulated for the tight reservoir model shown in Figure 3.A.23. 

 
3.A.2.5.6.  Joint Inversion of Pre-stack Seismic Data and Time Records of Fluid 

Production Measurements  

This test example is intended to assess the value of pre-stack seismic data on the 

estimation of permeability.  From a practical viewpoint, the joint inversion is computa-

tionally challenging and CPU intensive.  The proposed data sub-space inversion approach 

allows one to efficiently combine both pre-stack seismic data and fluid production measure-

ments for the estimation of spatial distributions of porosity and permeability.  As discussed in 

the previous cases, the porosity field can be stably and reliably computed from the inversion 

of pre-stack seismic data.  In this case, we consider the joint inversion in two stages.  After 

porosity estimates are obtained from the pre-stack seismic data invasion, those porosities are 

fixed and the second stage of the joint inversion focuses on the estimation of the spatial 

distribution of permeability only.  Figure 3.A.29 shows the spatial distributions of 
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permeability inverted with the use of pre-stack seismic data in addition to time records of 

fluid production measurements.  Compared to the spatial distribution of permeability inverted 

from time records of fluid production measurements alone (shown in Figure 3.A.7) the use of 

pre-stack seismic data does improve the spatial resolution of the permeability field in the 

vicinity of wells.  However, between wells the inverted spatial distribution of permeability is 

not satisfactory.  

 
Figure 3.A.29.  Graphic depiction of the spatial distribution of log-permeability [log(md)] 
obtained from the joint inversion of pre -stack seismic data and time records of water–oil ratio.  
Data input to the inversion were generated from the tight reservoir model shown in 
Figure 3.A.23. 

 
The above exercise indicates that pre-stack seismic data clearly provide much higher 

spatial resolution in the reconstruction of porosity than in the estimation of permeability.   

One reason for the poor spatial resolution for permeability even when pre-stack seismic data 

are combined with time records of fluid production measurements is that the WOR data are 

sensitive to large spatial averages of the permeability distribution in the vicinity of wells.  

However, the most important reason is that permeability is not directly related to seismic 
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data.  We believe that, in addition to WOR data, more information such as accurate 

correlation model between permeability and porosity or the availability of production 

measurements for each individual flow unit are necessary for further improving the spatial 

resolution of permeability.  For example, recent studies have shown that the incorporation of 

in-situ permanent sensor measurements can dramatically enhance the spatial resolution of the 

inverted permeability (Wu et al., 2003).   

 
3.A.2.6.  Discussion and Conclusions  

The inversion of time records of fluid production measurements into spatial 

distributions of total porosity and permeability is highly non-unique and unstable due to 

insufficient and inadequate data.  Consequently, a large number of very diverse reservoir 

models can be constructed that will honor the measured production data within the assumed 

noise threshold.  Non-uniqueness can only be overcome with the addition of independent 

pieces of data or else by reducing the parameter space through the enforcement of model 

constraints.  The purpose of this paper was to explore the possibility of reducing non-

uniqueness in the estimation of spatial distributions of porosity and permeability by 

combining time records of fluid production measurements with pre-stack 3D seismic data. 

The synthetic examples of inversion described in this paper indicate that the use of 

pre-stack seismic data can significantly improve the resolution of reservoir parameters.  

Specifically, a good reconstruction of spatial distribution of porosity was obtained when the 

mean value of porosity was above ten percent.  It was also found that the joint inversion of 

pre-stack seismic data and water-oil ratio data is still not sufficient to estimate a realistic 

spatial distribution of permeability.  In order to improve the estimation of permeability it is 

necessary to establish a strong statistical correlation between permeability and porosity, or 
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else to incorporate additional independent data such as permanent sensor and bottom-hole 

pressure measurements, for instance. 

It must be pointed out that the success of the joint inversion approach described in 

this paper relies on the accuracy of the rock physics/fluid substitution model.  The assumed 

correlation between elastic and reservoir parameters plays an important role in the inversion.  

For example, we assumed that the elastic bulk modulus and porosity were independent from 

the corresponding va lues of pressure and fluid saturation.  If the influence of pressure and 

fluid saturation on the elastic bulk modulus were significant, then a more complex rock 

physics/fluid substitution model would be necessary to link elastic and petrophysical 

parameters. 

The inversion of pre-stack seismic data provides a quantitative way to naturally bias 

the inversion toward a geologically consistent set of solutions in model space.  Such an inver-

sion strategy becomes appropriate when seismic amplitude data are related to the underlying 

reservoir parameters.  
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3.B.  INSTITUTE FOR GEOPHYSICS 

3.B.1.  ABSTRACT 

During the third year funding period, the UTIG group conducted two main tasks: 

(a) Rigorous evaluation of a parallel pre-stack waveform inversion code in the τ-p 

domain: performance statistics on a PC cluster were evaluated and field data were 

inverted using the parallel code, and 

(b) Direct estimation of petrophysical parameters from seismic data by pre-stack 

inversion: Together with CPGE we did theoretical development and numerical 

implementation which were tested with models generated from real well- logs. 

In addition we worked jointly with CPGE group in the development of joint inversion 

of seismic and fluid flow data. 

One manuscript based on the parallel seismic inversion was submitted to a journal 

Concurrency and Computation, which has been accepted for publication.  A paper on direct 

inversion of petrophysical parameters is currently under preparation.  One paper on the 

theoretical development of a pre-stack waveform inversion was published in the Nov.-Dec. 

2003 issue of Geophysics.  One paper on the analysis of the Gulf of Thailand data has been 

accepted (subject to minor revision) in Geophysics.  Copies of the manuscripts are attached 

in this report.  In the following, we summarize some of the results. 

