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The results of the research were published in 30 papers in archival journals and 3 papers that are 
currently under review. The journals include International Journal of Multiphase Flow (S), 
Physics of Fluids (4), Journal of Colloid and Interface Science (3 published, 1 under review), 
Journal of Fluid Mechanics (3), Chemical Engineering Science (3 published, 1 under review), 
International Journal of Heat and Mass Transfer (2), Journal of Computational Physics (2), 
AIChE Journal (1 published, 1 under review), ASME FED (l), Chemical Engineering 
Communications (l), International Journal for Numerical Methods in Fluids (l), and Theoretical 
and Computational Fluid Dynamics (1). In addition, 12 contributions to books or conference 
proceedings have resulted from the grant. 

A total of 5 Ph.D. students and 8 M.S. students have been supported in whole or in part under the 
grant. 

While working on the projects, the P.I. collaborated with a number of researchers at other 
institutions. These inc1ud.e: Dr. E. S. Asmolov, Zhukosky Central Aero-Hydrodynamics Institute, 
Russia; Prof. D. Dandy, Colorado State University; Prof. J. J. Derksen, Technical University of 
Delft, The Netherlands; Dr. Alan Graham, Los- Alamos National Laboratory (now at Texas 
A&M); Prof. T. J. Hanratty, University of Illinois at Urbana-Champaign; Dr. K. Kontomaris, 
DuPont Central Research & Development; Prof. S. Sundaresan, Princeton University; and Prof. 
H. E. A. van den Akker, Technical University of Delft, The Netherlands. 

Although all of the projects involve aspects of fluid mechanics, they cover a large scope. The 
first two projects dealt with the behavior of fluid or solid particles in high Reynolds number 
flows. The first of these projects dealt with the motion and deposition of aerosols in wall 
bounded turbulent shear flows. The results were obtained by tracking the aerosols through a 
numerically simulated turbulent channel flow. The project resulted in several findings that have 
had a significant impact on research on two phase flows. First, it was found that fluid or solid 
particles with finite inertia tend to accumulate near the walls of a vertical channel flow. This 
phenomenon is closely related to the notion of l'turbophoresis'' that was suggested independently 
by Reeks (1983) and Caporaloni, Tampieri, Trombetti, & Vittori (1975). The P.I.'s results were 
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the first confirmation of the above ideas with a direct numerical s’imulation (DNS). The same ‘ 
DNS of turbulent channel flow provided insights into the roles of various forces in the deposition 
of aerosols on walls bounding a turbulent shear flow. In particular, it was found that a lift force 
suggested by Saffinan could increase the rate of deposition from a vertical flow by an order 
magnitude for aerosols in a certain size range. However, it was also found that the assumptions 
on which Saffinan’s result for the lift force were based were seriously violated by many particles 
as they passed through the viscous sublayer on their way to the wall. 

The above findings formed part of the motivation for the second project in which a number of 
new results were obtained for lift forces on small particles. In particular, Saffinan’s result for the 
lift on a small particle in an unbounded linear shear flow was generalized to include cases in 
which the shear rate is weak. In addition, the effects of a distant wall on the lift force were 
determined. These results bridged the gap between the results for unbounded flows and results 
obtained by Brenner & Cox for particles that are sufficiently close to a wall that the leading order 
results for the lift force could be obtained by regular perturbation methods. The latter results 
were based on the assumption that the distance from the wall was much larger than the particle 
radius. In modeling deposition or re-suspension of particles, one must deal with situations in 
which the distance from the wall is comparable to the particle radius. This motivated the P.I. and 
his Ph.D. student, P. Cherukat to develop asymptotic results that were valid for particle 
separations between near-touching and the regime where the Cox-Brenner analysis is valid. The 
above results for the lift force have been widely used by researchers in modeling dilute 
suspensions of fluid or solid particles. 

