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S.K. Wong and V.S. Chan The Large Aspect Ratio Limit of Neoclassical Transport Theory

ABSTRACT

This article presents a comprehensive description of neoclassical transport theory in the
banana regime for large aspect ratio flux surfaces of arbitrary shapes. The method of matched
asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and
to compute transport coefficients. The method provides justification for retaining only the part of
the Fokker-Planck operator that involves the second derivative with respect to the cosine of the
pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the
freely circulating particles with boundary conditions that embody a discontinuity separating
particles moving in opposite directions. Corrections to the transport coefficients are obtained by
generalizing an existing boundary layer analysis. The system of moment and field equations is
consistently taken in the cylinder limit, which facilitates discussion of the treatment of dynamical
constraints. It is shown that the nonlocal nature of Ohm’s law in neoclassical theory renders the

mathematical problem of plasma transport with changing flux surfaces nonstandard.
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1. INTRODUCTION

A long time has passed since Galeev and Sagdeev [1-3] discussed a transport theory for
collisionless tokamak plasmas that has come to be known as neoclassical theory, followed
shortly by a series of articles by Rosenbluth, Hazeltine and Hinton [4—6] which put the theory on
firm mathematical foundations and calculate a comprehensive set of transport coefficients.
Ensuing works that widen the domain of the theory by treating more general magnetic geometry,
incorporating more plasma species, allowing for faster plasma rotations, are too numerous to list.
The state of the theory as of the mid-1970s is extensively documented in the review article of
Hinton and Hazeltine [7]. The later review by Hirshman and Sigmar [8] on the subject of
impurity transport relies in large measures on a fluid description that has since enjoyed wide
acceptance. Two books have also been written on neoclassical theory [9,10]. Under the
circumstances, to write on the topics revealed by the title is an undertaking that requires

justification.

A prerequisite for the justification is easily satisfied: the theory remains as relevant today as
when it was first introduced. Indeed, it might even be more so as there is now experimental
evidence that ion thermal conductivity could be comparable or even less than neoclassical values
in some cases [11]. Also important is the fact that many aspects of the theory that have to do
with the interplay between guiding center motion and Coulomb collisions continue to influence
thinking on transport in toroidal devices, of which the tokamak is but one example. In the end,

however, justification must rest on what this article has to offer.

The present work is an outgrowth of an attempt to better understand the mathematical nature
and justification for the so-called “local approximation” introduced in Ref. [4], which makes
possible analytic calculations in the banana regime in the limit of large aspect ratios, and is
implicit in many of the works to follow. The approximation allows the Fokker-Planck operator
to be replaced by a much simpler operator, thus rendering the problem analytically tractable. In
Ref. [4], the replacement is made in the quadratic functional of entropy production. The simpler
operator retains only the second derivative of the distribution function with respect to the cosine
of the pitch angle. Variation of the functional leads to a solvable equation for the trial function,
which is then used to compute the transport coefficients. However, the variation is performed on
a derivative of the trial function rather than the trial function itself as is customarily done. If the
latter course were followed, the trial function would not be completely determined as we shall
demonstrate. In Ref. [5], the approximate operator is taken to be the pitch-angle scattering
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operator or the full angular part of the Laplacian in spherical coordinates. Its use in the entropy
production functional together with variation of the trial function reproduces the results in
Ref. [4]. The pitch-angle-scattering operator has been adopted in all subsequent works that
produce analytic results in the banana regime. In attempting to justify the use of this operator
based on a large aspect ratio expansion of the distribution function, we realized that the operator
actually contains terms formally of the same order as terms that have been neglected. In this

sense, the approximation does not appear to be consistent.

The work of Galeev and Sagdeev is based on a direct solution of the drift kinetic equations.
The approximate collision operator they use also contains unjustified extra terms. Their results
for transport fluxes are also different from those of Ref. [4], due presumably to confusion in the

evaluation of certain integrals by integration by parts.

We have found a resolution to the issue of approximate collision operator by a consistent
expansion in the inverse aspect ratio. The approximation to the linearized drift kinetic equation
(LDKE) is made differently for two groups of particles which will be called the “freely
circulating particles” and the “slow particles”. The first group consists of the majority of
particles that are only slightly influenced by the mirroring effects of the inhomogeneous
magnetic field. The second group consists of the trapped and barely circulating particles that are
greatly influenced by the magnetic mirror. The matching of the distribution functions for these
two classes of particles in the sense of matched asymptotic expansions [12] completely
determines the distribution function for the slow particles, which turns out to be the same as the
trial function in Ref. [4]. In the region of the freely circulating particles, the distribution function
is shown to be annihilated by the Fokker-Planck operator. This has the consequence that the
transport fluxes can be evaluated using the distribution function of the slow particles alone if the
flux-friction relations are used. The equation for the freely circulating particles is invoked in
Ref. [2], where it is solved to account for the effect of self-collisions, although this is not
necessary, as we will show. However, one of our new results is that the distribution function for
the freely circulating particles exhibits a discontinuity across the plane v|=0. Since this
discontinuity is not taken into account in Ref. [2], the accuracy of their results is in doubt.

The procedure just described can be readily applied to noncircular flux surfaces provided the
magnetic well along the surface is shallow. This leads to a common geometry factor for all
neoclassical transport coefficients in the banana regime. Formulas for transport coefficients have
been given in the literature for finite-aspect ratio and general geometry [8,13,14]. As a rule, these
formulas are hard to justify because they stem from the use of simplified Fokker-Planck
operators. The geometry factor we found represents the asymptotic limit as the inverse aspect

ratio approaches zero and is, in this sense, exact.
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Hinton and Rosenbluth [5] have obtained a correction to the diffusion coefficient in the
banana regime from a boundary layer analysis applied to the region delineating the trapped and
circulating particles. We have found that the Wiener-Hopf technique they used can be
generalized to noncircular flux surfaces and to the full matrix of transport coefficients. A single

geometry factor is again found to be present in all corrections.

Besides transport coefficients, another element of neoclassical transport theory is the moment
equations and field equations which, taken together, provide a closed description of the plasma in
macroscopic variables. Generally, when the shape of flux surfaces change in the course of
plasma transport, the forms of the equations and how they should be consistently advanced in
time have always been a nontrivial matter. The extensive literature on this problem from the
point of view of resistive magnetohydrodynamic and, to a lesser extent, neoclassical theory, is
well documented by Blum and Le Foll [15]. We have found that by consistently taking the
cylinder limit, which is appropriate for large aspect ratio flux surfaces, the equations assume
much simpler forms that have not been presented as a whole in the past. In these forms, the
question of consistency and the construction of numerical procedure for time advance are much
easier to discuss. The equations are further simplified by an explicit elimination of the toroidal
components. Examining the remaining poloidal components of the system reveals that the root
of the mathematical difficulty lies in the nonlocal nature of Ohm’s law: the parallel current
density is a flux function and is related to the parallel inductive electric field averaged over a flux

surface.

In view of these developments, we feel that there is need for a document that offers a critical
and comprehensive presentation of neoclassical theory for large aspect ratio flux surfaces in the
banana regime, stating clearly the various assumptions and approximations that have been made,
offering justifications as much as possible. Besides acting as a collection of firmly established
results in their simplest forms, it is hoped that this paper serves some pedagogical purpose by
shedding light on the precautions that need to be taken to extend the theory to useful parameter
ranges such as finite aspect ratios and less extreme collisionality. Many have made important
contributions to neoclassical theory, which are used in this paper as a matter of common
knowledge. It is hoped that we are not being remiss in referring the readers to the review articles

[7,8] and books [9,10] for the extensive references in the literature.