 
3.B.2.  FULL WAVEFORM SEISMIC INVERSION USING A DISTRIBUTED SYSTEM OF COMPUTERS 

3.B.2.1.  Introduction 

The aim of seismic waveform inversion is to estimate elastic properties of earth’s 

subsurface layers from recordings of seismic waveform data.  This is usually accomplished 

by using constrained optimization often based on very simplistic assumptions.  Full 
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waveform inversion uses a more accurate wave propagation model but is extremely difficult 

to use for routine analysis and interpretation.  This is because computational difficulties arise 

due to 1) strong nonlinearity of the inverse problem, 2) extreme ill-posedness and 3) large 

dimensions of data and model spaces.  We show that some of these difficulties can be 

overcome by using (1) an improved forward problem solver and efficient technique to 

generate sensitivity matrix, (2) an iteration adaptive regularized truncated Gauss-Newton 

technique, (3) an efficient technique for matrix-matrix and matrix-vector multiplication and 

(4) a parallel programming implementation with a distributed system of processors.  We use 

message-passing interface (MPI) in the parallel programming environment.  The details of 

the optimization algorithm are outlined in Roy (2002), Sen and Roy (2003) and Roy et al. 

(2003).  We will briefly summarize the algorithm below following which we will describe 

the parallelization aspect in detail. 

 
3.B.2.2.  Algorithm of regularized Gauss-Newton 

The regularized Gauss-Newton as implemented here, differs from the ordinary Gauss-

Newton by the way in which the Gauss-Newton update is selected.  It is also shown in Roy 

(2002) that such an update ensures robust descent.  We compute regularized Gauss-Newton 

update corresponding to each a posteriori regulariza tion parameter α by minimizing 

Tikhonov’s functional KT , using nonlinear conjugate gradient (NLCG) method.  We prefer 

NLCG because of its intrinsic property of providing stable and robust computational regime 

and minimum storage requirements.  In the box below we describe our algorithm with a 

pseudo code. 
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Let 0m be the starting model describing the distribution of elastic parameters in a 

layered model, at the outset of the Gauss-Newton optimization, τ is the pre-assigned 

threshold limit for the error functional kE (it measures the misfit between observed and 

synthetic data) to attain at its minimum and η is the noise estimate in the data. 

Set maximum iteration counter (ITMAX); 0new =m m ; compute ( )newF m ; G and kE   

 For 0,1,2,k = …  
 If either kE τ>  or ITMAXk <   

 Set old new=m m   
 Minimize kT%  (Eq. 14) through NLCG, which gives α∆m  
 Update new old

α= + ∆m m m   
 Else if kE τ>  and ITMAXk ≥ ; Retry with new starting model 
                           Compute a posteriori α using Eqs. (17) and (18) 
 Else  “Print new solution upon convergence ‘ 
 End If 
 End Loop 
 
 
3.B.2.3.  Computational Issues 

While developing an inversion algorithm, the computational efficiency and 

robustness of the algorithm are of primary concern.  Since in a model-based inversion 

scheme, the forward problem solver gets executed repeatedly, efficiency of forward 

computation plays a major role in computational efficiency of the algorithm.  Our data and 

model spaces are very large; hence dimension of the sensitivity matrix is also very large.  For 

example, if in an ensemble of seismic traces there are 40 seismic traces, each with 512 

samples, the dimension of the data vector is 40x512 (20480).  Again if the layered earth 

model consists of 512 layers then the dimension of the model vector is 3x512 (1536).  We 

therefore immediately realize that major computational time in Gauss-Newton optimization 

will be consumed by matrix-matrix and matrix-vector multiplications.  
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3.B.2.3.1.  Matrix multiplication—fast implementation  

Matrix-matrix multiplication is an essential computational step in realizing Gauss-

Newton optimization.  In a standard sequential algorithm the time complexity of multipli-

cation of transpose of the sensitivity matrix G of order ( )N M×  with itself is 2( )O MN .  If we 

assume that G is a square matrix of order N, then a sequential algorithm can achieve the best 

possible order of time complexity 2.3755( )O N .  We, however, desire a more substantial 

reduction in complexity order, which is only possible if the matrix is considerably sparse.  In 

our application, we identify that the G matrix is indeed sparse (Fig. 1).  Note that a change in 

the parameters of one layer affects the response of all the layers below it.  In other words, the 

shallowest layer affects contributions of all the layers and the deepest layer only affects the 

contribution by itself.  Thus for each seismogram (p trace), we compute delay times for the 

layer in consideration and that of the deepest layer to compute a time window that is used to 

define a band in the G matrix for use in TG G evaluation.  We also include the width of the 

source wavelet in defining the band.  Note that the computation of the bandwidth is based on 

‘P-wave primaries only’ model.  A tolerance in it (~25 samples) in either end works well in 

general.  This reduces computation cost in sequential algorithm for matrix-matrix multipli-

cation significantly (Fig. 2) resulting in an increase in computation speed by a factor of 

seven.  However, on a distributed memory parallel computer (DMPC) architecture with P 

processors, a fully scalable parallel algorithm for matrix-matrix multiplication would 

take ( )O N Pα  time, where N is the order of the matrices and 2 3α< ≤ .  
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Figure 3.B.1.  Plots of differential seismograms with respect to P-wave velocity (top row), S-
wave velocity (middle row) and density (bottom row) of different layers of an earth model for 
three different values of ray-parameters (0.0, 0.1 and 0.2 sec/km at the left, moiddle and right 
column respectively): Each differential seismogram is a vector of Frechet derivatives with 
respect to model parameters.  It is obvious that for p=0, the seismograms are not sensitive to 
changes in the shear wave velocity. 

 
3.B.2.3.2.  Truncated Regularized Gauss-Newton  

We used a truncated regularized Gauss-Newton (TRGN), a variant of RGN, to 

improve the computation efficiency of the inversion algorithm.  At the onset of RGN while 

the starting model is far from the optimal one, a precise estimate of RGN update does not 

make much difference in the updated model (Nash, 2000).  On the other hand, a precise 

estimate of the RGN update will be necessary as the updated model approaches the optimal 
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one.  Thus, the wasteful computation for a precise estimate of the model update can be 

avoided if any early termination in the inner loop of RGN is invoked adaptively.  Dembo and 

Steihaug (1983) originally proposed such strategy of early termination in a large-scale 

unconstrained optimization problem through a truncated Newton (TN) algorithm.  However, 

invoking early termination not only lowers the computational burden but also offers an 

additional regularization in the computation.  

