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Multivariate High Order Statistics of
Measurements of the Temporal Evolution of Fission Chain-Reactions

J. K. Mattingly
Oak Ridge National Laboratory, Instrumentation and Controls Division

Oak Ridge, Tennessee 37831-6004

Abstract – The development of high order statistical analyses applied to measurements of the temporal evolution
of fission chain-reactions is described.  These statistics are derived via application of Bayes’ rule to conditional
probabilities describing a sequence of events in a fissile system beginning with the initiation of a chain-reaction
by source neutrons and ending with counting events in a collection of neutron-sensitive detectors.  Two types of
initiating neutron sources are considered: (1) a directly observable source introduced by the experimenter (active
initiation), and (2) a source that is intrinsic to the system and is not directly observable (passive initiation).  The
resulting statistics describe the temporal distribution of the population of prompt neutrons in terms of the time-
delays between members of a collection (an n-tuplet) of correlated detector counts, that, in turn, may be
collectively correlated with a detected active source neutron emission.  These developments are a unification and
extension of Rossi-α, pulsed neutron, and neutron noise methods, each of which measure the temporal distribution
of pairs of correlated events, to produce a method that measures the temporal distribution of n-tuplets of
correlated counts of arbitrary dimension n.  In general the technique should expand present capabilities in the
analysis of neutron counting measurements.

1.  INTRODUCTION

The present work focuses on multivariate statistics derived from counting measurements performed on fissile systems
driven by a neutron source that is introduced by the experimenter or is intrinsic or inherent to the system.  Measurements
performed using an introduced source to initiate fission chain-reactions are described as “active,” and measurements that rely
solely upon an intrinsic source to initiate fission are described as “passive.”  It should be noted that the introduction of an
active source does not necessarily preclude the presence of an intrinsic source; in many applications of interest, the two will
be present simultaneously.  Instead, the active source is introduced to provide a means of observing the time of initiation of
some chain-reactions.  In particular, it is assumed that the active neutron source is directly observable in that it is
intsrumented in such a way that individual neutron emission events may be counted.

For example, one candidate active source is the Cf ionization chamber.  This device detects the fragments of individual252

spontaneous fissions of Cf nuclei such that the ionization chamber signal, when acquired by pulse processing252

instrumentation, registers the time of neutron emission events.  Note that the number of neutrons emitted during a given
spontaneous fission is not observable by this instrument.[1]  Another candidate active source is the associated-particle
neutron generator (APNG) that accelerates a projectile ion (typically a deuteron) into a target (typically deuterium, as in a D-D
generator, or tritium, as in a D-T generator) to produce a single neutron per collision.  The neutron emission event is
registered by detection of the collision product ion (a.k.a., the associated-particle, a He nucleus from a D-D reaction or an He3 4

nucleus from a D-T reaction).[2]  In the subsequent development, an observable neutron source is treated generically as a
device that registers the time of individual neutron emission events, that is in general capable of emitting multiple neutrons
per event, but that is incapable of registering the number of neutrons emitted during a single event.  Note that an APNG is
simply a special case of this generic active source because only a single neutron is emitted per projectile-target collision.

Passive sources, on the other hand, are intrinsic to the fissile system and are not directly instrumented like active
sources.  Consequently, neither the time of a particular neutron emission event nor the number of neutrons emitted during the
event is in general observable.  For example, Pu and Pu are spontaneous fission sources that are typically present in any240 242
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A Rossi-α measurement may use only a single detector such that  and  are actually the same signal.[5-8]1
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system containing Pu; Be in the presence of plutonium, by virtue of plutonium α-decay, can form a Pu-Be source that239 9

emits a single neutron per (α,n) reaction in Be.  Other examples of intrinsic neutron sources are Cm and Cm which appear9 242 244

as fission products in burnt UO  (and other U-containing) nuclear fuels.  Measurements of systems containing such2
235

intrinsic sources may be performed passively by relying solely upon these sources to initiate fission chain-reactions, or they
may be performed actively such that fission chain-reactions are initiated by both the introduced source and intrinsic sources. 
The choice of active versus passive measurement depends upon the application and upon practical considerations like the
relative strengths of the active and intrinsic sources.

Finally, it is important to note that every fissile system contains an inherent delayed neutron source.  Technically,
delayed neutrons are correlated progeny of a fission chain-reaction just as are prompt neutrons.  However, generations of
delayed neutrons typically reproduce much more slowly than do generations of prompt neutrons.  Consequently, relative to
the time-scale of a prompt neutron “fission-chain”, delayed neutrons typically behave as a source inherent to the system that
is uncorrelated with the prompt progeny of the chain-reaction.

The response of the fissile system to the preceding sources is observed by a collection of neutron-sensitive detectors
whose signals are acquired by pulse processing instrumentation such that the time of each neutron detection event is
registered.  These detectors in principle may operate via any number of physical processes; however, to keep the subsequent
development simple, it is assumed that the detectors operate via neutron absorption such that a detection event is always a
terminus in a chain-reaction.  In other words, the detector removes the detected neutron from the population and does not
return any further neutrons to the population.  Consequently, the following developments do not immediately encompass
scatter detectors (e.g., plastic scintillators) or fission detectors.  However, modifications to the theory required to address
these kinds of detectors have been described in the context of previous theories and can be readily extended to apply to the
present work.[3,4]

Previous developments including the Rossi-α, pulsed neutron, and neutron noise methods measure the distribution of
two-way coincidence between pairs of events including detector counts and, if an active source is employed, detected source
emissions.  Central to (although sometimes implicit in) these methods is the concept of the covariance

between a pair of signals  as a function of the time-delay  between an event in channel 1 and an event in channel 2. 
Above, both “ ” and “ ” denote the expected value, or mean, such that  is the mean total coincidence rate
between signals  and  when channel 2 is delayed by  relative to channel 1.  The mean rate of “accidental” coincidence,
i.e., the rate of uncorrelated coincident events is the product of mean count rates .  Consequently,  is the rate of
“real”coincidence, i.e., the rate of events coincident at a relative delay of  that are correlated between channels 1 and 2.