The balance of this article is organized as follows. Section 2 is concerned with the
formulation of neoclassical transport theory in general magnetic geometry, with the only
restriction that the poloidal magnetic field be much less than the toroidal field. Containing few
new results, they are included mainly for the purpose of establishing notations and identifying
relevant quantities. In Section 2.A, the LDKEs are derived by an expansion in the ratio of
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poloidal gyroradius over the plasma scale length. In Section 2.B, the forms of the moment
equations and the definition of transport fluxes under the same expansion are obtained. The
main results of our work is presented in Section 3, where restriction to large aspect ratio flux
surfaces is made. The flux-friction relations are first derived in Section 3.A. The electron LDKE
is simplified and solved in Section 3.B using the method of matched-asymptotic expansions.
This is followed in Section 3.C by a similar discussion for the ion LDKE. Section 3.D shows
how the transport fluxes are calculated and presents the transport coefficients, comparing them
with existing works. Section 3.E presents the field equations and moment equations in the
cylinder limit, the explicit elimination of the toroidal components, and the role played by Ohm’s
law. Section 4 provides a summary of our work. Appendix A provides a streamlined description
of the Hinton-Rosenbluth boundary layer analysis, leading to corrections for all the transport

coefficients.
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2. GENERAL GEOMETRY FORMULATION

A. LINEARIZED DRIFT KINETIC EQUATION

Our starting point is the drift kinetic equation for each plasma species. Using as velocity
space variables the unit mass kinetic energy w = v2 /2 and the magnetic moment [ = vf /2B,

the equation for a species of mass m and charge ¢ is

s +(v“13 +Vp + EszBJ vf+4 ("I!I; + \7,3)- 5o c(f.f) )]

ot m 5;:

where C(f, f) represents Coulomb collisions. The magnetic field is axisymmetric and is given
by

B=IV{+V{xVy , (2)
where { is toroidal angle, y is the poloidal flux and [ is a flux function. The magnitude of the

parallel velocity is given by Iv”|=4/2(w— 4B), and the curvature and grad-B drift Vp can be
written in the form

M}

m ~
Vp = ——ybxV-—+ 3
D qvu B (3)

in the low- 8 approximation. The electric field consists of an inductive and an electrostatic part:

E=-Vo+E, . 4)

For simplicity of presentation, the poloidal variation of the electrostatic field is neglected. It can

be shown that its inclusion does not change the final forms of the transport equations [5].

The transport phenomena are described by a reduction of the drift kinetic equation together
with the Maxwell equations, to a closed set of equations involving only fluid variables.
Following Ref. [7], such a closed set can be obtained using Chapman-Enskog’s approach to
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expand the drift kinetic equations order-by-order. It will be necessary to assume that the poloidal
component of the magnetic field is far less than the toroidal component. Choosing the ordering
parameter A to be the ion poloidal gyroradius over the plasma scale length , which includes the
magnetic field scale length and the radial electrostatic potential scale length, it is then justified
[16] to retain only first-order guiding center drifts as in Eq. (1). Specifically, the following
orderings are assumed:

Vol o [me 2 eBal 4 b | (5)

! m; T, T,

The expansion is implemented by assigning frequency scales to the various terms in the drift
kinetic equation, with the ion transit frequency @y, the reciprocal of the time taken by a typical
ion to move once around the poloidal direction, chosen conveniently as a reference. The ion-ion
collision frequency is taken to be of the same order as @y, so that the different regimes of
collisionality will be distinguished by subsidiary expansions in solving the LDKEs that follow.
The time derivatives are assigned orders consistent with the slowest possible variation.

It is readily shown that the zeroth-order distribution functions are stationary Maxwellians
o =n(m/27rT)3/2e"mW/T where both the density n and the temperature T, which can be
different for electrons and ions, are constant on each flux surface and can be taken as functions

of the poloidal flux y at each given time. The first-order distribution functions satisfy the
LDKEs

. MV Ui
Ve - Vei(Lfel + —e-T’Ul—feo) ~ Ceo fo

e

I» v ' 7’ 3 TI
= Ml oyl e mev 3Ll wEfo (©6)
e B\n, T, T, 2T, T,
- A VN n Ziey) mw 3T
Vfy = CLfy = 2Dl gl o Lie® W S L 7
v - Vi - Gifa 2 B(ni T T 2T fio (7

for the electrons and the ions, respectively, in a pure plasma. Here a prime denotes differentiation
with respect to . As a result of mass-ratio expansion, ion-electron collisions are neglected in

General Atomics Report GA-A24103 7



S.K. Wong and V.S. Chan The Large Aspect Ratio Limit of Neoclassical Transport Theory

Eq. (7), while electron-ion collisions are described in Eq. (6) by pitch-angle scattering in the rest

frame of the ions, modeled by the operator

21-8)Z ®)

depending on whether [v, 1, sign(v))] or w,é= v/ v) are chosen as the velocity space variables.
The parallel ion flow is calculated from u; =J d3vv” fi1/n;. The energy-dependent collision
frequency v,; is given by v,; = 3 /4t,;) (V, /v)? in terms of the notations v, :m
for the thermal velocity of species a and 7, = (3v/ma T3/2)/(4\/§EZ2 Z,fe ny, {nA) for the
collision time between species a and b. The linearized like-particle collision operator Caa has

also been used.

More convenient forms for the LDKEs can be obtained for the shifted distribution functions

fo1 and f}] defined as follows:

, MV m, vyjuf; D
fe1=ﬁel‘~7—ugb—@ﬁo+—£—”—feo ""“fe()“e—n<< >>feo , ©
I 4d
= F- T g 10)
where
S B I NV I 9¢

u§|i—2;fd vv”fl-l-u“i+EW , (11)

W is a solution of the equation
b-VW = E _M (12)

I (B) ’

where { ) denotes flux average, D(v) is the solution of the Spitzer problem
Ce M Dfo) = - oo (13)
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where C, = v, L + Cfe. As aresult, Egs. (6) and (7) are replaced by

Il

Vi - Cefa T-e—{v.v.‘fﬂ(}_f?_%.+mew 3 1 aTejfeo

e 1" 7B n,dy T, 2T, dy
eD _ <E”B> m, .. ,
Ty S A Vo) S0 (14)
1 vl odn mw 3139
SN v A AL S 0 v N A L A N 1 IV SO 15
M fia = Gi fil ZieV” Bln 91//+ T 27T oy fio (15)

which do not involve d¢/dy 20/24. The removal of the unknown poloidal variation of Ej| has
motivated the separation of the term involving W in Eq. (9). {Our choice for W differs from the
customary one [7] in which the term (EB) B/ (Bz) appears instead of (EB)/(B). The results are
the same in the limit of large aspect ratio, which is pursued in this work. For general geometry,
to the best of our knowledge, the motivation for the customary choice is unclear.} The shift of
the distribution function by the term proportional to uﬁi allows the left side of Eq. (14) to involve
/1 only with no contribution from f;;. This shift and the one involving the Spitzer’s function in
Eq. (9) allow all terms on the right side of Eq. (14) to have the form 17” -Vv”A where A is a

function of energy and spatial coordinates.

In the limit where collision frequencies are much less than transit frequencies, Egs. (14) and
(15) can be further reduced. Neglecting the collision term in the electron equation in a first

approximation, it follows that f; is of the form

¢ e B 2T

, mJI V(1 dn, mw 31 9T,
= —_ — = 4 ——
Jo (neaw T, 27, o)’

eD (EB) eV uf

TR AN + , 16

where g, is only a function of the invariants u,v for trapped electrons and u,v plus sign(v)) for

circulating electrons. Perturbation on the collision term leads to the equation

ﬂc =0 17
§Lcrm=0, (17)
Y
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for the determination of g,, where the integration is over one closed orbit in the case of trapped
electrons and over one turn in the poloidal direction in the case of circulating electrons. It
follows immediately that g, vanishes for trapped electrons because the round-trip integration
annihilates contribution of the first three terms in Eq. (16) to Eq. (17). Thus, Eq. (17) need be

solved only for circulating electrons.

