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ABSTRACT 
 

The fission source convergence of a very loosely coupled array of 36 fuel 
subassemblies with slightly non-symmetric reflection is studied.  The fission source 
converges very slowly from a uniform guess to the fundamental mode in which about 
40% of the fissions occur in one corner subassembly.  Eigenvalue and fission source 
estimates are analyzed using a set of statistical tests similar to those used in MCNP, 
including the “drift-in-mean” test and a new drift-in-mean test using a linear fit to the 
cumulative estimate drift, the Shapiro-Wilk test for normality, the relative error test, and 
the “1/N” test.  The normality test does not detect a drifting eigenvalue or fission source.  
Applied to eigenvalue estimates, the other tests generally fail to detect an unconverged 
solution, but they are sometimes effective when evaluating fission source distributions.  
None of the test provides completely reliable indication of convergence, although they 
can detect nonconvergence. 
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I.  INTRODUCTION 
 

Loosely coupled systems provide special challenges for Monte Carlo analysts 
because of difficulties in convergence of the unaccelerated power method normally 
applied to the fission source iteration and because of inaccuracy of the usual variance 
computations [1,2,3].  Source convergence difficulties can be due to the inherent 
unsuitability of the unaccelerated power iteration method, because of undersampling, or 
because of other statistical problems.  The fission source iteration acceleration methods 
available in deterministic codes do not always work well because of the noise inherent in 
the Monte Carlo method, although some mitigating algorithms are in use [e.g., 4,5,6].  
The OECD Nuclear Energy Agency Expert Group on Fission Source Convergence in 
Criticality Safety Analyses has specified four source convergence benchmark problems 
[7], each of which has some combination of adverse stochastic and deterministic fission 
source convergence characteristics.  The first of these problems, a loosely coupled spent 
fuel storage array, is studied in this work; it exhibits deterministic slow convergence and 
rather complex stochastic behavior in a particularly difficult combination. 

 
Slow convergence is not an inherent problem in Monte Carlo or deterministic 

calculations unless its progress is so slow as to be mistaken for convergence.  When this 
happens, the estimated fission distribution will be in error, and in some problems, the 
estimated eigenvalue can be substantially under-predicted, with adverse implications for 
criticality safety analysis. There are several obvious remedies: (1) perform additional 
calculations with more histories and/or more neutron generations used to converge the 
fission source, (2) perform similar calculations with a different initial source and compare 
the solutions, and (3) apply statistical tests that provide the analyst warnings when the 
fission source is insufficiently converged. In this report, we apply several tests that may 
be used in criticality calculations to assess their sensitivity and reliability, using as a test 
problem the checkerboard problem from the OECD/NEA benchmark set. 
 
 

II.  CHECKERBOARD CONVERGENCE BENCHMARK 
CONFIGURATIONS 

 
The checkerboard benchmark problem is an array of spent fuel subassemblies 

stored in a rectangular 3x24 array.  Half of the array cells are empty (water-filled), and 
the 36 subassemblies are arranged in the array in a checkerboard pattern, alternating with 
water channels (Figure 1).  The top and bottom of the system are 30cm water reflectors, 
three of the sides are 40cm concrete reflectors, and the fourth (long) side is a 30cm water 
reflector.  The atom densities are given in Table I. 

 
In accordance with the benchmark Monte Carlo parameter specifications (Table 

II), the problem was run using the VIM Monte Carlo code [8] with 1000, 2000 and 5000 
histories per generation, and, for every given number of histories per generation, results 
were computed for 500 active generations with 20, 40 and 100 generations skipped. In all 
the above problems, the starting source was selected randomly with uniform probability 
distribution throughout each fuel cell, and uniformly among the 36 fuel cells. The 
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checkerboard benchmarks were also run with starting sources only in certain individual 
cells. In our calculations, generations were collected into batches of 20, and, unless 
otherwise specified, all means and variances were computed on the basis of this batching.  
These calculations and those made at other institutions, reported elsewhere [9], are not 
analyzed here because a) probably no analyst would run the problems this way, and b) if 
any did it would quickly be seen from the evolving fission distributions that such runs 
were very far from converged in all cases.  Instead, we will examine the source 
convergence behavior of a few of the specified cases and some simplified systems. 

 
The NEA source convergence benchmarks are unusual in that it is not the exact 

solution of the physics problem that is of interest. Instead, the focus is on the rate and 
extent of convergence, the accuracy of uncertainty estimates, and the efficacy of 
statistical tests. Therefore, in our work, we used a simplified version of this problem both 
for the benchmark comparisons and for the additional analysis of its convergence 
properties and the statistical tests reported here.  The subassembly pin lattice was 
homogenized by volume weighting (see Table I for the homogenized atom densities), but 
the surrounding water and structure in each cell in the pool array were retained to 
preserve the inter-cell coupling. The reflectors surrounding the storage array were also 
retained as specified.  The homogenization no doubt changes the eigenvalue and perhaps 
the converged fission source distribution somewhat, but should not have a large effect on 
the rate of convergence or the utility of statistical tests. 

