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Abstract 

The fundamental origins of the stability of the (Pd-Ni)80P20 bulk metallic glasses 

(BMGs), a prototype for a whole class of BMG formers, were explored.  While much 

of the properties of their BMGs have been characterized, their glass-stability have not 

been explained in terms of the atomic and electronic structure.  The local structure 

around all three constituent atoms was obtained, in a complementary way, using 

extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor 

environment of the metals, and extended energy loss fine structure (EXELFS), to 

investigate the environment around P.  The occupied electronic structure was 

investigated using X-ray photoelectron spectroscopy (XPS).  The (Pd-Ni)80P20 BMGs 

receive their stability from cumulative, and interrelated, effects of both atomic and 

electronic origin.  The stability of the (Pd-Ni)80P20 BMGs can be explained in terms of 

the stability of  Pd60Ni20P20 and Pd30Ni50P20, glasses at the end of BMG formation.  

The atomic structure in these alloys is very similar to those of the binary phosphide 

crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P 

atoms.   Such structures are known to exist in dense, randomly-packed systems.  The 

structure of the best glass former in this series, Pd40Ni40P20 is further described by a 

weighted average of those of Pd30Ni50P20 and Pd60Ni20P20.  Bonding states present 

only in the ternary alloys were found and point to a further stabilization of the system 

through a negative heat of mixing between Pd and Ni atoms.  The Nagel and Tauc 

criterion, correlating a decrease in the density of states at the Fermi level with an 
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increase in the glass stability, was consistent with greater stability of the PdxNi(80-x)P20 

glasses with respect to the binary alloys of P.  A valence electron concentration of 1.8 

e/a, which ensures the superpositioning of the first peak in the structure factor with 

twice the Fermi momentum, was used to calculate the interatomic potential of these 

alloys.  The importance of Pd to the stability of the alloys is evidenced by the fact that 

replacing Ni with Pd places the nearest neighbor distances at more attractive positions 

in this potential.  
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1 Introduction 

1.1 Metallic Glasses 

When we mention to almost anyone outside of the solid-state-science 

community that we study metallic glasses, we should do so with enough time in our 

hands.  It may take some time to undo the experiential perceptions people have about 

“metals” and “glasses”.  Our experiences with metals are with wires and cables, load-

bearing structures, tools, machinery, jewelry, etc.  So, we think of a metal as being a 

good conductor of heat and electricity, hard and yet malleable and ductile, opaque, 

shiny and yet prone to tarnish over time.  Similarly, from our experiences with glass as 

used in window panes, lenses, storage wares, insulation, cutting tools etc., we think of 

a glass as being transparent, poor conductor of heat, an electrical insulator, hard but 

brittle, ages well. 

To the non-specialist, the properties of metals and glasses appear to be  

mutually exclusive!  So, is a metallic glass a good conductor of electricity, or is it 

insulating?  Can one see through a piece of metallic glass?  How far can they be bent 

before they break?  Metallic glasses behave very much like other metals in the sense 

that their electrical, magnetic and optical properties are very typical of metals, and yet, 

unlike traditional metals, which are crystalline, metallic glasses are amorphous.  It is, 

then, the common perception of “glass” that needs to be challenged.   
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1.2 What is a Glass? 

We all have a notion of what a glass is, but let us look at how it is defined by 

the Webster dictionary:  

glass n. 1. Any of a large class of materials with highly 
variable mechanical and optical properties that solidify from the 
molten state without crystallization, that are typically based on 
silicon dioxide, boric oxide, aluminium oxide, or phosphorus 
pentoxide, that are generally transparent or translucent, and that are 
regarded physically as supercooled liquids rather than true solids.   
 

How can glass be “solidified” from the molten state but at the same time not be 

regarded as a solid but rather as a “supercooled liquid”?   This dualism in the 

definition underscores some of the issues still being debated on the correct definition 

for glass.  Some consider glass to be a liquid while others call it a solid, and some 

insist that glasses must be formed from the liquid phase in order to distinguish it from 

amorphous materials formed by vapor deposition or by sol-gel processing.  It is 

perhaps best to define glass by its physical state rather than by its processing 

conditions or any composition-specific properties.  A consensus can probably be 

drawn with the following two necessary qualities of a glass.   