By an identical argument, the ion distribution function can be written

, ml V(1 dn, mw 3107
A TS, | Sy — + e ; + ; s 18
Ji (n,- oy T 2T o)l (19

where g; is independent of poloidal coordinate, vanishes for trapped ions, and is determined

from

$hctpi=o (19)
d

for circulating ions.

In general, the solutions to Eqgs. (17) and (19) can only be obtained by numerical methods
because of the complexity of the Fokker-Planck operator. It will be shown that in the limit of
large aspect ratio, analytical results can be achieved. Solutions to Egs. (17) and (19) also exhibit
discontinuities at the boundary separating the trapped and the circulating particles. These can be
smoothed over through a boundary layer analysis [5] leading to corrections in the fluxes in

higher collisionality order.
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B. MOMENT EQUATIONS AND FIELD EQUATIONS

The solutions of the LDKE:s are used to achieve closure of the moment equations, which will
now be derived. We begin with the following moment equations for each species, which follow

directly from the drift kinetic Eq. (1):

J 3 1 0 , 3 | - EXE _
<§fdvf>+—‘;--§-y7v<fdv(v0+ e J-Vz//f>-0 , (20)

<gt—_[d3vmwf> + —é—, —8—% v’ <f d>vmw (\71) + EszB)-VI//f>
~g <f d3v(\7” +vD)f.E> = <j d3vme(f,f)> ; (21)

whereV is the volume enclosed by the flux surface, and V' = dV/dw. We proceed to transform
these equations into equations for the flux functions n(y,r) and T(y,z) by substituting the
expansions f = fo + fi and evaluating the various terms to leading order in A. In doing so, we
shall use the approximation EA =E”13 valid when the poloidal field is much less than the

toroidal field. The resulting density equations become, to leading orders,

on 1 J

€ — VI, =0 , 22
<3t>+V’9w ¢ (22)
on; 1 ¢

—)V+ — VT, = 2
<9t>+V'3l// i=0 23)

with

T, = <f i, .vw;'1> + nel(%[’—f) <-;§> - <—§'—‘>J , (24)
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I = <f d3v17Di-Vz//f,-’1> , (25)

where we have used Eqgs. (9) and (10) to express f,; and f; in terms of f); and fj,
respectively. Taken at face values, they imply that the ion density would vary in the frequency

scale A2w0 and electron density in A4w0.

Alternate expressions can be derived for the particle fluxes. Multiplying the linearized drift
kinetic Egs. (14) and (15) by the factor (I/gB)my), integrating over velocity space, and flux

averaging, using also the identity

VY = VL (26)

e ) SR

where Rﬁ .= J djvmev” C, f};. There is thus no ion flux in the frequency scale Aza)o. Because of
ambipolarity, the ion flux cannot be of lower order than A4, which is the order of the electron
flux implied by Eq. (24). We should, therefore, set the ion flux to zero in the order A3. When
this is done in the toroidal angular momentum moment of the ion drift kinetic equation, an
equation for the time derivative of the radial electric field arises, as demonstrated in Ref. [16]. In
this manner, the transport of angular momentum can be discussed. It is also possible [17] to
abandon the restrictive assumption on the radial scale length of the electrostatic potential that
leads to the ratio of toroidal velocity over ion thermal velocity being of order A in the original
neoclassical theory. In the resulting theory for an arbitrarily rotating plasma, angular momentum
transport can be discussed on the same footing as energy transport. However, this is beyond the
scope of the present work. In any case, particle transport is solely determined by the electron flux
in Eq. (24).

For the ion energy equation valid in the frequency scale A2a)0, the term with inductive
electric field need not be kept, and the collision term can be evaluated using the zeroth-order

distribution functions. The result is
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30 1
29 Ve 2 9 vy 28
<2at"’T’> V'a Vo= @9
where
= <fd3vml-wx7D,~-Vl//fii> , (29)

and Qp =3(m,/m;)(n,/7,,)(T,/T}).

The processing of the electron energy equation is more complicated. It involves evaluating
the collision term in a frame co-moving with the ions and combining with the term representing

the work done by the electric field. We simply present the result as follows:

2R, e
where

(omo s (S

Jy = ngeuy —efdvvf ~0'<E“> Jne 32)
n i et = O gy ’
with the introduction of Spitzer’s conductivity
2
Og = e—fd3VV”Df;,0
Le , (33)
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and the neoclassical current

Jne = —e|dPoy (34)

Equation (30) is valid up to the frequency scale A4a)0 which is the scale associated with the
energy flux. Collisional energy exchange, however, occurs in the scale A? wq . It is noteworthy
that the radial electric field does not occur in the moment Egs. (23), (28), (30) or the expressions
for the fluxes given by Eqs. (24), (29) and (31). It only appears in Eq. (11) where it contributes

to the ion parallel flow 1,

To complete the transport description, we shall now present the field equations. While many
of the equations to follow have appeared in the literature, here they are consistently simplified
using the approximation [Vl//}/ I«1, and are written in forms that facilitate the discussion of the

mathematical nature of the transport problem.

First, the Ampere’s law VxB=47J is decomposed into its parallel and perpendicular
components. Using guiding-center drifts and magnetizations for a Maxwellian plasma, the
perpendicular current becomes the diamagnetic current, which, when substitutioned into the
perpendicular component of Ampere’s law, leads to the grad-Shafranov equation

Vy dl

dp
Ay = RPV. 1 = 1 9L _4qRg? 2P

where p=p,+p; is the total pressure. Using the approximation B-Vx B=IA"y /Rz, the

parallel component of Ampere’s law becomes

| .
— Ay =4nJ, .
a4 | (36)

It is more convenient to replace grad-Shafranov equation by

192 12 9p I{yBY
§W+@2_>£+ <B“2> (37)
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which is obtained using Egs. (35) and (36) and

2
== ; gﬁ 1= <§2> * <?;>>B , (38)

a result that follows from Ve J =0. Equation (37) reduces to a transparent form when the large

aspect ratio is taken in Section 3.E.

The Faraday’s law dB/dt=-V xE, is next decomposed into its toroidal and poloidal

components using, for the inductive electric field, the representation

E = ERVE+V{xVyg | (39)

valid for any axisymmetric solenoidal field. Then the poloidal component takes the form

W _ -I—E (40)

Jt gl

when the approximation EC = E| is invoked. After using Eq. (40), the toroidal component can

be written

ANyg = oL Lol

B gy @b

Finally, returning to the moment Egs. (23), (28), (30), the time differentiation and the flux

average operation can be commuted using the relation
o) ~\ar), " \B/ow - “42)

for any flux function A(t,t/,t), a result that follows from Eq. (40).

A complete set of equations for plasma transport comprise the four field Egs. (36), (37), (40),
(41); the three moment Egs. (23), (28), (30); together with expressions for the transport fluxes
[e:Qe, 0y, Jj and the quantities Ry, uj; obtained from the solutions f;; and f;} of the LDKEs.
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The system thus involves four field variables !//,I,E”,l// g and three plasma variables n,,T,,T;.
We can regard Egs. (37) and (41) as equations to determine [ and g, respectively, when
appropriate boundary conditions are imposed. This amounts to a separation of the toroidal
components of the system. In the remaining poloidal components, there are five variables
ne,Te,Y},E”,l// to be determined from Egs. (23), (28), (30) and Egs. (36), (40). We postpone a
discussion of the mathematical nature of the problem until the large-aspect-ratio limit is taken.
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3. LARGE-ASPECT-RATIO APPROXIMATION

A. FLUX-FRICTION RELATIONS

The LDKEs and the bounced averaged Fokker-Planck equations in Section 2.A depend on
the poloidal variation of the magnetic field. It is unlikely that accurate explicit formulas for the
transport fluxes and other quantities that enter in the moment equations can be obtained for an
arbitrary variation. Fortunately, this can be accomplished if the flux surfaces have very large
aspect ratio, while not restricted to the circular shape. Furthermore, the moment and field
equations also assume simple forms, which facilitates the discussion of consistency and the
devising of schemes for their solution in cases where plasma diffusion and shape change of flux

surfaces occur at the same time.

