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Abstract

The quickest path problem deals with the transmission of a message of size � from
a source to a destination with the minimum end-to-end delay over a network with
bandwidth and delay constraints on the links. We consider four basic modes and two
variations for the message delivery at the nodes re
ecting the mechanisms such as
circuit switching, Internet protocol, and their combinations. For each of �rst three
modes, we present O(m2 + mn logn) time algorithm to compute the quickest path
for a given message size �. For the last mode, the quickest path can be computed in
O(m+ n logn) time.

Keywords and Phrases: Routing algorithms, quality of service, router modes.
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1 Introduction

We consider a network represented by a graph G = (V;E) with n nodes and m edges
or links. Each link e = (i; j) 2 E has a bandwidth or capacity B(e) � 0 and a link-
delay D(e) � 0. A message is sent as a continuous stream along the edge e at a
constant 
ow rate denoted by fe � B(e). A message of length � units can be sent
along the edge e at 
ow rate fe in �=fe +D(e) time. The 
ow rates can be di�erent
in di�erent edges, and the message can be delayed at the nodes.

Consider a simple path P from s = v0 to d = vk given by (v0; v1); (v1; v2); : : : ;
(vk�1; vk), where (vj; vj+1) 2 E, for j = 0; 1; : : : ; (k � 1), and all v0; v1; : : : ; vk are
distinct. The delay experienced by a message sent via P depends on the message
forwarding mechanism used at the intermediate nodes. For a node v on P , let Bin(v)
and Bout(v) be the bandwidths of incoming and outgoing edges, respectively, and
fin(v) and fout(v) be the 
ow rates of incoming and outgoing messages. We consider
the following four basic modes and two variations. The timing diagrams of arrival
and departure processes of a message at an intermediate node v are shown for all

modes in Figure 1. The delay of P is D(P ) =
k�1P
j=0

D(ej), where ej = (vj; vj+1).

I. Circuit Switching: In mode I, the message is sent at a constant rate from
s to d with no bu�ering at intermediate nodes. The bandwidth of type I of
P is BI(P ) = min

j=0;1;:::;k�1
B(ej). The end-to-end delay in mode I of path P in

transmitting a message of size � is T I(P ) = �=BI(P )+D(P ). Thus, fe = BI(P )
for all e on P , and fin(v) = fout(v) = BI(P ) for all v on P except the end nodes.

II. Earliest Departure: A message received at an intermediate node v is sent out
at the rate equal to the minimum of the incoming rate and outgoing bandwidth,
i.e. fout(v) = minffin(v); Bout(v)g. If the outgoing bandwidth is smaller than
the incoming rate, then the message is suitably bu�ered and sent at a lower rate
without any delay. In mode IIa, the retrasmission at a lower bandwidth starts
only after the entire message is received completely at v under the condition
fin(v) > Bout(v); but, the retransmission is without delay under the condition
fin(v) � Bout(v).

III. Full Outgoing Bandwidth: In this mode the 
ow in any edge is equal to its
bandwidth, i.e. fe = B(e) for all e on P . A message received at an intermediate
node v is retransmitted as follows: (a) if fin(v) = Bin(v) � Bout(v), the message
is transmitted at the rate Bout(v) starting immediately, and (b) if fin(v) =
Bin(v) < Bout(v), the message is bu�ered and suitably delayed (so that the rate
can be boosted) to be sent at the rate of Bout(v) as soon as possible. Mode IIIa
is same as III, except when the outgoing bandwidth is higher than incoming

ow rate, in which case the message is completely bu�ered at v before it is sent
out at the rate of Bout(v).

IV. Store-Forward: A message sent along an edge (u; v) will be received in its
entirity at v before it is sent from v such that fe = Be for all e on P . The
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bandwidth of type IV of P is BIV (P ) = 1
k�1P
j=0

1
B(ej )

. The end-to-end delay in mode

IV of path P in transmitting a message of size � is T IV (P ) = �=BIV (P )+D(P ).