 
For our own purposes we performed several other analyses.  We reran the uniform 

source problem with 25,000 histories per generation, again with the same three 
alternative numbers of skipped generations, all with 500 active generations (identified as 
cases 37-39). Additional analysis was performed on an even more simplified problem set 
with a 2xM (M even) array with periodic boundary conditions in the x-y plane and 
reflection in z. These systems represent an infinite lattice, so the true fission fraction for 
each of the M subassembly locations is precisely 1/M, and even if a non-uniform source 
guess is used, the salient feature of the Monte Carlo solution is statistical variation due to 
the Monte Carlo algorithm, exacerbated, as we shall see, by the very low coupling 
between nearest fuel bundles. Because the eigenvalues of these systems depend only on 
the flux shape inside a subassembly and not on its distribution among subassemblies, the 
eigenvalue should converge fairly quickly, even if the global fission source distribution 
does not. 

 
The simplest test problem is one in which only two columns of the checkerboard 

are explicitly included. Thus in this problem the whole configuration contains only two 
fuel cells alternating with two water cells. The most complicated in this series involves 
12 fuel cells alternating with 12 water cells in 12 columns of the 2 rows. All calculations 
were done with 500 active generations, skipping 20 and 100 generations. The net number 
of starters per generation, in each test, is the closest integer to N, 

 
N = 5000 M/36,    (1) 

 
so that the mean number of starters per fuel cell is nearly the same in all test problems, 
and nearly the same as in the original checkerboard benchmark with 5000 histories per 
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generation.  In order to introduce flux-shape drifts, which turned out to be important in 
the checkerboard benchmark series, the guessed source was raised in the left half of each 
problem configuration and lowered in the right half, so that the ratio between the two 
halves was 1.5. 

 
One of the important characteristics of the checkerboard benchmark problem is 

the influence of the concrete reflector on the fundamental mode. The geometrical 
arrangement of the fuel subassembly locations in the array is uniform, so one would 
expect a fairly uniform flux shape from one end of the array to the other.  Initial 
observations of the flux distribution, however, indicated a flux peak in the only cell with 
two faces adjacent to concrete (1,3). To bound the effect of the surrounding materials, 
two calculations were completed for a single subassembly cell surrounded on four sides 
by 40cm of either concrete or water.  Those eigenvalues, 0.8778 +/- 0.0012 and 0.8285 
+/- 0.0012, respectively, confirm that cell (1,3) ought to contain a large peak reminiscent 
of that in the Whitesides problem [1], and that the fission fraction in that cell is the 
parameter that most directly indicates fission source convergence. 
 
 

III.  STATISTICAL TESTS AND RESULTS 
 

Monte Carlo codes normally attempt to provide information sufficient for 
conclusions about the statistical validity of the Monte Carlo estimates, and some provide 
warnings when tests indicate computational results may be untrustworthy. In MCNP 
[10], for example, one set of these tests is intended for general use, while a second group 
is aimed at eigenvalue problems; but in principal, all the tests could be used for both 
eigenvalue and fixed source calculations. We discuss, here, five tests, all of them variants 
of tests in MCNP, and describe their weaknesses when applied to eigenvalue problems. It 
would seem on theoretical grounds that they can all be misleading when estimates from 
successive generations are very strongly correlated. This weakness is particularly 
troublesome in difficult problems (like the checkerboard benchmark problem) because so 
many eigenvalue problems are difficult precisely due to strong intergenerational 
correlations. Thus in using these tests it is necessary to proceed with caution, relying on a 
background of empirical studies. 

 
Two tests will be considered in Section A below. Both involve separate 

consideration of Monte Carlo estimates over the first and second halves of a Monte Carlo 
run. Both are designed to determine whether Monte Carlo estimates are fluctuating 
randomly about a stable mean, or about a mean which has drifted significantly during the 
active generations of the Monte Carlo computation. In Section B the successive estimates 
of fission fractions and eigenvalues are subjected to the Shapiro-Wilk test for normality. 
Next, in Section C, we discuss the MCNP "R test", based on the size of the relative errors. 
Finally, in Section D, we consider a test we'll call "the 1/N test" in which one looks for a 
1/N behavior of the relative standard deviation during N batches. All tests will be applied, 
here, to the checkerboard problems specified in the criticality safety benchmark series. In 
addition we examine their performance in simplified problem configurations described 
above. The quantities of interest in all of our studies are eigenvalues and fission fractions, 
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i.e. the ratios of the fission rates in each fuel cell to the total fission rates. In all tests the 
active generations were grouped into batches, each consisting of 20 consecutive 
generations. The basic data in all tests were averages of estimates over each of the 25 
active batches.  Variances in all tests will be estimated without regard for inter-batch 
correlation. 