In the context of the Rossi-α method, both signals are acquired from radiation detectors such that  is the
distribution of correlated pairs of counts over the relative delay  between the counts in the  pair. [5-8]  In the context1

of a pulsed neutron measurement, channel 1 is a “trigger” signal acquired from an instrumented active source and channel 2 is
a radiation detector signal. Consequently in this context  is the distribution of “source-correlated” detector counts over
the delay  following an initial source emission.[9]  An active neutron noise measurement employing two or more radiation
detectors is essentially a simultaneous Rossi-α and pulsed neutron measurement in that it measures the distribution of two-
way coincidence between all pairs of signals; a passive neutron noise measurement is essentially the same as a Rossi-α
measurement.  The only distinction between neutron noise measurements and Rossi-α/pulsed neutron measurements is the
way in which the distributions of pairs are analyzed.  Neutron noise measurements often employ digital signal processing
methods to acquire each distribution of pairs in the frequency- (i.e., Fourier- or Laplace-) domain:
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Elsewhere this quantity has been referred to as a cross-power spectral density (CPSD), a power spectral density2

(PSD), or a power spectrum.[10]  Subsequently the Laplace transform of a covariance  (not a total coincidence
distribution ) shall be simply termed a spectrum ; the context of use will clearly distinguish this harmonic
spectrum from an energy spectrum, e.g., a fission neutron spectrum.  The Laplace-domain representation shall be
used exclusive of the Fourier representation; the latter is simply a special case (i.e., ) of the former.

It is interesting to note that some neutron noise measurements in fact pre-date the development of the FFT.[11,12]3

This is not a new concept in counting measurements; n-way coincidence gates have been available for some4

time.[16]

3

(3)

(4)

(5)

The spectral density  is simply the decomposition of the total coincidence rate distribution  into harmonic
components .   The principal reasons (among others) for the use of the frequency-domain representation are (1) to2

permit digital acquisition and analysis of analog signals (e.g., current-mode signals from an active source and/or detectors)
and (2) to facilitate rapid processing of the signals by taking advantage of fast Fourier transform (FFT) algorithms. [10] 3

However, because in this application the transformation is isomorphic (if the signals are processed correctly), the covariance
between signals  can always be synthesized by inverse transformation of the harmonic spectrum .[13-15] 
Consequently, Rossi-α, pulsed neutron, and neutron noise measurements can be grouped as a single method that measures
the distribution of real two-way coincidence between pairs of observed events.

The present work extends this method to measure distributions of n-way coincidence between an arbitrary number n of
observed events.   Central to the method is the notion of a total poly-coincidence distribution4

from which a corresponding poly-covariance can be obtained by subtracting the relevant accidental poly-coincidence.  The
form of the accidental poly-coincidence depends upon the order n of the total distribution; for example the accidental poly-
coincidence for a third-order statistic is

while for a fourth-order statistic it is
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Although the binomial expansion of an nth-order central moment of the form  yields5

the accidental poly-coincidence for second- and third-order statistics, this is not true of higher order statistics.  In
general, for an nth-order statistic, the form of the accidental poly-coincidence can be obtained by partitioning the set

 into all permutations of two, three, ÿ , and n non-empty subsets.  The beginning of this progression
is illustrated in (5).  However, because the accidental poly-coincidence can always be obtained from lower order
statistics, and because it arises due to uncorrelated coincident events such that it is of no real interest, there will no
subsequent mention of accidental poly-coincidence.  Our real interest lies in the distribution of correlated events, the
poly-covariance.

4

(6)

Observe that they simply represent the different ways that n uncorrelated events can be n-way coincident.   A second central5

concept in the method is that of a poly-spectrum

that is simply an n-dimensional harmonic decomposition of the poly-covariance.  Because of the dual nature of convolution in
the time-domain ( ) and multiplication in the frequency-domain (s), it will prove easier to generalize the subsequent models of
high order statistics to arbitrary order n in the frequency-domain.

These concepts have been “borrowed” from the broader field of high order statistical analysis to be applied to
measurements of the temporal evolution of fission chain-reactions.[17]  Research into this extension is presented in the
remainder of the paper as follows.  Section II describes a probabilistic representation of the sequence of events that can give
rise to a family of n correlated neutron counts.  Application of Bayes’ rule to conditional probabilities relating each event in
the sequence to its predecessors yields the joint probability of the sequence of events.  From such joint probabilities the
poly-covariance for each specific sequence of events is immediately obtained. Inductive reasoning is subsequently applied to
a diagrammatic representation of sequences of events to yield a “prescription” to obtain statistics of arbitrary order.  Section
III describes properties of the derived high order statistics and emphasizes their progressively higher sensitivity to reactivity. 
Most of the observations made here transcend the limitations of the simple point model used to derive the statistics in
Section II.  Several applications taking advantage of the properties of high order statistics are also suggested in Section III. 
Concluding remarks are made at the close of the paper in Section IV.

2. THEORETICAL MODELS OF STATISTICS OF MEASUREMENTS
OF FISSION CHAIN-REACTION EVOLUTION

Figure 1 diagrammatically depicts one possible chain-reaction that can occur during an active measurement of a fissile
system.  In the figure observable events, i.e., the active source emission  (the initiating event) and each of the detection
events  through  (the terminal events), are represented by closed circles.  The induced fission events (intermediate
events) are in general unobservable and are represented by open circles .  Each line connecting events in the sequence
represents a single neutron.  Observe that the terminal events are collectively “chain-related,” or correlated, to the initiating
event by the depicted sequence of intermediate events.  Consider that only the branching points in the chain-reaction
determine the nature of the correlation between the detection events and the initiating source emission.  The intermediate
induced fissions along any single branch simply serve to sustain the chain-reaction to a detection event.  Consequently, this
chain-reaction can be represented by the simpler equivalent diagram shown in Fig. 2.  In this figure, each line connecting
events in the sequence represents a series of chain-related neutrons (and not a single neutron as in Fig. 1).  The label (e.g.
“ ”, “ ”, “ ”, etc.) associated with each line denotes the number of neutrons available to sustain that branch in the
chain-reaction.

The joint probability of the sequence of events represented by the diagram prescribes the nature of the correlation
between the initiating and terminal events.  By using Bayes’ rule, such joint probabilities can be generated from the marginal
probability of the initiating event,  the conditional probability for each intermediate event given the preceding initiating or
intermediate events, and the conditional probability for each terminal event given the preceding initiating or intermediate
events.[18]  For example, the joint probability of a sequence of events  is just
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Recall that prompt reactivity , where k  denotes the prompt multiplication factor.6
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(7)

(8)

(9)

(10)
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where A is the initial event, and B, C, D, and E are either intermediate or terminal events.  This is the nature of the subsequent
developments that describe first- through third-order statistics.  Diagrammatic representations like that depicted in Fig. 2 are
eventually used to generalize these statistics to arbitrary order n.