A path of mode i is referred to as i-path, and a path with the least end-to-end delay
among all i-paths is referred to as the i-quickest path, for i =I,II,IIa,III,IIIa,IV. Let
P i
� denote the i-quickest path in mode i for the message size �.
The various modes abstract di�erent mechanisms used in the data networks. Mode

I corresponds to the classical circuit switching which involves no bu�ering, and mode
IV is the other extreme wherein the message is bu�ered in its entirity at every in-
termediate node. The telephone networks belong to mode I, and the IP (Internet
Protocol) computer networks belong to mode IV. With the advent of ATM (Asyn-
chronous Transmission Mode) and active network technologies, combinations of these
modes are being employed, which is the motivation for the other modes. In mode
II the message is circuit switched if there is suÆcient outgoing bandwidth, and is
sent at a reduced 
ow level otherwise. Such reduction of 
ow in circuit switching
is sometimes diÆcult, and the message may have to be received in full before the
retransmission as in mode IIa. In modes III and IIIa, the main focus is to avoid the
fragmentation of the bandwidth of an edge, and hence the entire bandwidth of each
edge is utilized during the message transmission along the edge.

A II-path can be converted into I-path by utilizing the 
ow rate corresponding
to the edge with the minimum bandwidth. A I-path can be converted into II-path
by suitably increasing the 
ow rate starting from s and repeatedly moving along P
until the next edge with a lower bandwidth is reached and then lowering the 
ow.
During these 
ow reductions, the end-to-end delays of the path P remain the same.
In general for any path P , we have the following inequalities on the end-to-end delays
of various modes:

T I(P ) = T II(P ) � T III(P ) � T IIIa � T IV (P )

and
T II(P ) � T IIa(P ) � T IV (P ):

Example 1.1: Consider the network in Figure 2(a) which consists of two paths P1

and P2 from s to d. The �rst number of the pair next to the link in Figure 2 is the
link's bandwidth and the second number is the delay. The end-to-end delays of paths
under various modes are given in the following table.

Path Mode I Mode II Mode IIa Mode III Mode IIIa Mode IV
P1

�
1
+ 5 �

1
+ 5 �

4=5
+ 5 �

1
+ 5 �

4=5
+ 5 �

2=3
+ 5

P2
�
4
+ 6 �

4
+ 6 �

20=7
+ 6 �

20=6
+ 6 �

20=7
+ 6 �

5=2
+ 6

For this case, we have

T III(P ) < T IIa(P ) = T IIIa(P )
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Figure 1: Arrival and departure timing diagrams at an intermediate node for various
modes.
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Figure 2: Illustrative networks for Example 1.1

for P = P1; P2. In general, however, the end-to-end delays in modes IIa and III (or
IIIa) do not obey ordering as illustrated below. For the network in Figure 2(b), we
have T IIa(P ) = � + 3, T III(P ) = �

10=19
+ 3, and T IIIa(P ) = �

1=2
+ 3. Hence, we have

T IIa(P ) < T III(P ) < T IIIa(P ):

For the network in Figure 2(c), we have T IIa(P ) = �
4=5

+ 3, T III(P ) = �
1
+ 3, and

T IIIa(P ) = �
2=3

+ 3. Hence, we have

T III(P ) < T IIa(P ) < T IIIa(P ):

For the network in Figure 2(d), we have T IIa(P ) = �
10=11

+ 2, T III(P ) = �
1
+ 2, and

T IIIa(P ) = �
1
+ 2. Hence, we have

T III(P ) = T IIIa(P ) < T IIa(P ):

Mode I has been studied under the title of quickest path problem by Chen and
Chin [1], Rosen et al. [5], and Rao and Batsell [3]. For any message size �, I-quickest
path can be computed in O(m2+mn logn) time. There seems to be no direct way of
extending the previous algorithms for I-quickest paths to handle the other modes. In
this paper, we show that II-, IIa-, III- and IIIa-quickest paths can be computed with
the same time complexity. It is easy to see that IV-quickest path can be computed
in O(m + n logn) time, using the Dijkstra's shortest path algorithm by utilizing
r=B(e) +D(e) as the cost of edge e.