 
3.B.2.3.3.  Parallel computation 

Easy availability of low cost high performance computational facilities, demand of 

intrinsically high computational cost due to the presence of strong nonlinearity in a full 

waveform pre-stack inversion and large dimension of the computational regime (large data 

and model spaces) are some of the motivating factors for parallelization of the inversion 

algorithm.  As our interest lies with resource utilization and portability of the software in 

different platforms, we design our algorithm using message-passing interface (MPI) on 

distributed memory parallel computer (DMPC) with a homogeneous cluster of PCs that are 

connected with a high speed network.  A DMPC consists of finite number of processors each 

with its own local memory.  These processors (if identical) form a homogeneous cluster and 

communicate with each other via MPI using high-speed network.  The computations and 

communications in DMPC are globally synchronized into either computation or communica-

tion step.  In any of the steps, a processor either remains in operation or stays idle.  Hence, a 

busy processor in a computation step generally performs arithmetic or logical operation and 

elapses a constant amount of time.  On the other hand, in a communication step, the 

processors send and receive messages via network and build a one-to-one communication.  

Note that each processor can receive at most one message in a communication step and 
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elapse time of communication for each processor is assumed to be constant.  Hence, the time 

complexity of a parallel computation on a DMPC is the sum of number of computation steps 

and communication steps.  To reduce the wait time in communication mode, the imple-

mentation of fast electronic network is important.  In our present numerical experiment, we 

use 32 PCs aided with AMD Athlon processors, 1GB RAM connected in a Linux cluster 

interconnected with high speed Myrinet.  

 
3.B.2.4.  Algorithmic structure  

For a nonlinear optimization problem, Schnabel (1995) identified three stages of 

parallelization; they include (1) parallelization of function and/or the derivative evaluation in 

the algorithm; (2) parallelization of linear algebra kernels; and (3) modifications of the basic 

algorithms, which increase the degree of intrinsic parallelism.  While a coarse-grained paral-

lelism can be invoked to the stages (1) and (3) of parallelization, fine-grained parallelism 

often becomes necessary in stage (2) of parallelization. 

In many occasions, with a single level parallelism, a coarse-grained parallelism is 

favored over fine-grained parallelism.  The reasons for such preference are (1) availability of 

concurrency at high- level language representation, and (2) superiority of concurrency 

achieved over fine-grained parallelism in a distributed system.  Note that in a fine-grained 

parallelism, concurrency is available at low-level language representation.  In our parallel 

implementation of the inversion algorithm, we have primarily adopted a single level coarse-

grained parallelism.  Within the DMPC architecture while evaluating a numerical method, a 

coarse-grained parallelization requires very little inter-processor communication and there-

fore loss of parallel efficiency due to communication delay as the number of processor 

increases (assuming that there are enough separable computations to utilize the additional 
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processors) is insignificant.  Fine-grained parallelism, on the other hand, involves much more 

communication among processors and care must be taken to avoid the case of inefficient 

machine utilization in which the communication demand among processors outperform the 

amount of actual computational work to be performed.  We will discard fine-grained paral-

lelization in the present context as we primarily focus on single level coarse-grained 

parallelization of the algorithm.  We adopt here a master-slave paradigm using the MPI 

standard (Snir et al. 1996).  Such paradigm increases granularity as desired.  Figure 2 is the 

schematic plot of the algorithmic architecture that we have implemented in our application.  

 

Figure 3.B.2.  Schematic plot of algorithmic structure.  The data are distributed from master 
node to several nodes (slave).  Note that algorithm uses single program multiple data (XPMD) 
type parallel computation.  Ei, Si, Gi correspond to the partial values of error function, 
sensitivity matrix and GTG computed at processor i.  The totals Ei, Si, Gi are computed using a 
global 2 sum.  
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necessary specification of data dependency of entire data structure.  All such sub-methods are 

recognized as modules.  Once, the module is specified, the next step is to design schedule for 

the execution of each independent module.  As in DMPC architecture, the communication 

between each processor is one-to-one and is of constant time, the design of the schedule 

becomes rather simple.  The remaining last step is load balancing at each node, which is 

primarily a data distribution strategy. 

Figure 3.B.3. (a)  Plot of synthetically generated t-p seismograms with 5% random noise de-
rived from a true earth Model presented in the adjacent panel.  The source wavelet used is 
Ricker wavelet with 35 Hz peak frequency.  (b) Plot of P-, S-velocities and density with two-
way time.  Note that the layer thickness is expressed in terms of two-way travel time by P-
wave in a medium. 

 
3.B.2.4.1.  Load balancing strategy  

Load balancing is the method of dividing the amount of work to two or more 

processors so that an optimal amount of work gets done in the same amount of time with a 

minimal wait-time for each processor.  Load balancing can be implemented with hardware, 

software, or a combination of both.  A successful load balancing improves the scalability of 

the parallel program.  A pure exploitation of parallelism does not lead to scalable parallel 

programs if the number of concurrent modules is not equal to the number of processors.  
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Note that in our application (Figure 3.B.3) of inversion of plane wave seismograms, 

computations of plane wave seismograms are independent of each other.  

Thus we distribute the tasks of generation of plane wave seismograms and their 

sensitivity matrices to different processors.  If there are N seismograms to be modeled and 

the number of available processors is P, each processor is assigned N/P seismograms.  If N is 

an integral multiple of P, we have perfectly balanced distribution of tasks.  Otherwise, the 

tasks are so distributed that difference in load distribution between the different processors is 

minimal.  Note that with a single program multiple data (SPMD) programming paradigm, 

such a strategy has the advantage of providing high scalability.  Once the synthetic seismo-

grams and the sensitivity matrices are computed, they are transferred to the master node 

where model updates are computed using the Newton update formula. 