A.  Two "Drift-in-Mean" Tests 
 

This drift test is a variant of the”bottom half vs. top half” test in which the 
averages from each half of a calculation are compared to detect drift. In our variant, we 
compute a cumulative mean for each tested variable (i.e., eigenvalue or fission fractions) 
after each generation. Then we construct a linear least-squares-fit (with slope a) to the 
cumulative means in the last half of the Monte Carlo calculation. Strictly speaking (again 
because of intergenerational correlations) no statistical interpretation can be assigned to 
the fitting coefficients. Still, the fitting parameters do give us some indication as to the 
extent to which cumulative means are drifting. The expression 

 
? Ffit,i = 13 ai/Fi,25    (2) 

 
is the relative drift in fission fraction; Fi,j being the average of the fission fraction 
estimates in fuel cell i, taken over all active batches up through active batch j.  Here, 
because there are 25 active batches, the halves into which the active batches are divide 
are the first 12 and the last 13.  The same test is also applied to cumulative eigenvalue 
estimates. 

 
In the second drift test we have copied one of the MCNP tests which examines 

drifts over all active generations. Here again the Monte Carlo run is divided into halves, 
but now means are computed, separately, over each half. If, for example, kT is the mean 
of k over the first (top) half of the run, and kB the mean over the last (bottom) half, define 
the eigenvalue difference in standard deviations, ? kTB = (kT - kB)/s ?k, where s ?k is the 
standard deviation in this difference. ? kTB is used, in this test, as the parameter whose 
value determines the acceptability of the eigenvalue estimate. In MCNP a computed 
mean is acceptable if the magnitude of kT - kB is within the 99% probability limit, 
assuming that kT - kB is normally distributed. This means here that |kT - kB| < 2.6s ?k, where 
2.6s ?k is the approximate width of the 99% confidence interval. In the case of fission 
fraction in fuel cell i we use the corresponding parameter ? FTB,i. 

 
The results of the drift tests described above are both listed in Table III for the 

simplest of this series of tests, computation of the system with only two fuel cells, 
skipping 20 generations (one batch).  Here s Fi is the Monte Carlo estimate of the standard 
deviation of the mean fission fraction, using all active batches.  Interpreting ?Ffit,i, as the 
amount of drift along the fitted line we see that, over and above statistical fluctuations, 
the Monte Carlo estimates in the later batches of the iterative process have drifted by 
about 4.4% and –4.4%, respectively, in the two fuel cells. These drifts, by our standards 
here, are only slightly larger than the quoted standard deviations. Further we note that 
both values of ? FTB,i lie in the acceptable range. We don't know what would happen if the 
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number of generations were increased, so it isn't possible to make a rigorous connection 
between the computed drift-parameters and the errors due to nonconvergence of the 
power iterations. The most we can hope for is that there will be a useful correlation 
between these parameters and the magnitude of such errors. In column six of Table III the 
?Ffit,i,'s give remarkably good estimates of the true errors in the Monte Carlo means, but 
one can't expect that this will be true in general.  We note also that both values of ? FTB,i 
lie in the acceptable range. 

 
In the fitting process one computes the covariance between cumulative means and 

generation-numbers, and the corresponding correlation coefficient is a good measure of 
the goodness-of-fit. In fact suppose we denote the cumulative mean after j generations as 
Xj, and the variance of this running mean as s 2(Xj). Let y(j) = a*j + b be the equation of 
the linear fit to Xj, and s 2(y) be the variance of this line. In other words s 2(y) would be the 
variance of X if all the cumulative means lay exactly on the linear fit. The magnitude of 
the correlation coefficient is, then, the ratio of the standard deviation of y to the standard 
deviation of X; i.e. the correlation coefficient tells us how much of the standard deviation 
of cumulative means is attributable to linear drift. 

 
It will be seen that the signs of ? Ffit,i and ? FTB,i are the same, suggesting that each 

of the Fi,j's have, in effect, drifted in a single direction throughout the run. Generally 
? Ffit,i,j and ? FTB,i give complementary information The latter parameter gives us 
information as to a general drift in Fi,j throughout the run, while ? Ffit,i characterizes the 
behavior of the running averages, Fi,j, nearer the end of the run. Thus one may find that 
? FTB,i is relatively large while ? Ffit,i is small. In such a case it may be that the power-
iteration process is close to convergence by the end of the run. On the other hand if ? Ffit,i 
is large, particularly if the magnitude of the correlation coefficient is close to one, then 
this process is probably still far from convergence. 

 
Table IV lists the same data for the corresponding problem with twelve fuel cells, 

again skipping one batch.  On comparing Tables III and IV what stands out most clearly 
is that (1) the quoted relative standard deviations in the computed fission fractions are 
much larger in Table IV than in Table III, and (2) that in Table IV the true errors are 
much larger than the standard deviations estimated by the Monte Carlo code. Both of 
these observations are consistent with our a priori assessment that the Monte Carlo 
process in the second problem should be much noisier and more slowly convergent than 
in the first. But we see also that (3) ? Ffit,i,j, when it is much larger than s Fi/Fi,25, might 
provide a useful warning that the computed mean may be grossly incorrect. Again we see 
that the signs carried by ? Ffit,i and ? FTB,i tend to be the same, though they do differ in cell 
6. Thus here a drift in the bottom half of the run again indicates an overall drift in the 
same direction. As before, we note that results of both tests depend on drifts over 
generations already run, and don't necessarily tell us what would happen if the run were 
continued. Both tests can be misleading as indicators of the reliability of means in 
individual cells. Thus in cell 4 the large values of ? Ffit,i and ? FTB,i indicate, incorrectly, 
that the Monte Carlo standard deviation is much too small, while in fact it's reasonably 
accurate. Clearly both tests are misleading in this one cell, but taken as a whole they both 
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agree, and do tell us that the Monte Carlo power iterations are still far from convergence 
after 600 generations. 