The last three projects considered various aspects of the behavior of bubbles in high Reynolds 
number flows. One common theme of these studies has been on the effects of surfactants on 
bubble motion. The P.I. published the first DNS of bubble motion in water in which the effects 
of surfactants were included with a stagnant cap model. The results were in good agreement with 
published experimental results and demonstrated the ability of the stagnant cap model to 
quantitatively account for the reduction of bubble speed. In a subsequent publication, the P.I. and 
his M.S. student, S. Ponoth, determined the effect of a stagnant cap on the rate of dissolution of a 
bubble. The above studies ignored the effects of unsteadiness. The P.I. and his Ph.D. student, Y .  
Liao, developed DNS methods that enabled them to simulate unsteady motion of both insoluble 
and soluble bubbles. The simulations included computations of the surfactant concentration field 
and, in the case of dissolving bubbles, the concentration of the gas solute in the liquid phase, as 
well as the fluid velocity field, bubble acceleration and deformation. For very dilute surfactant 
concentrations, the adsorption of surfactant on the bubble is sufficiently slow that the bubble 
achieves a maximum velocity that may be close to the value for pure water before beginning to 
slow down. Recently, the P.I. and his former student, Y .  Liao, have demonstrated that one can 
determine the sorption rate constants for surfactants by comparing DNS results with 
experimental measurements of bubble velocity versus time in the dilute regime. The results have 
been submitted for publication. 

No unexpended funds remain in the grant. 
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LETTER TO THE EDITOR 

Comments on "Unsteady Bubble Motion and Surfactant Kinetics" 

Y. Liao, J. Wang, R. J. Nunge, and J. B. McLaughlin' 
Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699-5 705 

July 23,2003 

To whom correspondence should be addressed. Fax: 315 268 6654. E-mail: 
jmclau@clarkson.edu 

The numerical simulations of bubble motion in dilute surfactant solutions reported previously 
by two of the authors contained a serious numerical inaccuracy. In agreement with experiments, 
single bubbles released from rest were predicted to reach a maximum speed before slowing to a 
terminal speed. However, subsequent experiments demonstrated that the simulations predicted 
that the bubbles should reach their terminal speed too quickly. The source of the discrepancy is 
an inaccuracy associated with the numerical algorithm used to solve the surfactant transport 
equation on the bubble surface. After correcting the problem, the simulations agree much better 
with the experiments. 

Key Words: bubble; simulation; surfactant adsorption 

Liao and McLaughlin (1) presented the results of numerical simulations of bubbles in dilute 
surfactant solutions. They considered the buoyancy-driven motion of a single bubble in an 
unbounded liquid that was at rest except for the disturbance created by the motion of the bubble. 
Simulations were performed for bubbles with equivalent spherical diameters between 0.72 and 
1.5 mm since bubbles in this size range rise along rectilinear paths in dilute aqueous surfactant 
solutions. 

Several experimental studies have shown that, in sufficiently dilute surfactant solutions, 
bubbles in the size range considered by Liao and McLaughlin reach a maximum speed before 
slowing to a terminal speed. References to these papers may be found in Zhang et al. (2). If the 
solution is sufficiently dilute, the maximum velocity is close to the steady-state velocity in pure 
water. Zhang et al. (2) measured the velocity of 0.8 mm bubbles in aqueous solutions of Triton 
X-100; the concentration ranged from 2.5 x mol/ m3 to 74.9 x lo-' mol/ m3 . Liao (3) 
performed similar experiments over a range of concentrations that overlapped the range 
considered by Zhang et al., and found that the bubble rise velocity increased monotonically to its 
steady-state value in a solution containing 0.01 m01/m3 of Triton X-100. Liao used slightly 
smaller bubbles (0.69 mm) in her experiment, and her experiments were conducted in a shorter 
column (1.22 m instead of 3 m) than the one used by Zhang et a1 (1). The use of a shorter column 
was possible since, in the concentration range considered by Liao, the bubble reached its 
terminal velocity more quickly. Wang (4) used the same system to perform experiments for 
bubbles in dilute solutions of decanoic acid and sodium do-decylsulfate ("SDS"). The 
experiments showed that the bubbles reached a terminal velocity too quickly in the simulations. 

The simulation program developed by Liao and McLaughlin used the streamfunction-vorticity 
formulation of the Navier-Stokes equation since, in the bubble size range that they considered, 
the motion of the liquid was axisymmetric. The bubble was treated as a void in the simulations. 
The governing equations were formulated in the frame of reference of the bubble. The governing 
equations were solved with a finite difference method using an adaptive boundary fitted 
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coordinate system thatwas an extension of a technique described by Ryskin and Leal (5-7) and 
Kang and Leal (8). 

The Reynolds number, Re , was order (10’) for the simulations discussed by Liao and 
McLaughlin, but the Weber number was much smaller than unity. Thus, the maximum deviation 
from a spherical shape was of order 1% of the equivalent spherical radius. 

Liao and McLaughlin used the Langmuir model to describe the surfactant sorption kinetics: 

j=pc,(r, - r ) - a r ,  PI 
wherej is the net flux of surfactant to the interface from the liquid, c, is the concentration of 
surfactant in the liquid adjacent to the interface, r is the surface concentration of surfactant, a is 
a desorption rate parameter, and p is an adsorption rate parameter. Chang and Franses (9) 
discussed techniques for determining the sorption rate parameters and tabulated their values for 
several surfactants. 

