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Multivariate High Order Statistics of
Measurements of the Temporal Evolution of Fission Chain-Reactions

J. K. Mattingly
Oak Ridge National Laboratory, Instrumentation and Controls Division
Oak Ridge, Tennessee 37831-6004

Abstract — The development of high order statistical analyses applied to measurements of the temporal evolution
of fission chain-reactionsis described. These statistics are derived via application of Bayes' rule to conditional
probabilities describing a sequence of eventsin a fissile system beginning with the initiation of a chain-reaction
by source neutrons and ending with counting eventsin a collection of neutron-sensitive detectors. Two types of
initiating neutron sources are considered: (1) a directly observable source introduced by the experimenter (active
initiation), and (2) a sourcethat isintrinsic to the systemand is not directly observable (passiveinitiation). The
resulting statistics describe the temporal distribution of the population of prompt neutronsin terms of the time-
delays between members of a collection (ann-tuplet) of correlated detector counts, that, in turn, may be
collectively correlated with a detected active source neutron emission. These developments are a unification and
extension of Rossi-a, pulsed neutron, and neutron noise methods, each of which measure the temporal distribution
of pairs of correlated events, to produce a method that measures the temporal distribution of n-tuplets of
correlated counts of arbitrary dimensionn. In general the technique should expand present capabilitiesin the
analysis of neutron counting measurements.

1. INTRODUCTION

The present work focuses on multivariate statistics derived from counting measurements performed on fissile systems
driven by a neutron source that isintroduced by the experimenter or isintrinsic or inherent to the system. Measurements
performed using an introduced source to initiate fission chain-reactions are described as “ active,” and measurements that rely
solely upon an intrinsic source to initiate fission are described as “passive.” It should be noted that the introduction of an
active source does not necessarily preclude the presence of an intrinsic source; in many applications of interest, the two will
be present simultaneously. Instead, the active source isintroduced to provide a means of observing the time of initiation of
some chain-reactions. In particular, it is assumed that the active neutron source is directly observablein that it is
intsrumented in such away that individual neutron emission events may be counted.

For example, one candidate active source is the 2*Cf ionization chamber. This device detects the fragments of individual
spontaneous fissions of 2°Cf nuclei such that the ionization chamber signal, when acquired by pulse processing
instrumentation, registers the time of neutron emission events. Note that the number of neutrons emitted during agiven
spontaneous fission is not observable by thisinstrument.[1] Another candidate active source is the associated-particle
neutron generator (APNG) that accelerates a projectileion (typically adeuteron) into atarget (typically deuterium, asinaD-D
generator, or tritium, asin aD-T generator) to produce a single neutron per collision. The neutron emission event is
registered by detection of the collision product ion (a.k.a., the associated-particle, a He nucleus from a D-D reaction or an He
nucleus from aD-T reaction).[2] In the subsequent development, an observable neutron sourceistreated generically asa
device that registers the time of individual neutron emission events, that isin general capable of emitting multiple neutrons
per event, but that isincapable of registering the number of neutrons emitted during asingle event. Notethat an APNGis
simply aspecial case of this generic active source because only a single neutron is emitted per projectile-target collision.

Passive sources, on the other hand, are intrinsic to the fissile system and are not directly instrumented like active
sources. Consequently, neither the time of a particular neutron emission event nor the number of neutrons emitted during the
event isin general observable. For example, *%Pu and #*?Pu are spontaneous fission sources that are typically present in any
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system containing ?*°Pu; *Bein the presence of plutonium, by virtue of plutonium a-decay, can form a Pu-Be source that
emits asingle neutron per (a,n) reaction in °Be. Other examples of intrinsic neutron sources are ***Cm and 2**Cm which appear
asfission productsin burnt UO, (and other ?**U-containing) nuclear fuels. Measurements of systems containing such
intrinsic sources may be performed passively by relying solely upon these sources to initiate fission chain-reactions, or they
may be performed actively such that fission chain-reactions are initiated by both the introduced source and intrinsic sources.
The choice of active versus passive measurement depends upon the application and upon practical considerations like the
relative strengths of the active and intrinsic sources.

Finally, it isimportant to note that every fissile system contains an inherent delayed neutron source. Technically,
delayed neutrons are correlated progeny of afission chain-reaction just as are prompt neutrons. However, generations of
delayed neutronstypically reproduce much more slowly than do generations of prompt neutrons. Consequently, relative to
the time-scal e of a prompt neutron “fission-chain”, delayed neutrons typically behave as a source inherent to the system that
isuncorrelated with the prompt progeny of the chain-reaction.

The response of the fissile system to the preceding sources is observed by a collection of neutron-sensitive detectors
whose signals are acquired by pulse processing instrumentation such that the time of each neutron detection event is
registered. These detectorsin principle may operate via any number of physical processes; however, to keep the subsequent
development simple, it is assumed that the detectors operate via neutron absorption such that a detection event isalways a
terminusin achain-reaction. In other words, the detector removes the detected neutron from the population and does not
return any further neutronsto the population. Consequently, the following devel opments do not immediately encompass
scatter detectors (e.g., plastic scintillators) or fission detectors. However, modifications to the theory required to address
these kinds of detectors have been described in the context of previous theories and can be readily extended to apply to the
present work.[3,4]

Previous devel opments including the Rossi-a, pulsed neutron, and neutron noise methods measure the distribution of
two-way coincidence between pairs of eventsincluding detector counts and, if an active source is employed, detected source
emissions. Central to (although sometimesimplicit in) these methods is the concept of the covariance

R " Cpld) & X% * E[ xy(ty) XZ(tZ)]lJ ey & X % (€]

between apair of signals ( x;, x,) asafunction of the time-delay J between an event in channel 1 and an event in channel 2.
Above, both“ E[ ]” and“ ™" denote the expected value, or mean, such that C,,(J) isthe mean total coincidence rate
between signals x, and x, when channel 2 is delayed by J relativeto channel 1. The mean rate of “accidental” coincidence,
i.e., therate of uncorrelated coincident eventsis the product of mean count rates x_l x_2 Consequently, R,(J)istherate of
“real” coincidence, i.e., the rate of events coincident at arelative delay of J that are correlated between channels 1 and 2.

In the context of the Rossi-a method, both signals are acquired from radiation detectors such that R,,(J)isthe
distribution of correlated pairs of counts over the relative delay J between the countsin the (x,, x,)pair. {5-8] Inthe context
of apulsed neutron measurement, channel 1isa“trigger” signal acquired from an instrumented active source and channel 2is
aradiation detector signal. Consequently in this context R,,(J) is the distribution of “source-correlated” detector counts over
the delay J following aninitial source emission.[9] An active neutron noise measurement employing two or more radiation
detectorsis essentially a simultaneous Rossi-a and pulsed neutron measurement in that it measures the distribution of two-
way coincidence between all pairs of signals; a passive neutron noise measurement is essentially the same asa Rossi-a
measurement. The only distinction between neutron noise measurements and Rossi-a/pul sed neutron measurementsisthe
way in which the distributions of pairs are analyzed. Neutron noise measurements often employ digital signal processing
methods to acquire each distribution of pairsin the frequency- (i.e., Fourier- or Laplace-) domain:

D9 " dee&S’clz(J) - dee&S’Rlz(J)%jZBx_lx_z*(s) " S, % iBX X,*(9) - )

‘A Rossi-a measurement may use only asingle detector such that x, and x, are actually the same signal.[5-8]
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The spectral density D,,(s " jT) issimply the decomposition of the total coincidence rate distribution C,,(J)into harmonic
components e477 2 The principal reasons (among others) for the use of the frequency-domain representation are (1) to
permit digital acquisition and analysis of analog signals (e.g., current-mode signals from an active source and/or detectors)
and (2) to facilitate rapid processing of the signals by taking advantage of fast Fourier transform (FFT) algorithms. {10]
However, because in this application the transformation isisomorphic (if the signals are processed correctly), the covariance
between signals R ,(J) can always be synthesized by inverse transformation of the harmonic spectrum S, (s).[13-15]
Consequently, Rossi-a, pulsed neutron, and neutron noise measurements can be grouped as a single method that measures
the distribution of real two-way coincidence between pairs of observed events.