2 Computation of Quickest Paths

We now present an algorithm, QuickII(�), to compute the end-to-end delay of the
II-quickest path for a given message size �. An alternative implementation of this
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algorithm Quick-II(�)
1. A ;;
2. for each vertex v in V � fsg do
3. for b 2 SBW = fb1; b2; : : : ; bcg do
4. TE[v][b] 1;
5. A A [ f(v; b)g;
6. if v 2 Adj(s) then TE[v][B(s; v)] �=B(s; v) +D(s; v);
7. while A 6= ; do
8. choose (v; b) 2 A such that TE[v][b] is minimum;
9. for each w in Adj(v) do
10. if b � B(v; w) then
11. TE[w][b] minfTE[w][b]; TE[v][b] +D(v; w)g;
12. else

13. TE[w][B(v; w)]
 minfTE[w][B(v; w)];

TE[v][b]� �=b+D(v; w) + �=B(v; w)g;
14. A A� f(v; b)g;

15. return
�
min

b2SBW
fTE[d][b]g

�
;

Algorithm II. Algorithm for computing II-quickest path.

algorithm and its correctness proof are presented in Appendix (the algorithm in the
appendix and its proof highlight di�erent properties compared to the ones presented
in this section). The path P II

� itself can be constructed by suitably maintaining the
predecessor pointers as in the case of Dijkstra's algorithm [2]. The quickest paths for
the other modes (except mode IV) can be computed using minor variations of this
algorithm.

Let b1; b2; : : : ; bc denote the distinct values of the bandwidths B(e), e 2 E. Each
node v is represented by an array TE[v][:] such that TE[v][b], for b 2 SBW , where
SBW = fb1; b2; : : : ; bcg, whenever �nite, is the time at which the trailing edge of the
message reaches v at a 
ow rate b via some path from s to v (note that the 
ow rate
at nodes in between s and v must be at least b in this mode). Since the message
leading edge is not delayed at any intermediate node, the 
ow rate once reduced will
stay at this value or be further reduced subsequently. As a result, if the message is
received at a 
ow rate of b at d, then T II(P ) = �=b+D(P ).

The outline of algorithm is as follows. On the initial entry into the main loop
(lines 8-14), the set A contains all pairs (v; b) for all v 2 V � fsg and b 2 SBW.
The algorithm has (n� 1)c iterations of the main loop, and in each iteration a node
v and bandwidth b are selected such that the path from s to v, denoted by Pv and
represented by the current T [v][b], has the least end-to-end delay of any path currently
corresponding to a (v; b) 2 A (line 8). Let Adj(v) denote the set of all w such that
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(v; w) 2 E. Once v is selected, every vertex w 2 Adj(v), is examined to see if the
extension of Pv to w, obtained by appending (v; w) to it, results in a smaller end-
to-end delay than a comparable current value of T [w][b0] (lines 9-13). In particular,
if the bandwidth of (v; w) is higher than or equal to b, then a 
ow rate of b is used
along (v; w) (line 11), and a lower 
ow rate of B(v; w) is used otherwise (line 13). In
either case the extension of the path from v to w can result in a 
ow into w that is
no more than b. Once all w 2 Adj(v) are examined, (v; b) is removed from A and is
not considered further at line 8.

We shall now introduce some preliminaries to be used in the correctness proof
of Quick-II. For path P = fs; v1; v2; : : : vp; vp+1g, let TP;�[vi] denote the end-to-end

delay of the subpath from s to vi for message size �. Let dTE[v][b] denote the value of
TE[v][b] when (v; b) is chosen in line 8. For any path P = fs; v1; v2; : : : ; vp; vp+1g, we

have TP;�[vi] � TP;�[vj] for i < j. It is easily shown that the sequence of dTE[v][b] values
generated by various choices of (v; b) in line 8 is non-decreasing, and the sequence
of TE[v][b] for every (v; b) generated in lines 4,6,11 and 13 is non-increasing. Note
that each �nite dTE[v][b] computed by Quick-II corresponds to the end-to-end delay
of some II-path from s to v. This observation implies the following result.

Lemma 2.1 If P � = fs; v1; v2; : : : ; vp; vp+1g is a quickest II-path from s to vp+1 with

ow of fi into vi, then throughout the execution of Quick-II, we have TE[vi][fi] �
TP;�[vi] for all i = 1; 2; : : : ; p+ 1.

Theorem 2.1 Algorithm Quick-II(�) computes the end-to-end delay of II-quickest
path for transmitting a message of size � from s to every node in O(m2 +mn logn)
time.