1. A glass is an amorphous material, meaning that, unlike a crystal, the atoms in 

glass are not arranged in a periodic lattice.  The glass may have short-range 

ordering, that is, restricted to the first few nearest neighbor distances.  An 

example of an exception to this general rule is the 6-membered boroxyl ring 

structure in glassy B2O3.  Glass has a disordered atomic structure similar to 
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that of a liquid.  A well-annealed glass with no residual stress is usually 

isotropic.  The glass is a solid because its viscosity is on the order of 1015 Pa⋅s.  

2. A glassy material is an amorphous solid that exhibits a glass transition. While 

all glasses are amorphous, all amorphous solids are not necessarily glassy.  The 

glass transition is a second order phase transformation, which means that it is 

marked (as a function of temperature) by a discontinuity in derivative 

quantities (e.g., specific heat or thermal expansivity), that is, a change in slope 

of extensive thermodynamic quantities (e.g., volume or entropy).  

 

As we see in Figure 1-1, the liquid can be cooled to either a crystal, or one of 

several metastable glassy states.  The different solidification paths depend on the 

different cooling rates at used for the solidification process.  If a glass is held at a 

temperature just below its glass transition temperature (Tg), it will eventually stabilize 

to the most stable of the possible glass structures.  As we see in the figure however, 

depending upon the cooling rate, the Tg could be Tg1 or Tg3.  Heating above Tg will 

drive the glass towards crystallization. 
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Although several glasses do exist in nature [1], naturally occurring metallic 

glasses have not been found yet.  Metals, due to the relatively weaker chemical bonds 

between atoms, can easily seek out stable crystalline phases in short time scales.  In 

fact, the discovery of metallic glass in the laboratory was serendipidous, at best [2].  

1.3 Discovery of Metallic Glass 

It was in the year 1959 that Pol Duwez found a non-equilibrium crystalline 

phase  in the Ag-Ge system as it was cooled very rapidly from the liquid state.  

Sensing that he was onto something that transcended the particulars of the Ag-Ge 

system, he chose to explore the chemically similar Au-Si system.  The X-ray 

diffraction pattern for the rapidly solidified Au80Si20 alloy, however, showed no 

evidence of any crystallinity at all. Duwez had accidentally discovered the first 

Figure 1-1: Density as a function of 
temperature showing the different states. 

    
Tg3 Tg1 
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amorphous metal quenched from the liquid state [2].  Soon afterwards, Cohen and 

Turnbull pointed out that this amorphous alloy composition was near that of a very 

low melting eutectic point in the equilibrium phase diagram [3], a favorable condition 

for glass formation in ionic glasses.  This simple criterion led to the discovery of 

another amorphous metal system, the Pd80Si20 alloy.  The question as to whether these 

were amorphous metals or metallic glasses was answered when these alloys were 

shown to exhibit a glass transition. 

Next, attention was paid to bulk amorphous alloys with low critical cooling 

rates for glass formation.  It was found that the Pd40Ni40P20 and Pd76Cu6Si18 glasses 

could be produced by water quenching to diameters up to 3 mm and 0.3 mm, 

respectively [4,5]. Subsequently, a flux treatment using a B2O3 medium was effective 

in increasing the maximum sample thickness for the Pd-Ni-P alloy during glass 

formation to about 10 mm [6, 7].  Until the 1990s, there was a long period in which no 

bulk glassy alloys except for the Pd-Ni-P and Pt-Ni-P systems were known.  All of  

the other metallic glasses known at the time required high cooling rates - on the order 

of 106 K/s. 

Over the last decade, various alloy systems have been found which can lead to 

bulk glass formation.  To name a few representative systems we will categorize the 

glasses into two families, those glasses which contain only metals versus those which 

contain metals and metalloids.  Examples of glasses containing only metals are the 

Mg-Ln-TM (Ln=Lanthanum, TM=Transition Metal) [8], Nb-Fe-Al [9] and Zr-Al-TM 

[10] systems.  Those which contain both metals and metalloids are, for example, the 
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Zr-Ti-TM-Be [11], the Pd-Cu-Ni-P [12], and the Pd-Ni-Fe-P [13] systems.  Of these 

glasses, the Pd40Ni10Cu30P20 is the current record-holder for being the bulkiest.  It has 

a minimum dimension of 72 mm at room temperature. 