The present work extends this method to measure distributions of n-way coincidence between an arbitrary number n of
observed events. Central to the method is the notion of atotal poly-coincidence distribution

Cropnl1d2 ¥ 1 dned) -~ E[ Xy(ty) X(t,) pxn(tn)] Ji T L&y
‘JZ - t3&t1 (3)

from which a corresponding poly-covariance can be obtained by subtracting the relevant accidental poly-coincidence. The
form of the accidental poly-coincidence depends upon the order n of the total distribution; for example the accidental poly-
coincidence for athird-order statisticis

% R, 3) % X Rig(3,) % XoRp(d)) % X, %, X5 @
whilefor afourth-order statisticitis
X1 Ros(35& 31, 33& J)) % X5 Rizy(Js, Jo) % X3 Rpp0(J5, 30 % X, Rips(dy, J,) %
Ry(Jp) Ryy(J58 3,) % Ris(3,) Ryy(J3& Jp) % Ryy(Jp) Ry(3,& J)) %

—_ — —_ —_ —_ —_ ®
Xy X5 Roy(J3& J5) % Xy X3 Ry(J3&J)) % X, X,R5(J,8&J)) % X, X3 Ry4(J5) % X, X, Rig(Jy) % X5 %, R,(J,) %

Xq X Xg Xy

*Elsewhere this quantity has been referred to as a cross-power spectral density (CPSD), a power spectral density
(PSD), or apower spectrum.[10] Subsequently the Laplace transform of acovariance R (not atotal coincidence
distribution C) shall be simply termed aspectrum S; the context of use will clearly distinguish this harmonic
spectrum from an energy spectrum, e.g., afission neutron spectrum. The Laplace-domain representation shall be
used exclusive of the Fourier representation; the latter is simply a special case (i.e., s~ jT) of theformer.

3|t isinteresting to note that some neutron noise measurementsin fact pre-date the development of the FFT.[11,12]

“Thisisnot anew concept in counting measurements; n-way coincidence gates have been available for some
time[16]



Observe that they simply represent the different ways that n uncorrel ated events can be n-way coincident.® A second central
concept in the method is that of a poly-spectrum

SioprS1:S Vi Sed) T dele&Sljldeze&sszp mdJn&le&s"&lJn&lRlzpn(Jl*Jz! Y dhed ©)

that is simply ann-dimensional harmonic decomposition of the poly-covariance. Because of the dual nature of convolutionin
thetime-domain (J) and multiplication in the frequency-domain (s), it will prove easier to generalize the subsequent models of
high order statisticsto arbitrary order n in the frequency-domain.

These concepts have been “borrowed” from the broader field of high order statistical analysisto be applied to
measurements of the temporal evolution of fission chain-reactions.[17] Research into this extension is presented in the
remainder of the paper asfollows. Section Il describes a probabilistic representation of the sequence of eventsthat can give
riseto afamily of n correlated neutron counts. Application of Bayes' ruleto conditional probabilities relating each eventin
the sequence to its predecessors yields the joint probability of the sequence of events. From such joint probabilities the
poly-covariance for each specific sequence of eventsisimmediately obtained. Inductive reasoning is subsequently applied to
adiagrammatic representation of sequences of eventsto yield a“ prescription” to obtain statistics of arbitrary order. Section
I11 describes properties of the derived high order statistics and emphasizes their progressively higher sensitivity to reactivity.
Most of the observations made here transcend the limitations of the simple point model used to derive the statisticsin
Section I1. Several applications taking advantage of the properties of high order statistics are also suggested in Section I11.
Concluding remarks are made at the close of the paper in Section V.

2. THEORETICAL MODELSOF STATISTICSOF MEASUREMENTS
OF FISSON CHAIN-REACTION EVOLUTION

Figure 1 diagrammatically depicts one possible chain-reaction that can occur during an active measurement of afissile
system. In the figure observable events, i.e., the active source emission x(t,) (theinitiating event) and each of the detection
events x,(t,) through x4ty (theterminal events), are represented by closed circles. Theinduced fission events (intermediate
events) arein general unobservable and are represented by open circles. Each line connecting eventsin the sequence
represents asingle neutron. Observe that the terminal events are collectively “chain-related,” or correlated, to the initiating
event by the depicted sequence of intermediate events. Consider that only the branching pointsin the chain-reaction
determine the nature of the correlation between the detection events and the initiating source emission. The intermediate
induced fissions along any single branch simply serve to sustain the chain-reaction to a detection event. Consequently, this
chain-reaction can be represented by the simpler equivalent diagram shown in Fig. 2. In thisfigure, each line connecting
eventsin the sequence represents a series of chain-related neutrons (and not asingle neutron asin Fig. 1). Thelabel (e.g.
"<yt <& 1", %< &2", etc.) associated with each line denotes the number of neutrons available to sustain that branch in the
chain-reaction.

Thejoint probability of the sequence of events represented by the diagram prescribes the nature of the correlation
between the initiating and terminal events. By using Bayes' rule, such joint probabilities can be generated from the marginal
probability of theinitiating event, the conditional probability for each intermediate event given the preceding initiating or
intermediate events, and the conditional probability for each terminal event given the preceding initiating or intermediate
events.[18] For example, the joint probability of a sequence of events (A,B,C,D,E) isjust

sAlthough the binomial expansion of an nth-order central moment of theform E[ (x, &X,) (X, & X,) b (x,& X)) ] yields
the accidental poly-coincidence for second- and third-order statistics, thisis not true of higher order statistics. In
general, for an nth-order statistic, the form of the accidental poly-coincidence can be obtained by partitioning the set
X, %, ¥, x,> into al permutations of two, three, ¥ , and n non-empty subsets. The beginning of this progression
isillustrated in (5). However, because the accidental poly-coincidence can always be obtained from lower order
statistics, and because it arises due to uncorrelated coincident events such that it is of no real interest, there will no
subsequent mention of accidental poly-coincidence. Our real interest liesin the distribution of correlated events, the
poly-covariance.
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where Aistheinitia event, and B, C, D, and E are either intermediate or terminal events. Thisisthe nature of the subsequent
developments that describe first- through third-order statistics. Diagrammatic representations like that depicted in Fig. 2 are
eventually used to generalize these statistics to arbitrary order n.

The statistics of interest are the poly-covariances between a collection of n signals, which may include asignal acquired
from an instrumented active source. Once the joint probability pnbn(tl,tz, y .t,) of asequence of n chain-related observable
events has been determined, the corresponding poly-covariance is simply

Rigpn1:d2 ¥ 0 dngd) 7 Prgpnltsn e Vot 30 = ey
‘JZ " 13&'(1 (8)

Uher T GE&Y

In other words, the poly-covariance is the expected rate of poly-coincidence betweenn correlated events when the second
through nth events are respectively delayed by J, through J ,, relative to the first event.
In order to model the probability of a series of chain-related prompt neutrons, the point reactor impul se response

e&"(t)&t)

p,®*t)dt - u(t) &t) dt) ©)

is used to approximately represent the probable number of neutrons present at time t) per neutron injected into the fissile
systemat time t .[19] Above, u represents the causal function (the Heaviside step function), ** denotes the decay constant
for prompt-neutron-induced fission chain-reactions (the Rossi-a), and 7 denotes the prompt neutron generation time, i.e.,
the mean time between generations of prompt neutrons.® Subsequently, given that < neutrons wereinjected at t, the
probability that a detection event M (a count) will occur at t,,is

R

Py ty*t,<)dty, = Lup .ty 0dt,< T L, u(t,, &) dt,, < (10)
where ,,, denotes the efficiency of detector M, i.e., the probability per neutron of acount in detector M. Furthermore, given
that the mean time between prompt-neutron-induced fissionsis <7, where < isthe mean number of prompt neutrons emitted
per induced fission, the probable number of induced fissions at time t) per neutron injected at time t is

e&"(t)&t)

q.@®*t)dt - u) &t)dt) . 11)

Subsequently, given that < neutrons were injected at t, the probability that an induced fission F will occur at t-and emit
<g heutronsis

R

O (e, <g*t,Qdte * pe(<p)q . (te*)die<  pe(<p) Ute&t)dte< 12

<7
where p(<p) denotes the probability that < prompt neutrons will emerge from the induced fission F.

Observe that the joint probability of multiple detection events chain-related to a single emission can be expressed as a
product of conditional probabilities using Bayes rule. For example, the probability of two detection eventsM and M chain-
related to the same neutron emissionis

®Recall that prompt reactivity D " )k / k * &" 7, where k denotes the prompt multiplication factor.
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because the first detection event M leaves only < & 1 neutrons to induce the second detection event M. In general, the
probability of n detection events correlated to asingle emissionis

n & (tm&)
Piopns ity ¥Vt " L) dtdt, b, * b L p———Ultp &Y dt, (<&M 1) . (14)

m"1

Similarly, multiple fissions may be induced by asingle emission. Finally, multiple detection events and induced fissions may
be chain-related through not only one but instead a sequence of emission events. For example, in Figs. 1 and 2 the detection
events x,(t,), X,(t,), X4(t5), and x,(t,) areall collectively chain-related to the source emission x(t,) through the sequence of
induced fissions x(t) and x)(t)). Thejoint probability of such a sequence of eventsis more complicated than that of the
sequence represented in (14). Thiswill become evident during the subsequent developments.

