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OBJECTIVES 

In this project we determined rates and mechanisms of Al(III)-O bond rupture at mineral surfaces 
and in dissolved aluminum complexes.  We then compared the experimental results to 
simulations in an attempt to predict rate coefficients. 
 

 PROJECT DESCRIPTION 
Most of the low-temperature reactions that are geochemically important involve a bonded atom 
or molecule that is replaced with another. We probe these reactions at the most fundamental level 
in order to establish a model to predict rates for the wide range of reactions that cannot be 
experimentally studied. 
 

RESULTS 
The chemistry of small aluminum cluster (Figure) provides a window into the hydrolytic 
processes that control rates of mineral formation and the transformation of adsorbates into 
extended structures.  The molecule shown below as an example exposes several types of oxygens 
to the bulk solution including seven structurally distinct sets of bridging hydroxyls.  This 
molecule is a rich model for the aqueous interface of aluminum (hydr)oxide minerals, since it 
approaches colloidal dimensions in size, yet is a dissolved complex with +18 charge.  We have 
conducted both 17O- 27Al- and 19F-NMR experiments to identify the reactive sites and to 
determine the rates of isotopic exchange between these sites and the bulk solution.  The research 
was enormously successful and led to a series of papers that are being used as touchstones for 
assessing the accuracy of computer models of bond ruptures in water. 
 



 

 
 
 We also showed that 19F-NMR methods of tagging these large molecules can lead to rate 
coefficients describing bond ruptures at the elementary or near-elementary scale.  These 19F-
NMR spectra are particularly useful because the nucleus has spin=1/2, so peaks in the spectra are 
relatively narrow, and because fluoride can substitute for some oxygens at defined rates.  All 
fluorines are detectable by NMR, the chemical shift is very sensitive to small changes in 
structure and bonding, and an enormous range of molecules are available with 19F in a 
nonbonding site.  We can therefore tag different sites in the polyoxocations.   
 
 Finally, we conducted high-pressure experiments in a home-built titanium NMR probe 
that provide the first measurements of activation volumes for isotopic exchange in a bridging 
site.  Some of the most recent articles that acknowledge support from grant are listed below.  The 
entire list of articles is considerably longer. 
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Figure 1: The Al30 molecule has the stoichiometry 
Al30O8(OH)56(H2O)26

18+(aq). It was crystallized by 
Taulelle et al., (2000) and Rowsell and Nazar (2001) and 
we are employing 17O-NMR to determine the rates of 
oxygen-isotope exchange with the bulk solution.  This 
molecule exhibits many of the properties of aluminum 
(hydr)oxide colloids. 
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