 
We note also that the correlation coefficients are very large, except in cell 6. This 

means that in most cells the generation-to-generation changes in fission fractions are not 
random but very systematic, and almost linear functions of the iteration number. Such 
behavior is not at all what one would expect of a set of means nearing convergence, and 
is an important indication that, in fact, that the Monte Carlo power iterations are far from 
convergence. 

 
In Table V, we list similar results for eigenvalues in a range of simplified test 

problems, including a reference two-cell computation with 1000 active generations, 500 
skipped and 5000 histories per generation. Generally, on examining both sets of test-
results in Table V, we would be led to conclude that the eigenvalue computations are 
pretty well converged. Thus, for example, the magnitude of the net drift in k in the last 
half of the iterative process is everywhere less than twice the computed standard 
deviation. It seems surprising, therefore, to find such large correlation coefficients in 
cases 1 and 2 of Table V, since Table III suggests that the flux shape in case 1 is well 
converged. One might speculate that such strong drifts could be caused, somehow, by the 
tilt in the source-guess. We find, however, that the computed correlation coefficients 
remain just as high in magnitude when the tilted source-guess is replaced by a flat source-
guess. At this point the high correlation coefficient is not understood. It will be seen, 
however, that the "Approximate Error" generally decreases as the net number of histories 
increases, again suggesting that the errors are primarily due to statistical effects, perhaps 
of the nature observed by Yamamoto [4], rather than to incomplete convergence of the 
power iterations. Again we see that the direction of drifts seems to persist throughout the 
calculation, and here we find that both tests agree everywhere. 

 
We turn now to the original benchmark problem. In Table VI we list data similar 

to those listed in Table IV, but for the benchmark case 25, in which the source guess is 
uniform over all fuel cells, the computation is run with 5000 histories per generation, and 
there are 500 active generations after 20 generations skipped.  Here fuel cells are grouped 
according to the rows in which they are located. Thus cells 1, 4, 7 and 10 are the left-
most four fuel cells in row 1, etc. To avoid a very lengthy table we have listed data only 
for the 11 cells nearest to the left-hand boundary of the checkerboard. We hope it will 
become apparent later that this is a particularly interesting area of the checkerboard. 

 
It will be seen that here the absolute values of ratios of the ?Ffit,i,'s to the 

computed relative standard deviations are generally pretty large. In Table IV the 
maximum absolute value of this ratio is 3.6. Here this maximum is 4.7, taken on in cell 2. 
The average of all these absolute values is 2.2 in Table IV, 3.6 here. Our drift-in-mean 
criteria suggest that the case 25 results are still far from converged. Further we see that, in 
the lower half of the run the fission fractions are rising in cell 2 and its closest neighbors, 
and falling elsewhere. In this case results of both drift tests agree everywhere except in 
cells 5 and 11. We see from Table VI that in both cells the first test is right. Both tests, 
however, strongly suggest that the Monte Carlo iterations have not converged. Thus for 
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example, the first test indicates that the computed fission fractions are acceptable in only 
three out of 36 cells. 

 
The same analysis has been performed for case 1, with only 1000 histories per 

generation. In this case we found, according to the first drift test, that fission fractions are 
acceptable in 5 out of 36 cells, again suggesting unsatisfactory convergence. Since case 1 
flux shapes are probably no better converged than the shapes in case 25, probably the 
increase in numbers of results deemed acceptable by the drift test indicates deterioration 
in the test’s performance due to the smaller sample size. Again we find that both drift 
tests give very similar results.  

 
In Table VII, we show corresponding results for a “best estimate” calculation with 

1000 active generations, 1000 skipped and 25000 histories per generation.  Results shown 
in Tables VI and VII are more or less consistent, in the sense that fission fractions in cell 
2 and its neighbors have risen while, except for cell 4, fission fractions in all other cells 
have dropped. On the other hand, it seems that our best-estimate computation has still not 
converged very well, particularly in cells far from corner-cell 2. It’s a plausible guess that 
fission fractions in these cells are still too high, though the overall accuracy does appear 
to be much higher than those listed in Table VI. 
 

Next, in Table VIII, we list eigenvalues and drift parameters for a few of the 
benchmark cases, now using the best estimate eigenvalue (0.85875) to compute an 
eigenvalue error. As one would expect, given the behavior of the flux shape, all 
eigenvalues in Table VIII are too low, and don't get substantially more accurate as the 
number of histories increases. Apparently the drifts in fission rates per cell, here as in the 
idealized checkerboards, make canceling contributions to the eigenvalues. It seems 
plausible that there is an upward drift in all the eigenvalues, corresponding to what 
appears to be a shift in fission source towards the most reactive fuel cell. The first test 
detects this drift in cases 13, 27, 37 and 39, while the second test sees the drift only in the 
last cases, cells 37 and 39. It seems that in cell 15 the drift reverses and tends upward in 
the lower half of the run. At any rate it's clear that neither drift test reliably indicates that 
the eigenvalues have not yet converged in cases 1, 3, 15 and 25. A user would have to 
take note of the drifts in source shape to infer that these eigenvalues might not have 
converged.   