All fission chain-reactions are initiated by some spontaneous source emission, and during any given measurement a
number of independent sources may be present. Let channel “0” denote an instrumented active source signal such that the
probability of adetected source emission at t; that injects <, neutronsis

Uolty: <@ Aty ™ Alt) dtoPo(<e) ™ Pof<o) 50 Qo llty (15

where p,(<,) isthe probability that <, neutronswill emerge from an active source emission, , jdenotes the efficiency of the
active source, i.e., the probability that a source emission will be detected, and Q, denotes the active source emission rate. ’
Recall that it is assumed that the active sourceisin general capable of producing multiple neutrons per emission, but that
only the emission event itself, and not the number of neutrons produced, can be detected. Consequently, the active source
has an observable mean emission rate of

EETI (16)

However, unobserved source emissions may also initiate fission-chains, and the probability that an undetected active source
emission will inject <, neutrons at t, is®

qO((tO’ Pty T P(<e) (L& ,9) Qolty . 17)

Finally, intrinsic neutron sources, which are collectively denoted by “G”, may also initiate fission-chains such that the
probability of anintrinsic source emission at tg that injects < neutronsis

Aelte: <l dig ™ Pg(<g) Qi - (18)

Each of the preceding independent sources serve to induce fission in the system such that the marginal probability of an
induced fission at t that produces < neutronsis

’In general, the source emission rate may decay with timeas, e.g., Q,exp (&8,t,). However, because the duration of a
typical measurement is short compared to the decay time of atypical active source (e.g., the half-life of **Cf is
roughly 2.6 years), decay of the source will be neglected.

*Note that a non-instrumented active source can be represented by letting , ,6 0, and a passive measurement can be
represented by letting Q, 6 0.
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These are of course simplified representations of the probabilities governing fission chain-reactions; however, most of the
subsequent observations are more general than the simple point models used to describe the statistics.

21 FIRST-ORDER STATISTICS

First-order statistics describe the mean rate of individual neutron counting events, which may in turn be correlated to
detected active source emissions. Observe that the joint probability of a detection event chain-related to a detected active
source emission issimply

Poilto: ty) dtodt; ™ Poeolty* o, <o) dt; § dgfty, <o) ity
<

y 20
RO (20)

<.0Q g
T § —=— UL &Y A <) 1o QT ,1¥e&(tl&t°)u(tl&to)dtodtl :
<

The (almost trivial) diagram for thisjoint probability isshown in Fig. 3. Subsequently, the covariance between the detector
and active source signalsis

Ru@) - p01(t0,t1)|J.t1&to - ,1%’70Qoe&"3u(\]) . (21)

Thisisthe quantity measured by a pulsed neutron experiment; it is the distribution of detector counts chain-related to some
detected active source emission over the delay J between initial source emission and the subsegquent count.[9] Neutron-
noise analysis experiments often represent this distribution as a harmonic spectrum[10]

1

m%’o% - (22)

Su® - de e R, -

Subsequently, the marginal probability of acount chain-related to a detected active source emission is

Y Y
py(t)dt, m dtyPolte, t) Aty * 3 m Aty Py oty * tor <o) At E dglty, <o) (23)
&4 © g4

However, some detector counts may instead be chain-related to an undetected active source emission with probability

t
( -
plo (t,) dt, -!_0 m Aty Py oty * 1o, <o) dity qO((tO' <o (24)
4



or to an intrinsic source emission with probability

4

prt)dt, " o Ota Pt * e <) dty gt <o (25)
G &4

(o}

such that the total marginal probability of adetector count is

pt)dt, = Pty % P % pa) % By )dt, (26)
where B, denotes the background count rate observed in the absence of any source. Consequently,
. <,Q, % <.Q . =
p,(t) dt, 11L7GG) dt, % Bdt, * ,,<Qdt, % Bdt, , 27

such that the mean detector count rateis

_ !<_ % <. }
X " p " oQo"GQG%B

s 28
s ) (28)
In accordance with (26), the count rate is comprised of components arising from counts chain-related to each
contributing source described in (15), (17), and (18):
%t % xC % B,
" m dJR,,(J) % m dJ Ry, (J) % n dIR;,(J) % B, (29)

" 500 % Si(0) % S50 % By

where R, and R, arethe analogsto R, respectively obtained by substituting the sources * 0¢" and “G” for the source
“0” in (20).° Subsequently, a“source-conditional” covariance R,.,may be defined

Ru) ™ Rud®¥ ™ Preoti* )]s - ey it (30
such that the corresponding conditional mean is

X " SBIRLQ) 31)

Thisisthe mean number of counts correlated to a detected source emission per detected source emission. Consequently, the
fraction of al countsthat are chain-related to detected active source emissionsis

. RO L S0 . |
X 1 % Xy X 1 0 <cQ % B, (32)
Q150! 7

°The quantities Ry, and Ry, (and consequently E( ? Sy and Sg,) areentirely conceptual; they cannot be
directly measured since the sources “ 0Y” and “G” are not directly observable.
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In other words, because the covariance between the active source and detector signalsis the distribution of counts chain-
related to the active source, it can be used in conjunction with the detector count rate to distinguish the count rate arising
from detected active source emissions from that arising from unobservabl e sources.

2.2 SECOND-ORDER STATISTICS

Second-order statistics describe the mean rate of correlated pairs of neutron counting events, which may in turn be
collectively correlated to detected active source emissions. Two unique processes can give riseto acorrelated pair of counts
chain-related to an initial source emission as depicted in Fig. 4. The notation used to denote each process indicates the
neutron “economy” of the process. The process labeled “2” begins with theinjection of source neutrons which each initiate
at least two separate branches in the chain-reaction that in turn terminate in at |east two counts. The process labeled “(1-
1)+2" begins with the injection of source neutrons that successfully initiate only one branch in the chain-reaction that in turn
terminatesin at least one induced fission (hence the notation “(1-1)"). Thisinduced fission subsequently injects at least two
more neutrons (hence the notation “+2") into the system that initiate at |east two separate branches in the chain-reaction that
inturn terminatein at least two counts. These two processes are mutually exclusive such that

Poroftos g, t) dtgdt dt,  ~ ( 2Poioltorty: 1) % (1eay0 Porolto b tz)) dtydtdt, . (33)
Thejoint probability of process2is
2Poltorts ) T Parrolty ity <) EPyeolt; * Lo, <o) £ Aglty, <o)
)

&' (k&0 PR T
Tu(tz&to) (<& D) ———

) _<io 2 u(t; & to) <o EPo(<y) 50 R (34)
<(<0& 1) ,,Q " "

" ,2% e¥ 180 ¥ R4 it g tyu(t, &ty

and isinvariant over a permutation in the sequence of counts (x;,x,). That is, the probability of process 2 isthe same

regardless of which detector count occursfirst. On the other hand,

Gt - stz Polto t S E) . 6, $ )
asymz Polor b0 1 ’
sy Porollo 1 1 <ty) .t <ty

i.€., the probability of the pair of counts (x;,X,) under process (1-1)+2 varies depending upon the order of the two counts.
Thisis so because the induced fission at t must occur sometime between the source emission at t,and the first of thetwo

counts. Consequently,

4
ez Pollor 1, 6 8L) T mdtpz*ls(tz*tlvt*<)@p1*s(t1*tv<)‘@qs*o(tv<*tov<o)@qo(t0’<o)
<O <
b
4 & (5,81 o (&Y p& (a1
- ' mdt,2 ut,&t) (<& ni,, ut, &t) <ip(<) = u(t &ty <ol po(<o) » 0Q (36)
<0 <
b
7172 <Z<EI;<_O’OQOe&"(t1&tO) u(t
72 <7

l&to)[e&"“z&‘l) ut,&t,) & e&"(tz&tﬂ)u(tz&to)> ,



while

b
as2 Pl 1 o<t) " § mdtpl*za(tl*tzt’<)@p2*a(t2*t’<)@qa*o(t’<*tOv<o)@qo(t0'<0)
<

<

o 37)

. 102 <(<&1)<_0’0Q0e&"('2&t0)

72 <7

u(tz&to)(e&"“l&‘z) ut, &t) & e¥ 459 u(tl&to)) :

Notethat areversal in the order of the counts resultsin probabilitiesthat are simply “mirror images” of one another. Thisis
S0 because reversing the order of the counts simply reversesthe relative delays J, " t, &t and J, " t,& t, between each
count and the initial source emission such that*

Kgp XpoX%) - >t >ty 1 J, >3 >0,

33
Kg XpoX) >t >ty 1 J >J,>0. 38
In other words, the joint probability of two counts collectively chain-related to a source emission isreflexive over a
permutation in the order of counts, asisthe bicovariance R, between the source and detector signals:
p012(t0' t1’ t2) ) pOZl(tO’ t2' tl) : R012(‘]1’ JZ) ) RDZl(JZ’ ‘]l) ' (39)
Consequently,
. . 1 <<&D<, .y g
RozU1:d2) ™ Ponalto by 1) 31+ s 122 <0<e& D) & TO 0 Qe e u@y)u(d)
3, " bag 7 <"7 @)
719 << & 1 <_ ’ " "
o 212 ( _) 0 oQole& JZU(JZ&'Jl)% R Jlu(‘]1&32),

