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Abstract

This report outlines progress in the second 3 months of the first year of the DOE
project “High Resolution Prediction of Gas Injection Process Performance for Heterogeneous
Reservoirs.” The development of an automatic technique for analytical solution of one-
dimensional gas flow problems with volume change on mixing is described.
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1 Executive Summary

The aim of this work is to develop a set of ultra-fast compositional simulation tools
that can be used to make field-scale predictions of the performance of gas injection processes.
To achieve the necessary accuracy, these tools must satisfy the fundamental physics and
chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses
on four main research areas:

e Determination of the most appropriate methods of mapping multicomponent solutions
to streamlines and streamtubes in 3D,

e Development of techniques for automatic generation of analytical solutions for one-
dimensional flow along a streamline,

e Experimental investigations to improve the representation of physical mechanisms that
govern displacement efficiency along a streamline, and

e Theoretical and experimental investigations to establish the limitations of the stream-
line/streamtube approach.

In this report we briefly review the status of the research effort in each area. We then
give a more in depth discussion of our development of techniques for analytic solutions along
a streamline including volume change on mixing for arbitrary numbers of components.
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2 Introduction

Working with Professor Tom Hewett, M.S. student Linda Chizoba Sam-Olibale is de-
veloping baseline reservoirs to compare streamtube, streamline, and convential finite differ-
ence models. Ph.D. student Jichun Zhu and Professor Lynn Orr are extending the analytical
solutions of compositional flows to include variations in temperature. Acting Professor David
DiCarlo is continuing the work on measuring compositional displacements in-situ with the
CT scanner. Research Associate Charles Schaefer recently left Stanford for another posi-
tion after characterizing a system of fluids which will be used to study four-phase flow, and
crossflow between streamlines. Post-Doctoral Associate Kristian Jessen recently joined us
and has begun extending his work on the automatic generation of analytical solutions.

In this report, we extend the method of Jessen et al. [7] for finding solutions for
displacement of multicomponent oil by a multicomponent gas to include the effects of vol-
ume change as components transfer between phases. Additional research needed for de-
velopment of a three-dimensional compositional streamline simulator based on analytical
one-dimensional solutions is outlined.

3 Experimental

3.1 Model

If flow is entirely along streamlines, a compositional displacement can be represented
by the following 1-D problem for flow of n.-component mixtures that partition among n,
phases,
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G, is the molar concentration of component ¢, H; is the molar flux of i, £ is dimensionless
distance, 7 is dimensionless time in pore volumes (7 = uiit/¢L), ;; is the equilibrium
mole fraction of component ¢ in phase j, p;p is the dimensionless molar density of phase
(pjp = Pj/Pini), f; is the volumetric fractional flow of phase j, and u is the local dimensionless
flow velocity (up = u/un;, where u and w;,; are the dimensional local flow velocity and
injection flow velocity respectively).

Egs. 1-3 are derived based on the assumptions stated by Dindoruk, ef al. [1]: (1) the
flow takes place in a 1D porous medium with uniform properties, (2) the effects of dispersion
and capillary pressure can be neglected, (3) that the phases present at any location along
a streamline are in local chemical equilibrium (which is specified by the Peng-Robinson
equation of state), and (4) for the purposes of the phase equilibrium calculation, the pressure
along the streamline is assumed to be constant. When components can change volume as
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they transfer between phases, the local flow velocity varies along the displacement length
in a way that satisfies at any position, &, a version of the continuity equation obtained by
summing Eq. 1 over the n. components. If, on the other hand, each component has fixed
partial molar volume, no matter what phase the component appears in, then the local flow
velocity is fixed (see Johns et al. [8] for the appropriate form of the balance equations).

In the example solutions that follow, the fractional flow function of the vapor phase
was taken to be

_ Syl b @
Sz?/:uv + (1 - Sor - Sv)2/ﬂl

where p, and p; are the viscosities of the vapor and liquid, which were calculated with the

viscosity correlation of the Lohrenz et al. [9], and S, is the residual oil saturation, assumed

to be S, = 0.2 in the example calculations. Phase equilibrium was calculated with the

Peng-Robinson equation of state (Peng and Robinson [12]).

To complete specification of the 1D flow problem, initial and injection compositions
and the displacement pressure and temperature (for phase equilibrium calculations) must
be given. The initial composition is assumed to be constant throughout the displacement
length, and the injection composition is constant for the entire displacement (a Riemann
problem).

Jo

3.2 Shocks

Egs. 1-3 can be solved by the method of characteristics (Dumoré et al. [3]; Monroe
et al. [10]; Dindoruk [1], Dindoruk et al. [2]). In that approach, the propagation velocity
of a given overall composition is determined by recasting the first-order partial differential
equations in terms of an eigenvalue problem. The resulting solutions consist of continuous
variations (known as rarefactions) and shocks, jumps in composition and saturation similar
to the shocks that arise in a Buckley-Leverett solution for water displacing oil. In Riemann
problems, the propagation velocity (which is different from the local flow velocity) of each
overall composition or shock is constant throughout the displacement.