Proof: If there is no path from s to d, the TE[d][b] will not be reduced from1 for any
b. If there is a path, let P � = fv0; v1; v2; : : : ; vp; vp+1g be a quickest II-path for message
size �, where s = v0 and vp+1 = d. Let fi be the incoming 
ow at vi corresponding

to P . We will now show that for all i = 1; 2; : : : ; p+ 1, we have dTE[vi][fi] = TP;�[vi].
This condition implies that TE[vi][fi] = TP;�[vi] at the termination of the algorithm,
since TE[vi][fi] � TP;�[vi] throughout the execution of the algorithm.

From the above observations and Lemma 2.1, for any 1 � i < j � p+ 1, we have

dTE[vj][fj] � TP;�[vj] � TP;�[vi]

If (vj; fj) is selected before (vi; fi), then by the monotonicity of dTE values, we havedTE[vj][fj] � dTE[vi][fi]. Then, if in addition the condition dTE[vi][fi] = TP;�[vi], is
satis�ed, we have TE[vj][fj] = TP;�[vj].

As the basis of an induction note that dTE[v1][f1] = TP;�[v1] as initialized in line

6. For the inductive hypothesis, assume dTE[vi][fi] = TP;�[vi]. Then if (vi+1; fi+1) is

chosen in line 8 before (vi; fi), then from the previous paragraph dTE[vi+1][fi+1] =
TP;�[vi+1]. If (vi+1; fi+1) is chosen after (vi; fi), then TE[vi+1][fi+1] is set to TP;�[vi+1]
in lines 11-13, where it will be when (vi+1; fi+1) is subsequently chosen in line 8. Then
by induction dTE[vp+1][fp+1] = TP;�[vp+1], which is the delay of II-quickest path.
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This algorithm essentially consists of at most c � m instances of Dijkstra's algo-
rithm, each corresponding to b 2 SBW algorithm with interleaved steps. The time
complexity follows directly from that of Dijsktra's algorithm [2].

The algorithm for mode IIa is obtained by replacing the line 13 of Quick-II by the
following line.
13'. TE[w][B(v; w)] minfTE[w][B(v; w)]; TE[v][bv]+D(v; w)+�=B(v; w)g;

As noted above for any path P , T I(P ) = T II(P ), and therefore, Quick-II can
be used to determine I-quickest paths. However, the trailing edge arrival times at
the intermediate nodes along such I-paths are not given by TE[v][b] computed by
Quick-II.

The algorithm for mode I, namely algorithm Quick-I, is obtained by replacing the
lines 10-13 of Quick-II by the following.

if b � B(v; w) then
TE[w][b] minfTE[w][b]; TE[v][b] +D(v; w)g;

Algorithm Quick-I can be viewed as a variation of the algorithm of [5], which is based
on c instances of Dijkstra's algorithm, executed separately. Let G(b) = (V;E(b))
denote the subnetwork where e 2 E(b) if and only if B(e) � b. Let a s � d path in
G(b) denote the shortest delay path based only on the link-delays. The s � d paths
in [5] are independently computed in each G(b) for each b = b1; b2; : : : ; bc. Then,
I-quickest path is selected to be the one with lowest end-to-end delay among the c
paths. The algorithm Quick-I \intermingles" the path computations in G(b)'s by
expanding a path from v to w only if B(v; w) � b

The algorithm for mode III is obtained by replacing the lines 10-13 of Quick-II by
the following lines.

10'. if b � B(v; w) then
11'. TE[w][B(v; w)] minfTE[w][B(v; w)]; TE[v][b] +D(v; w)g;
12'. else

13'. TE[w][B(v; w)]
 minfTE[w][B(v; w)];

TE[v][b]� �=b +D(v; w) + �=B(v; w)g;

The algorithm for mode IIIa is obtained by replacing the line 11' of Quick-III by
the following line.
11'. TE[w][B(v; w)] minfTE[w][B(v; w)]; TE[v][b]+�=B(v; w)+D(v; w)g;

The correctness proof and the time complexity of the corresponding algorithms,
namely algorithm Quick-i for i = I; IIa; III; IIIa, can be established with minor
modi�cations to Theorem 2.1.
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3 Conclusions

We presented four modes and two of their variations for the quickest path problem
that re
ect mechanisms such as circuit switching, Internet protocol, and their com-
binations. We presented a basic algorithm, whose variations compute the quickest
paths in the �rst three modes; for the last mode, Dijkstra's algorithm computes the
quickest path.