 
3.B.2.5.  Performance analysis of algorithm  

We have implemented the parallelized version of the full waveform inversion 

algorithm for 2-D seismic data in pre-stack domain.  The 2-D seismic data are represented by 

groups of seismic traces, where each group corresponds to a surface nodal point (also called 

common mid-point or CMP gather) of the 2-D grid.  In order to realize inversion of entire 2-

D seismic data (also known as 2-D seismic line), we invert seismic data corresponding to 

each surface nodal point.  Thus, our parallelized version of inversion algorithm in any 

computation cycle handles groups of seismic traces belonging to a CMP.  Note that we have 

used (τ-p) transformed seismic data in our algorithm.  We invoked master-slave paradigm 

where in master node we first divide the group (domain) into subgroups (sub domain) such 

that size of the sub groups remains the same, i.e., in each sub group we assign certain number 

of seismic traces.  Efforts are made to distribute the traces equally, if possible.  Otherwise the 
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differences are kept to a minimum.  Each sub group is then allocated with the processing 

elements (PE) as slaves.  Each PE reads the earth model and computes synthetic response and 

the sensitivity matrix corresponding to the designated observed seismic traces.  Once 

computation is completed, all results are summed in the designated node (usually master 

node), where optimization code runs.  Efficient summation is achieved using a power of 2 

global sum method (Sen et al., 1999).  We use our algorithm on both the test case and real 

data set.  The run of the algorithm on the test case is important, as it allows the study of the 

applicability of the method to real world situation and performance analysis of the algorithm.  

In our performance analysis test for parallel algorithm, the dimension of both data and model 

spaces play a major role in computational demand.  Hence, we will focus mainly how 

parallel algorithm affects on data and model space dimensions and the number of PE used in 

the computation.  In our test case, we use two sets of (τ-p) seismic gather with 30 and 60 

traced within a ray-parameter range of 0-0.3sec/km.  Each trace contains 512 data samples 

with a sampling interval of 4ms.  The earth model is made up of three profiles corresponding 

to P- and S-velocity and density of the medium.  The number of data points and the sampling 

interval of those profiles are 453 and 4 ms respectively.  This means that the earth model is 

assumed to be a pack of 453 layers whose thickness in terms of two-way time is 4 ms.  Note 

that the two-way normal reflection time is computed by dividing the thickness with half the 

P-wave velocity of the layer.  The synthetic data used in the performance analysis are shown 

in Fig. 3.B.5(a); the earth model parameters used in the computation of test seismograms are 

shown in Fig 3.B.5(b).  We use the compute time for single iteration on the synthetic data set 

for a detailed performance analysis described below. 
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3.B.2.5.1.  Elapsed time vs. number of processors 

In Figures 3.A.4(a) and 3.A.4(b) we plot elapsed time vs. number of processors and 

inverse of the number of processors respectively using 30 and 60 traces.  Figure 3B.4(a) 

clearly demonstrates that with the increase of processors in the system elapsed time continues 

to fall.  However, the rate of decrease slows down for the increase of processors from 10 to 

20 in both the synthetic data examples.  Figure 3.B.4(b) also depicts almost linear trend, 

which immediately indicates that the sequential components of the algorithm remains nearly 

constant with the processors. 

 
Figure 3.B.4. (a)  The plot of the elapsed time versus the number of processors.  Elapsed time 
decreases with the addition of the processor. 

 

 
Figure 3.B.4. (b)  Plot of the elapsed time versus the inverse of the number of processors: the 
plot is almost linear, indicating that the sequential components of the algorithm are nearly 
constant.  Similar trends are observed for the two datasets containing 30 and 60 traces . 
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3.B.2.5.2.  Speedup, overhead, efficiency, performance measure and efficacy on 

homogeneous clusters  

The speedup is the measure of acceleration for a parallel algorithm running on dis-

tributed processors with respect to the best sequential algorithm running on a sequential 

computer.  Hence, with a parallel architecture if T(P) is the time taken by P processors in 

executing a parallel algorithm and T(1) is the time taken by best sequential algorithm on a 

single processor then the speedup due to P processors can be written as  

(1)
( )

( )
T

S P
T P

= . (3.B.1) 

In an alternative definition due to Amdahl (1987), if a parallel algorithm A is such that part of 

it, say α fraction (known as Amdahl fraction), is not parallelizable, then the speedup ( )S P  is 

given by  

( )
1 ( 1)

P
S P

P α
=

+ − . (3.B.2) 

The above equation suggests that the speedup can attain the maximum value 1 α  no matter 

how many processors are used for parallel computation.  Hence, if 5% of the algorithm is not 

parallelizable, then the maximum possible speedup is 20.  In a most ideal situation, when 

0,α ≈  the curve of speedup versus number of processors follows a linear trend else it 

deviates to a sub- linear trend and may saturate normally.  The above definition of speedup 

thus provides the basis for selecting an optimal number of processors for parallel algorithm.  

Interestingly, with a given problem size, the efficiency (which is a measure of average 

fraction of time that each processor effectively use while running a parallel algorithm) 

decreases with the number of processors.  Note that as the number of processors increases 
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inter-processor communication cost, idle time due to synchronization etc increase; this is 

expressed in terms of a metric called overhead which is defined as 

( ) (1)Ov PT P T= − . (3.B.3) 

Therefore, there exists a functional relationship between efficiency and overhead and is 

expressed as  

(1)

(1) 1
( )

( ) 1 Ov
T

T
E P

PT P
= =

+ . (3.B.4) 

Thus, while overhead increases the efficiency of the parallel architecture decreases.  