We shall first introduce the cylinder limit of the toroidal configuration. An appropriate geo-
metrical center is first chosen for the vacuum vessel wall on a poloidal cross section. Its distance
from the central axis is denoted by Ry. Defining Z=RV{, B, =1/ Ry, and reinterpreting from
this section on y to mean y / Ry, the cylinder limit of the magnetic field can be written

B=Bz:+7xVy . (43)

4

The magnetic field on a flux surface varies inversely with the distance from the central axis. The

small strength of this variation is described by the quantity

28 = Bmax ~ Bmin = Rinax = Rmin (44)

2

Bmax Rmin

where the subscripts “max” and “min” refer to values on each flux surface. The variation itself
can be expressed in terms of the normalized field strength

E — B_ Bmin — Rmax — R , (45)

Bmax - Bmin Rmax - Rmin

For circular flux surfaces, B =sin’ 0/2 where 0 is the poloidal angle measured from the

outboard side.
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Introducing the derivative of the area included within a poloidal flux contour with respect to
v

do
A=¢ ——— | 46
§|V1//><V9| (46)

where 0 is the poloidal coordinate, the average of any quantity Q over a toroidal flux surface

can be approximated by

¢ 0de a0
(0 ”j; ]VU/XV@]/§ Vyxve| - “7

The particle and heat fluxes defined in Section 2.B are also re-interpreted so that I and Q from
this section on mean RyI" and R,Q, respectively. The expressions of these fluxes given by
Egs. (24), (29) and (31) are first simplified by dropping the terms containing the factor
(E”B)(B—l)/(B) —(E)/ B), which is of order § while the terms retained will be demonstrated to
be of order /8 . The terms retained are now transformed into expressions which might be known

as flux-friction relations, in which collisional changes of distribution functions are involved.

Multiplying Eq. (14) by (I/eB)mev”, integrating over velocity space, averaging over a flux
surface, and then going over to the large aspect ratio limit, it follows that

I, = % <fd3w“ cef;1> . (48)

Similarly the heat fluxes are given by

Q, = %<J-d3vmewv” Cefe'1> , (49)
Q; = —--—Zn-%<_'.d3vm,-wv“Cfﬁ’l> . (50)

Finally, the neoclassical current defined by Eq. (34) can be transformed into

Joe = e[ dPvDyC, 15 (51)
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which follows after the replacement v =-C, (W Df.0)/ foo and use of the hermiticity of the
operator C,. The four flux-friction relations in the above equations explicitly display the
essential role of collisions on neoclassical transport. They are used to calculate the fluxes in the

banana regime, using the analytic solutions for the distribution functions obtained in the next

sections.

B. SOLUTION OF ELECTRON EQUATION

In seeking to solve Eq. (17) in the large aspect ratio limit, we distinguish between two classes
of electrons. The distinction is made when (&,v) rather than [,u,v,sign(v”)] are chosen as
velocity space variables where &= v/ v is the cosine of the pitch angle. The first class consists
of electrons for which & is not small and will be called the freely circulating electrons. The
second refers to those with &~ /&, which will be called the slow electrons. They include the

trapped and the barely circulating electrons.

For the freely circulating electrons, the poloidal variation of V| can be neglected. Eq. (17)
then states that the average of f;] over a flux surface is annihilated by the collision operator. To
leading order in &, which turns out to be /3 , it proves possible to seek f,; in a form that is
independent of the poloidal coordinate when ¢ and v are used as velocity space variables instead

of u, w and sign(v”). Thus, writing

=S fe(Ev) -, (52)

for the freely circulating electrons, the following equation is obtained:

Cofe =0 . (53)

Two remarks should be made regarding the above equation. The first is that even though it is
a good approximation only when ¢ is not small, we shall seek its solution down to & =0, where
boundary conditions will be obtained by matching with the solution for slow electrons. This is in
accord with the method of matched asymptotic expansions [12]. Secondly, the operator C, in the
equation depends also on the distribution function f;} for the slow electrons through the integral
part of the linearized Fokker-Planck operator. Therefore, Eq. (53) is an inhomogeneous equation
for fc. Itis possible to obtain the inhomogeneous term explicitly using the distribution function
for the slow electrons found later in this section, and show that it contributes to the same order in
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0 as f, in Eq. (53). But the resulting equation is hard to solve. Fortunately, the equation itself

renders it unnecessary to seek a solution for the purpose of calculation of fluxes.

In considering the slow electrons, we go back to Eq. (14) in lieu of Eq. (17). Keeping only
lowest order terms in &, the right hand side of Eq. (14) simplifies, and the equation becomes

W Ve = Cefa = V) V9 Acfeo 69
where
A - &(LQ&+M_§L§£J_ melU” , eDigy (55)
e\n,dw T, 2T,dy 1, I,

and U’ denotes the leading order term of uj; in &, and is independent of poloidal coordinate as

demonstrated in Section 3.C.

The following crucial approximation is now made:

2 o
19/a (56)
2 3¢

C, fell = Ve

where f;) is expressed in the variable &,v,0 instead of u, w, sign(v”), 0, and v, =v,; +v,,, with
the notation v,, = B/ 471, )0(G’/ X ) for the energy-dependent self-collision frequency,

where x =v/¥, and

G'(x) = (51; + x) erf(x) + 717; e-x2 . (57)

To motivate this approximation, it is noted that if Eq. (54) is expressed in the variables [u, w,
sign(vy), 01, and if both the collision term and the resulting mirror force term are neglected, f;

can be solved for and the following asymptotic behavior would be obtained:

E=0 . (58)
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This suggests the dominance of the second derivative 9° i /852 in the collision operator for
slow electrons, for which & ~ «/3- .

To proceed, it proves advantageous to introduce the variables &, and K2 through the

definitions

£ =58 = 25~ B(0) . (59

w— UBpax
K = |+~ Max 60
20w (©0)

The variable k2, which is adopted in the work of Galeev and Sagdeev [1-3], represents the
cosine of the pitch angle at the location of minimum magnetic field, scaled by the factor \/% .
As shown in Fig. 1, the regions k?>1and 1>k2 > B(6) correspond to circulating and trapped
electrons respectively. When x2,v,0 are used as variables, and the approximation Eq. (56) is
made, Eq. (59) becomes

R , * a 8 , A
SavbeV fi ~%§*¥§*5;5 Jer :\/g‘f*b‘vzj*vaefeO ) (61)

where v} =v,86 /2,
A K2

Circulating

¥
VA 77775 NS
B(6) TfaW +

Fig. 1. The phase space for Eq. (61) at a fixed energy.

C
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The banana regime is characterized by v, «1, which allows the collision term to be neglected
in finding the leading order solution in collisionality. This leading order solution can be written

in the form

=8 fg e, 62)

fo = &vAfoo + 85 (63)

where gq is a function of K2, v, sign(&). For similar reasons that apply to the function g, in
Eq. (16), the function gy vanishes for trapped electrons. For circulating electrons, it is

determined from the condition

§d9 858
IV x V6| 9k 9K

5 fg =0, (64)

which follows from treating the collision term as a perturbation. It is noteworthy that the above
is actually a homogeneous equation for g¢ because the first term on the right of Eq. (63) makes
no contribution in Eq. (64). The solution for circulating electrons is an odd function in sign(&)

which for sign(&) = +1 is given by

> +K, , (65)

where K;,K, are arbitrary constants. In actual fact, Eq. (17) does not apply in a thin layer
separating the trapped and circulating electrons shown in Fig. 1, where perturbation treatment of
collisions fails. An analysis of this boundary layer is given in Ref. [4] and is adapted in
Appendix A for noncircular flux surfaces. It shows that the constant K, is of the order \/ v, and
can be neglected in a first approximation. The analysis also gives corrections in this order to the

fluxes to be derived in Section 3.D.