What are the properties of interest in metallic glasses, and why is there so 

much interest in preparing them in the bulk form? 

1.4 Properties of Metallic Glasses 

Because metallic glasses lack crystalline structure, they also lack crystalline 

defects, such as grain boundaries and dislocations.  Without these defects, metallic 

glasses can have extraordinary mechanical properties such as high strength, high 

corrosion resistance and soft magnetic properties. 

The corrosion resistance can be understood from the fact that there are no 

crystalline grains present in the glass, and therefore no weak grain boundaries for 

chemical attack.  One may say that there are grain boundaries present but that they are 

at a nanometer scale since there may be well defined (crystal-like) local atomic 

structure.  The counter-argument for this is that these (pseudo) grain boundaries 

provide a more circuitous path for corrosion in comparison to polycrystalline 

materials.  More rigorously, the (“grain boundary” surface area)/(grain volume) is 

much larger for the metallic glass than its polycrystalline counterpart, so that less 

volume of material is removed per grain boundary area during chemical attack.  This 

idea has already been commercialized.  For example by Karta Technologies, Inc., have 
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has used rapidly solidified metallic glass structures in surface layers of steel 

superheater tubing coal-fired power plants. Coal ash corrosion is a leading cause of 

failure in tubes made of austenitic steels.  The development of these corrosion-

resistant glass coatings can have a significant impact on the electrical utility industry 

Figure 1-2: The unique blend of high strength and high elastic limits in metallic glasses [ref: 
http://www.er.doe.gov/feature_articles_2001/June/Decades/26.html] in comparison to various 
other materials.  The tensile fracture strength and the Vickers hardness for typical bulk metallic 
glass are also shown in comparison with those of typical crystalline alloys[14] . 

Elastic Limit (%) 
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by saving the materials costs involved in replacing superheater tubes, reducing 

downtime, and reducing the probability of a catastrophic failure. 

The mechanical properties of metallic glasses combine the high strength of 

steels with the high elastic limit of polymers (Figure 1-2) [14].  This means that large 

amounts of elastic energy can be stored in metallic glasses, which is released with 

complete recovery of the original material.  This, combined with the high fracture 

tensile strength makes metallic glass an excellent candidate for tools for cutting or 

writing, springs, sporting goods, etc.  Indeed, the first commercialization of bulk 

metallic glasses has been of golf clubs! 

1.5 Bulk Metallic Glass 

Over the last decade there has been a rapid expansion in the field of metallic glasses 

with the discovery of processing techniques and alloy compositions that allow bulk 

glass formation [15, 16].  A distinction should be drawn now between a metallic glass 

in general, and a bulk metallic glass (BMG).  

There is really no agreed standard for what minimum dimension graduates a 

metallic glass to a BMG.  Yet, it is tacitly accepted that a BMG should have a 

minimum dimension > 1mm.  There is no real logic for making this delineation, 

except for the fact that it cleanly separates the regime of binary metallic glasses from 

those (in the right composition) containing more constituent elements.  For example, 

an alloy of Pd, Ni, Cu or binary alloys of transition metals (Pd, Ni, Cu, etc.) and 
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metalloids (P, Si, etc.) do not form BMGs, their minimum dimension remaining < 

1mm, or conversely, requiring critical cooling rate > 103 K/s.  The Pd-Ni-P system on 

the other hand has a critical cooling rate lower than 1 K/s and, as mentioned above, 

can have a minimum dimension of a centimeter.  Experience has shown that at least 3 

elements are needed to produce glasses of minimum dimensions > 1mm. 