However, substantial reduction of overhead can be achieved by increasing the granularity, 

which is measure of amount of computational work done before processors have to 

communicate.  Figures. 3.B.5(a), 3.B5(b), and 3.B.5(c) are the plots of speedup, overhead 

and efficiency versus number of processors for the two sets of synthetic data.  The speedup 

curve demonstrates a near linear trend, which indicates a good scalability of the algorithm 

and suggests that only a small fraction of code used is not parallelizable.  We have found that 

only about 2% of our code is not parallelizable.  A full-scale parallelization of an algorithm 

for a highly nonlinear inverse problem is difficult to achieve unless the algorithm is 

intrinsically decomposable.  Nevertheless, in most practical situations full scale decom-

position and parallelization of an algorithm is not advisable as overhead grows considerably 

with the addition of the processor.  We observe (Fig. 3.B.5(b)) that the overhead is minimal 

using five processors and it increases with the increase of number of processor.  However, if 

the problem size increases on a fixed number of processors, efficiency increases.  We may 

keep the efficiency fixed and increase the problem size and number of processors, as 
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overhead increases slower than the problem size.  This indicates good scalability of our 

algorithm. 

We have applied the inversion algorithm to both synthetic and field seismic data.  

Inversion results for the synthetic example shown in Figure 3.B.3 are presented in Figures 

3.B.6(a) and 3.B.6(b).  Note that data-fit is excellent; so is the model recovery.  Convergence  

(a) 

(b) 

(c) 
Figure 3.B.5. (a)  Plot of speedup versus the number of processors: speedup curve nearly 
follows a linear trend indicating good scalability. (b) Plot of overhead versus the number of 
processors, and (c) plot of efficiency versus the number of processors.  Similar trends are 
observed for the two datasets. 
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was reached in 50 iterations.  The results obtained are in good agreement with the true model. 

(a) 

(b) 

Figure 3.B.6. (a)  Plot of data fir presented in three panels; the left panel is observed data, the 
middle panel id the best fit data and the right panel is the data residual.  (b) Plots of true (solid 
line), initial guess (dashed line), and the inverted model (dotted line) 
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3.B.3.  DIRECT ESTIMATION OF PETROPHYSICAL PARAMETERS VIA FULL WAVEFORM INVERSION 

OF PRE-STACK SEISMIC DATA 

3.B.3.1.  Introduction 

A detailed study of static and dynamic behavior of a producing hydrocarbon reservoir 

is essential for the production planning of a reservoir.  Interestingly, the characterization of a 

reservoir can primarily be realized through an estimate of spatio-temporal variability of 

petrophysical properties, such as porosity, fluid saturation, permeability, pore pressure etc., 

in the precinct of a given geological model for the reservoir.  With the aid of modern wireline 

measurements augmented by core analysis, it is possible to estimate the one- dimensional 

variability of the petrophysical parameter in the close vicinity of a well fairly precisely.  

However, the approach is insufficient to account for lateral heterogeneity of the petrophysical 

properties of the reservoir.  It is widely acknowledged that it is impossible to delineate a 

subsurface map of both vertical and lateral variation of petrophysical parameters using a 

limited number of wells and well logs unless supplemented by some other methods, such as 

geostatistical estimates, inversion of seismic data, etc.  Geostatistical methods used to esti-

mate lateral heterogeneity of petrophysical parameters of a reservoir could be useful if the 

number of wells with necessary well logs is considerably large.  On the other hand, a surface 

seismic method provides more detail lateral coverage, although vertical resolution is limited 

to the seismic scale.  Thus, reflection seismic data can be even more useful if estimates of the 

petrophysical parameters can be made directly from seismic data. 

The effect of variation of the petrophysical properties such as porosity, fluid 

saturation, and lithology on the elastic moduli of the rocks and hence on the seismic velocity 

field has been a much studied subject.  However, little has been reported so far on the 

estimation of petrophysical properties of the medium directly from measured seismic wave 
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field.  The objective of this paper is to study the feasibility of determining petrophysical 

parameters directly from full waveform inversion of pre-stack seismic data.  At the outset, we 

give a brief background of theoretical studies in the determination of relationship between 

petrophysical and the elastic parameters of the rocks. 

 
3.B.3.2.  Relation between rock physics and petrophysical properties  

The seminal works in establishing a relationship between elastic moduli and 

petrophysical parameters are due to Biot (1941, 1956) and Gassmann (1951) while studying 

the propagation of seismic waves through a pack of elastic spheres saturated with fluid.  Biot-

Gassmann theory allows the estimation of the bulk and shear moduli of a fluid-saturated rock 

formation via the equation 

( )
( )

2

*
1

,
1

d

m

f d

m m

K
f K

d K K
K K

K
K K

φ φ

−
= +

+ − −
 (3.B.1) 

where, φ  is total porosity and
* ,K ,fK  ,mK  dK  are the bulk modulii of the rock saturated 

with fluid, the fluid, the mineral grains and the rock skeleton or the frame, respectively, and  

*
dG G= , (3.B.2) 

where, dG  is the shear modulus of the frame. 

It is assumed that fluid saturation plays an insignificant role in the variation of the 

shear modulus.  Note that the frame moduli dK  and dG  are not the moduli due to dry rock; 

instead those are moduli of irreducible water-saturated rock.  The above equation is based on 

the assumptions that the frequency of the seismic wave is low enough (theoretically zero) so 

that the studied rock can be considered macroscopically homogeneous, porosity and 

permeability are high enough, rock-fluid system is closed, and that fluids present in the rock 
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should not interact with the rock matrix and must have negligible viscosity.  The conditions 

described above are too stringent and hence are rarely met in most practical situations.  The 

above equations work satisfactorily for unconsolidated water saturated sands (Wang, 2000).  