The constant K| cannot be determined from the consideration of slow electrons alone. It is,

instead, determined by matching the solution for the slow electrons to that of the freely
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circulating electrons in the sense of matched asymptotic expansions [12]. It is first noted that the

following asymptotic behavior can be established:

~Vix-a+os) ke (66)

where

1
a=ﬁ1—jflﬁ S S | 67)

Beey

For circular flux surfaces, we have <\/1—k21§>=2E(k2)/7t where E(kz) is the complete
elliptic integral of the second kind, and the factor a in this form has been obtained in Ref. [4],
where it has been numerically evaluated to be ~/2(0.69). As a result of Eq. (65), when we
change over to &, as the independent variable instead of Kz, and allow &, to range between

—oo to +oo, we find, for slow electrons,

fo =VEEVA fu +VE K (E—at) e

:é(VAefeO'*'Kl)“\/gKla'*"“ . (68)

Matching this to the Taylor expansion

=S fe(0v) - E>0 (69)

for the freely circulating electrons, we require

Ky = —VvA,f.0 (70)

fC(O,v) = —Kla . (71)
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It is thus established that for slow electrons,

: > vA, fo (72)

where H is the Heaviside function, with the asymptotic behavior

fe=>favA f,o + O(l/&) , &>t . (73)

For freely circulating electrons, Eq. (53) holds with the boundary conditions

Jc = TavA, f,o E=10 (74)

Thus, regarded as a function over the range -1 < £<1, fc is an odd function in £ that undergoes
a finite jump at £=0.

In mathematical terminology, the electron distribution function has been obtained from a
singular perturbation technique using & as a small parameter. The solution [Eq. (72)] for slow
electrons represents a boundary layer, or inner, solution. The thickness of the boundary layer is
of the order +/§ in the variable . The distribution function for the freely circulating electrons
corresponds to the outer solution. At fixed values of v and @, the distribution function £
increases linearly with &, starting from zero. At the location & = \/25 (1-B) that separates
trapped and circulating electrons, the derivative df;;/d& suffers a discontinuity. Above &, the
function f;; increases more slowly than linear or even decreases, leveling off to values of order
8 as & reaches the range beyond /& . The function fJi remains of order & throughout. The
derivative df;;/d¢ is of order unity in the boundary layer and \J& elsewhere. In this sense, the
function is “localized” [4]. The behavior of f; as a function of £ is sketched in Fig. 2.

The solution [Eq. (72)] for slow electrons is also obtained in Refs. [4] and [5]. In Ref. [4], it
is found from the variation of the entropy production functional, in which the approximation
[Eq. (56)] is substituted for the Fokker-Planck operator. After integration by parts, the quadratic
functional takes the form (f dué@df/ du)?) where only the parts essential to our argument is
retained. Then the derivative df;]/du is varied to yield the equation ({0 £,/ du) = 0, which has
the solution given by [Eq. (72)]. In a conventional approach that considers variations of the
function f; itself, the Euler-Lagrange equation thus obtained would have been
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(d19u(Edf}/dm) =0, and the solution would be given by Eq. (65) with indeterminate K, and
K,. In Ref. [5], the pitch-angle-scattering operator is used in the variational principle, and the
resulting Euler-Lagrange equation does have the solution Eq. (72). In the variable &, the pitch-
angle-scattering operator L differs from the second derivative operator [Eq. (56)] by the addition
of a term of the form —£d/d&. This term is formally of the same order in § as others that have
been neglected in the Fokker-Planck operator. The use of the pitch-angle-scattering operator

therefore cannot be justified beforehand.

ft'e1lfe0 A

I

I

0

I >
Ee ~\/8 g
Fig. 2. The distribution function fq1 as a function of & at

fixed values of energy W and poloidal coordinate 6, The
derivative 0 fc, 1 / aci is localized to a region of order \/g .

Galeev and Sagdeev have also obtained the solution [Eq. (72)] for slow electrons. {Their
solution presented as Eq. (30) in Ref. [1] apparently contains typographical errors. The correct
form is to be found in Eq. (II-31) of Ref. [3].} They used an approximate collision operator
directly in the drift kinetic equation for such electrons. The approximate operator, which can be
found in Eq. (28) of Ref. [1] and Eq. (II-28) in Ref. [3], also appears to contain terms in addition
to the second derivative operator that are of higher order in & and are, therefore, hard to justify.
Equation (53) for freely circulating electrons also appears in the work of these authors [2,3],
where it is apparently needed for the inclusion of self-collisions in the calculation of fluxes. They
have not obtained the boundary conditions [Eq. (74)], and their solutions in terms of an
expansion in Legendre polynomials, in fact, violate these boundary conditions. As we shall
demonstrate, the calculation of fluxes to leading order in & does not require the solution of

Eq. (53), although its existence plays a crucial role.
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C. SOLUTION OF ION EQUATION

The solution of Eq. (19) for ions closely parallels that of the electron Eq. (17) with one major
change. It turns out that because ion self-collisions conserve momentum, it is not consistent to
seek a “localized” behavior for f;} in the same sense as for f;;. Instead, such behavior can only

be imposed on f;{, a shifted distribution function defined by

fi = A G+ £ (15)

1

This has the immediate consequence that uj; =U’ to leading order in §, as the contribution to
uj; from fj is of order /& . For the freely circulating ions, we now have

=8 fot.. | (76)

and

Cife=0. 77)

For the slow ions, the analogue of Eq. (54) in the cylinder limit is

VA - Ci i = W)Y Aifio (78)
where
Its solution can be obtained in the form
fi =8 fy o, (80)

where f¢ is given by Eqgs. (63) and (65) with the replacement of A, f,q by A, fig. An identical
matching procedure as for electrons leads to the solution for fs in the form of Eq. (72) with the
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replacement of A, f,o by A;fio. Also, the function f~(&,v) obeys the boundary condition
[Eq. (74)] with the same replacement.

At this stage, the quantity U’ remains undetermined. We note that as before, Eq. (77) is an
inhomogeneous equation for f~ because there is contribution to the integral part of C,-f from the

slow ions. The inhomogeneous nature can be explicitly displayed as follows:

Cii(for fio) + Cii (fior fe) = —(Cii(fior fs)) (81)

where the first and the last terms on the left correspond to the differential and the integral parts of
the Fokker-Planck operator on f.. Unlike the case for the electrons, conservation of momentum

imposes the following solvability constraint:

<f d3vmivu Gii (inva)> =0 . (82)

Appealing again to momentum conservation, the above equation implies

<j v Culfs, f,.0)> 0, (83)

in which the differential part of the Fokker-Planck operator occurs, which can be approximated
by the retention of only the term involving 91 852. Changing over to the variable &, instead of
£, the integral in Eq. (83) can be simplified as follows

£ 0 fS =—]‘odv27l'v2m-vv~ fs(#e0) = fs(==)
) 85* iVVii >

].oa’v27tv myv;; f dé, =

0 0

:—aJ.dv27rv2m,~vvi,'vA,‘fio

where we have performed integration by parts and used the asymptotic behavior [Eq. (73)] to
neglect the surface term. Evaluating the integral and setting it to zero gives an equation for U’

T [ 10dn 31071
U = ——L | =20 Sl B} 4
(n, av 2 ) e
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in which the constant y, first introduced in Ref. [5], is given by

y = J.dxe"x x3G’/f dxe™™ xG' (85)
0 0

Using the simplified version of Eq. (11) in the large aspect ratio limit, it follows that the leading
order parallel ion flow is U = U’ + d¢/dy .