72 <"7

isthe distribution of correlated pairs of counts collectively chain-related to some detected active source emission over the
relative delays J, and J, between each count in the pair and the initial source emission. The bispectrumbetween the source
and detector signalsisjust the two-dimensional Laplace transform of the bicovariance:

- - 7 7 e AN <(< & 1) <_ b Q
Splsys) T d e ), et R0, ]) =2 008D Q¥ = . (1)
m m 72" %) (" %s) <7("%s%s)
Observe that the bispectrum clearly distinguishes between the two processes that produce source-correlated pairs.
Recognize that correlated pairs of counts can arise from any of the three sources“0”, “ 0¢’, and “G”, such that
- oC
Pultt) * Poltyt) % Polty,t) % polty,t)
minty, t minty, t minty, t (42)
’ m dto Poaltor t1: ) % m dioc Pocyoltocs Ty tp) % m digPgyfle: ti:t)
&4 &4 &4

“Thereis no reason to consider permutations under which the source emission does not occur first; the probability
of achain-related correlated pair of counts under such a permutation is zero because the source emission must
initiate the chain-reaction.
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where py,, and pg,, arethe analogsto p,, respectively obtained by substituting the sources * 0¢ and “G” for the source
“0" in(34), (36), and (37). Subsequently, the covariance between two detector signals

Rp(d) * plz(tl’tZ)lJ " Let

- 2102 ( <0(<0&1) QO % <G(<G& 1) QG % é<..&71) (<_0Q0 % <_GQG)) (e&"J U(J) % e"J U(&J))

72 “3)
" 12 [ TRENQ, % LB D Qg % (S Q, % Q) | e
2,,72( o\~ o 0 G\ G G z 7 (0 0 G G}
isthe distribution of correlated pairs of counts over the delay J between the two countsinthe pair. Thisisthe quantity
measured by a Rossi-a experiment.[5-8]
Observe that the covariance between detectors is comprised of components arising from each of the three sources
R,Q) *° R1°2(J) % Rloz((J) % RE(J) " del Ro1o(d1, % J) % delRO(lz(‘Jl"]l%‘]) % de1 Rg12(d1, 3, % J)
(44)
" n dJ, Ry (3, & J3,J,) % n dJ,Ry1(J,& 3, J) % mn dJ, R;y5(J,& 3, )
Subsequently, the spectrum between detectorsig[10]
g <SRED(HQ % <5Q0)
(9 * dIe®¥R(J) " —mr2 | TR EDQ Y% < (Ra&D Q. % — (45)
Sy m 12 720 &9( %9 o\~o 0 G\"G G z o
that, in accordance with (44), is comprised of contributions arising from each of the three sources
v 0 or @ o <G
S(9) SiAs) % Sp(s) % Spafs) 0
46
" §A&S,9) % Sy1(&S,9) % Sg; &S, 9)
Finally, note that one can define a source-conditional covariance R,,.,between detectors
I:2012("]1’ ‘J2) ’ RlZ*O(‘Jl' “]2) @X_O (47)
and a corresponding conditional mean (x, X,)., such that
X %) . 1 dJldez Rip«od1J2) | m d‘]lm dJ, RopJ1:J2) | S0, 0)
) ! % < dIR,0) dJ R,(J) S(0)
X M m
- 70
(48)

<G(<G&1)QG % <(<&1) <_o (<_GQG] ,

Lo S8 Q  SF&D <7\ SQ

<<&1) <o
(L&D <7

1%
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where (x,X,)., denotes the number of correlated pairs chain-related to a detected source emission per detected source

emission and (x, X,) / x_o denotes the total number of correlated pairs per detected source emission. Consequently, (48) isthe
fraction of al correlated pairsthat are chain-related to a detected active source emission. So the bicovariance between the
source and detector signals can be used in conjunction with the covariance between detector signals to distinguish the
correlated pairsrate arising from detected active source emissions from that arising from unobservable sources.

23 THIRD-ORDER STATISTICS

Third-order statistics describe the mean rate of correlated triplets of neutron counting events, which may in turn be
collectively correlated to detected active source emissions. Four processes can give riseto acorrelated triplet of counts
chain-related to an initial source emission, and these processes areillustrated in Fig. 5. Again the notation used to denote
each process indicates the neutron economy of the process. Process“3” isinitiated by the injection of at |east three source
neutrons and terminatesin at least three chain-related counts. Process“(2-1)+2" can occur if only two source neutrons
successfully initiate separate branches in the fission-chain; one branch in this chain-reaction induces afission (hence “(2-1)")
releasing at least two neutrons that initiate two additional branchesin the chain-reaction (hence “+2"). Processes “(1-1)+3"
and “(1-1)+(2-1)+2" are similar to processes “3” and “(2-1)+2", respectively, except that each can beinitiated by asingle
source neutron that eventually leads to an intermediate induced fission (hence “(1-1)"). These processes are mutually
exclusive such that

Poizs(tos ty: by tg) dtgdt,dt,dt;  * (3p0123(to't1't2vt3) % (st Ponzalto: 1 T L)

(49)
% (181)%3 Poizs(tor tyr ti ) % (181)%(282)%2 Poizs(tor ty: 1o ) ) dtydt, dt,dt,
Thejoint probability of process 3is
. e&" (&l & (&1 ) & (L&Y
3 p012(t0’ tl’ tz’ t3) _EU ’3 T u(t3& to) (<o &2)t, 2T u(t2 & to) (<0& Dt, 1T u(tl & to) <0@ p0(<0) 0 Qo
< (<& D(<,&2) ,,Q =0
Y L1s293 AN S 00 871810 o & (281) o 87 (& 1) ut, &tult,&tyut; &ty .

73
Only process 3isinvariant over permutations in the order of the three detector counts. The joint probability of the remaining
processes will initially be derived for the sequence of detector counts (X;, X,,X;) occurring in exactly that order, i.e., for
t, #t,#t,. Theother permutations can be subsequently derived using simple permutation relations characteristic of the joint
probability (49).

Thejoint probability of process (2-1)+2 has three components corresponding to the three mutually exclusive conditions:
(1) counts x, and x, are chain-related to the induced fission x; (2) counts x, and X, are chain-related to the induced fission
x; and (3) counts x, and X, are chain-related to the induced fission x. Consequently,
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@sayi2 Porzs(los t: o>t > 1)

&" (t&t) &" (&)

dt . U(t,&t) (&1, , < u(t,&t) <ip(<) = U(t&ty) (<,&1)f,, = u(t,&ty) <,

b & (&1 & (L&)
m

c(‘hl
/\hl

<7

b R () Gl
% mdt '3 u(t&t) (<&1)6,, =

b

RS & (81

u(t,&t)<ip(<)

U(t&ty) (<& )i,

u(t, &t <
= (819

t & (LaY 0 & (18 o&" (1) & (1581 (1)
% mdt Vo ut,&t) (<&, , u(t,&t) <ip(<) u(t&ty) (<o&D)t, 4 U(ts&to) <o | 1Po(<0) »0 Qo
o

<7

110903 (€& < (& 1),,Q, & (h&Y)
7 37

u(t, &ty

@[ e¥ LEV (W g t)ult &ty % e C4De® Byt & t)ut, & t) e BE Ve B\ yi & t)ut,& t,)

& 36 %V 40 e g )& ty)

Process (1-1)+3 is similar to process 3 except that the induced fission at t must occur between the source emission at t,
and the first count at t,, such that

a1z Porzaltor B, 6>, 13> 1)

tl o1& POt o (1Y S
3 0T U (€821, o U (<& D S &Y IR S U <P 20
9 < t
_ (52
. 10203 <€ < <0’0Q0e&"(l1&t0) ut, & t)
278 7 !