 
Concluding this section we note that here, in most cases, both drift tests give the 

same results, with the first test slightly better than the second. It will be recalled that, 
according to our first test, an estimate is unreliable if the "relative drift" is greater than 
twice the estimated standard deviation while, according to the second test, it is suspect if 
the drift-to-uncertainty ratio is greater than 2.6. It can be shown that the test ratios in both 
tests are closely related, and one might argue that the tests should be inter-compared with 
the same critical values of test-ratios in both. Where one of the tests fails it is usually not 
strict enough, so one might be inclined to reduce the critical drift-to-uncertainty ratio 
from 2.6 to 2. The test results for both tests would then become still closer. Generally the 
drift parameters do seem to give useful information as to the state of convergence of the 
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flux shapes. We see however, from Table VIII, that test results for eigenvalues are much 
less satisfactory. 

 
B.  Shapiro-Wilk Test 
 
 This test is intended to tell us whether or not a Monte Carlo estimate is normally 
distributed. There are two reasons for checking normality, both connected with 
confidence intervals. First, if an estimate isn't normally distributed the distribution may 
be pathological. It might, for example, have a very long, low tail, in which case one could 
run into scattered outliers (i.e. estimates very far from the mean), so that the true variance 
may be very difficult to estimate. But even if outliers aren't a problem, and even if 
individual samples are drawn from Gaussian distributions, the probability that the true 
answer is outside of the stated confidence interval may be underestimated when 
successive estimates are strongly positively correlated. 

 
 The Shapiro-Wilk test [11] takes a set of values of a random variable and 

computes a corresponding variate W. There is at least one variant of this test which 
accepts a sample-set of any size, but in its original form the test is intended for use with 
sample-sets of no more than 50 elements. This is no difficulty in our present application 
since the sets we treat will be, here, samples from 25 active batches. 

 
 For 25 gaussian samples the 95% limits for W are 0.918 and 0.985, and the 

expected value is about 0.95. Considering the eleven cells listed in Table VI we find 6 
cells for which W is in this range. These are cell 2, with W = 0.95: cell 5, in which W = 
0.92: cell 6, W = 0.98: cell 9 with W = 0.93; cell 10, W =0 .96, and: cell 11 with W = 0.94. 
Yet we have seen that for these cells the VIM standard deviations grossly overestimate 
the accuracies of the computed fission fractions. The Shapiro-Wilk test is, however, not 
without value in this case in that it rules out as unacceptable cells 1, 4 and 8, three of the 
four cells acceptable according to the drift tests. 

 
 In Table IV one finds that, by the Shapiro-Wilk test, the fission fraction estimates 

are unacceptable only in cells 8 and 11, though we know that the computed fission 
fractions are substantially incorrect in most cells. In Table VI all but the case 15 
eigenvalue are acceptable, according to this test, though in fact they are all substantially 
too low. 

 
One difficulty here, seems to be that the Shapiro-Wilk test (if one can judge from 

the discussion of Ref. 12) is intended for use with uncorrelated samples. A priori it can't 
be assumed to give us any information about correlations, or their effects on confidence 
intervals, but we see in Table V that the correlation coefficients are high in 5 of the 6 
cells where the Shapiro-Wilk test is satisfied. In cells 9 and 11 the cumulative fission 
fractions in the lower 13 batches are very nearly linear functions of the batch number. It's 
easy to see what would be the value of W for samples exactly linear in batch number, and 
to show that this value would not depend on the slope or intercept of the line on which 
the samples lie. For 10 and 25 such samples we find that W = 0.97, and for 20 samples W 
= 0.96. Furthermore one can show that, if x(i) = a*i + ?, and if ? is a normal random 
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variable, then W may well be in the acceptable range. We conclude that the Shapiro-Wilk 
test is of questionable value if successive iterates are strongly correlated. Here it should 
be noted that we have applied this test only to 25 batches of generations, not to the 
generations themselves, and the test may be used differently in MCNP. 
 
C.  Relative Error (R) Test 
 

The MCNP manual[10] suggests that, in a fixed-source problem, a Monte Carlo 
mean should be regarded as untrustworthy if R, the relative standard deviation, is greater 
than 10%. In difficult problems estimated standard deviations are often too small, and 
this is true both for fixed source and eigenvalue problems; but, in fixed source problems, 
as the number of sample particles increases the relative error in estimated standard 
deviation goes to zero. This will not be true in eigenvalue calculations if intergeneration 
correlations are strong enough. If intergenerational correlations are very strong and 
positive, relative standard deviations will continue to be strongly underestimated even as 
the number of starters per generation goes to infinity. For this reason the R test will tend 
to be much less useful for eigenvalue problems than for fixed source problems. Still there 
seems to be no reason why an estimate that fails the R test should not be flagged as 
unreliable. In our computations, however, the R test would have only one effect, i.e. it 
would lead us to label as questionable the cell-1 fission fraction in Table VI, ruled 
acceptable by both drift tests. 
 