The statistics of interest are the poly-covariances between a collection of n signals, which may include a signal acquired
from an instrumented active source.  Once the joint probability  of a sequence of n chain-related observable
events has been determined, the corresponding poly-covariance is simply

In other words, the poly-covariance is the expected rate of poly-coincidence between n correlated events when the second
through nth events are respectively delayed by  through  relative to the first event.

In order to model the probability of a series of chain-related prompt neutrons, the point reactor impulse response

is used to approximately represent the probable number of neutrons present at time  per neutron injected into the fissile
system at time .[19]  Above, u represents the causal function (the Heaviside step function),  denotes the decay constant
for prompt-neutron-induced fission chain-reactions (the Rossi-α),  and  denotes the prompt neutron generation time, i.e.,
the mean time between generations of prompt neutrons.   Subsequently, given that  neutrons were injected at , the6

probability that a detection event M (a count) will occur at  is

where  denotes the efficiency of detector M, i.e., the probability per neutron of a count in detector M.  Furthermore, given
that the mean time between prompt-neutron-induced fissions is , where  is the mean number of prompt neutrons emitted
per induced fission, the probable number of induced fissions at time  per neutron injected at time  is

Subsequently, given that  neutrons were injected at , the probability that an induced fission F will occur at  and emit
 neutrons is

where  denotes the probability that  prompt neutrons will emerge from the induced fission F.
Observe that the joint probability of multiple detection events chain-related to a single emission can be expressed as a

product of conditional probabilities using Bayes’ rule.  For example, the probability of two detection events M and  chain-
related to the same neutron emission is
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In general, the source emission rate may decay with time as, e.g., .  However, because the duration of a7

typical measurement is short compared to the decay time of a typical active source (e.g., the half-life of Cf is252

roughly 2.6 years), decay of the source will be neglected.

Note that a non-instrumented active source can be represented by letting , and a passive measurement can be8

represented by letting .
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(14)
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because the first detection event M leaves only  neutrons to induce the second detection event .  In general, the
probability of n detection events correlated to a single emission is

Similarly, multiple fissions may be induced by a single emission.  Finally, multiple detection events and induced fissions may
be chain-related through not only one but instead a sequence of emission events.  For example, in Figs. 1 and 2 the detection
events , , , and  are all collectively chain-related to the source emission  through the sequence of
induced fissions  and .  The joint probability of such a sequence of events is more complicated than that of the
sequence represented in (14).  This will become evident during the subsequent developments.

All fission chain-reactions are initiated by some spontaneous source emission, and during any given measurement a
number of independent sources may be present.  Let channel “0” denote an instrumented active source signal such that the
probability of a detected source emission at  that injects  neutrons is

where  is the probability that  neutrons will emerge from an active source emission,  denotes the efficiency of the
active source, i.e., the probability that a source emission will be detected, and  denotes the active source emission rate.  7

Recall that it is assumed that the active source is in general capable of producing multiple neutrons per emission, but that
only the emission event itself, and not the number of neutrons produced, can be detected.  Consequently, the active source
has an observable mean emission rate of

However, unobserved source emissions may also initiate fission-chains, and the probability that an undetected active source
emission will inject  neutrons at  is 8

Finally, intrinsic neutron sources, which are collectively denoted by “G”, may also initiate fission-chains such that the
probability of an intrinsic source emission at  that injects  neutrons is

Each of the preceding independent sources serve to induce fission in the system such that the marginal probability of an
induced fission at  that produces  neutrons is



q(t , <) dt ' j
<0

m
t

&4

dt0 q * 0(t , < * t0, <0) dt @ q0(t0, <0) % q (
0 (t0 , <0) % j

<G
m
t

&4

dtGq *G(t , < * tG, <G) dt @ qG(tG, <G)

' j
<0

m
t

&4

dt0 p(<) e &"(t& t))

< 7
u(t & t0) dt <0 @ p0(<0) Q0 % j

<G
m
t

&4

dtGp(<) e &"(t& t))

< 7
u (t & tG) dt <G @ pG(<G) QG

' p(<)
<0 Q0 % <GQG

< " 7
dt ' p(<) Q dt .

p01(t0 , t1) dt0dt1 ' j
<0

p1 * 0(t1* t0 , <0) dt1 @ q0(t0, <0) dt0

' j
<0

,1
e &"(t1& t0)

7
u(t1 & t0) dt1 <0 @ p0(<0) ,0 Q0 dt0 ' ,1

<0 ,0 Q0

7
e &"(t1& t0) u(t1& t0) dt0 dt1 .

R01(J) ' p01(t0, t1) J ' t1& t0
' ,1

<0,0 Q0

7
e &"J u(J) .

S01(s) ' m dJ e &sJ R01(J) '
,1

7 (" % s)
<0 ,0 Q0 .

p 0
1 (t1) dt1 ' m

t1

&4

dt0 p01(t0, t1) dt1 ' j
<0

m
t1

&4

dt0 p1 *0(t1 * t0 , <0) dt1 @ q0(t0 , <0)

p 0(
1 (t1) dt1 ' j

<0
m
t1

&4

dt0 p1 * 0((t1* t0 , <0) dt1 @ q (
0 (t0, <0)

J

7

(19)

(20)
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(22)
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(24)

These are of course simplified representations of the probabilities governing fission chain-reactions; however, most of the
subsequent observations are more general than the simple point models used to describe the statistics.

2.1   FIRST-ORDER STATISTICS

First-order statistics describe the mean rate of individual neutron counting events, which may in turn be correlated to
detected active source emissions.  Observe that the joint probability of a detection event chain-related to a detected active
source emission is simply

The (almost trivial) diagram for this joint probability is shown in Fig. 3.  Subsequently, the covariance between the detector
and active source signals is

This is the quantity measured by a pulsed neutron experiment; it is the distribution of detector counts chain-related to some
detected active source emission over the delay  between initial source emission and the subsequent count.[9]  Neutron-
noise analysis experiments often represent this distribution as a harmonic spectrum[10]

Subsequently, the marginal probability of a count chain-related to a detected active source emission is

However, some detector counts may instead be chain-related to an undetected active source emission with probability
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The quantities  and  (and consequently , , , and ) are entirely conceptual; they cannot be9

directly measured since the sources  “ ” and “G”  are not directly observable.
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(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

or to an intrinsic source emission with probability

such that the total marginal probability of a detector count is

where  denotes the background count rate observed in the absence of any source.  Consequently,

such that the mean detector count rate is

In accordance with (26), the count rate is comprised of components arising from counts chain-related to each
contributing source described in (15), (17), and (18):

where  and  are the analogs to  respectively obtained by substituting the sources “ ” and “G” for the source
“0” in (20).   Subsequently, a “source-conditional”  covariance  may be defined9

such that the corresponding conditional mean is

This is the mean number of counts correlated to a detected source emission per detected source emission.  Consequently, the
fraction of all counts that are chain-related to detected active source emissions is
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(33)

(34)

(35)

(36)

In other words, because the covariance between the active source and detector signals is the distribution of counts chain-
related to the active source, it can be used in conjunction with the detector count rate to distinguish the count rate arising
from detected active source emissions from that arising from unobservable sources.