(e 40 B ety ut &ty & ¥ HVet Y 8 thu & 1)) -

Finally, process (1-1)+(2-1)+2 is similar to process (2-1)+2 except that again the induced fission x(t) must occur between
Xty and x,(t,). Therefore,
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aanyianyie Porzs(tor ts >ty t3> 1)

&"(L&1)

t b &"(ts&t)) &"(Lat) & (V&Y e

e
dt mdt) u(t,&t) (Q&Di,, u(t,& )< ip(<)
t

u(t, &t)<

"
'3 —U(t) &t) (<& 1), ,
<7

i3

o"hl
s 3

&"(t,&1) &"(t,&1)) e&--(t)&t) e&"(tz&t)

S —u(t;81) (D& D1, S ——u(t,8t) Qi) S &) (<&
<7

% dt),, u(t,&t)<

t &"(&t) &"(1,&1) e& (&Y &" (181

1
e ‘ ‘ e
% mdt) . u(t,&t)) (Q& 1k, , u(t,&t)<ip(<))

u(t) &t) (<& )i, u(t,&t)<

1d"<

& (t&
&

ip(<) u(t&ty)<oipy(<y) »0Q 3)

<7

. 717273 <(<&1)2<_0’0Q0e&"(t1&f&

73 zZ w2 72

u(t, &ty

@l[e&"(‘z&tﬂ u(t,&t) & e¥ %9y, & to))e&"(‘3&t2) Uty & t,)
%le&"(tz&'i) uit,&t) & ¥ (240 u(tz&to))e&"(%&tl) u(t; & ty)
%le&"(t@&'i) utz&t) & ¥ (640 u(t3&t0))e&"('?&t1) u(t,&ty)

& %(e&"‘b&‘l)e&"“s&‘l’ U, & t)u(t,&t) & e&"(”z&@e&"“@&‘o)u(tz&to)u(tS&to)“ :

The other five permutations in the sequence of detector counts simply correspond to permutationsin the delays
J T 4&t, 3,7 L&t and J, T t, &t between each count and the initial source emission:

(Kgr Xy 5 X0 X3) J>J3,>J >0,
(Xgr Xq 1 Xgy X5) J,>J;>J, >0,
Xgi Xp, Xy Xg) 1 I3 >3, >3, >0,
(Xgr X514 X3, Xy) Jy>3,>J,>0, S
(Xgr X5 X, %)) J,>J, >J,>0,
Xgr Xg1 X0y X)) 0 3y > 3, > J; >0,
such that the tricovariance R,,,, between the source and detector signals obeys the permutation relations
R0123(‘]1’ J2’J3) ’ ROl:Q(Jl’ J3’ JZ)
" Ro(3a J1 39
" Ryp(In 333y (55)

) ROS]Z(‘]3’ Jl’ ‘]2)
) R0321(J3’ ‘]2’ Jl)
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Consequently the tricovariance

SRED(&D) S
2

Ry 5,9 * 1723[ [ L&D (& D) & =

<(< & 1) { m & <_z<_ & Ij(o] ) ,OQOG&"Jle&"JZe&"J3 u(‘]l) U(JZ)U(Jg)

& 3

237

<< &1;<

7

717273 <(<& 1)
7 <7

%

[_O(< ZD & ] Qe e u, & 3)u) uy

% e* e 2u(3, & J)u,)udy % e e 2u(d) ud, & J)u@y)

% e* 26 B u)uE,& I)u@dy) % e 2e* Bud) ul,)ud; & J,)

o 56
% e* et B () ug)u, & 3)) 0

<_o’oQol

2 e¥1e® 4% (3. & 1) u(,&I)u(dy)
<"7

%L(Ww <C&] ]
278 "7

% e e % %y, & 1) u)us& I,) % e¥ e B4y u(, 8 I)ud,& Jl))

_2—
10203 <(€&1)7<0,0Qg
73 22||272

%

le&"Jlu(J3) U, & IYud, &) % e“ I u)u(d, & I)u@; & J,)

% e¥2u)u(d; & JHud,& J) % e 2ul)ud;& I)ud,& J)
% ¥ B u@)ul, & U, & 3 % ¥ u)ul,& I)u,& J))
isthe distribution of correlated triplets of counts collectively chain-related to some detected active source emission over the

delays J;, J,, and J, between each individual count in thetriplet and theinitial source emission. The corresponding
trispectrumbetween the source and detector signalsis the three-dimensional Laplace transform of the tricovariance:

(51,88 7 dI e&sﬂl dJ e&SzJZ dJ,e®8BR (3,3, J
123\S15 S 1 2 3 123\V15 Yo

<&DEE&)<,,0Q
<7 (%S, %S,%S,) (57)

] 30 120 "o S8 DEED Q%
7 %) (" %) (" %Sy

% 1 % 1 % 1 <(<&l) m Q % <(<&1)<_010Q0
"hs%hs  Ths S "%%%% 0T 27 (s, % s, %)

Observe that the trispectrum clearly distinguishes between the four processes that produce source-correlated triplets.
Next consider that correlated triplets can also arise from chain-reactions initiated by the unobservable sources“ 0% and
“G” in addition to the source “ 0" such that

- (
R0, 3) ° R, J3) % R, J) % R, J) (58)
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where the distribution of triplets chain-related to detected active source emissions can be obtained from the tricovariance
according to

Ris@pd) * O3 Rope(D, B0y, 1% 3)
(59)
- ) ) ) 9 - ) ) ) )
m dJ; Ry 0535 & 34, 35, % I, & J,) m dJ3 Ry 5(J53& 35, J3& 3% J;, 3))

The distribution of triplets chain-related to the two other sources can be obtained by simply substituting them for the source
“0” in (50) through (53) and (59). Consequently, the bicovariance between detector signals

TCIDEED(SQ % ?;QG)]

Ry ) 17( S EDSEDQ, % L E DED Qg % =

3"

@(e&"Jle&"Jz u@)ud,) % e e 25N y@J yul, & J) % e et é% u(Jl&Jz)u(&JZ)}

102 SCED <ERED(,Q % <5 Q (60)
% ﬁ}«_&;)[ o0& D Q % <g(<c&DQg % (:0"; ? %G e})

(e u@)u,& 3) % e¥u, & )u@y) % e

u(&J)u@,)

e 1u(d, & J)u&J,) % e¥ 4D ygu&d,) % e 2u@I)ul, & JZ))
isthe distribution of all correlated triplets of counts over the delay J, between the first and second count and J, between the
first and third count (see also [7]). The bispectrum between detectorsis the two-dimensional Laplace transform of the

bicovariance; like the bicovariance, the bispectrum has components corresponding to each of the three sources“0”, “ 0¢,
and“G”:

Spels,s) T e e B Ry0,0) T Siss) % Slss) % S S) - G

In accordance with (59), the bispectrum component corresponding to detected active source emissions

SJC23(51152) ) m dJ; e m dJ, et Rlc23(‘]1' J) 7 Su&s &s, s s) (62)

and the other two components can be obtained by substitution such that

( 7 ) - 717273
Sl 7°(" &5, &) (" %s) (" %S)

SREDEE (S % Q)
"7

@( Sl D8 D Qy % <oCaB D& 2) Qg %
(63)

Wl 1
"&s  "&s, "U%s%s,

ﬁw[ <o(So& D Q% <g(<c& 1) Qs % (&l)1<0Q0% GQG))]

<7

Next consider that one can define a source-conditional bicovariance R,,..,between detectors
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R0123(‘J1’ JZ’ ‘]3) ’ R123*0(‘]1’ ‘]2’ ‘]3)@% (64)

and a corresponding conditional mean (X, X,X;).q such that

o9 o 0 8 AR dpdy) Al dd, d)Ruy( 33 | §,0,0,0
6% 1 % d3; 43, Ri(J;, 3) Ly A3, R0, ) Si%0.0)

<
%m
S P “eCc&8DEE2 Q% SREDRED) _<—0 <__GQG
(& D& 2D Qy <& D(&2) <™ 7\ < Q

3<(<&1) <O(<O&l)[ <G(<G&1)QG% <<&1) < (?GQG]])

<08 D& <7 | SlK&DQ  SoS&D <7 SQ

(€5)

%

1w <(<&D(<&2) <_o % 3<(<&1) <o(<0& D) 1% <<&1) <_0
GG N8 T & D(82) <7 SR&D <7

isthe fraction of all correlated triplets of countsthat are collectively chain-related to a detected source emission. Henceit
possible to distinguish triplets chain-rel ated to the active source from those chain-related to other sources.

24 GENERALIZATION TO ARBITRARY ORDER

For obviousreasons, it is desirable to develop asimple “ prescription” to predict statistics of arbitrary order n. Because,
for agiven order n, the mutually exclusive processes that lead to n correlated counts can be represented diagrammatically, the
first step in this development will be a procedure to ensure that all diagrams representing a particular order are generated.

If theindividual symbolsin each diagram are thought of as“waords,” then there are some simple recursive rules of
composition to form all “sentences” that represent agiven order. Thisisillustrated in Fig. 6 for orders one through five. **
First observe that the notation for each diagram is equivalent to that diagram’s order (e.g., “(2-2)+2+3" = order 5). Next
consider that the diagrams along the leftmost column are “minimal” symbols representing each order. Each of these symbols
has n branches and so is defined to be equivalent to the number n. They are called “minimal” because, for each order, the
minimal symbols are the only diagrams composed of one symbol representing that order. Subsequent to these are composite
(i.e., non-minimal) diagrams formed by concatenation of minimal symbols. Note that composite diagrams of order n contain
only minimal symbols with equivalent values less than or equal ton.