D. CALCULATION OF FLUXES

The transport fluxes in the banana regime can be evaluated with the knowledge of the
distribution functions f;; and f;] obtained in the previous sections. For this purpose, the flux-

friction relations in Section 3.A will be used.

Consider first the electron flux given by Eq. (48). We divide the integral into contributions
from the regions of the slow and the freely circulating electrons so that to leading order in &,

r, = ﬁ%jd3vv||cefs + «/S% [ dPvyc.fe . (86)
M C

Formally, the second term is of order +/8 and so is the first as will be presently demonstrated.
However, in view of Eq. (53), the second term actually vanishes, making it unnecessary to solve
for the distribution functions for the freely circulating electrons, which is otherwise a daunting
task. {On page 197 of Ref. [10], a justification for neglecting the contribution from the freely
circulating particles in the evaluation of ion energy flux is given by asserting that Cf; fi{ is of
order v;;/§ for the slow particles. This estimate neglects the fact that £/ f;g ~+/8, as can be
seen from the actual solution. Taking this into account results in the estimate le fi~vil V8, 50
that the contributions to the ion energy flux from the slow and the freely circulating ions are
formally comparable. It is then necessary to invoke Eq. (77) or, analogously, Eq. (53) for the
electron fluxes, to justify the neglect of the freely circulating particles as we have done.} In the
first term, the collision operator can be approximated by the second-derivative operator 9%/ 862.
The integral can then be evaluated in the same way as that leading to the expression in Eq. (84),

with the result
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:-\Z—eg-—_(’;dv27rv myVvV, -f d & 5; aag:s

fs (+20) = f5 (=)
2

—-——f dv2mv? myvV,
0

o

2
VoV, Ae feO

en]

Upon the elimination of U’ from Eq. (55) using Eq. (84), we can write

2

m m, m,v eD
A, = LA +—E <A +—(E) . 87
eeleZTeZTe<ﬂ> (87)
where
g = Lo 319% 1 [_l_ani+y_§_azﬁ], 4= L% g
ne oy 2T, oy ZT,\m dy 2T oy T, Jdv

The quantities Ay, A, and (Ej|) are considered to be the forces that drive the electron transport
fluxes and correspond to the same choice in Ref. [7] for circular cross-section flux surfaces.

Using Eq. (87), the electron flux can be written out explicitly as

= —3«/_(§a

7 x . ’ _’_n__g- 2 2
= gdxe x(Z +G)L22 (4 + 2% 4) + T (EM . (89)

Other electron fluxes are similarly evaluated.

The results of the flux evaluations can be cast into the form

Fe = —\/gane l:n;eTe
€

ee

(LitAy + LipAy) + Ly (E”)} ; (90a)
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Q, = —dan,T, {:128—7; (IQIAI + IQ2A2> * L3 <E”>

ee

2

Jne = —Vdan, {Q(ZGIAl + Ly Ay) + < Tee 163<E§!>J ;

m

with the introduction of the dimensionless transport coefficients

o~
&S
It
W
O e, §

where a; =1, oy = x%, a3 = D(x)/7,,.

Turning to the ion energy flux, after eliminating U’ from Eq. (79) to obtain

A = — m ml-v?‘_y LQE_
" Zel 27 T, dy
a similar evaluation of the integral in Eq. (50) leads to
m; T; T’
Q‘:——-r\/gan‘T L1 L.t
i it leezfii 17;_

where

dxe" x(Z; + G') @

(90b)

(90c)

Oon

92)

93)

(94)

Our results show that the transport fluxes share a common geometry factor, which is a feature

not transparent in earlier works on general geometry [7,13,14], but clearly stated in Ref. [10] in

the limit of large aspect ratio. Unlike Ref. [10], the factor a has been obtained in the
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exact asymptotic limit and is rigorously justified. (In Chapter 11 of Ref. [10], the

common geometry factor is taken to be the “effective trapped particle fraction”
1/ Bpax

fi =1-3/4(B%) f AdA1{x[1-AB), which has the asymptotic limit 3/2~/6a as & goes to
0

zero.) The fluxes in the electron channel obey Onsager’s symmetry. However, it is unclear if

such symmetry holds without the large aspect ratio approximation, as the identification of

conjugate pairs of fluxes and forces presents some difficulty. One of the difficulties simply has to

do with the fact that, with the independent presence of (EyB) and (FEj;/B), there appear to be
I I

more forces than fluxes.

Analytic evaluation of the transport coefficients is possible if the Spitzer problem described
by Eq. (13) is solved by expanding D(x) in the Laguerre polynomials Lfl/ 2 (x). Keeping two

terms yields the solution
2+2-7 3
D(x) = Tpo (dy + dyx*)  dj = 0" FLo 4y =,
() = tee [+ ) 4 27,(z+42) 7 2(z;+42)
from which the Spitzer conductivity is calculated to be

oo = 13Zi+4«/§ neezree
ST 4(z+2) m,

For the dimensionless transport coefficients, we need the following evaluations of integrals

containing the function G”:

_9V2

< 2
f dxe™ G ,
0

dee'xsz’ = 2 - tn (1+ﬁ), ]‘dee—xzx3G' = ﬁ,
0 2 0 4

16
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to obtain

3.3 3. 342 _ 2742
L11=EZi+—2—[«/§—€n(l+x/§)}, L12———2-Zi+T, L22—~3Zi+—'—1~6'—' .

2 2
Lz = Lijdy + Lipdy, Ly = Lpydy + Lppdy, Ly = Ly1di +2Lpdydy + Lppdy

1 272 342

y = B[l ) =133, L= -4(2_&_““&) =098

For Z;=1, we find (d},dy)= (0.38, 0.62), and (Ly},L7,L3,L,003,133) =
(2.30,2.56,2.46,5.39,4.32,3.61). These give o¢ = 1.93nezfee/me for Spitzer’s conductivity, in
which the numerical coefficient differs but slightly from the more exact value 1.96 from

numerical integration.

The transport coefficients for Z; =1 are in excellent agreements with the results in Refs. [4],
[7], [10] when specialized to circular flux surfaces. {In comparison with Ref. [4], the coefficients
(1.12,0.43,0.19,2.44) in Eq. (168) in Ref. [4] are calculated to be (1.12,0.43,0.19, 2.40);
(1.53,1.81,0.27,1.75) in Eq. (170) are (1.56,1.84,0.26,1.76); (0.51,1.95,2.44,0.69,0.42) in
Eq. (175) are (0.52,1.83,2.40,0.61,0.41); 0.48 in Eq. (173) is exactly reproduced. In comparison
with Ref. [7] which gives fitted coefficients kO = (1.04,1.20,2.55,2.30,4.19,1.83) in Table III,
we calculated (1.12,1.25,2.63,2.40,4.22,1.80). In comparison with Ref. [10], the coefficients
(1.53,0.59,0.26,1.67) in Eq. (11.30) are calculated to be (1.53,0.59,0.26,1.64); (2.12,2.51,0.37,
1.19) in Eq. (11.33) are (2.13,2.53,0.36,1.22); (1.66,0.47,0.29,1.31) in the equation on page 190
are (1.64,0.42,0.28,1.23); 0.92 in Eq. (11.23) is exactly reproduced.} However, we have not
been able to reproduce the results from the published works of Galeev and Sagdeev.