2.2   SECOND-ORDER STATISTICS

Second-order statistics describe the mean rate of correlated pairs of neutron counting events, which may in turn be
collectively correlated to detected active source emissions.  Two unique processes can give rise to a correlated pair of counts
chain-related to an initial source emission as depicted in Fig. 4.  The notation used to denote each process indicates the
neutron “economy” of the process.  The process labeled “2” begins with the injection of source neutrons which each initiate
at least two separate branches in the chain-reaction that in turn terminate in at least two counts.  The process labeled “(1-
1)+2” begins with the injection of source neutrons that successfully initiate only one branch in the chain-reaction that in turn
terminates in at least one induced fission (hence the notation “(1-1)”).  This induced fission subsequently injects at least two
more neutrons (hence the notation “+2”) into the system that initiate at least two separate branches in the chain-reaction that
in turn terminate in at least two counts.  These two processes are mutually exclusive such that

The joint probability of process 2 is

and is invariant over a permutation in the sequence of counts .  That is, the probability of process 2 is the same
regardless of which detector count occurs first.  On the other hand,

i.e., the probability of the pair of counts  under process (1-1)+2 varies depending upon the order of the two counts. 
This is so because the induced fission at  must occur sometime between the source emission at  and the first of the two
counts.  Consequently,
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There is no reason to consider permutations under which the source emission does not occur first; the probability10

of a chain-related correlated pair of counts under such a permutation is zero because the source emission must
initiate the chain-reaction.
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(37)

(38)

(39)

(40)

(41)

(42)

while

Note that a reversal in the order of the counts results in probabilities that are simply “mirror images” of one another.  This is
so because reversing the order of the counts simply reverses the relative delays  and  between each
count and the initial source emission such that 10

In other words, the joint probability of two counts collectively chain-related to a source emission is reflexive over a
permutation in the order of counts, as is the bicovariance  between the source and detector signals:

Consequently,

is the distribution of correlated pairs of counts collectively chain-related to some detected active source emission over the
relative delays  and  between each count in the pair and the initial source emission.  The bispectrum between the source
and detector signals is just the two-dimensional Laplace transform of the bicovariance:

Observe that the bispectrum clearly distinguishes between the two processes that produce source-correlated pairs.
Recognize that correlated pairs of counts can arise from any of the three sources “0”,  “ ”, and “G”, such that
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(43)

(44)

(45)

(46)

(47)

(48)

where  and  are the analogs to  respectively obtained by substituting the sources “ ” and “G” for the source
“0” in (34), (36), and (37).  Subsequently, the covariance between two detector signals

is the distribution of correlated pairs of counts over the delay  between the two counts in the pair.  This is the quantity
measured by a Rossi-α experiment.[5-8]

Observe that the covariance between detectors is comprised of components arising from each of the three sources

Subsequently, the spectrum between detectors is[10]

that, in accordance with (44), is comprised of contributions arising from each of the three sources

Finally, note that one can define a source-conditional covariance  between detectors

and a corresponding conditional mean  such that
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(49)

(50)

where  denotes the number of correlated pairs chain-related to a detected source emission per detected source

emission and  denotes the total number of correlated pairs per detected source emission.  Consequently, (48) is the
fraction of all correlated pairs that are chain-related to a detected active source emission.  So the bicovariance between the
source and detector signals can be used in conjunction with the covariance between detector signals to distinguish the
correlated pairs rate arising from detected active source emissions from that arising from unobservable sources.

2.3   THIRD-ORDER STATISTICS

Third-order statistics describe the mean rate of correlated triplets of neutron counting events, which may in turn be
collectively correlated to detected active source emissions.  Four processes can give rise to a correlated triplet of counts
chain-related to an initial source emission, and these processes are illustrated in Fig. 5.  Again the notation used to denote
each process indicates the neutron economy of the process.  Process “3” is initiated by the injection of at least three source
neutrons and terminates in at least three chain-related counts.  Process “(2-1)+2” can occur if only two source neutrons
successfully initiate separate branches in the fission-chain; one branch in this chain-reaction induces a fission (hence “(2-1)”)
releasing at least two neutrons that initiate two additional branches in the chain-reaction (hence “+2”).  Processes “(1-1)+3”
and “(1-1)+(2-1)+2” are similar to processes “3” and “(2-1)+2”, respectively, except that each can be initiated by a single
source neutron that eventually leads to an intermediate induced fission (hence “(1-1)”).  These processes are mutually
exclusive such that

The joint probability of process 3 is

Only process 3 is invariant over permutations in the order of the three detector counts.  The joint probability of the remaining
processes will initially be derived for the sequence of detector counts  occurring in exactly that order, i.e., for

.  The other permutations can be subsequently derived using simple permutation relations characteristic of the joint
probability (49).

The joint probability of process (2-1)+2 has three components corresponding to the three mutually exclusive conditions:
(1) counts  and  are chain-related to the induced fission ; (2) counts  and  are chain-related to the induced fission

; and (3) counts  and  are chain-related to the induced fission .  Consequently,
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(51)

(52)

Process (1-1)+3 is similar to process 3 except that the induced fission at  must occur between the source emission at 
and the first count at , such that

Finally, process (1-1)+(2-1)+2 is similar to process (2-1)+2 except that again the induced fission  must occur between
 and .  Therefore,
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(55)

The other five permutations in the sequence of detector counts simply correspond to permutations in the delays
, , and  between each count and the initial source emission:

such that the tricovariance  between the source and detector signals obeys the permutation relations
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Consequently the tricovariance

is the distribution of correlated triplets of counts collectively chain-related to some detected active source emission over the
delays , , and  between each individual count in the triplet and the initial source emission.  The corresponding
trispectrum between the source and detector signals is the three-dimensional Laplace transform of the tricovariance:

Observe that the trispectrum clearly distinguishes between the four processes that produce source-correlated triplets.
Next consider that correlated triplets can also arise from chain-reactions initiated by the unobservable sources “ ” and

“G” in addition to the source “0” such that
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where the distribution of triplets chain-related to detected active source emissions can be obtained from the tricovariance
according to

The distribution of triplets chain-related to the two other sources can be obtained by simply substituting them for the source
“0” in (50) through (53) and (59).  Consequently, the bicovariance between detector signals

is the distribution of all correlated triplets of counts over the delay  between the first and second count and  between the
first and third count (see also [7]).  The bispectrum between detectors is the two-dimensional Laplace transform of the
bicovariance; like the bicovariance, the bispectrum has components corresponding to each of the three sources “0”, “ ”,
and “G”:

In accordance with (59), the bispectrum component corresponding to detected active source emissions

and the other two components can be obtained by substitution such that

Next consider that one can define a source-conditional bicovariance  between detectors



R0123(J1, J2 , J3) ' R123 * 0(J1, J2 , J3) @ x0

(x1 x2 x3) * 0

(x1 x2 x3) / x0

' m dJ1 m dJ2 m dJ3 R123 * 0(J1, J2, J3)

1

x0 m dJ1 m dJ2 R123(J1, J2)
' m dJ1 m dJ2 m dJ3 R0123(J1, J2, J3)

m dJ1 m dJ2 R123(J1, J2)
'

S0123(0 , 0, 0)

S123(0, 0)

' ,0 ÷ 1 %
<G(<G& 1) (<G& 2) QG

<0(<0 & 1) (<0& 2) Q0

%
< (< & 1)(< & 2)

<0 (<0 & 1)(<0 & 2)

<0

< " 7

<GQG

<0 Q0

%
3 < (< & 1)

<0(<0 & 1)(<0 & 2)

<0(<0 & 1)

< " 7

<G(<G& 1) QG

<0(<0 & 1) Q0

%
<(< & 1)

<0(<0 & 1)

<0

< "7

<GQG

<0 Q0

÷ 1 %
< (< & 1)(< & 2)

<0 (<0 & 1)(<0 & 2)

<0

< " 7
%

3 <(< & 1)

<0 (<0 & 1) (<0 & 2)

<0 (<0& 1)

< " 7
1 %

<(< & 1)

<0(<0 & 1)

<0

< " 7

n ' n & R & m % Em ,

m 0 1 , ÿ , n / 2 , R 0 m , ÿ , n & m ,

(x1 x2x3)*0

n & R

[n & R] n & R F L
n ' 5 m ' 2 R ' 3 Em

The diagrams beginning with “(1-1)” are not shown in Fig. 6 because they are simply composed of the symbol for11

“1” left-concatenated to the diagrams already shown.
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and a corresponding conditional mean  such that

is the fraction of all correlated triplets of counts that are collectively chain-related to a detected source emission.  Hence it
possible to distinguish triplets chain-related to the active source from those chain-related to other sources.

2.4   GENERALIZATION TO ARBITRARY ORDER

For obvious reasons, it is desirable to develop a simple “prescription” to predict statistics of arbitrary order n.  Because,
for a given order n, the mutually exclusive processes that lead to n correlated counts can be represented diagrammatically, the
first step in this development will be a procedure to ensure that all diagrams representing a particular order are generated.

If the individual symbols in each diagram are thought of as “words,” then there are some simple recursive rules of
composition to form all “sentences” that represent a given order.  This is illustrated in Fig. 6 for orders one through five.  11

First observe that the notation for each diagram is equivalent to that diagram’s order (e.g., “(2-2)+2+3” = order 5).  Next
consider that the diagrams along the leftmost column are “minimal” symbols representing each order.  Each of these symbols
has n branches and so is defined to be equivalent to the number n.  They are called “minimal” because, for each order, the
minimal symbols are the only diagrams composed of one symbol representing that order.  Subsequent to these are composite
(i.e., non-minimal) diagrams formed by concatenation of minimal symbols.  Note that composite diagrams of order n contain
only minimal symbols with equivalent values less than or equal to n.

Observe that each right-concatenated symbol is defined to be equivalent to its number of branches, while each left-
concatenated symbol is defined to be equivalent to its number of branches minus the number of symbols right-concatenated
to it.  Consider all the “two-stage” composite diagrams (e.g., “(2-2)+2+3”) formed by right-concatenating m minimal symbols
to a single minimal symbol on the left with  branches.  The basic rule of composition for these diagrams is

where  denotes the equivalent value of the symbol with  branches, and “ ” denotes the “floor” operator that
yields the integer less than or equal to its operand.  For example, for the composite “(2-2)+2+3”, , , and .  
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is a sum with m terms, each corresponding to the equivalent value of one right-concatenated symbol, such that  sums to
:

For example, for the composite “(2-2)+2+3”,  and .  For R and m restricted to the ranges listed in (66), it will always
be possible to construct  from m terms each greater than or equal to two because

Finally, each term of  with an equivalent value greater than two can be recursively expanded in the composite diagrams for
the order equal to its equivalent value.  For example, because “(2-1)+2” is the composite diagram for order 3, “(2-2)+2+3” can
be expanded into “(2-2)+2+(2-1)+2”.  This recursive rule includes composite diagrams of the form “(1-1)+n”.  The single term,
n, of  can be expanded into all the preceding composite diagrams representing order n.  In this manner all composite
diagrams with more than two stages can be recursively generated.  This recursive feature of the composition rules results in
the complete and non-redundant generation of all diagrams of a given order.  Table 1 lists the resulting expansions for all
diagrams of order one through six.  Note in particular that successive application of the recursion rule always terminates in a
composite of the form “(1-1)+(2-1)+(2-1)+ þ +(2-1)+2”.  This “maximal” word represents the longest composite diagram
representing a given order.  Later, both the minimal and maximal diagrams will be used to prescribe bounds on the behavior of
statistics of arbitrary order.

For a given order n, each diagram is equivalent to the joint probability for a particular sequence of events terminating in
an n-tuplet of detector counts.  Because all the diagrams for a particular order represent mutually exclusive sequences of
events, the total joint probability for that order is simply the sum of the joint probabilities represented by the diagrams. 
Furthermore, due to the equivalence between the nth-order poly-covariance and the joint probability for that order, the
diagrams are equivalent to the nth-order poly-covariance.  Finally, because there is an isomorphism between the nth-order
poly-spectrum and poly-covariance, the diagrams are equivalent to the nth-order poly-spectrum.  The rules for expressing a
particular diagram as a poly-spectrum are fairly simple.