Observe that each right-concatenated symbol is defined to be equivalent to its number of branches, while each |eft-
concatenated symbol is defined to be equivalent to its number of branches minusthe number of symbols right-concatenated
toit. Consider all the “two-stage” composite diagrams (e.g., “(2-2)+2+3") formed by right-concatenating mminimal symbols
to asingleminimal symbol on the left with n & R branches. The basic rule of composition for these diagramsis

n " (Jn&R] &m) % E, ,
) ) (66)
mo{1,y,In/2]} , RO{mYy.,n&m} ,

where [n & R] denotes the equivalent value of the symbol with n &R branches, and “ f 1" denotesthe “floor” operator that
yieldsthe integer lessthan or equal to its operand. For example, for the composite“(2-2)+2+3", n "5 m~"2,and R* 3 E

"The diagrams beginning with “(1-1)” are not shown in Fig. 6 because they are simply composed of the symbol for
“1” left-concatenated to the diagrams already shown.
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isasum withmterms, each corresponding to the equivalent value of one right-concatenated symbol, such that E, sumsto
m%R:

E, " Kk, %k, %p%Kk

N * E. T m%R

m

(67)
KyS Ko $p Sk $2

For example, for the composite“ (2-2)+2+3", k; * 2 and k, " 3. For R and mrestricted to the ranges listed in (66), it will always
be possible to construct E_, from mterms each greater than or equal to two because

2m # E, # n . (68)

Finaly, each term of E, with an equivalent value greater than two can be recursively expanded in the composite diagrams for
the order equal to its equivalent value. For example, because “(2-1)+2" isthe composite diagram for order 3, “(2-2)+2+3" can
be expanded into “(2-2)+2+(2-1)+2". Thisrecursive rule includes composite diagrams of the form “(1-1)+n”. Thesingleterm,
n, of E.,., can be expanded into all the preceding composite diagrams representing order n. In this manner al composite
diagrams with more than two stages can be recursively generated. Thisrecursive feature of the composition rulesresultsin
the compl ete and non-redundant generation of all diagrams of agiven order. Table 1 liststhe resulting expansions for all
diagrams of order one through six. Notein particular that successive application of the recursion rule always terminatesin a
composite of the form “(1-1)+(2-1)+(2-1)+ p +(2-1)+2". This“maximal” word represents the longest composite diagram
representing agiven order. Later, both the minimal and maximal diagrams will be used to prescribe bounds on the behavior of
statistics of arbitrary order.

For agiven order n, each diagram is equivalent to the joint probability for a particular sequence of eventsterminating in
an n-tuplet of detector counts. Because all the diagramsfor a particular order represent mutually exclusive sequences of
events, the total joint probability for that order is simply the sum of the joint probabilities represented by the diagrams.
Furthermore, due to the equival ence between the nth-order poly-covariance and the joint probability for that order, the
diagrams are equivalent to the nth-order poly-covariance. Finally, because thereisan isomorphism between the nth-order
poly-spectrum and poly-covariance, the diagrams are equivalent to the nth-order poly-spectrum. Therulesfor expressing a
particular diagram as a poly-spectrum are fairly simple.

First consider the nth-order poly-spectrum between an active source signal and n detector signals. Each eventin a
particular permutation of a sequence contributes a factor to the poly-spectrum. Theith terminal (detection) event contributes
afactor of

m,io{l,y,n} : (69)

Each intermediate (induced fission) event contributes a factor of

P.

< J

DR ®

1>

where 6i > denotes the set of terminal events traceable through the diagram to that particular intermediate event. The jth
factorial moment of p(<) is denoted by

P ¥ POISCEDEEDP (<&J%D * § PG T § POLP )

where j isthe number of branchesin the symbol representing the induced fission event. Note also that all possible
permutations of the subset 6i > of 61,2, ¥, n> must beincluded as additive terms and that multiple intermediate eventsin the
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same stage trace to mutually exclusive sets of terminal events (i.e., multiple fissions events cannot cause the same detection
event). Finaly, theinitial (source emission) event contributes a factor of

<Pk0Q (72)

where k isthe number of branchesin theinitial symbol in the diagram. For example, the fourth-order diagram “(2-1)+(2-1)+2"
isequivalent to theterm

. 71727374

7T S) () ("% S)(" %)

@<@&n[ S SO SV VS SR | ]

(@ayieeayiz 0123451 S2» S5 Sy)

= "%81%82 "%81%53 "%81%84 "%82%83 "%52%84 "%53%84 (73
i S& T 1 % 1 % 1 % :
T 37 TS hs%s Ths%s%s,  Ths%hshs, U hS%s%s,

@<0(<0& l) !OQO

in the fourth-order poly-spectrum between the active source and detector signals, and the diagram “(2-2)+2+2" is equivalent
to theterm

o (S,S,5,S) ° 71221374

(a2 Sonzau(S1» 2 S3.8) 7 RS hS) () (s

i <(<&1 i <(<&1 1 i 1 % 1 i 1 % 1 i 1 (74)
<7 <7 “"hs%s, "Ws%hs, T%s%s, "Ws,%s, T%s%s, "hs%s;

@<0(<0& l) !OQO

in this same poly-spectrum.
Once the nth-order poly-spectrum between the active source and detector signals has been determined, it is easy to
generate the nth-order poly-spectrum between only the detector signals. Thisisdone viatwo substitutions. First,

<Pk0Q 6 (PQ %  PQs (75)

because all active and intrinsic source emissions can potentially produce a correlated n-tuplet of detector counts. Second,
due to theintegral relation ship between Ri2pn and Rorotre12pn (compare (29), (46), and (62)),

$;%s,% p %s, 6 0 : s 6 &S,&S,&p &S,y
$ 65
$ 68 (76)

S, 6 Sia1

For example, the fourth-order diagram “ (2-1)+(2-1)+2” is equivalent to the term
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. 11123374

7" 85 &5,&8)("%s) (" %S) (" %S)

@<(<&1)[ P SV BV SV RSV )

a2 SizauSt S S)

<7 "&s,&s ' "&s &s, ' "&s &, 0"%51%52 ' "%s %S, ' "%s,%s, 77
@<(i& 1 1 % 1 % 1 % 1
<7 &S TE&s,  T&s WS %S%s
<EoE D % <& D Q)
in the fourth-order poly-spectrum between detector signals, and the diagram “ (2-2)+2+2" is equivalent to the term
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in this same poly-spectrum.

So the preceding is the prescription required to predict poly-spectra of arbitrary order. The corresponding poly-
covariances can be synthesized via application of the inverse-Laplace transform. Unfortunately, a prescription to predict nth-
order poly-covariances, although implicit in the preceding procedure, has not yet been explicitly formulated. > However, it is
not absolutely necessary to possess such aprocedure. The subsequent general features of higher order statistics can be
fairly easily described in terms of poly-spectra.

3. GENERAL PROPERTIESOF HIGH ORDER STATISTICSAND THEIR POTENTIAL UTILITY

Frequently it is easier to describe the properties of something new in terms of the new things that can be done withiit.
Furthermore, because “newness” is only a state relative to preceding developments, the following contains several
comparisons of applications of the new statistics to similar applications using previously developed ones. To date, two
potentially useful general properties of higher order statistics have been identified. First, they can be used to distinguish
between the temporal distribution of n-tuplets that are chain-related to an introduced active source from that of n-tuplets that
are chain-related to an intrinsic source that is otherwise unobservable. Second, successively higher order statistics possess
progressively higher sensitivity to changesin reactivity and hence to changesin composition, configuration, and fissile
mass.

On several occasionsit has been noted that a poly-covariance between an active source and n detectors can be used in
conjunction with a poly-covariance between n detectors to determine the fraction of all n-tupletsthat are correlated to a
detected active source emission (see (32), (48), and (65)). Thisis because the poly-covariance

R102pn(‘]1"]2' Vided | md‘])l ROlen(J)’J)l%Jl’J)l%JZ' y ’J)l%‘]n&l) (79

2Hopefully, this desired formulation will be evident to some interested reader.
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isthe temporal distribution of n-tupletsthat are correlated to a detected active source emission while the poly-covariance
Rizpn isthe temporal distribution of al n-tuplets. In principle, thisrelationship could be used to distinguish between the
distribution of n-tuplets chain-related to the active source from that of n-tuplets chain-related to the intrinsic source, if oneis
present, because

Repdi 2 ¥V e ™ Repn@idz ¥ dnad) % Repididz ¥ dar) - (80)
In other words, the marginal distribution Ripn is comprised of one component Rben that is due to detected active source

emissions and one component R1Ozpn that isnot. One problem in the implementation of this principle isthat the active source
may not be 100% efficient, and the efficiency of the active source may be unknown. That is

0 . - of .. G ..
Rlzpn(‘]ll‘lza Yy 1Jn&1) Rlzpn(‘]l"]zu Yy :Jn&l) % Rlzpn(Jlan, Yy "]n&l) ' (81)
(
where RZ