Thus, if all five input parameters are known then elastic moduli of a rock saturated with a 

fluid or a mixture of fluids can be obtained.  However, precise estimates of all these input 

variables are difficult to obtain, as strong variability exists due to lithology, clay content, 

pore structure, pore aspect ratio, type of fluid content, etc.  These input parameters are either 

measured in the laboratory or in situ using well logs.  One of the most common log-derived 

parameters is porosity using either nuclear or acoustic logs.  The bulk modulus of the fluid 

mixture can be calculated using Wood’s equation (Wood, 1941) as  

1 gw o

f w o g

SS S
K K K K

= + +   , (3.B.3) 

where, ,w oK K  and gK  are bulk moduli of water, oil and gas, respectively, ,w oS S  and gS are 

the water, oil and gas saturations respectively.  For any two phase fluid  

11 w w

f w hc

S S
K K K

−
= +     . (3.B.4) 

Equation (4) can be simplified to  

(1 )
w hc

f
hc w w w

K K
K

K S K S
=

+ −
      . (3.B.5) 

If the laboratory measured data for bulk moduli of the individual fluid are available 

and if the water saturation of the rock is obtained from well logs and the well-established 

empirical formula, then bulk modulus of the rock saturated with a mixture of fluids such as 

water-gas or water-oil can be obtained.  Note that there is a strong dependency of fK  on the 

estimation of the water saturation.  Mineral constituents of a rock also have a strong effect on 
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the rock’s elastic moduli.  Elastic moduli of mineral grains mK  and mG  can be obtained using 

the Voigt-Reuss-Hill (VRH) average method (Hamilton, 1971) if the rock type and its 

mineral contents are known.  If M is the effective grain modulus which can be either mK  or 

mG  then M can be written in terms of Hill average (Hill, 1952) as 

0.5*( ),v rM M M= +  (3.B.6) 

where vM , rM are the Voigt (1928) and Reuss (1929) averages, respectively, given by  

1

n

v i i
i

M c M
=

= ∑  , (3.B.7) 

and  

1

n
i

r
i i

c
M

M=

= ∑   , (3.B.8) 

where, ic  and iM  are the volume fraction and modulus of the i -th component, respectively.  

Note that although precise measurements of large number of mineral species are available, an 

accurate estimate of the volume fraction of the mineral grains present in the rock is not 

always possible especially from log measurements.  For example, in a clastic sediment 

deposit, if the rocks are made up of only two species of mineral grains such as pure sand and 

clay (only with one variety of clay such as illite or kaolinite) then effective elastic grain 

moduli of the rock formation can be obtained using the above equations provided the volume 

fraction for each mineral present in the rock is known.  It is possible to make an estimate of 

shale volume from natural gamma ray logs.  However, Xu and White (1995) showed that 

VRH estimate is insufficient for sand clay mixture as it does not account for the aspect ratio 

of the pore space associated with clay and sand respectively.  Moreover, log analysis of 

natural gamma ray logs gives shale volume not the clay content.  Xu and White (1995) 
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suggested the following time average equations to determine P- and S- wave velocities P
mV  

and S
mV of the mineral for a rock composed of a shale-sand mixture   

* *11 sh sh
P P P

m s sh

v v
V V V

−
= +     , (3.B.9) 

and 
* *11 sh sh

S S S
m s sh

v v
V V V

−
= +         , (3.B.10) 

where,  
*

1
sh

sh
v

v
φ

=
−

       , (3.B.11) 

φ  is the effective porosity estimated from logs and shv  is the percent volume of the shale in 

the rock.  The bulk density of the rock can also be written as 

* *(1 )m sh s sh shV Vρ ρ ρ= − +      . (3.B.12) 

According to Gassmann (1951), the bulk modulus of the frame is related to the porosity of 

the rock through Biot’s coefficient, β  (Biot, 1941), which is defined as the ratio of change in 

fluid volume to the change in formation volume.  The relation is given by 

(1 )d mK K β= −    . (3.B.13) 

Lee (2002) proposed the following empirical relation to compute Biot’s coefficient and 

showed that β  asymptotically approaches the value of one with an increase in the rock’s 

porosity: 

( )
( )
1 2

2
1 21 exp /

A A
Aβ

φ τ τ

−
= +

 + + 
  , (3.B.14) 

where, 1 183.05186,A = −  2 0.99494,A =  1 0.56468τ =  and 2 0.10817τ = . 
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Using equations 3.B.1 and 3.B.12 we obtain  

* (1 )
( )

f
m

f

m

K
K K

K
K

β
β

φ β φ
= − +

+ −
    . (3.B.15) 

Equation 3.B.14 can be rewritten as  

* 2(1 )mK K β β ξ= − +          , (3.B.16) 

where, ξ  is a modulus that measures the  variation in hydraulic pressure needed to force an 

amount water into the formation without any change in the formation volume and is related 

to the Biot’s coefficient β through the equation  

( )1

m fK K
β φ φ

ξ
−

= +        . (3.B.17) 

Therefore, the porosity φ  and the water saturation wS  play the most important role in 

determining the bulk modulus of a fluid-saturated rock.  Contrary to Gassmann’s (1951) as-

sumption, Lee (2002) showed that the shear modulus also exhibits a dependence on the 

rock’s water saturation, wS , and proposed the following formula for the shear modulus of a 

fluid-saturated rock: 

2 2 2
*

2

(1 )(1 ) (1 )
4 1 (1 ) 3

m m m

m m

G K G
G

K G
β φ β ξ φ

φ
− − + −

=
 + − − 

     . (3.B.18) 

The Effective formation bulk density for the fluid saturated rock can thus be written as 

(1 ) m fρ φ ρ φ ρ∗ = − +    , (3.B.19) 

where, 

(1 )f w w w hcS Sρ ρ ρ= + − , (3.B.20) 
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where, wρ  and  hcρ  are the densities of water and hydrocarbon, respectively.  Once K ∗ , G∗  

and ρ∗  are known the velocities of P- and S- waves can be determined from the well-known 

formulas 

4
3

P
K G

V
ρ

∗ ∗

∗

+
=           , (3.B.21) 

and   

S
G

V
ρ

∗

∗=          . (3.B.22) 

 
3.B.3.3.  Sensitivity of P- and S-wave velocities to porosity and saturation 

In the preceding section, we established the relationships between seismic velocities 

and bulk density with the rock’s porosity and fluid saturation.  In the following, we study the 

variation of seismic velocity field with fractional changes in porosity and saturation.  In other 

words, we determine the sensitivities of both P- and S-wave velocities to a variation of 

porosity and saturation.  For sensitivity calculations, we make use of the following equations  