First consider the nth-order poly-spectrum between an active source signal and n detector signals.  Each event in a
particular permutation of a sequence contributes a factor to the poly-spectrum.  The ith terminal (detection) event contributes
a factor of

Each intermediate (induced fission) event contributes a factor of

where  denotes the set of terminal events traceable through the diagram to that particular intermediate event.  The jth
factorial moment of  is denoted by

where j is the number of branches in the symbol representing the induced fission event.  Note also that all possible
permutations of the subset  of  must be included as additive terms and that multiple intermediate events in the
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same stage trace to mutually exclusive sets of terminal events (i.e., multiple fissions events cannot cause the same detection
event).  Finally, the initial (source emission) event contributes a factor of

where k  is the number of branches in the initial symbol in the diagram.  For example, the fourth-order diagram “(2-1)+(2-1)+2”
is equivalent to the term

in the fourth-order poly-spectrum between the active source and detector signals, and the diagram “(2-2)+2+2" is equivalent
to the term

in this same poly-spectrum.
Once the nth-order poly-spectrum between the active source and detector signals has been determined, it is easy to

generate the nth-order poly-spectrum between only the detector signals.  This is done via two substitutions.  First,

because all active and intrinsic source emissions can potentially produce a correlated n-tuplet of detector counts.  Second,
due to the integral relation ship between  and  (compare (29), (46), and (62)),

For example, the fourth-order diagram “(2-1)+(2-1)+2” is equivalent to the term
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Hopefully, this desired formulation will be evident to some interested reader.12
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in the fourth-order poly-spectrum between detector signals, and the diagram “(2-2)+2+2" is equivalent to the term

in this same poly-spectrum.
So the preceding is the prescription required to predict poly-spectra of arbitrary order.  The corresponding poly-

covariances can be synthesized via application of the inverse-Laplace transform.  Unfortunately, a prescription to predict nth-
order poly-covariances, although implicit in the preceding procedure, has not yet been explicitly formulated.   However, it is12

not absolutely necessary to possess such a procedure.  The subsequent general features of higher order statistics can be
fairly easily described in terms of poly-spectra.

3. GENERAL PROPERTIES OF HIGH ORDER STATISTICS AND THEIR POTENTIAL UTILITY

Frequently it is easier to describe the properties of something new in terms of the new things that can be done with it. 
Furthermore, because “newness” is only a state relative to preceding developments, the following contains several
comparisons of applications of the new statistics to similar applications using previously developed ones.  To date, two
potentially useful general properties of higher order statistics have been identified.  First, they can be used to distinguish
between the temporal distribution of n-tuplets that are chain-related to an introduced active source from that of n-tuplets that
are chain-related to an intrinsic source that is otherwise unobservable.  Second, successively higher order statistics possess
progressively higher sensitivity to changes in reactivity and hence to changes in composition, configuration, and fissile
mass.

On several occasions it has been noted that a poly-covariance between an active source and n detectors can be used in
conjunction with a poly-covariance between n detectors to determine the fraction of all n-tuplets that are correlated to a
detected active source emission (see (32), (48), and (65)).  This is because the poly-covariance
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Observe that only first-order statistics (i.e., the covariance between the source and a detector and the detector13

count rate) can be used to measure the efficiency of an active source that emits only one neutron per source event
(e.g., an APNG) because , and then the measurement must be performed in the absence of significant
background.

Sometimes it is not possible to select a threshold to achieve 100% counting efficiency for Cf fission-fragments14 252

because it is necessary to ensure that all counts due to α-decay of Cf are discriminated.  This often discriminates252

some low energy fission-fragment counts as well.[1]
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is the temporal distribution of n-tuplets that are correlated to a detected active source emission while the poly-covariance
 is the temporal distribution of all n-tuplets.  In principle, this relationship could be used to distinguish between the

distribution of n-tuplets chain-related to the active source from that of n-tuplets chain-related to the intrinsic source, if one is
present, because

In other words, the marginal distribution  is comprised of one component  that is due to detected active source

emissions and one component  that is not.  One problem in the implementation of this principle is that the active source

may not be 100% efficient, and the efficiency of the active source may be unknown.  That is

where  is due to undetected active source emissions and  is due to the intrinsic source.
However, a solution to this problem lies within the principle itself.  If the poly-covariance between the active source and

detectors and the poly-covariance between just the detectors are measured simultaneously in the absence of any fissile
system or intrinsic source, then

For example, the efficiency of a Cf ionization chamber can be measured by using two detectors and acquiring the252

bicovariance between the source and detectors and the covariance between the detectors when the two detectors are
exposed to the source in air in the absence of any other spontaneous fission sources.   The author and colleagues at the Oak13

Ridge National Laboratory have performed such measurements using plastic scintillators and constant fraction discrimination
pulse processing instrumentation to optimize the discriminator threshold for Cf ionization chambers and achieve maximum252

efficiency.   During these measurements it was noted that the efficiency measured for any particular source threshold was14

completely insensitive to changes in the detector thresholds, the high voltage applied to the detector photomultiplier tubes,
the coincidence gate width used to collect the covariance and bicovariance, and the physical location of the detectors and
their proximity to the Cf source.  So, for this particular method, the conclusion (82) drawn from the supporting theory252

extends beyond the limitations of the point models used to develop the theory.
Once the source efficiency has been measured, subsequent measurements of a fissile system containing intrinsic sources

can partition the distribution of n-tuplets  into one component  that is due to all active source emissions
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Observe that upon inclusion of the source and detector transfer functions, (82) yields , where15

 is essentially the gain of the source electronics.  However (82) still yields the fraction of all active
source events that are actually counted.

In earlier publications, this quantity has been referred to as the ratio of spectral densities; more recent publications16

refer to it as the spectral ratio.[10]
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and one component  that is due only to intrinsic source emissions such that

Consequently, the distribution of n-tuplets chain-related to intrinsic source emissions can be indirectly measured.  This
means  that active measurements performed on fissile systems containing intrinsic sources, e.g., plutonium assemblies or
spent nuclear fuel, can now use this technique to measure properties of the otherwise unobservable intrinsic sources.

Sometimes, however, the properties of intrinsic sources are of no real interest.  In such applications, it is desirable to
measure quantities that are independent of the presence and/or strength of intrinsic sources.  Furthermore, it is also desirable
to construct quantities that are as well independent of detection efficiency and the response of associated counting
instrumentation.