Two types of shocks are observed: (1) shocks that connect a composition in the
single-phase region with a composition in the two-phase region and (2) shocks that connect
two compositions within the two-phase region. Shocks of the first type must occur along the
extension of a tie line (Dumoré et al. [3]). That is, the single-phase composition lies on the
extension of a tie line. If a shock connects two tie lines, the extensions of those tie lines must
intersect (Dindoruk [1], Dindoruk et al. [2]).

If a shock occurs, it must satisfy an integral material balance of the form,

Hf — HP _ upof —upof

T GF-GF T Gf-aGP

where A48 is the propagation velocity of the shock that connects composition points A and
B

AAB

1 =1,n,, (5)
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The shocks described by Eq. 5 have two varieties. When the propagation speed
of the shock matches the composition propagation velocity on one side of the shock, then
A =up(df/dS). Such shocks are known as semishocks or tangent shocks. For many shocks,
however, the shock velocity is not equal to the composition velocities on the upstream and
downstream sides of the shock. Shocks of this type are called genuine shocks.

3.3 Analytical Solution

The 1D flow problem with volume change was solved first by Welge [15] in a remark-
able early paper that investigated the behavior of ternary condensing gas drives. Dumoré
et al. [3] solved the ternary problem for both condensing and vaporizing ternary systems.
Monroe et al. [10] found the first solutions for systems with four components. The behavior
of four-component systems with volume change was explored in detail by Dindoruk [1], who
showed that the shock balance equations of the form of Egs. imply that the extensions of
two tie lines that are connected by a shock must intersect.

Extension of these ideas to displacements with more than four components took place
in stages. The analysis for four-component systems showed that there are n, —1 key tie lines
that determine much of the behavior of any solution: the tie line that extends through the
initial oil composition, the tie line that extends through the injection gas composition, and
n. — 3 additional tie lines, dubbed crossover tie lines by Monroe et al. [10]. Johns ef al. [§]
showed that multicontact miscible displacement results if any of the key tie lines is a critical
tie line. Wang [14] developed a method for solving the tie-line intersection equations, first for
injection gases containing a single component and then for multicomponent injection gases,
and applied it to find minimum miscibility pressures (MMPs) for multicomponent systems
(Wang and Orr [13]). Jessen et al. [6] developed a much more efficient algorithm for solving
the tie-line intersection equations. That approach was the basis of an algorithm developed by
Jessen et al. [7] to find the full solutions for problems with an arbitrary number of components
in either the initial oil or the injection gas but without volume change. Calculations of the
MMP require only that the key tie lines be found.

In the method of Jessen et al. [7] the key lines are found first by solving a set of
equations that require that the extensions of the key tie lines intersect, and then the specific
compositions that arise during the flow on each of the key tie lines are found. The algorithm
used is:

1. Determine the key tie lines by the tie line intersection approach [13, 6].
2. Locate the primary (shortest) tie line.

3. Construct the upstream and downstream portions of the solution by solving sequen-
tially the shocks balances for each adjacent pair of key tie lines. The upstream and
downstream segments each begin with a shock that is tangent at the primary tie line.

In this report, we consider only fully self-sharpening displacements in which all tie
lines are connected by shocks. To solve the problem for systems in which volume change
plays a role, the form of the equations derived by Dindoruk [1] is used. He showed that the
tie lines intersect in a molar concentration space at the intersection point X, (pz;)X, defined
by the equations of the intersecting tie lines. Once the intersection point is known, the shock
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balances can be written conveniently as (details of the derivations are given by Dindoruk [1];
Ermakov [4]; and Jessen [5]

A=

uf ~ SA—SXA 4B GSB_GXB  \(s (™)

Eq. 7 is written for a tangent shock from point A to point B, in which the shock
velocity matches the composition wave velocity at point A. The saturation and fractional
flow, S4 and f4 SP and fZ, refer to the values at the shock landing points A and B on
the tie lines that contain those points. The saturations SX4 and SX? refer to the tie-line
intersection point. SX4 is the saturation at that point measured on the tie line that contains
point A, and similarly, S*? is the saturation measured on the tie line that contains point B.
The saturation at any point on a tie line can be calculated easily from a tie-material balance

AAB B fA_SXA B ug fB_SXB B (df)A

z=Vy+ (1 =V)z;,i =1,n,, (8)
where V' is the vapor mole fraction, and z; and y; are the mole fractions of component 7 in
the equilibrium liquid and vapor. The saturation at overall composition z; is

s, = V/po _ ©)
Vipp+ (1 =V)/p
Similar equations apply if the shock is a genuine shock. In that case, A* does not
equal df /dS, but the composition on one side of the shock is known.
The ratio of flow velocities on either side of the shock can be determined from Eq. 5.
To determine the actual flow velocities, the velocity ratios for all the shocks between tie
lines are calculated, and then the velocity ratios for the leading and trailing phase change
shocks are calculated. Because the flow velocity at the inlet is up = 1, all the remaining
flow velocities can be found from the ratios. For any shock in which the composition on one
side of the shock is a single-phase mixture (see Dindoruk [1] or Jessen [5] for details),

IT
Af A _ fII_SI (df) |

_u_IDI_SII_SI: ds

where the superscript I7 refers to the two-phase side of the shock, and S” is the saturation
at the single-phase composition (greater than one or less than zero). The velocity ratio for
the shock is given by

(10)

ul 1—A*
u—g = (plD + S'(pop — Pld)) : (11)

where ul, and ul] refer to the dimensionless flow velocities on the single- and two-phase sides
of the shock, and p} is the dimensionless molar density of the single-phase mixture.