1 4
2 3 2

P P

P

V K G V
V

ρ
φ ρ φ φ ρ φ

∗ ∗ ∗

∗ ∗

 ∂ ∂ ∂ ∂
= + − ∂ ∂ ∂ ∂ 

   , (3.B.23) 

1
2 2

s s

s

V VG
V

ρ
φ ρ φ ρ φ

∗ ∗

∗ ∗
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= −

∂ ∂ ∂
   , (3.B.24) 

*1 4
2 3 2

P P

w P w w w
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S V S S S

ρ
ρ ρ

∗ ∗

∗ ∗

 ∂ ∂ ∂ ∂
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.   , (3.B.25) 

and 
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s s
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V VG
S V S S

ρ
ρ ρ

∗ ∗

∗ ∗
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= −

∂ ∂ ∂
        . (3.B.26) 
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The necessary formulas calculating Fréchet derivative of K ∗ , G∗  and ρ∗  with respect to φ  

and wS  are presented in Appendix-I.  In the following we present a numerical experiment to 

study the effect of sensitivities on various lithological factors.  We consider a model of sand 

with and without any clay content and saturated with either water or water and gas.  In 

Figures 3.B.7 and 3.B.8 we present sensitivity curves with respect to porosity for fixed values 

of water saturation and clay content.  

0 0.1 0.2 0.3 0.4 0.5
φ

-20

-16

-12

-8

-4

0

Sw = 1

Fluid = water

Percent clay vol = 0

0 0.1 0.2 0.3 0.4 0.5
φ

Sw = 0.9

Fluid = water+gas

Percent clay vol =  0

0 0.1 0.2 0.3 0.4 0.5
φ

Sw = 0.6

Fluid = water+gas

Percent clay vol = 0

0 0.1 0.2 0.3 0.4 0.5
φ

-20

-16

-12

-8

-4

0

0 0.1 0.2 0.3 0.4 0.5
φ

Sw = 1

Fluid = water

Percent clay vol = 0.15

Sw = 0.9

Fluid = water+gas

Percent clay vol = 0.15

0 0.1 0.2 0.3 0.4 0.5
φ

Sw = 0.6

Fluid = water+gas

Percent clay vol = 0.15

 
Figure 3.B.7.  Plot of sensitivities for both P- (solid line) and S-wave (broken line) velocities 
with respect to porosity versus porosity for different values of saturation and clay content.  
Curves presented in the upper panel are for clean sand saturated with water or water and gas 
while curves in the lower panel are fordirty sand contaminated with 15% clay content 
Sensitivities for both P- and S-wave vary strongly with porosity for any value of saturation. 

Note that in Figure 3.B.7 the sensitivities for both P- and S-wave velocities with 

respect to porosity vary strongly with porosity irrespective of the saturation or the litho-

logical factor, such as clay content.  Interestingly, a sharp variation of sensitivity of S-

velocity with an increase in porosity is noticeable in both the upper and lower panels of the 

sensitivity plot.  Such behavior is contrary to the general view that presence of gas affects 

little the S-velocity.  On the other hand, in Figure 3.B.8 it is clear that for wide range of 

values of water saturation the variation of sensitivities both for P- and S-wave velocities 
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remain constant with an increase in saturation except near the vicinity of high saturation 

values where there is an extremely sharp change in sensitivity values for both P- and S-wave 

velocities with the presence of gas.  
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Figure 3.B.8.  Plot of sensitivities for both P- (solid line) and S-wave (broken line) velocities 
with respect to saturation versus saturation for different value of porosity and clay content.  
Curves presented in the upper panel are for clean sand saturated with water or water and gas 
while curves in lower panel are for dirty sand contaminated with 15% clay.  Both P- and S- 
velocity remain flat for most of the saturation value except near to the higher end of 
saturation, where it shows a vary strong variation. 

Figures 3.B.9(a) and 3.B.9(b) show plots of P- and S-wave velocities as functions of porosity 

for different values of saturation over a clean sand model.  With a given saturation value, 

both P- and S-velocity curves decrease with an increase in porosity.  Interestingly, presence 

of gas causes a higher rate of change for both P- and S-velocities.  Note that further increase 

in gas volume has little effect on the change of velocity with porosity.  In Figure 3.B.9(c) we  
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Figure 3.B.9. (a)  Plot of P- velocities and (b)  plot of S- velocities with respect to porosity for 
different values of saturation.  The continuous line corresponds to 100% water saturation, the 
line with open circle corresponds to 90% saturation, and the line with filled circles 
corresponds to 60% saturation. Model considered is clean sand saturated either with water or 
water and gas. Panel (c) is the VP/VS ratio versus porosity, which continues to increase 
nonlinearly with porosity and the nature of curves remains the same irrespective of saturation. 

plot Vp/Vs ratio with respect to porosity.  Note that Vp/Vs ratio continues to increase non-

linearly with porosity irrespective of saturation.  To develop a comprehensive idea about the 

characteristics of both P- and S-wave velocities with porosity and saturation we present color 

filled contour maps in Figures 3.B.10(a) and 3.B.10(b). 
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Figure 3.B.10. (a)  Contour maps of P- velocity and (b) contour maps of S- velocity as 
functions of porosity and saturation. 

The above contours maps show either low slope or else remain constant for a wide range of 

saturation values.  This immediately suggests that the resolving limit of saturation from 

waveform inversion will also be very small.  

 
3.B.3.4.  Determination of petrophysical parameters and  

seismic velocities from well logs 

In our study, we consider a set of well- log measurements acquired in the deepwater 

Gulf of Mexico.  We make use of nuclear logs (both neutron and bulk density) and acoustic 

logs to determine the effective porosity of the rock formations while we use deep resistivity 

and porosity logs to determine water saturation using the Simandoux model.  We also use the 

natural gamma log to estimate the percent volume of shale.  In Figure 3.B.11, we present 

wireline- log derived porosity, saturation and percent clay content of the geological section.  