12pn IS due to undetected active source emissions and Rl(;bn isdueto theintrinsic source.
However, asolution to this problem lies within the principleitself. If the poly-covariance between the active source and
detectors and the poly-covariance between just the detectors are measured simultaneously in the absence of any fissile
system or intrinsic source, then

p<>1) 60, Q60

deldez p md‘]nROIan(‘Jl"]Z’ Y iderdn) Soi2p (0,0, ¥ ,0,0) 6 ., . (82
md‘Jlm dJ, b md‘Jn&lRlzbn(JliJz Y 1 Ine) Sle”(O’O’ y.0

For example, the efficiency of a ?*Cf ionization chamber can be measured by using two detectors and acquiring the
bicovariance between the source and detectors and the covariance between the detectors when the two detectors are
exposed to the source in air in the absence of any other spontaneous fission sources.*® The author and colleagues at the Oak
Ridge National Laboratory have performed such measurements using plastic scintillators and constant fraction discrimination
pul se processing instrumentation to optimize the discriminator threshold for 253Cf ionization chambers and achieve maximum
efficiency.” During these measurements it was noted that the efficiency measured for any particular source threshold was
completely insensitive to changes in the detector thresholds, the high voltage applied to the detector photomultiplier tubes,
the coincidence gate width used to collect the covariance and bicovariance, and the physical location of the detectors and
their proximity to the 2Cf source. So, for this particular method, the conclusion (82) drawn from the supporting theory
extends beyond the limitations of the point models used to develop the theory.

Once the source efficiency has been measured, subsequent measurements of a fissile system containing intrinsic sources
can partition the distribution of n-tuplets Ry, into one component RlozApn that isdueto all active source emissions

o0~ o€ .. - 0 . 0 . - 0 .
Rlzpn(Jlan’ y r‘Jn&l) Rlzpn(‘]lu‘lzy y "]n&l) % R12(pn(\]1,\]21 y "]n&l) %ORlzpn(‘]l"]zi y "]n&l) (83)

30bserve that only first-order statistics (i.e., the covariance between the source and a detector and the detector
count rate) can be used to measure the efficiency of an active source that emits only one neutron per source event
(e.g., an APNG) because p,(<,>1) " 0, and then the measurement must be performed in the absence of significant
background.

“Sometimesit is not possible to select athreshold to achieve 100% counting efficiency for 2Cf fission-fragments

because it is necessary to ensure that all counts due to a-decay of #*°Cf are discriminated. This often discriminates
some low energy fission-fragment counts aswell.[1]
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and one component Rgbn that is due only to intrinsic source emissions such that

" RopAOu 2 Y daed % REpi1 30 ¥ e (89
Consequently, the distribution of n-tuplets chain-related to intrinsic source emissions can be indirectly measured. This
means that active measurements performed on fissile systems containing intrinsic sources, e.g., plutonium assemblies or
spent nuclear fuel, can now use this technique to measure properties of the otherwise unobservable intrinsic sources.

Sometimes, however, the properties of intrinsic sources are of no real interest. 1n such applications, it isdesirableto
measure quantities that are independent of the presence and/or strength of intrinsic sources. Furthermore, itisalso desirable
to construct quantities that are as well independent of detection efficiency and the response of associated counting
instrumentation.

Discussion of the effects of instrumentation response has been deferred up to thispoint. Now consider that the signal
x%(t%) that is actually acquired from channel m (which can be either an active source or aradiation detector) isrelated to the
actual sequence of counting events X, (t.) by

R12pn(‘]1"‘]2’ y "]n&l)

Xoth - dtyhy(t) X (th&t) (85)

where h_isthe impulse response of the electronics associated with channel m. Subsequently, the transfer function of the
electronics associated with channel mis

Hm(s) - m dt e® hm(t) . (86)
Upon inclusion of the electronics transfer functions, the acquired poly-spectrum between the source and detectors becomes
SopnS Sy V1 8) 6 Hy&s &s,& b &s)Hy(s) HyfS) b H(s) I Spppn(si: S ¥V 0S) 87)

and the acquired poly-spectrum between detectors becomes*®

SiprS1i S ¥ 1 Sper) 6 Hi(&S1&S,& b & 561 Hy(s) HofS) P Hi(Sh60) I Sppp (St Sy ¥V 1 Shed) (88)

Consequently, if theimpulse response of the electronics associated with any channel changes, as can occur due to changes
in gain or timing resolution, these statistics will change accordingly.

In order to construct a quantity that would be robust to changes in detection efficiency and electronics response,
Mihalczo and Paréintroduced the spectral ratio *910]

. v Su(&s) Sil9)
01(S) W (89)
where S, isthe source autospectrum (a univariate statistic)
So® " m dJ e R(J) " Hy&) Hy9) .0Q, (90)

"*Observe that upon inclusion of the source and detector transfer functions, (82) yields , ,Hy(0), where
Hy(0) ™ *dt h(t) is essentially the gain of the source €lectronics. However (82) still yieldsthe fraction of all active
source events that are actually counted.

®|n earlier publications, this quantity has been referred to as the ratio of spectral densities; more recent publications
refer to it asthe spectral ratio.[10]
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where R, denotes the source autocovariance (another univariate statistic), that, upon inclusion of the source impulse
response, is

Rold) 6 dto dtd hy(to) hy(td) Regd % t, & t3)
(1)
"t dig ) Nglte) QoI % &ty Tt ety Neto% ) 1o Qp -

Observe that although the spectral ratio isindependent of the detectors’ efficiencies and the impulse response of any
associated electronics, it does depend upon the source efficiency and upon the presence and strength of intrinsic sources

. . 100
02 — ,
<o(So& D) 1 0 <c(<c&D Qs o SE&D| 1 ¢ o Qs (92
< (<& D) Qg <*D* <Q

where *D* " *&" 7* denotes subcritical prompt reactivity. Furthermore, although not explicitly shown, the inherent delayed
neutron source will as well affect the spectral ratio according to

0 6 awpTe - LEX(Fe,% ) | @)

where $ denotes the system’s effective delayed neutron fraction.
Consider as amodification to the spectral ratio the quantity

. S0 S0
Ql@ 2*0 —_— A~ (94

%o S0, 0)
that, for lack of abetter name, will be called the bispectral ratio. Observe that

] ' o Rl*O(J)>@' I RZ*O(J))

m dJ, m dJ, Rp5.(J;: )
such that the bispectral ratio can be thought of as the number of independent pairs whose individual members are chain-
related to the active source per correlated pair that is collectively chain-related to the active source . This quantity,
<
Quizro -~ ——== = — )
S0&D |, <& (96)
< <* D*

0

isindependent of both the detectors’ efficiencies and the source efficiency as well as the impulse response of any associated
electronics. Furthermore, because al quantitiesin the bispectral ratio are correlated to the active source, it is completely
independent of the presence and/or strength of any intrinsic sources. Finally, because the inherent delayed neutron sourceis
essentially uncorrel ated with active source emissions, the bispectral ratio is also independent of the strength of the inherent
delayed neutron source.

Further observe that as a subcritical fissile system approaches prompt critical,

Q <_0?*D*
o XK\ y 9
120 e TRED ©n
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i.e., the bispectral ratio isdirectly proportional to subcritical prompt reactivity for systems close to prompt critical. Next
observe that for extremely subcritical systems, the bispectral ratio asymptotically approaches the source Diven factor:
:Q
Quiprg 000XV 2

—_— (98)
D6 &4 <0(<0& 1)

if an active source capable of emitting multiple neutrons per event isused. Monte Carlo calculational models of **Cf source-
driven measurements of simple uranium-metal systems indicate that the transition between asymptotic behaviors (97) and (98)
occur in the region where the prompt multiplication factor k - 0.5.[20] Consequently, it may be possible to use the bispectral
ratio to estimate subcritical prompt reactivity for k /7 0.5.

If, on the other hand, an active source that emits only a single neutron per event (e.g., an APNG) isused, then the
bispectral ratio is directly proportional to subcritical prompt reactivity

Z < *N*
<o<*D

<>1) * 0 Qiivvg —
Po(<o>1) 152%0 )

(99)

for all values of subcritical reactivity. Consequently, it may be possible to use the bispectral ratio to estimate subcritical
prompt reactivity over abroad range if an APNG is used as the active source. Furthermore, measurements of uranium-metal
systems have shown that not only is the bispectral ratio independent of detection efficiency but that it isalso fairly robust to
changesin the position of the source and detectorsrelative to one another and to the fissile system. So, although only afew
measurements of this quantity have as yet been conducted, it is reasonabl e to specul ate that the bispectral ratio may be of
significant utility for monitoring subcritical reactivity even in fissile systems containing unknown intrinsic sources, e.g., spent
nuclear fuel and plutonium assemblies.