Future research directions include the computation of path-tables for all modes.
For mode I, the path-table is of size O(m) and can be easily computed [1, 5, 3], and
such results can be very useful in the other modes. The other research directions
include multiple paths (as in [4, 8] for mode I), multicast trees [7], and incorporation
of reliabilities [6] for various modes described in this paper.

Appendix

We now present an alternative to the algorithm Quick-II and its varaiants. While the
overall algorithm is essentially the same as the one presented in Section 2, it provides
di�erent details, and its proof method exploits di�erent properties.

For initialization, consider distinct u; v 2 V . If (u; v) is an edge e then de�ne
DE(u; v) = D(e), and if not DE(u; v) = 1. Similarly, if (u; v) is an edge e then
de�ne BE(u; v) = B(e), and if not BE(u; v) = 0. Each node v is represented by
an array TE[v][:] such that TE[v][b], for b = b1; b2; : : : ; bc, is the time at which the
trailing edge of the message reaches v at a 
ow rate b.

The outline of algorithm is as follows. The algorithm has at most (n � 1)c iter-
ations, and in each iteration a node v with bandwidth b, for some bi = b, is selected
such that the path from s to v, denoted by Pv, has the least end-to-end delay (line
7). Once v is selected, every vertex w 2 V �A, is examined to see if the path Pv can
be extended to w to result in a smaller end-to-end delay in lines 12-21. In particular,
if the bandwidth of (v; w) is higher than b, then 
ow rate of b is used along (v; w)
(line 13), and a lower 
ow rate of B(v; w) is used otherwise (line 18). In either case
the extension of the path from v to w can result in a 
ow into w that is no more than
b. Once the end-to-end delay of v is known for all b = b1; b2; : : : ; bc, it is added to A
and is not considered further (line 9). For the sake of this algorithm the in�nities are
handled according to the following rules: 1=0 =1, 1+1 =1, and 1 �1.

Lemma A.1. Let P � = fs; v1; v2; : : : ; vpg denote a II-quickest path from s to vp for
the message size � with 
ow f �p at vp (i. e. fin(vp) = f �p ). For any II-path P from
s to vp with 
ow fp at vp, we have T II(P ) = �=fp + D(P ). If fp = f �p , we have
D(P �) � D(P ).

Proof: For any II-path P , the 
ow fp at the last node vp is the lowest of all 
ows at
all nodes of P , which yields T II(P ) = �=fp +D(P ). Consider fp = f �p . Since P

� is

8



algorithm Quick-II(�)
1. A ;; CT [s] = 0; BT [s] = b1;
2. for b = b1; b2; : : : ; bc do
3. TE[s][b] = 0; BS[v] = fb1; b2; : : : ; bcg
4. for each vertex v in V � fsg do
5. for b = b1; b2; : : : ; bc do TE[v][b] 1;
6. while A 6= V do

7. choose a vertex v in V � A such that CT [v] is minimum
8. bv  BT [v];
9. if CT [v] � TE[v][b] for all b = b1; b2; : : : ; bc then add v to A;
10. else BS[v] BS[v]� fbvg; CT [v] = TE[v][b];

BT [v] = b such that T [v][b] = minb02BS[v] T [v][b
0];

11. for each w 2 V � A such that (v; w) in E do

12. if bv � BE(v; w) then
13. TE[w][bv] minfTE[w][bv]; TE[v][bv] +DE(v; w)g;
14. if TE[w][bv] < CT [w] then
15. CT [w] TE[w][bv];
16. BT [w] bv;
17. else

18. TE[w][BE(v; w)]
 minfTE[w][BE(v; w)];

TE[v][bv]� �=bv +DE(v; w) + �=BE(v; w)g;
19. if TE[w][BE(v; w)] < CT [w] then
20. CT [w] TE[w][BE(v; w)];
21. BT [w] BE(v; w);

22. return
�
min
b
fTE[d][b]g

�
;

Algorithm II. Algorithm for computing II-quickest path.