The log indicates presence of shale, sand sequence, and possibility of having shaly-sand or 

sandy shale formations.  In our analysis, we consider the following log as the reference for 

true effective porosity and saturation of the area.  In Figure 3.B.12, we present P-, S-

velocities and density obtained from sonic and density logs and the corresponding values 
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calculated using petrophysical formulas as discussed in the preceding section.  Note that the 

predicted values of P-, S-velocities, and bulk density are in good agreement with the log-

measured values. 

 
Figure 3.B.11.  Plots of wireline-log-derived porosity (blue line), water saturation (orange 
line) and percent clay volume (green line) with depth  
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Figure 3.B.12.  Plots of log-measured (magenta line) and predicted (blue line) values of P-, S-
velocities and bulk density with depth. 

In our numerical experiment, we consider those predicted values of velocities and density to 

be the true representations of the subsurface.  We then convert these logs (Figure 3.B.12) 

from depth to seismic time the computation of the synthetic seismic wave field.  Time 

converted profiles of P-, S-velocities and density are shown in Figure 3.B.13. 
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Figure 3.B.13.  Plot of predicted values of P-, S-velocities and bulk density with two-way 
vertical travel time in (ms). 

 
3.B.3.5.  Waveform inversion in the determination of petrophysical parameters  

At the outset of our numerical experiment with waveform inversion, we generate 

seismic gathers in the τ-p domain using the velocity and density profiles shown in Figure 

3.B.13.  To obtain a realistic τ-p seismic section we embed the above profiles by adding 

water and thick shale layers at the top, mimicking a marine geometry.  We then generate a 

synthetic τ-p seismic section with a 4 ms sampling interval using a 40Hz Ricker wavelet.  

The synthe tically generated τ-p seismic section is shown in Figure 3.B.14. 
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Figure 3.B.14.  Synthetically generated τ-p seismic section using the time converted velo-
cities and the density profile shown in Figure 3.B.7. 

It is well recognized that, because the seismic signal is band limited, the vertical resolution of 

the seismic derived model is limited within the seismic scale.  However, we consider a full-

scale over-parameterized model in which each layer has a thickness equal to 4 ms two-way 

time.  We then invert the τ-p seismic section using an adaptively regularized, truncated 

Gauss-Newton inversion algorithm (Sen and Roy, 2003; Roy et al., 2003) assuming a 

constant half-space value of porosity and saturation as the a priori petrophysical model.  For 

comparison with the true value of porosity and saturation, we first make a depth to time 

conversion of porosity and saturation logs and then resample them to 4 ms as a coarse 

representation.  We present our inverted results as logs with 4 ms sampling interval in Figure 

3.B.15.  Note that the estimated porosity is in good agreement with the true value.  However, 
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the algorithm fails to retrieve the true saturation values.  This is expected based on our study 

of sensitivities reported in the previous section.  Figure 3.B.16 indicates a very good data-fit. 

 
Figure 3.B.15.  Plot of inverted porosity profile (magenta line) overlaid on true profile (blue 
line).  

 
Figure 3.B.16.  Plot of τ-p seismic section after inversion (left panel) and the original one 
(right panel)  
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3.B.3.6.  Conclusions  

We studied the feasibility of using full waveform inversion of pre-stack seismic data 

in the direct estimation of petrophysical parameters such as porosity and saturation.  In 

determining the relationship between elastic moduli with porosity and saturation we use 

Lee’s (2002) extension of the Biot-Gassmann model.  With the sensitivity study we observe 

that the sensitivity of porosity to the seismic velocities (both P- and S) is considerable while 

that of the saturation is insignificant.  This reflects in our inversion results.  While it is 

possible to make a robust estimate of the porosity even with a flat prior, the algorithm fails to 

make any appropriate estimate of the saturation despite an excellent data fit.  

 
3.B.3.7.  Appendix I 

Using equations (3.B.15) and (3.B.16), we can write  
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Taking partial derivatives with respect to φ  and wS in (3.B.27) and using (3.B.28) we obtain 
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where, by taking the partial derivative with respect to φ  in equation (3.B.13),  
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and by taking the derivative with respect to wS  in equation (3.B.28), 
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Again in equation (3.B.17) for the sake of simplicity we express *G  as  
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where the derivative index, x, can be either φ  or wS .  We may then write 
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4.   CONCLUSIONS  

During the third year of this project, we built upon the development carried out in the 

previous two years to develop methodologies for the integration of 3D seismic data, pre-stack 

and post-stack, with time records of fluid production measurements.  Efficient imple-

mentation of joint inversion of seismic and fluid flow data depend on the efficient forward 

modeling of seismic and fluid flow, realistic mapping of petrophysical parameters to elastic 

parameters, and efficient algorithms for inversion.  All these aspects were tested rigorously 

during this year.  We implemented a full waveform inversion algorithm (that includes all 

internal multiples and converted waves) in the τ-p domain on a cluster of personal 

computers.  We found that our algorithm is highly scalable and shows almost a linear 

speedup up to 16 nodes on a cluster.  Thus we were able to develop a very efficient and 

accurate algorithm for full waveform inversion that can be used routinely for seismic data 

analysis.  Most seismic inversion algorithms provide with maps of elastic properties which 

are then mapped to petrophysical parameters using simple empirical formulas.  To address 

this we developed a rigorous waveform inversion algorithm that directly provides flow 

parameters.  We employed a modified Biot-Gassmann equation that was validated with a 

suite of well logs from the Gulf of Mexico. Analytic formulae were developed for computing 

sensitivity of seismograms to porosity and saturation.  We found that the porosity is very well 

determined but the seismic data are insensitive to the changes in saturation.  Finally we 

developed a novel, efficient algorithm to estimate spatial distributions of porosity and 

permeability by jointly inverting 3D pre-stack seismic data and time records of fluid 

production measurements.  This algorithm was successfully tested on synthetic data contami-

nated with random noise.  It was also found that fluid production measurements acquired in 
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production wells often don’t have the degrees of freedom necessary to accurately estimate 

permeability distributions in the inter-well region.  However, the use of pre-stack seismic 

data helps improve the resolution of porosity maps in the inter-well regions. 
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