At the minimum thickness of BMG, the high strength and high elastic limits of 

metallic glass can be taken advantage of over larger dimension of devices.  As 

mentioned before, the first commercialization of a BMG was in the manufacture of 

golf clubs, taking advantage of a highly elastic club/ball collision and therefore a very 

efficient transfer of the energy that is stored on a swing.  

Hand in hand with a large minimum dimension is of course a low critical 

cooling rate for glass-formation.  A low critical cooling rate, furthermore, implies that 

the glass forming system has a wide temperature range where it is below the melting 

temperature, but still remains a liquid.  Conversely, as the glass is heated to above Tg, 

the temperature range over which the glass will remain a supercooled liquid before it 

crystallizes at Tx, will be correlated to the minimum dimension of the glass.  This is 

what we can say intuitively, and, in fact, that is borne out empirically [17] .  It is found 

that linearly correlated with increasing temperature range of the supercooled region 

(Tx-Tm) is the  minimum dimension of the solid glass [Figure 1-3].  
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With this large supercooled region, which was not available in for the binary 

metallic glasses, it has become feasible to implement net-shape forming technology of 

glass manufacture to the manufacture of metals.  Glasses can now be heated to a point 

above Tg but below Tx, the supercooled liquid be allowed to flow and then cooled 

back to a glass, thus allowing the casting to take place at a temperature much lower 

than the melting temperature. This has significant cost-saving implications, for 

example in the production of complex shapes by direct casting, without the need for 

expensive machining.   

Figure 1-3:  The relationship between the 
maximum thickness (tmax), the critical cooling rate 
(Rc) and the width of the supercooled region ∆Tx.  
Data compiled by Inoue [17 ] 
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2 Objective: A Study of the Stability of Bulk Metallic Glasses 

The promise of a host of new combination of properties in a bulk glassy alloy 

has motivated extensive work over the past decade towards the discovery of new 

BMG systems.  Much of the attention in research has been given to increasing the 

minimum dimensions in these glasses while keeping the materials cost down, and in 

tailoring their properties by the addition of new constituent elements.  The result has 

been that BMG systems have become increasingly complex, with 5 or 6 constituent 

elements not uncommon. 

However, very little attention has been given to developing fundamental 

understanding of how the atomic and electronic structure drive the stability of the 

glass.  Some empirical rules have been developed over the years. Glass stability has 

been explained to some extent by different criteria that are based on the suppression of 

the nucleation of crystals [18], the suppression of the kinetics via the “confusion 

principle” [16], and atomic size effects of the constituent elements [19].  Yet, the same 

question has not been adequately addressed from the viewpoint that the stability of the 

glassy phase originates from a combined contribution of the atomic and electronic 

structure of the system.  Since the “bulk” nature of new glassy alloys is central to the 

rejuvenated scientific interest in them, a basic question needs to be answered: what 

determines their easy glass forming ability or the stability of the glassy phase in 

general?  What are the origins of these empirical rules for bulk glass formation from 

the point of view of atomic and electronic structure?   We propose to answer these 
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questions.  To achieve this, we selected a model BMG system and investigated its 

atomic and electronic structure. 

2.1 The Pd-Ni-P BMG System 

The Pd-Ni-P alloy system is the simplest prototype of a BMG [20]. With three 

constituent elements a study of the structure of these glasses remains tractable in 

comparison to other BMGs that often contain five or more elements. This system 

offers a wide range of bulk glass formability, with Pd40Ni40P20, as the most stable glass 

composition in the Pd-Ni-P series [21].  It is being used as a starting structure for bulk 

glasses in which the properties can be tailored by the substitution of Pd and Ni by 

other transition metals.  For example, Shen et al. [22] have found that by substituting 

the Ni with Fe, the paramagnetic Pd40Ni40P20 glass can be transformed to exhibit 

superparamagnetic, ferromagnetic and spin-glass behavior depending on the 

temperature and the applied magnetic field.  