Stone (1 0) showed that the transport equation for the surface concentration of surfactant may 
be written as follows: 

In Eq, [9], V, is the surface gradient operator, vs is the surface fluid velocity, n is the unit 
normal vector, v is the fluid velocity, and D, is the surface diffusivity. Liao and McLaughlin 
took the surface diffusivity to be the bulk diffusivity. 

Liao and McLaughlin used Newton’s method to determine the bubble acceleration on each 
time step. On each Newton step, it was necessary to solve the streamfunction-vorticity equations, 
the transport equation for the surfactant concentration in the liquid, and the transport equation for 
the surface concentration of surfactant. Using r ,  the surface tension was obtained from the 
Frumkin equation. An upwind difference method was used to compute the convective terms in 
Eq. [2]. This method did not conserve the total number of moles of surfactant and, after many 
time steps, lead to a serious error in the bubble velocity. Specifically, the bubble reached a 
terminal velocity too quickly in the simulations. This was caused by a spurious accumulation of 
surfactant on the bubble surface. To fix this problem, on each time step, the correct increase in 
the moles of adsorbed surfactant was computed by integrating j over the bubble surface. Then, 
the values of r w e r e  normalized to obtain the correct number of adsorbed moles. Figure 1 
compares the bubble velocity with and without the above correction for a 0.69 mm bubble in an 
aqueous solution containing 4.3 x 10-4m01/m3 of Triton X-100. The same figure also shows the 
experimental results (see below) for the bubble velocity versus time obtained by Liao (3). The 
simulations were done for a = 0.033s-’, p = 50m3/mole. s , which are the lower bounds given 
by Lin et al. (1 1). It may be seen that the corrected simulation agrees better with the experiments 
although, for large times, the bubble velocity decreases more slowly in the simulation than in the 
experiments. 

The experimental system was similar to that used by Sam et al. (12) and Zhang et al. (2). 
Therefore, the description of the system will be brief with emphasis on the differences between 
the system and that used by the above investigators. The column was a 1.3 m high glass cylinder 
with an inner diameter equal to 12.7 cm. The base of the column was made of stainless steel. A 
square Plexiglas view box enclosed the column except for the top and bottom. In all experiments, 
the view box was filled with water to reduce the optical distortion caused by the cylinder. A 



transparent measuring scale was attached to one side of the view box' to determine the position of 
the moving bubble. 

Sam et al. (12) described the bubble generation system It consisted of a gas source, pressure 
gauge, stainless steel tubes, needle valve, flex connect tube, and a glass capillary tube. A glass 
capillary tube produced by Friedrich & Dimmoch Inc., with an outer diameter equal to 3 mm and 
a nominal inner diameter equal to 0.025 mm, was used to produce bubbles. 

The camera system was designed to track the bubble along the column. Since one camera 
could not focus on both the bubble and the scale, two CCD cameras were used in the 
experiments. One camera was placed on top of the platform and focused on the bubble, and the 
other camera was underneath the platform and focused on the scale attached to the back of the 
view box. A variable speed motor driving a chain belt over a pulley with a counterweight was 
used to move the platform on which the two cameras were mounted. The signals from the video 
cameras were synchronized by a distributor. The shutter time of the cameras was set to 1 ms to 
avoid blurring of the bubble image; the camera speed was 30 frames per second. By introducing 
a splitter, pictures of the bubble and the scale could be simultaneously displayed on the monitor. 
A time code (frame number) was placed on the upper right comer of the screen. The bubble 
images were recorded by a VCR. 

Electronics grade water was used to make solutions to minimize the effect of unknown surface- 
active impurities. All experiments were performed at 25 & 0.5"C . Helium bubbles were used in 
the experiments. The dissolution of the helium bubbles was negligible over the rise distances 
considered in the experiments. 