D.  1/N Test 
 

The 1/N test is used to see whether the estimated uncertainty is decreasing at a 
rate consistent with increasing sample size.  In our implementation, it is applied only to 
the bottom half of the calculation to determine the behavior of the cumulative mean.  Let 
NT (14 here) be the batch-number of the first of the final 13 active batches of a Monte 
Carlo run that skips Nskip batches, and NB = Nskip + N be the number of the last of the 
active batches, where N (25, here) is the net number of active batches. It's the purpose of 
this test to determine whether, in the final batches, the relative standard deviations, R(j), 
of the estimates x(j), decreases like 1/sqrt(N(j)), where N(j) = j + 1 - NT  is the number of 
batches in the range from NT down to and including j. 

 
For this purpose we first compute the cumulative mean of x, X(j), where j ranges 

from NT through NB. Let RB(j) be the standard deviation of the mean of all x's with batch-
numbers in the range from NT through j, and define the relative error R(j) = RB(j)/X(j).  
Define C(j) = R(j)*sqrt(j–NT+1), which ought to be constant for normally distributed x’s 
produced from a converged fission source distribution. Now, given C(j), we fit the line 

 
y(j) = aC*(j-NT+1) + bC    (3) 

 
to the values of the C’s.  Finally, we compute the relative change in C(j), ? CTB = 

aC*13/Cbar, over the range of the fitted line (the bottom half of the Monte Carlo 
calculation).  The magnitude of ? CTB is then to be taken as a measure of the fractional 
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change in C, and correspondingly, a measure of the magnitude of the uncertainty of R, 
due to the drift in C.  Here, Cbar is the mean of C over the active batches. 

 
It should be noted that, even if the computed value of R has converged, we still 

have no assurance that the converged value gives us a valid confidence interval. If 
successive values of x have a high correlation coefficient then, even if the MacMillan 
correction [12] is applicable (i.e. even if the x's are eigenvalue estimates), computed 
confidence intervals may be far from correct. In contrast, a converged mean can be 
notably incorrect only when Monte Carlo biases are significant. Although it's not 
completely clear when this will be true, there seems to be no indication that, in practice, 
such biases have affected neutronics eigenvalue calculations.  

 
Here perhaps the worst failure of the preceding tests is their failure to detect 

nonconvergence in four of the eight eigenvalues listed in Table VIII. For this reason we 
list values of ? CTB for these 8 cases in Table IX.  We see that the observed relative drifts 
in C can be very small, certainly too small to warn the user that the stated confidence 
intervals for eigenvalues are grossly underestimated. Thus in case 1 the computed R, 
R=s/k, is incorrect by 0.74%: but the relative drift in R is only 0.02% of R.  Such a small 
shift in the estimated relative error is much too small to warn the user that the computed 
eigenvalue may be in error by as much as 0.74%.  
 
 

IV.  CONCLUSIONS 
 
We've seen above that, in dealing with eigenvalue problems, none of the tests 

we've discussed can tell us reliably that specific Monte Carlo computational results are 
trustworthy, though some tests can give us useful warnings when they're not. We are not 
interested here in difficulties due to weaknesses in modeling, or in Monte Carlo biases. 
Generally we mean by "untrustworthy results" results which, from the user's point of 
view, are unacceptably inaccurate, stated with misleadingly small confidence intervals.  

 
Thus anomalies in source shapes are, here, often, associated with detectable drifts 

in local source densities. We see, however, from Table VIII that anomalies in eigenvalues 
do not necessarily reveal themselves through corresponding drifts in the computed 
eigenvalues. In Table VIII all the computed eigenvalues are too low, and are presumably 
drifting upwards as the computation progresses; but apparently the eigenvalue drift is 
often too slow to detect, being hidden by noise. 

 
The computation of confidence intervals is generally based on the assumption that 

specified samples are drawn from a normal distribution. Since we are mainly concerned, 
here, with the validity of confidence intervals, it might be expected that the Shapiro-Wilk 
test for normality would be particularly valuable. This is very likely true in fixed-source 
problems where the samples are independent; but the Shapiro-Wilk test is applicable only 
to independent samples. It does not seem to be designed to detect correlations among the 
samples. Yet it's usually just such correlations that cause trouble in the estimation of 
statistical uncertainties in eigenvalue problems. For our purposes, then, the test's utility is 
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limited. Specifically, we find that it tends to accept erroneously small confidence 
intervals when, as is often the case, the submitted samples are highly positively 
correlated. It is, in other words, a test which is particularly prone to give false negatives. 
On the other hand there seems to be no reason to question the test results when the 
normality hypothesis is rejected.  

 
As already pointed out, one weakness of the R-test in difficult eigenvalue 

problems is that, even as the number of histories per generation goes to infinity, the 
relative error in the computed R will often remain large and negative. Correspondingly 
the test often may fail to flag unreliable results. On the other hand, if a computational 
result doesn't pass this test it should be viewed with suspicion. 