Bulk glass formability of Pd-Ni-P centers around a narrow range of P 

concentration of about 20% [23].  Attempts to construct the structure of Pd-Ni-P 

glasses have, therefore, concentrated on the binary crystalline phases closest to Pd80P20 

and Ni80P20, viz. the low symmetry Pd3P and Ni3P crystals.  It is known that the 

crystalline Ni3P and the Pd3P phases contain tetradecahedral structural motifs [24, 25 

respectively], which can best be described as trigonal prisms in which the three square 

faces are capped by half octahedra, with P sitting in the center of the prism.  This 
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structure was found by Bernal [26] from the analysis of his model of dense random 

packing of hard spheres (DRP).  Cargill [27] found the structure of glassy Ni76P24 to 

be very close to that of DRP indicating a close structural link between the crystal and 

the glassy structure of Ni3P.  Maitrepierre [28] studied thin foils of PdxNi(80-x)P20 

glasses, with x=32-73, and found that their structure compares well with that of a 

model structure of  a Pd rich Pd3P.  More recently, Otomo et. al. [29] found by neutron 

inelastic scattering that the vibrational modes of the Pd40Ni40P20 glass are best 

modeled by fundamental units of the trigonal prism symmetry (D3h), once again 

pointing to Ni3P and Pd3P- like local environment in the BMG.   

We shall investigate the applicability of Pd3P and Ni3P motif in describing the 

structure of PdxNi(80-x)P20  glass.  This will be done by examining both the atomic and 

electronic structure, and their inter-relationship.  Further, we shall attempt to study the 

glass stability in this prototypical system by observing at the changes in the structural 

features upon crystallization.  Some general criteria for glass stability will be 

developed on the basis of our findings. 

2.2   Structural Probes 

We have chosen three techniques to examine the electronic structure and the 

atomic structure of the PdxNi(80-x)P20 glass.  The occupied electronic structure was 

examined by X-ray Photoelectron Spectroscopy (XPS).  The atomic structure was 

examined by extended X-ray absorption fine structure (EXAFS) and, its electron 
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analog, the extended energy loss fine structure (EXELFS), in order to reveal the partial 

radial distribution function (PRDF) of atomic neighbors around a central atom.  The 

word “partial” here indicates that the results are specific to the element involved in the 

ionization process. 

2.2.1 EXAFS and EXELFS 

The fact that EXELFS and EXAFS provide element-specific PRDFs gives 

them an advantage over X-ray diffraction, which yields only an averaged total RDF.  

This feature allows even complex multi-component structures to be determined, if the 

information around all the elements is accessible.  With chemical and isotopic 

substitution, partial structure factors can be obtained also from X-ray and neutron 

diffraction, respectively.  However, since no such substitution in the system is required 

in order to get partial structural information, the combination of EXAFS and EXELFS, 

remains a powerful set of experimental probes into the atomic structure.  

 EXAFS has been studied extensively in the past [30, 31, 32]. EXELFS, on the 

other hand, has received very limited attention because poor counting statistics and the 

possibility of beam-damage from prolonged irradiation have discouraged the 

development of this technique to its full potential.  This is unfortunate, since, in fact, 

EXELFS carries a niche in that it is particularly suitable for the study of low atomic 

number elements, where EXAFS has difficulties. 

As the synchrotron X-rays do in EXAFS, in EXELFS the incident electron 

beam in a transmission electron microscope (TEM) ionizes an atom and the resulting 
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ejected electrons occupy energy levels in the conduction band of the sample.  

However, accessing the K-edges below 3 keV becomes problematic in EXAFS since 

absorption at these energies requires sub-micron sample thickness for transmission.   

Fluorescence EXAFS is possible for low atomic number elements, but that requires 

placing the sample chamber in vacuum, something most EXAFS end-stations are not 

set up for.  Since the incident electrons in a TEM can be focused with magnetic lenses, 

EXELFS offers the unique ability to obtain atomic and electronic structure on a 

nanometer-scale spatial resolution. Further, since TEMs operate in high vacuum and 

use thin specimens, EXELFS is especially suited to K-edge analysis of low atomic 

number elements. 