The surfactants used in the experiments were Triton X-100, decanoic acid, and SDS. Some 
published results were available for the sorption rate constants of the surfactants (although not in 
the concentration range considered in the experiments.) The choice of Triton X-100 also made it 
possible to make comparisons with the experiments reported by Zhang et al. (2). 
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Figures 2 and 3 compare bubble rise velocities predicted by the simulations with the 
experimental results for Triton X-100 and decanoic acid. In each case, the results of two 
experiments are shown to provide some indication of the reproducibility of the results. For 
values of the sorption rate constants used in the simulations, reasonable agreement with the 
experimental results is obtained. The ratio a / p was fixed since it is known from equilibrium 
measurements of surface tension. If one uses a least squares fit to the experimental results for 
0 0 . 1  s, one can identify the sorption parameters that produce the best agreement with the slope of 
the line through the experimental points. For Triton X-100, the results for a = 0.132 s-' , 
p = 200 m3/mole. s provide the best agreement with the experiments; these values are four times 
larger than the lower bounds determined by Lin et al. (12). For decanoic acid, the best agreement 
is obtained for a = 3.57 s-' , p = 40m3/mole s , which are the values given by Bonvankar and 
Wasan (13). The results obtained for SDS are not shown since, over the time period covered by 
the simulations, the bubble velocity changed very little after reaching its maximum value in both 
the simulations and the experiments. 

The simulations predict a maximum velocity that is larger than the experimental maximum 
velocity. It is plausible that this is caused by initial contamination of the bubbles in the 
experiments since each bubble resided on the end of the capillary tube for approximately 0.8 s. 
However, it would be difficult to test this idea since it would be difficult to simulate a growing 
bubble on the end of the capillary in the surfactant solution. 
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FIG. 1. Bubble rise velocity versus time for an aqueous solution containing 2.3 x 1 0-4 mole / m3 
of Triton X-100. Simulations with and without the correction to the algorithm for the surfactant 
transport equation are shown. 
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FIG. 2. Bubble rise velocity versus time for an aqueous solution containing 2.3 x 1 0-4 mole / m3 
of Triton X-100. The values of a and p in the simulations are: 0.033 s-', 50 m3/mole-s; 0.066 s' 
*, 100 m3/mole-s; and 0.132 s-', 200 m3/mole-s, respectively. 
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FIG. 3. Bubble rise velocity versus time for an aqueous solution containing 2.3 x 1 0-4 mole / m3 
of decanoic acid. The values of a and p in the simulations are: 3.57 s-', 40 m3/mole-s; 7.14 s-', 
80 m3/mole-s; and 14.28 s-', 160 m3/mole-s, respectively. 
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This paper presents numerical simulation results for the deformation and breakup of bubbles 
in homogeneous turbulence under zero gravity conditions. The lattice Boltzmann method was 
used in the simulations. Homogeneous turbulence was generated by a random stirring force that 
acted on the fluid in a three-dimensional periodic box. The grid size was sufficiently small that 
the smallest scales of motion could be simulated for the underlying bubble-free flow. The 
minimum Weber number for bubble breakup was found to be about 3. Bubble breakup was 
stochastic and the average time needed for breakup was much larger for small Weber number 
numbers than for larger Weber numbers. For small Weber numbers, breakup was preceded by a 
long period of oscillatory behavior during which the largest linear dimension of the bubble 
gradually increased. For all Weber numbers, breakup was preceded by a sudden increase in the 
largest linear dimension of the bubble. When the Weber number exceeded the minimum value, 
the average surface area increased by as much as 80%. 

Keywords: Bubble breakup; Multiphase flow; Numerical simulation; Turbulence 

1. Introduction 

Gas-liquid turbulent flows occur in industrial systems such as stirred tank biochemical reactors 
and bubble columns. In these flows, the deformation and breakup of bubbles strongly affect the 
interfacial area which, in turn, affects the rates of heat, mass, and momentum transfer. It is, 
therefore, of interest to determine the conditions that lead to bubble deformation and breakup. 

Kolmogorov (1949) and Hinze (1955) developed a theory for bubble or drop breakup in 
turbulent flows. They proposed that a bubble breaks as a result of interactions with turbulent 
eddies that are of approximately the same size as the bubble. They assumed that the bubble size 
was in the inertial sub-range of turbulence length scales so that Kolmogorov's universal energy 
spectrum could be used to estimate the strength of eddies having sizes comparable to the bubble. 
Hinze formulated a criterion for breakup based on a force balance. He pointed out that, in 
sufficiently strong turbulence, a bubble would deform and break when the surface tension force 
was unable to balance the random pressure fluctuations that cause deformation. He defined a 
Weber number, We = p l  < sU2 ( d e  ) > de / y , where pl is the liquid density, de is the equivalent 
spherical diameter of the bubble, y is the surface tension, and <SU2(d)> is the mean-square 
longitudinal velocity difference of the undisturbed flow over a distance d.  He proposed that, 
when the Weber number exceeded a critical value, We,, , the bubble would break. Based on the 
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