 
Finally, the 1/N test may be misleading for two reasons. First, particularly in 

eigenvalue calculations the drift in C, C=R*sqrt(n), may be too slow to see through the 
noise and, secondly, even if C has converged it may have converged to an erroneous 
value. Again, however, if the test detects an unacceptable result, i.e. an unacceptably 
large drift, the resulting warning ought to be taken seriously. 

 
In the work above one type of test has not been examined. This is a test based on 

a comparison of various types of estimators (e.g. track-length estimators, collision 
estimators, etc.) of eigenvalues or reaction rates. These different estimators should not 
disagree significantly, i.e. their differences should be consistent with the standard 
deviation in the differences, computed with regard for correlations between estimators. 
Still one can expect that no foolproof test of this type will be discovered. 

 
The cumulative results of batteries of tests should help the Monte Carlo user 

avoid many serious mistakes. Further exploration of such batteries of tests, using 
different series' of test problems and development of new tests would be highly desirable. 
What is most disturbing in our results is that tests applied to eigenvalues, directly, have 
had so little success in detecting anomalies. After all, in criticality safety applications it's 
the eigenvalue that really counts. Our only recommendation, here, has been to infer the 
degree of convergence of eigenvalues from the degree of convergence of fission shapes, 
not the most satisfactory approach. Of course even such modest conclusions ought to be 
assessed through analysis of other sorts of difficult eigenvalue problems. 
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Figure 1.  NEA Source Convergence Benchmark 1 Configuration 
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Table I. 

NEA Checkerboard Benchmark Atom Densities 
 

Material Nuclide Density 
238U 2.2380E-02 
235U 8.2213E-04 

 
Fuel 

O 4.6054E-02 

H 6.6706E-02 Water 

O 3.3353E-02 

Zirconium Zr-90 4.2910E-02 

H 5.5437E-03 

C 6.9793E-03 

Si 7.7106E-03 

Ca 8.9591E-03 

 
 
 

Concrete 

O 4.3383E-02 

Iron Fe 8.3770E-02 
238U 6.94479E-03 
235U 2.55117E-04 

O 3.48084E-02 

H 4.10345E-02 

 
Homogenized 
Subassembly 

Zr-90 3.19820E-03 
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Table II. 
NEA Checkerboard Benchmark Monte Carlo Parameter Specifications 

 
Case Starting Source Skipped  

Generations 
Starting 
source 
points 

1 Uniform 20 1000 
2 Uniform 40 1000 
3 Uniform 100 1000 
4 Location (1,1) 20 1000 
5 Location (1,1) 40 1000 
6 Location (1,1) 100 1000 
7 Location (23,3) 20 1000 
8 Location (23,3) 40 1000 
9 Location (23,3) 100 1000 
10 Location (12,2) 20 1000 
11 Location (12,2) 40 1000 
12 Location (12,2) 100 1000 
13 Uniform 20 2000 
14 Uniform 40 2000 
15 Uniform 100 2000 
16 Location (1,1) 20 2000 
17 Location (1,1) 40 2000 
18 Location (1,1) 100 2000 
19 Location (23,3) 20 2000 
20 Location (23,3) 40 2000 
21 Location (23,3) 100 2000 
22 Location (12,2) 20 2000 
23 Location (12,2) 40 2000 
24 Location (12,2) 100 2000 
25 Uniform 20 5000 
26 Uniform 40 5000 
27 Uniform 100 5000 
28 Location (1,1) 20 5000 
29 Location (1,1) 40 5000 
30 Location (1,1) 100 5000 
31 Location (23,3) 20 5000 
32 Location (23,3) 40 5000 
33 Location (23,3) 100 5000 
34 Location (12,2) 20 5000 
35 Location (12,2) 40 5000 
36 Location (12,2) 100 5000 
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Table III. 
Fission Fractions for Two Fuel Cell System. 

 
Cell 
No. 

Fi,25 s Fi s F/Fi,25 
(%) 

True Error 
(Fi,25 - 0.5) 

(%) 

? Ffit,i 
(%) 

Correl. 
Coef. 

? FTB,i 

(%) 

1 0.478 0.013 2.8 -4.4 4.2 0.74 2.0 
2 0.522 0.013 2.7 4.4 -3.8 0.74 -2.0 

 
Table IV. 

Fission Fractions for Twelve Fuel Cell System. 
 

Cell 
No. 

 
Fi,25 

 
s Fi 

s F/Fi,25 
(%) 

True Error 
(Fi,25 – 1/12) 

(%) 

? Ffit,i 
(%) 

Correl. 
Coef. 

? FTB,i 

(%) 

1 0.111 0.0072 6.4 33 21 0.90 2.1 
2 0.116 0.0051 4.4 39 16 0.98 4.6 
3 0.110 0.0043 3.9 32 5.2 0.85 1.0 
4 0.0860 0.0044 5.1 3.2 16 0.94 5.1 
5 0.0853 0.0049 5.8 2.4 4.2 0.76 1.4 
6 0.0654 0.0059 9.1 -21 -0.7 -0.08 -7.7 
7 0.0667 0.0064 9.5 -20 -32 -1.0 -4.9 
8 0.0699 0.0058 8.3 -16 -20 -0.97 -2.4 
9 0.0650 0.0044 6.7 -22 -15 -0.95 -1.7 
10 0.0619 0.0052 8.5 -26 -28 -0.91 -4.8 
11 0.0724 0.0068 9.4 -13 -4.0 0.54 -0.68 
12 0.0903 0.0058 6.5 8.4 14 0.84 0.48 

 
 

Table V. 
Eigenvalues in Idealized Checkerboard Calculations. 