EXELFS is obtained from an electron energy-loss spectroscopy (EELS) 

spectrum. Downstream from the sample in a TEM, the Parallel Electron Energy-Loss 

Spectrometer (PEELS) provides a unique capability of acquiring information on the 

atomic structure.  EELS provides a unique capability of acquiring information on the 

atomic and electronic structures on a nanometer-scale, manifested as fine structures 

appearing on ionization edges of the element of interest. When the incident electron 

beam ionizes an atom in a sample, the resulting ejected electrons occupy energy levels 

in the conduction band of the sample and thereby modulate the energy loss 

characteristics of the incident electrons.  In electron energy-loss spectroscopy these 

modulations appear as oscillations beyond the ionization edge.  In the first 50 eV 

beyond the edge, the ejected electrons probe the chemical bonding states that appear 

as the energy-loss near-edge structure (ELNES).  The modulations at higher energies, 
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the extended energy loss fine structure (EXELFS), reflect the interactions between the 

ionised electron and the potentials of surrounding atomic neighbours.  The X-ray 

absorption analogy is, of course, XANES and EXAFS.  

The EXELFS and EXAFS oscillations can be expressed as a function of k, the 

momentum transferred to the ionised electrons.  This function, χ(k), has the following 

form for a Gaussian pair distribution function [33, 41]: 

 

[2.1] 

 

where Fj is the backscattering amplitude, S0 is the many-electron overlap factor 

(also known as the amplitude reduction factor) from shake-up or shake-off effects of 

bound electrons, λ is the mean-free-path of the photoelectron through the medium, 

2σj
2 is the Debye-Waller factor, and φ(k) is the phase shift between the outgoing and 

backscattered photoelectrons.  Nj is the number of neighbors in a shell of atoms at a 

distance rj, and Nj/rj is the Gaussian approximation of the partial radial distribution 

function (PRDF).   

The useful momentum range that is accessible using EXAFS and EXELFS is 

less than that of X-ray or neutron scattering.  This is because in diffraction the 

information begins from zero momentum transfer, q=0, whereas in EXAFS and 

EXELFS the information at low mementum transfer, k ≤ 2.5 Å-1 is not used because in 

this range it is susceptible to multiple scattering effects.  We have used both q and k to 
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refer to momentum transfer.  They are, of course, related, and the different symbols 

stem from the different conventions adopted by the diffraction and the EXAFS 

communities.   In the case of the latter, the scattering path of the radiation is a round 

trip.  We see this in the Fourier component of χ(k), which is (2k*r), whereas in 

diffraction experiments it is (q*r).  The range of 2k in EXAFS experiments is less than 

twice that of q in diffraction experiments; 2.5 ≤ 2k ≤ 30 Å-1 whereas 0 ≤ q ≤ 15 Å-1 

[34].  This, therefore, renders the (k*r) factor to be slightly less than (q*r) and so the 

amount of information obtained from EXAFS is less than from diffraction. 

This shorter momentum range limits the resolution of the distribution function 

in real space.  This can be a costly problem, especially in the determination of the 

structure of a system that is inherently disordered.  For the most part, though, one has 

to be satisfied with a semi-quantitative or even a qualitative description of the 

structure.  This can be done by the direct interpretation of the real-space or 

momentum-space distribution functions as long as one takes into account the 

contributions from the changes in phase shifts and scattering amplitudes.  In order to 

get more quantitative information, one can perform a least-squares fit of the 

experimentally derived distribution function with that which is calculated for a model 

system.  This scheme is wrought with complications for systems with low symmetry, 

such as the Pd3P crystal.  In a later chapter we shall make a case study of quantitative 

EXAFS of the Pd3P crystal, and attempt to modify the model to the Pd-Ni-P glass 

system.   
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2.2.2 XPS 

XPS was born out of two Nobel Prize winning bodies of work.  The first is the 

photoelectric effect, for which Albert Einstein received the Nobel prize in 1921.  The 

second is for the work by Kai Siegbahn and his research group who developed the 

technique in the mid 1960s.  Siegbahn was awarded the Nobel Prize for Physics in 

1981 for his work on XPS.  