4 Results and Discussion

4.1 Example Solutions

The theory of Section 3 was used to find solutions for several gas displacement prob-
lems that illustrate the effects of volume change on mixing. Figure 1 shows the results for
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Figure 1: Saturation profiles for displacement of a five-component oil by CO; at 109 atm
(1600psia) and 344 K (160 F).

a displacement of a five-component oil containing equal mole fractions of methane (CHy),
n-butane (C,), decane (Cyg), tetradecane (Cy4), and eicosane (Cgg) by pure CO, at 109 atm
(1600 psia) and 71 C (160 F). Figure 1 compares the saturation profiles for solutions with
and without volume change. Additional details of the solution, such as the compositions at
the shock landing points and the flow velocities on each key tie line are given by Ermakov et
al. [4]. In this example, volume change reduces the flow velocity. CH,4 from the oil present in
the transition zone appears in a leading CH, bank, and when the injected CO, encounters
the undisplaced oil, it dissolves, losing volume in the process. In displacements in which the
pressure is high enough that the solubility of COs in the oil is appreciable, but not high
enough that the displacement is very efficient, the loss of volume can actually cause COq
breakthrough to occur after one pore volume of injection (see Orr et al. [11], for experimental
results that show this effect and Dindoruk [1], for theoretical examples).

Figure 2 compares the analytical solution including the effects of volume change with
results of a FD compositional simulation performed with single-point upstream weighting,
1000 grid blocks and Az /At set to 5. Also shown in Fig. 2 is a numerical solution obtained
by a TVD scheme (unpublished simulator written by Marco Thiele and Michael Edwards).
While the numerical solutions show some smearing of the shocks, it is clear that the numerical
and analytical solutions agree very well.

The speed advantage of the analytical approach is illustrated in Table 1. The analyti-
cal solutions are self-similar, so the computation time required for any length of displacement
is the same. That is not true, however, for FD compositional simulation. The computation
times shown are only approximate because the simulations were run on a multiuser server,
but even so, they indicate clearly that the analytical approach is orders of magnitude faster
than FD simulation for grids that are fine enough to resolve the composition path well. FD
simulations for coarser grids would be faster, of course, but significant adverse effects of
numerical dispersion would be present in the solutions.
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Figure 2: Comparison of analytical and numerical solutions for flow with volume change for
CO, displacing a five-component oil (see Fig. 1) at 0.7 pore volumes injected.

Table 1: Computation times for analytical and numerical solutions for gas displacements.

Components Analytical Simulation Numerical Solution Numerical Solution

Solution Length 1000 Blocks 5000 Blocks
(sec) (PV) (sec) (sec)
6 1.1 0.70 300 8160
15 10 0.25 720 14820

4.2 Discussion

The examples given here demonstrate that solutions to the 1D multicomponent gas
displacement problems can be found far more efficiently by analytical methods than by
conventional FD compositional simulation. So far, the solutions are limited to systems that
are fully self-sharpening (that is, key tie lines that make up the solutions are connected
by shocks only, not by rarefactions). While many displacements are fully self-sharpening,
rarefactions do occur for some systems (Jessen et al. [7]). Thus, extension of the method
reported here to include integrations for rarefactions will be required. Even so, the fully
self-sharpening solution is a reasonable approximation [5], and the existing theory can be
used to calculate the performance of slim tube displacements thousands of times faster than
by conventional compositional simulation.

Additional extensions of the theory will be required if these methods are to be ap-
plicable to a wide range of streamline simulations. For example, versions of the streamline
approach that update the locations of the streamlines periodically will create a need for
1D solutions for problems in which the initial composition along a streamline is not con-
stant. Similarly, changes in injection composition during the life of a project will also create
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problems that are not Riemann problems. For those problems, the composition propagation
and flow velocities do not remain constant in time. Instead, the solution evolves toward
self-similar solutions like those presented here for some period. Finally, problems in which
three-phase flow of water plus the hydrocarbon-bearing phases will also be of interest. If these
more difficult problems can be solved, practical and very fast 3D compositional simulation
will be possible for a wide range of problems.

5)

Conclusion

The examples presented in this report establish that:

. 1D solutions for multicomponent displacements in the absence of dispersion but in-

cluding the effects of volume change as components transfer between phases can be
found by an automatic algorithm.

. Analytical solutions for 1D flow that are not influenced by numerical dispersion can

be found in hundreds to thousands of times less computation time than is required for
the corresponding FD compositional simulations, which are influenced by numerical
dispersion.

. The primary effect of volume change is to cause the local flow velocity to vary in space.

In some systems the effects of volume change can lead to significantly earlier or later
breakthrough than would occur in the corresponding displacement with no volume
change.

. In the limit as the MMP is approached, the solutions obtained with and without volume

change become identical.
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