E. TRANSPORT OF FIELDS AND PLASMA

The field and moment equations derived in Section 2 assume much simpler forms in the
cylinder limit, which can be easily obtained by keeping lowest order terms in these equations. In
the following, they will be presented in such order and forms that make it easy to discuss how

they are to be solved.
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With the “poloidal flux” y defined from Eq. (43), and the stream function for the poloidal
inductive electric field modified from Eq. (39) by the replacement y /Ry — W g, Eq. (37),

becomes

d 1
b—;(p-i—ng)—FJ”:O , 95)

while the toroidal component of Faraday’s law Eq. (41) becomes

JB JdB
Vg =~-Z2-F 22 . 96
VE £y | v (96)
The moment equations assume the form
O | gy e L9 ar, _o ©7)
ot v dy A’ dy

g[aneTe) +<E”>38neTe+1 J 40,

2\ o1 2 dy A dy
T. (1 dn 31 07T,
= EN—T =] =27 2|, (98)
O+ (5) eZi(”i v "’ 2T l//)
3(dnT; 3o T, 1 4
- E - [ § — ’ R 99
2( at) S Gy a0 ®9)

where the flux average operation () and area derivative A" are defined by Egs. (47) and (46). In
deriving Eq. (98) from Eq. (30), we have dropped the last term on the right side and used the
approximations 1% , =el,,and uﬁi =U’, justified when & is small. The poloidal component of
Faraday’s law [Eq. (40)] and the parallel component of Ampere’s law [Eq. (36)] simplify to

(100)
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and

Vi = 4nJy (101)

Finally, the system is completed by the inclusion of the flux-force relations given by Egs. (90)
and (32). It proves advantageous to replace Egs. (90c) and (32) by

m

5\l
(B)) = (as — JSaly ™ Te"j [J” +8an,T, (1131141 + lazAz)] ; (102)

in which (Ejj) is taken to be a flux and Jj a force.

Just as in the case of arbitrary aspect ratio discussed in Section 2.B, the quantities B, and y g
can be eliminated using Eqgs. (95) and (96). This leaves the variables v, Ej,n,,1,,T;,Jj to be
determined from the remaining equations [Eq. (97) and on], which can be considered to
constitute a poloidal system. We consider the state of the plasma to be characterized by the flux
functions n,,T,,T; and Jj, and proceed to investigate how to evolve the state in time,
determining along the way all other associated parameters. We observe that the time evolution
of n,,T,,T; can be obtained from the moment equations. The geometry factors a and A’
required in these equations can be obtained by solving the parallel component of Ampere’s law
[Eq. (101)]. It remains to find means to advance J“ in time, for which we have at hands the last
three equations of the set [Egs. (100-102)]. The peculiarity of these three equations is that while
Faraday’s law involves the full poloidal dependence of Ej| to describe change of flux surface
shapes, only (E”) appears in Ohm’s law. Had a local form of Ohm’s law been obtained, such as
would be the case if (E”> in Eq. (102) were replaced by £, it would be possible to eliminate E|
and Jj from the system, obtaining thereby a standard 2-D diffusion equation for the poloidal flux

w. Asitis, the system presents a nonstandard mathematical problem.

The difficulty of solving the neoclassical transport problem with shape changes of flux
surfaces is well known and methods have been proposed for its solution [6,18,19]. In our
discussion, we have traced the source of the difficulty to the nonlocal nature of Ohm’s law. But
we refrain from a discussion of possible methods of solution. Difficulty also occurs when
resistive MHD theory is applied to describe the combined evolution of plasma and magnetic field
[20]. However, the mathematical nature of the problem is not the same as the neoclassical

transport problem.
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4. SUMMARY

We have obtained both new and old results in our work. The old results have been derived
using a new method that is mathematically rigorous and avoids the use of variational principle.
The new results consist of filling in vacant parts in existing works, obtaining the transport
equations in a more transparent form, and providing new understanding to the mathematical
nature of the transport problem. Putting them together results in this document, which we hope
can serve as a self-contained comprehensive description of neoclassical transport theory in the

banana regime for large aspect ratio tokamaks.

Using the method of matched asymptotic expansions, we are able to analytically calculate the
transport coefficients, providing justification for the use of a simplified collision operator. In this
method, separate treatments are accorded to the freely circulating particles, which represent the
majority of particles affected but slightly by the magnetic mirror, and the slow particles that are
greatly affected. For the latter, we have reproduced the existing distribution functions by means
of a consistent approximation to the collision operator. For the former, we have derived
equations and boundary conditions that are not previously known, but are nevertheless essential
in justifying the calculation of transport fluxes using only the distribution functions of the slow
particles. The fluxes share a common geometry factor that has been obtained in a form accurate

to leading order in an inverse aspect ratio expansion.

In addition, we have calculated the corrections to the transport coefficients due to departure
from the asymptotic banana regime, using an extension, to general geometry, of an existing
treatment of the boundary layer in the region of slow particles that separates the trapped and the

circulating particles.

Finally, we have presented a complete set of field and moment equations in the cylinder limit
that describes the joint evolution of the plasma and the electromagnetic field in the transport time
scale. We have traced the origin of the nonstandard mathematical nature of the problem to the
special form of Ohm’s law in neoclassical theory, which relates a current density that is constant

on a flux surface to the average inductive electric field on that surface.

With the exception of angular momentum transport and the associated dynamical evolution
of the radial electrostatic field, the results in this paper are comprehensive, but are clearly very
restrictive. The generalization to realistic aspect ratios and wider ranges of collisionality while

maintaining the same degree of mathematical rigor is probably too hard an undertaking to be
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attempted by analytical means. In this regard, our results are best used as limits for checking
numerical works. An important part of the purpose of this work would be served if it has directed
attention to the many aspects of neoclassical transport theory that require careful considerations

if accurate results are desired.
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APPENDIX A
BOUNDARY LAYER

The analytic solution [Eq. (72)] for slow electrons and a similar one for slow ions in the
banana regime suffer from discontinuities in the derivative with respect to x? at the boundary
k%=1 separating trapped and circulating particles. This can be remedied when it is realized that
the perturbation treatment of collisions for Eq. (61) and its analogue for ions break down in a
thin layer across this boundary because terms with the highest derivative in k2 have been
neglected in a first approximation. In Ref. [5], a boundary layer analysis is described for circular
flux surfaces, showing how the discontinuity can be removed and obtaining a correction to the
diffusion coefficient. In the following, we shall adapt the analysis to flux surfaces of arbitrary

shape, and obtain corrections to all of the transport coefficients in the main text.

Consider first Eq. (61) for slow electrons. We can apply the transformation [Eq. (63)]
without requiring gg to be independent of the poloidal coordinate as implied by the perturbation

treatment in the main text. The function gg then satisfies the equation

+bh- Vgs

where the dependence on sign(&) is explicitly displayed. In the terminology of matched
asymptotic expansions, the solution [Eq. (65)] obtained by treating the collision term in Eq. (A1)
as small is called the outer solution. The inner solution applies in the range of variables for
which the two terms in Eq. (A1) are comparable, which turns out to be a layer with thickness of
order \/V*_; in k2 across the boundary k%=1 (see Fig. 1). In this layer, we can use the
approximation &, =~/2(1- B) in Eq. (Al). Using b-Vgi = (Vv x V6|/B,)dgE 130, Eq. (A1)
can be further simplified by replacing 6 by the variable ¢ for which

dp _ B, 1 [ (A2)

T <m> [V x Ve

where the safety factor g is given by

(A3)

_ b
1 27 Ry j;[waVGl
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and which has the range [-7,+7]. We also introduce the inner variable

n= vq’,‘;'l _ (A%)
HT<H>

which is allowed to vary between teo. With these transformations, Eq. (A1) in the boundary
layer becomes

+ 2 %
£ 985 _ 9785 (A5)

2 (9712

The boundary conditions at ¢ =+ are g§ (m)= gg‘L (—m) for n>0, which pertains to circulating
electrons, and g¢(7m)= 8s (£7) in the trapped electron region 1 <0. The boundary conditions
for n=teo are dictated by the requirement of matching to the outer solution. The vanishing of
the outer solution for trapped electrons according to Eq. (72) requires g§ — 0 as n— —oo.