 
No. 
Fuel 
Cells 

Generations 
Skipped 

keff s k s k /k 
(%) 

? kfit,25 

(%) 
Correl. 
Coeff 

Approx. 
Error 
(%) 

? kTB 

(%) 
 

2 500 
(reference) 

0.8608 0.00034 0.04 -0.02 -0.56 0.00 -0.08 

2 20 0.8582 0.0025 0.29 -0.50 -0.94 -0.30 -1.9 
2 100 0.8568 0.0024 0.28 -0.31 -0.88 -0.46 -2.0 
4 20 0.8572 0.0015 0.17 0.10 0.83 -0.42 1.2 
4 100 0.8585 0.0016 0.17 -0.05 0.86 -0.11 -0.57 
8 20 0.8607 0.0013 0.19 -0.07 -0.43 0.00 0.17 
8 100 0.8606 0.0013 0.15 -0.16 -0.83 0.00 -1.1 
12 20 0.8613 0.0010 0.12 -0.13 -0.53 0.05 -1.8 
12 100 0.8614 0.00097 0.11 -0.08 -0.78 0.11 -1.8 
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Table VI. 

Benchmark Problem Fission Fractions for Uniform Starting Source 
 

Cell 
No. (i) 

 
Fi,25 

s F/Fi,25 
(%) 

? Ffit,i 
(%) 

Correl. 
Coeff. 

? FTB,i 
(%) 

1 0.018 18 34 0.70 2.0 
4 0.0027 7.7 -14 -0.77 -0.5 
7 0.031 11 -34 -1.0 -5.5 
10 0.017 9.0 -26 -0.95 -5.4 
3 0.047 7.9 30 0.96 3.6 
6 0.055 4.0 2.1 -0.34 -1.2 
9 0.042 10 35 1.00 -4.6 
2 0.083 10 47 0.00 6.9 
5 0.051 7.9 26 0.97 1.6 
8 0.066 6.6 -7.3 -0.87 -1.5 
11 0.028 8.6 -28 -0.89 -2.3 

 
 
 

Table VII. 
Benchmark Problem “Best Estimate” Fission Fractions. 

 
Cell 

No. (i) 
Fi,25 s F/Fi,25 

(%) 
? Ffit,i 
(%) 

Correl. 
Coeff. 

? Fhalf,i 
(%) 

1 0.091 1.8 -5.6 -0.97 -12. 
4 0.053 2.2 0.04 0.11 -1.5 
7 0.015 3.5 -12 -0.98 -25 
10 0.0043 11. -20 -0.84 -40 
3 0.16 1.1 3.1 0.96 6.6 
6 0.048 2.2 -3.8 -0.85 -10. 
9 0.011 8.1 -22. -0.98 -48. 
2 0.46 0.08 2.3 0.96 5.0 
5 0.11 1.6 5.4 0.98 9.7 
8 0.028 5.6 -16. -0.94 -34 
11 0.0050 7.0 -6.2 -0.85 -23 
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Table VIII. 

Selected Benchmark Series Eigenvalues 
 

Cas
e 

No. 

Hists/ 
Gen. 

Gens. 
Skip- 
ped 

 
keff 

 
s k 

 
s k /k 
(%) 

 
? kfit,25 

(%) 

 
Correl. 
Coeff. 

 
? kTB 
(%) 

Approx 
Error 
(%) 

1 1000 20 0.8524 0.0014 0.16 0.19 0.34 1.8 -0.74 
3 1000 100 0.8529 0.0015 0.18 0.28 0.17 0.81 -0.69 
13 2000 20 0.8516 0.0010 0.12 0.32 0.06 0.90 -0.83 
15 2000 100 0.8518 0.00091 0.11 0.22 0.09 -0.57 -0.82 
25 5000 20 0.8529 0.00069 0.11 0.14 0.22 0.94 -0.68 
27 5000 100 0.8538 0.00063 0.08 0.18 0.59 1.8 -0.58 
37 25000 20 0.8527 0.00030 0.04 0.11 0.51 3.8 -0.71 
39 25000 100 0.8532 0.00032 0.04 0.10 0.34 3.4 -0.65 

 
 
 
 

Table IX. 
Relative drifts ? CTB, in C = R*sqrt(N), for computed eigenvalues. 

 
Case 
No. 

Approx. 
Error (%) 

? CTB 
(%) 

R 
(%) 

1 -0.74 -0.02 0.16 
3 -0.69 -1.1 0.18 
13 -0.83 -2.1 0.12 
15 -0.82 3.8 0.11 
25 -0.68 -4.4 0.11 
27 -0.58 0.35 0.08 
37 -0.71 28 0.04 
39 -0.65 21 0.04 
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