Observein addition that it is also possible to construct higher order poly-spectral ratios of the form

n

ke Sl0) < 3 Rueod)
m"1 - m"1

%"t Sopop 0,0, ¥, 0) 203 A b A Ry gd1d, )

(100)

Quiz b in*0

In so doing, it is prudent to ask, “How will these poly-spectral ratios depend upon reactivity? It can and subsequently will
be shown that, for extremely subcritical fissile systems, the nth-order poly-spectral ratio will asymptotically approach

<—n
O 000V 0 ) 101
132tp in0 A5 L &) P K &n% ) -

On the other hand, for fissile systems approaching prompt critical, the nth-order poly-spectral ratio will asymptotically behave
as

—— n&1
<, <*D*
Quizipinro 00XV ,C, =— : (2102
R D60 T<&D)

Monte Carlo calculational models of ***Cf-driven active measurements of simple uranium-metal systems have shown that the
transition between these asymptotic behaviorsin the trispectral (i.e., third-order) ratio occursin the sameregion, k — 0.5 as
the transition observed in the bispectral ratio.[20] It istherefore reasonable to speculate that yet higher order spectral ratios
will behave similarly.

The upper asymptotic behavior (102) of the poly-spectral ratios occurs due to afundamental, and in retrospect obvious,
property of higher order statistics. Successively higher order statistics are progressively more sensitive to reactivity. Recall
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that among the possible sequences of events that lead to an n-tuplet of correlated countsisaminimal sequence that
contributes to the nth-order poly-spectrum as

0090 = 15200, 9.0 % LEEDP R &nh]) | K EDP S &Nk D) R
D684 ("7)" *¥D*N

This sequence of events occurs when a source emits at least n neutrons that successfully initiate at |east n branchesin the
chain-reaction. Thisisthe shortest sequence of events. In extremely subcritical systems, it is also the most probable
sequence of events, and it has the minimum sensitivity to reactivity characteristic of a givennth-order statistic. Further recall
that for agiven order n, thereis also a characteristic maximal sequence that contributes to the poly-spectrum as

(18:1)%(28:1)%(28: 1)% % (28:1)%2 Sorz pn(o ,0,y.,0 (18:1)%(28.1)%(2&1)% b %(28.1)%2 Sp b 0.0, ¥,0)

% —<(<&1)n&l . —<(<&1)n&l (104)
I R Tn&lapa2nal

This sequence of events occurs when a source emits neutrons that themselves successfully initiate only one branch in the
chain-reaction. However, thisfirst branch isfollowed by a succession of induced fissions that each initiate two branchesin
the chain-reaction, such that by its terminus the chain-reaction has branched 2n & 1times. Thisisthelongest sequence of
events, and it is also the most probabl e sequence of eventsin fissile systems approaching prompt critical.

All other possible sequences of events leading to an n-tuplet of correlated counts will have sensitivity to reactivity
somewhere between the lower and upper bounds (103) and (104). Monte Carlo calculational models of **Cf active source
measurements of simple uranium-metal systems have produced results that adhere closely to these conclusions.[20]

Finally, observe that both the upper and lower asymptotic sequences possess progressively higher sensitivity to
reactivity for successively higher order statistics. Thisfeature of the higher order statisticsisthe one that promisesto have
the greatest potential utility. It can be applied to detect progressively smaller changesin subcritical reactivity that occur due
to changes in composition, configuration, and fissile mass. Therefore, it may prove useful in systemsidentification
applications since it should be able to distinguish between very similar, but still different, fissile assemblies. It isexpected
that this technique may be of particular interest to experimenters devel oping methods to support nuclear materials control and
accountability.

4. CONCLUSIONS

A probabilistic technique has been used to devel op theoretical models of high order statistics acquired from
measurements of the temporal evolution of fission chain-reactions. The models devel oped encompass statistics acquired
from both active and passive measurements of fissile systems, and they describe the temporal distribution of n-tuplets of
correlated detector counts that in turn may be collectively correlated to active source emissions. This development unifies
the Rossi-a, pulsed neutron, and neutron noise analysis methods and generalizes them from a single method to measure pairs
of correlated events to a single method to measure collections of an arbitrary number of correlated events.

It has been demonstrated that successively higher order statistics possess progressively higher sensitivity to reactivity.
Consequently, these counting statistics are more sensitive to changesin the composition, configuration, and fissile mass of
the system measured. Furthermore, it has been shown that this techniqueis capable of distinguishing the response of the
fissile system to the active source from its response to intrinsic or inherent sources. It may in fact allow the measurement of
properties of intrinsic sources that are otherwise difficult or impossible to observe directly. Thisability in conjunction with
their enhanced sensitivity indicates that these statistics may be of significant utility in avariety of applications. Potential
applications include enhanced radiation signature identification of weapons components to support nuclear disarmament and
safeguards efforts and augmented nondestructive analysis of spent nuclear fuel. In general, the technique should expand
present capabilitiesin the analysis of heutron counting measurements.
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Figure 3. One possible chain-reaction that can occur during an active measurement of
afissile system; closed circles denote observable events including detector counts
and detected source emissions, open circles denote unobservable induced fission
events, and each line indicates a neutron.
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Figure 4. Diagram representing chain-reaction shown in Fig. 1; each
line now indicates a series of “chain-related” neutrons, and the label
associated with each line indicates the number of neutrons available
to sustain that branch in the chain-reaction.
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Figure 5. Diagram representing a chain-reaction
terminating in one detector count (see also Fig. 2).
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Figure 6. Diagram representing chain-reactions terminating in two correlated detector
counts; the notation indicating each process denotes the neutron economy of the
chain-reaction (see aso Fig. 2).
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Figure 7. Diagram representing chain-reactions terminating in three correlated detector counts; the
notation indicating each process again denotes the neutron economy of the chain-reaction (see also
Fig. 2).
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Table 1. Recursive expansions to generate all chain-reactions terminating in from oneto six detector counts; notation
indicates the neutron economy of each specific chain-reaction, the order indicates the number of detector counts, and the
number of stages indicates the length of generated composite diagram formed from concatenating minimal symbols (see also
Fig. 6).

Niimher of Stanec
Order 1 2 I 3 I 4 5 I 6
1 1
2 2 (1-1)+2
3 3 Q2-1)42
(1-1)+3 (1-1)+(2-1)+2 |
4 (3-1)+2
(2-1)+3 (2-1)+(2-1)+2 |
4 (2-2)+2+2
(1-1)+4 (1-1)+(3-1)+2
(1-1)+(2-1)+3 O NHR-DH(2-1)42
(1-1)+(2-2)+2+2
5 (4-1)+2
(3-1)+3 (1-1)+(2-1)+2
Q2-1)+4 (2-1)+(3-1)+2
(2-1)+(2-1)+3 (2-1)+(2-1)+(2-1)+2
(2-1)+(2-2)+2+2
(3-2)+2+2
5 (2-2)+2+3 (2-2)+2+(2-1)+2
(A-1)45 (1-1)+(4-1)+2
(1-1)+(3-1)+3 (1-1)+(3-1)+(2-1)+2
(1-D)+(2:1)+4 (1-1)+(2-1)+(3-1)+2
(1-1)+(2-1)+(2-1)+3 A-DHQ-D+2-1)+(2-1)+2 ]
(1-1)+(2-2)+2+2
(1-1)+(3-2)+2+2
(1-1)+(2-2)+2+3 (1-1)+(2-2)+2+(2-1)+2 |
I (5-1)+2
(4-1)+3 (4-1)+(2-1)+2
(3:-1)+4 (3-1)+(3-1)+2
(3-1)+(2-1)+3 ()21 10 |
(3-1)+(2-2)+2+2
| (2:1)+5 | (2-1)+(4-1)+2
(2-1)+(3-1)+3 (2-1)+(3-1)+(2-1)+2
(2-1)+(2-1)+4 (2-1)+(2-1)+(3-1)+2
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- DN- 1224242
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(1-1)+(3-1)+4 (1-1)+(3-1)+(3-1)+2
(1-1)+(3-1)+(2-1)+3 (@D+ED+H-D+-1D+2 |
(1-1)+(3-1)+(2-2)+2+2
| (1-1)+(2:1)45 (1-1)+(2-1)+(4-1)+2
(1-1)+(2-1)+(3-1)+3 (1-1)+(2-1)+(3-1)+(2-1)+2
(AD+(2-1)+(2-1)+4 (1-1)+(2-1)+(2-1)+(3-1)+2
(1-1)+(2-1)+(2-1)+(2-1)+3 (A1) +(2-1)(2-1)4(2-1)+(2-1)+
(DD 1NH(D-2) 494D
(1-1)+(2-1)+(3-2)+2+2
(1-D)+(2-1)+(2-2)+2+3 (-D)+2-1)+2-2+2+2-1+2 |
(1-1)+(4-2)+2+2
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(1-1)+(2-2)+3+3 AD+(2-2)+(2-1)+2+3 (D222 )42 |
(1-1)+(3-3)+2+2+2
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