9



II-quickest path, �=fp +D(P �) � �=fp +D(P ), which yields D(P �) � D(P ).

Theorem A. 1. Algorithm Quick-II computes the end-to-end delay of II-quickest
path for a message of size � from s to every node in O(m2 +mn logn) time.
Proof: Let the iteration of Quick-II in which v with BT [v] = bv is selected in line
7 be denoted by (v; bv). We establish the correctness of Quick-II through induction
on iterations by asserting that in iteration (v; bv), CT [v] = TE[v][bv] is the lowest
end-to-end delay among all paths from s to v with 
ow bv at v.

For the induction basis, consider the �rst iteration (s; b1). Claim is true since the
message is already at s and TE[s][b1] = 0.

For the induction step, consider the iteration (v; bv), and assume that the claim
is true in every prior iteration. Consider that TE[v][bv], that corresponds to Pv, is
not the minimum end-to-end delay among all II-paths from s to v with 
ow bv at v.
Then, let P � = fs; v1; : : : vp; vg be a II-quickest path from s to v with 
ow bv at v.
Let f �i = fin(vi), for i = 1; : : : ; p. Then for each vi, the pair (vi; f

�

i ) has been chosen
in a previous iteration as will be shown now. For if this was not the case, for some
k, vk would be the �rst node on P � while moving from s to v for which (vi; f

�

i ) was
not previously chosen. Now consider the subpath P �

k of P � from s to vk. Since P
� is

II-path, f �k � bv, and by Lemma A.1 we have D(P �

k ) < D(P �) � D(Pv). Then, by
the inductive hypothesis and Lemma A.1, we have

TE[k][f �k ] = �=f �k +D(P �

k ) < �=bv +D(P �) � �=bv +D(Pv) � TE[v][bv];

which is a contradiction, since, if it were true, (k; f �k ) would have been chosen at this
iteration instead of (v; bv).

Since all (vi; f
�

i ) were chosen at previous iterations, (vp; f
�

p ) was chosen before
(v; bv). In the iteration in which (vp; f

�

p ) was chosen TE[v][bv] was set to �=bv+D(P �)
either in line 13 or 18, since at that iteration, TE[vp][f

�

p ] = �=f �p+D(P �

p ) by inductive
hypothesis. Once set to this value, it is not replaced by a larger value, and hence
TE[v][bv] = �=bv +D(P �).

Note that at the termination of the algorithm every v 2 V is selected in line 7 for
every bandwidth b exactly once. The II-path with the lowest end-to-end delay among
paths with all 
ow rates is chosen in line 22. Then, the correctness of the algorithm
follows by noting that II-quickest path must have a bandwidth equal to one of the
bi's at v. The time complexity analysis of this algorithm is very similar to that in
Theorem 2.1

The algorithm for mode IIa is obtained by replacing the line 18 of Quick-II by the
following line.
18'. TE[w][BE(v; w)]

 minfTE[w][BE(v; w)]; TE[v][bv] +DE(v; w) + �=BE(v; w)g;
The algorithm for mode I, namely algorithm Quick-I, is obtained by replacing the

lines 12-18 of Quick-II by the following.
if bv � BE[v; w] then

TE[w][bv] minfTE[w][bv]; TE[v][bv] +DE(v; w)g;

10



The algorithm for mode III is obtained by replacing the lines 12 through 22 of
Quick-II by the following lines.

12. if bv � BE(v; w) then
13. TE[w][BE(v; w)] minfTE[w][BE(v; w)]; TE[v][bv] +DE(v; w)g;
14. else

15. TE[w][BE(v; w)]
 minfTE[w][BE(v; w)];

TE[v][bv]� �=bv +DE(v; w) + �=BE(v; w)g;
16. if TE[w][BE(v; w)] < CT [w] then
17. CT [w] TE[w][BE(v; w)];
18. BT [w] BE(v; w);

19. return
�
min
b
fTE[d][b]g

�
;

The algorithm for mode IIIa is obtained by replacing the line 13 of Quick-III by
the following line.
13'. TE[w][BE(v; w)]

 minfTE[w][BE(v; w)]; TE[v][bv] + �=BE(v; w) +DE(v; w)g;
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