The solution of Eq. (A5) with the aforementioned boundary conditions has been obtained in

Ref. [5] using the Wiener-Hopf method. The most important aspect of the solution is that it has

the asymptotic behavior
g5 = tA(n+1.21) n—+o (A6)

with an arbitrary constant A, where the numerical constant comes from the evaluation

1.21=2(1-1/4/2 +1/3=--).

For completeness, we paraphrase the solution given in Ref. [5]. We first replace gf by
S=gi+ gs and D= gg’ — g, and seek solutions with the symmetry properties S(-¢)=-S(¢),
D(—@)= D(¢). [The symmetries S(—¢) = S(¢), D(—¢)=—D(¢) lead to the trivial solution.] In
the infinite strip between ¢ =0 and @ = 7, the boundary conditions are now as followed:

$=0, dD/dp =0 for =0, (A7)
S=0 for p=mn>0 , (A8)
D=0 for p=m nNn<0 . (A9)

General Atomics Report GA-A24103 39



S.K. Wong and V.S. Chan The Large Aspect Ratio Limit of Neoclassical Transport Theory

Introducing the Fourier transforms
Tdn Tdn
¢ = —ikn » - &l —ikn
S(k,p) = _j e N 5 (n,0) D(k.p) = L 7 € D(n,0) , (A10)

where Imk > 0 for the first integral and Imk <0 for the second to guarantee convergence in the
presence of nonvanishing values of S for 71— —eo and D for n— +eo, the differential equations

and the boundary conditions in Eq. (A7) are satisfied by
S(k,@) = — ¢(k) sinhk? g, D(k,0) = ¢(k)coshk?p (Al1)

where ¢ (k) is an arbitrary function. Imposing the boundary conditions in Egs. (A8) and (A9),
? dn _i = dn i
¢ = —_— =i n » = B ‘i T’
S (k,m) —_J‘ o S(n.7) D(k,) !)' 5 ¢ D(n,7) , (A12)

which imply that S(k,7) and D(k,7) are analytic in the upper and lower halves of the k planes,
respectively. We now write S(k,7)=—D(k,7)tanh mk? and, following Ref. [5], perform the
factorization tanh7k? = U (k) L(k) where

~1 -1
U(k) = (1 + Aij I1 (1 + Eli'] [1 + kiJ : (Al13a)

n#0 n n

-1 -1
L(k) = nkz(l - -;k—) IT (1 - ki)(l - 2"—} , (A13b)

kO n#0 n n

with k, = [ 4, &, = ln+1/2]e™'* for n<0 and k, =ne>™'*, k, = n+1/2>74

for n=0. As aresult,

S(k,7)

0 = - D(k,n)L(k) . (A14)

Since U has no zeros in the upper half plane and L has no poles in the lower half plane, the left
and right sides of Eq. (A14) are analytic in the upper and lower half planes respectively. They
also remain bounded as [k|— e because of the asymptotic behaviors U~1/k, L~k,
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S(k, ) ~ D(k,7) ~ 1/ k. From Liouvilles’ theorem, both sides of Eq. (A14) are equal to the same
constant, which will be denoted by A. Therefore the following solution is obtained:

+4-00 +o0 ] 2
S=—-A J‘ dke zanSmhk ¢ D=-A J‘ dkelkn l__c_(_)_s_}}_l_{_i_(e_ i (AIS)
sinh k27 L coshk“m

where the contours of integration is taken to be just below the real line. The asymptotic
behaviors as 1 — —eo can be obtained by closing the contours on the lower half plane, showing
both § and D to vanish. For 11— +oo, the contours are closed on the upper half plane. While §
still vanishes, D does not because of the pole at k =0. The residue at this pole for the integrand
is (i/m)(M+2-2/+/2 +2/+3 "), which leads to the asymptotic behavior [Eq. (A6)].

The asymptotic behavior [Eq. (A6)] is to be matched with the following expansion of the
outer solution [Eq. (65)]:

2....
P S SR Sl K21+ . (A16)

*/§< 1—1§>

The matching is made after transforming 1 in Eq. (A6) back into K’ using Eq. (A4), and leads

to

=\/V*eqR0 L g Ky = 1214 . (A17)

2+/2v <m>

As a result, the asymptotic behavior [Eq. (72)] is modified to become

fs— = a-—-1.21\/v*€qR0 L4 z0 E > too . (A18)

2«/'v<\/1—_‘;>

When this is used to evaluate fluxes in the same manner as described in the main text, the

transport coefficients L;; in Eq. (90) are replaced by L;; -7, Lj; where

1.21 — q Ry m
Ve = 1/2 ’\/ Vig = 53/21' ”Yig' ) (A19)
ee

4a <\/1——> e
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o 32
Ij =3 [dze™ (#+G) " o (A20)

5 x
Replacing A, f,0 by A; fio and v,, by v,; in Eq. (A18) gives the corresponding asymptotic
behavior for the distribution function of the slow ions. This leads to a modification of Eq. (84)

for U’. Keeping linear terms in the correction, the parameter y in Eq. (84) is replaced by

y—Yiy" where y; is given by a similar equation as Eq. (A19), and

% 2 < 2 < 2 < 2
b J-dxe_x xG’B/z/f dxe ™ x3 G’—J‘dxe"x x71 G'3/2/f dxe™* xG' . (A21)
y

0 0 0 0

For the ion heat flux, the coefficient L; is replaced by L; — viL/ where

oo 2 e 2 o 2
L=3 (J‘ dxe ™™ PG¥? -y J.dxe'x xG? —y f dxe " x3G’] : (A22)
0 0 0

Using the numerical results

ofodxe"xz (x“l, X, x3) G'¥? =(0.34,021,030) ,
0

it is shown that y"=~0.90 and L/ =1.04.

For the electron fluxes, the integral for L is logarithmically divergent. Since this can be
traced to the expansion in the electron-ion mass ratio, we approximate the integral with a cutoff

at \/m,/ m; . With the numerical results

ofodxe‘xz (x‘l,x, x3)(1+(;')3/2 = (070 = In fm./m;, 096, 1.12) |

0

the modification in the transport coefficients for a hydrogen plasma is found to given by
(Ll’l,Ll’z,Ll’3,lQ’2,Lé3,lé3) = (9.91, 2.87, 5.53, 3.36, 3.17, 4.06).

For circular cross section flux surfaces, using Q\/l - B) =2/m, we find that Ye =0.89/V,,,
Vi= 0.89\/5"; - It is then possible to give the corrected transport coefficients as follows. {The
coefficients (0.61, 0.95, 0.39, 1.00, 2.01, 0.56, 0.66, 1.00) of the correction terms can be
compared with those given in Ref. [7], which are obtained by fitting numerical solutions. The
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corresponding values are (0.88, 1.03, 2.01, 0.76, 1.02, 0.45, 0.57, 0.68), as deduced from
Eq. (6.133), Eq. (6.135) and Table III of Ref. [7]. The agreements are far less favorable than

those for the leading terms as noted in a earlier footnote. }:

y = L33 (1+0617,), L = 0.98(1-0.95/¥;),

L) =230(1-0.39.fV,,), L =2.56(1-1.00.7,, ). Lj3=246(1-2.01.f7,,)

Ly =539(1-0.56,V,. ), Lp3=432(1-066V,,) Ls;= 3.61(1-1.00,V,. )
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