Discussion of the effects of instrumentation response has been deferred up to this point.  Now consider that the signal
 that is actually acquired from channel m (which can be either an active source or a radiation detector) is related to the

actual sequence of counting events  by

where is the impulse response of the electronics associated with channel m.  Subsequently, the transfer function of the
electronics associated with channel m is

Upon inclusion of the electronics transfer functions, the acquired poly-spectrum between the source and detectors becomes

and the acquired poly-spectrum between detectors becomes 15

Consequently, if the impulse response of the electronics associated with any channel changes, as can occur due to changes
in gain or timing resolution, these statistics will change accordingly.

In order to construct a quantity that would be robust to changes in detection efficiency and electronics response,
Mihalczo and Paré introduced the spectral ratio [10]16

where  is the source autospectrum (a univariate statistic)
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where  denotes the source autocovariance (another univariate statistic), that, upon inclusion of the source impulse
response, is

Observe that although the spectral ratio is independent of the detectors’ efficiencies and the impulse response of any
associated electronics, it does depend upon the source efficiency and upon the presence and strength of intrinsic sources

where  denotes subcritical prompt reactivity.  Furthermore, although not explicitly shown, the inherent delayed
neutron source will as well affect the spectral ratio according to

where  denotes the system’s effective delayed neutron fraction.
Consider as a modification to the spectral ratio the quantity

that, for lack of a better name, will be called the bispectral ratio.  Observe that

such that the bispectral ratio can be thought of as the number of independent pairs whose individual members are chain-
related to the active source per correlated pair that is collectively chain-related to the active source .  This quantity,

is independent of both the detectors’ efficiencies and the source efficiency as well as the impulse response of any associated
electronics.  Furthermore, because all quantities in the bispectral ratio are correlated to the active source, it is completely
independent of the presence and/or strength of any intrinsic sources.  Finally, because the inherent delayed neutron source is
essentially uncorrelated with active source emissions, the bispectral ratio is also independent of the strength of the inherent
delayed neutron source.

Further observe that as a subcritical fissile system approaches prompt critical,
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(98)

(99)

(100)

(101)

(102)

i.e., the bispectral ratio is directly proportional to subcritical prompt reactivity for systems close to prompt critical.  Next
observe that for extremely subcritical systems, the bispectral ratio asymptotically approaches the source Diven factor:

if an active source capable of emitting multiple neutrons per event is used.  Monte Carlo calculational models of Cf source-252

driven measurements of simple uranium-metal systems indicate that the transition between asymptotic behaviors (97) and (98)
occur in the region where the prompt multiplication factor .[20]  Consequently, it may be possible to use the bispectral
ratio to estimate subcritical prompt reactivity for .

If, on the other hand, an active source that emits only a single neutron per event (e.g., an APNG) is used, then the
bispectral ratio is directly proportional to subcritical prompt reactivity

for all values of subcritical reactivity.  Consequently, it may be possible to use the bispectral ratio to estimate subcritical
prompt reactivity over a broad range if an APNG is used as the active source.  Furthermore, measurements of uranium-metal
systems have shown that not only is the bispectral ratio independent of detection efficiency but that it is also fairly robust to
changes in the position of the source and detectors relative to one another and to the fissile system.  So, although only a few
measurements of this quantity have as yet been conducted, it is reasonable to speculate that the bispectral ratio may be of
significant utility for monitoring subcritical reactivity even in fissile systems containing unknown intrinsic sources, e.g., spent
nuclear fuel and plutonium assemblies.

Observe in addition that it is also possible to construct higher order poly-spectral ratios of the form

In so doing, it is prudent to ask, “How will these poly-spectral ratios depend upon reactivity?”  It can and subsequently will
be shown that, for extremely subcritical fissile systems, the nth-order poly-spectral ratio will asymptotically approach

On the other hand, for fissile systems approaching prompt critical, the nth-order poly-spectral ratio will asymptotically behave
as

Monte Carlo calculational models of Cf-driven active measurements of simple uranium-metal systems have shown that the252

transition between these asymptotic behaviors in the trispectral (i.e., third-order) ratio occurs in the same region, , as
the transition observed in the bispectral ratio.[20]  It is therefore reasonable to speculate that yet higher order spectral ratios
will behave similarly.

The upper asymptotic behavior (102) of the poly-spectral ratios occurs due to a fundamental, and in retrospect obvious,
property of higher order statistics.  Successively higher order statistics are progressively more sensitive to reactivity.  Recall
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(103)

(104)

that among the possible sequences of events that lead to an n-tuplet of correlated counts is a minimal sequence that
contributes to the nth-order poly-spectrum as

This sequence of events occurs when a source emits at least n neutrons that successfully initiate at least n branches in the
chain-reaction.  This is the shortest sequence of events.  In extremely subcritical systems, it is also the most probable
sequence of events, and it has the minimum sensitivity to reactivity characteristic of a given nth-order statistic.  Further recall
that for a given order n, there is also a characteristic maximal sequence that contributes to the poly-spectrum as

This sequence of events occurs when a source emits neutrons that themselves successfully initiate only one branch in the
chain-reaction.  However, this first branch is followed by a succession of induced fissions that each initiate two branches in
the chain-reaction, such that by its terminus the chain-reaction has branched  times.  This is the longest sequence of
events, and it is also the most probable sequence of events in fissile systems approaching prompt critical.

All other possible sequences of events leading to an n-tuplet of correlated counts will have sensitivity to reactivity
somewhere between the lower and upper bounds (103) and (104).  Monte Carlo calculational models of Cf active source252

measurements of simple uranium-metal systems have produced results that adhere closely to these conclusions.[20]
Finally, observe that both the upper and lower asymptotic sequences possess progressively higher sensitivity to

reactivity for successively higher order statistics.  This feature of the higher order statistics is the one that promises to have
the greatest potential utility.  It can be applied to detect progressively smaller changes in subcritical reactivity that occur due
to changes in composition, configuration, and fissile mass.  Therefore, it may prove useful in systems identification
applications since it should be able to distinguish between very similar, but still different, fissile assemblies.  It is expected
that this technique may be of particular interest to experimenters developing methods to support nuclear materials control and
accountability.

4. CONCLUSIONS

A probabilistic technique has been used to develop theoretical models of high order statistics acquired from
measurements of the temporal evolution of fission chain-reactions.  The models developed encompass statistics acquired
from both active and passive measurements of fissile systems, and they describe the temporal distribution of n-tuplets of
correlated detector counts that in turn may be collectively correlated to active source emissions.  This development unifies
the Rossi-α, pulsed neutron,  and neutron noise analysis methods and generalizes them from a single method to measure pairs
of correlated events to a single method to measure collections of an arbitrary number of correlated events.

It has been demonstrated that successively higher order statistics possess progressively higher sensitivity to reactivity. 
Consequently, these counting statistics are more sensitive to changes in the composition, configuration, and fissile mass of
the system measured.  Furthermore, it has been shown that this technique is capable of distinguishing the response of the
fissile system to the active source from its response to intrinsic or inherent sources.  It may in fact allow the measurement of
properties of intrinsic sources that are otherwise difficult or impossible to observe directly.  This ability in conjunction with
their enhanced sensitivity indicates that these statistics may be of significant utility in a variety of applications.  Potential
applications include enhanced radiation signature identification of weapons components to support nuclear disarmament and
safeguards efforts and augmented nondestructive analysis of spent nuclear fuel.  In general, the technique should expand
present capabilities in the analysis of neutron counting measurements.
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Figure 3. One possible chain-reaction that can occur during an active measurement of
a fissile system; closed circles denote observable events including detector counts
and detected source emissions, open circles denote unobservable induced fission
events, and each line indicates a neutron.

Figure 4. Diagram representing chain-reaction shown in Fig. 1; each
line now indicates a series of “chain-related” neutrons, and the label
associated with each line indicates the number of neutrons available
to sustain that branch in the chain-reaction.



29

Figure 5. Diagram representing a chain-reaction
terminating in one detector count (see also Fig. 2).

Figure 6. Diagram representing chain-reactions terminating in two correlated detector
counts; the notation indicating each process denotes the neutron economy of the
chain-reaction (see also Fig. 2).

Figure 7. Diagram representing chain-reactions terminating in three correlated detector counts; the
notation indicating each process again denotes the neutron economy of the chain-reaction (see also
Fig. 2).
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Order 1 2 3 4 5 6
1 1
2 2 (1-1)+2

3 (2-1)+2
(1-1)+3 (1-1)+(2-1)+2

4 (3-1)+2
(2-1)+3 (2-1)+(2-1)+2

(2-2)+2+2
(1-1)+4 (1-1)+(3-1)+2

(1-1)+(2-1)+3 (1-1)+(2-1)+(2-1)+2
(1-1)+(2-2)+2+2

5 (4-1)+2
(3-1)+3 (1-1)+(2-1)+2
(2-1)+4 (2-1)+(3-1)+2

(2-1)+(2-1)+3 (2-1)+(2-1)+(2-1)+2
(2-1)+(2-2)+2+2

(3-2)+2+2
(2-2)+2+3 (2-2)+2+(2-1)+2

(1-1)+5 (1-1)+(4-1)+2
(1-1)+(3-1)+3 (1-1)+(3-1)+(2-1)+2
(1-1)+(2-1)+4 (1-1)+(2-1)+(3-1)+2

(1-1)+(2-1)+(2-1)+3 (1-1)+(2-1)+(2-1)+(2-1)+2
(1-1)+(2-2)+2+2

(1-1)+(3-2)+2+2
(1-1)+(2-2)+2+3 (1-1)+(2-2)+2+(2-1)+2

6 (5-1)+2
(4-1)+3 (4-1)+(2-1)+2
(3-1)+4 (3-1)+(3-1)+2

(3-1)+(2-1)+3 (3-1)+(2-1)+(2-1)+2
(3-1)+(2-2)+2+2

(2-1)+5 (2-1)+(4-1)+2
(2-1)+(3-1)+3 (2-1)+(3-1)+(2-1)+2
(2-1)+(2-1)+4 (2-1)+(2-1)+(3-1)+2

(2-1)+(2-1)+(2-1)+3 (2-1)+(2-1)+(2-1)+(2-1)+2
(2-1)+(2-1)+(2-2)+2+2

(2-1)+(3-2)+2+2
(2-1)+(2-2)+2+3 (2-1)+(2-2)+2+(2-1)+2

(4-2)+2+2
(3-2)+2+3 (3-2)+(2-1)+2
(2-2)+2+4 (2-2)+(3-1)+2

(2-2)+(2-1)+3 (2-2)+(2-1)+(2-1)+2
(2-2)+(2-2)+2+2

(2-2)+3+3 (2-2)+(2-1)+2+3 (2-2)+(2-1)+2+(2-1)+2
(3-3)+2+2+2

(1-1)+6 (1-1)+(5-1)+2
(1-1)+(4-1)+3 (1-1)+(4-1)+(2-1)+2
(1-1)+(3-1)+4 (1-1)+(3-1)+(3-1)+2

(1-1)+(3-1)+(2-1)+3 (1-1)+(3-1)+(2-1)+(2-1)+2
(1-1)+(3-1)+(2-2)+2+2

(1-1)+(2-1)+5 (1-1)+(2-1)+(4-1)+2
(1-1)+(2-1)+(3-1)+3 (1-1)+(2-1)+(3-1)+(2-1)+2
(1-1)+(2-1)+(2-1)+4 (1-1)+(2-1)+(2-1)+(3-1)+2

(1-1)+(2-1)+(2-1)+(2-1)+3 (1-1)+(2-1)+(2-1)+(2-1)+(2-1)+2
(1-1)+(2-1)+(2-1)+(2-2)+2+2

(1-1)+(2-1)+(3-2)+2+2
(1-1)+(2-1)+(2-2)+2+3 (1-1)+(2-1)+(2-2)+2+(2-1)+2

(1-1)+(4-2)+2+2
(1-1)+(3-2)+2+3 (1-1)+(3-2)+(2-1)+2
(1-1)+(2-2)+2+4 (1-1)+(2-2)+(3-1)+2

(1-1)+(2-2)+(2-1)+3 (1-1)+(2-2)+(2-1)+(2-1)+2
(1-1)+(2-2)+(2-2)+2+2

(1-1)+(2-2)+3+3 (1-1)+(2-2)+(2-1)+2+3 (1-1)+(2-2)+(2-1)+2+(2-1)+2
(1-1)+(3-3)+2+2+2

6

Number of Stages

3

5

4

31

Table 1. Recursive expansions to generate all chain-reactions terminating in from one to six detector counts; notation
indicates the neutron economy of each specific chain-reaction, the order indicates the number of detector counts, and the
number of stages indicates the length of generated composite diagram formed from concatenating minimal symbols (see also
Fig. 6).
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