The process of photoionization can be considered in the following way: 

 

X + hν -> X+ + e- 

 

   Conservation of energy then requires that : 

 

 E(X) + hν = E(X+ ) + E(e-)  

 

   The final-state energy of the photoelectron at the vacuum level, E(e-), is the 

“kinetic energy” measured by the detector, which, of course, has the work function, w, 

of the detector added to it.  So, the kinetic energy measured by the detector, is given 

by K = E(e-) + w and so: 

 

K = hν + w - [ E(X+ ) - E(X)] 
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The final term in brackets, representing the difference in energy between the 

ionized and neutral atoms, is generally called the binding energy (B) and so: 

 

B = hν + w - K 

 

For XPS, hν is usually 1486.6eV (Al Ká) or 1253.6eV (Mg Ká).  The XPS 

technique is highly surface specific due to the short range of the photoelectrons that 

are excited from the solid, and w does not need to be explicitly known, since it only 

provides a constant shift to the scale.   One might ask about the work function of the 

sample itself.  Since work function is dependant on the composition of the sample, 

how can compositionally different samples be compared on the same scale without 

explicit knowledge of the samples?  The answer is simple.  The amount of kinetic 

energy lost due to the work function of the sample as the electron is leaving is 

regained when the electron is entering the detector.  Since the detector work function 

is a constant, the binding energy comparisons of compositionally different samples    

remains valid. 

The value of B is unique for most transitions of elements in their elemental 

state, and so deviations of the value of B (observed as the maximum in a peak-shape) 

from these standard values indicate deviations in chemical environment.  The shape of 

the peaks can also change with subtle changes in chemical environment. 

The value of K=0 is usually chosen by the Fermi level of a metal standard used 

and the experiment is conducted with the Fermi level of the sample in equilibrium 
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with that of this standard.  The inflection point on the top of the valence band of this 

standard metal is typically chosen as the Fermi level.   
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3 Experiments 

Three different structural probes were used to examine the electronic and the atomic 

structure of Pd-Ni-P alloys.  Extended X-ray absorption fine structure (EXAFS) and 

its electron counterpart, extended energy-loss fine structure (EXELFS) were used to 

study the atomic structure while the valence and core-level electronic structure was 

probed using X-ray photoelectron spectroscopy (XPS).  Bulk samples of glassy 

Pd30Ni50P20, Pd40Ni40P20, Pd60Ni20P20 and Pd3P alloys were prepared by water 

quenching the melt.  The details of the processing of the alloys can be found 

elsewhere35.  Thin foils of glassy Ni80P20 were prepared by an autocatalytic reaction 

between NiSO4.2H2O and Na2H2PO2 [36]. 

3.1 EXAFS 

3.1.1 Sample Thickness 

In the transmission EXAFS experiment, the flux of X-rays incident on the 

sample is monitored by the current in an ionization chamber (I0) (see Figure 3.1), and 

the flux of x-rays transmitted through the sample is measured by a second ionization 

chamber current (It).  If the sample is of uniform thickness x, the x-ray absorption 

coefficient µ(E) of the sample is given by I = I0 exp(-µx), or µx = ln(I0/It). 

Downstream from chamber measuring It the beam can transmit through a reference 
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and then enter a third ionization chamber (measuring Ir).   This is useful to have for 

energy calibrations.  The µ(E) of the reference is calculated in the same way as for the 

sample, with the It and Ir replacing I0 and It in the equation above. 

 

The absorption coefficient, µ(E), is related to the cross-section σ (cm2/g) and 

the density ρ (g/cm3) by µ = σρ ≈ σiρi = ρ Σ i (mi/M) σi.  The factor mi/M is the weight 

fraction of the element i in the sample.  The sample thickness required can therefore 

be calculated as:   

 x = ln (I0/It)/ {ρ Σ i (mi/M) σi}  

to satisfy that the value of ln (I0/It) be close to 1 which allows a significant change in 

absorption across the edge (edge step) but also enough transmission of X-rays through 

the sample for that change to be observed. The calculated thickness for the Pd and Ni 

K-edge energies for each sample are given below in Table 3.1: 

Figure 3-1: A schematic showing the experimental setup at a synchrotron beamline. 
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Table 3-1: The thickness in cm of the samples in cms  

3.1.2 Sample Preparation 

Bulk samples were thinned down to the appropriate thicknesses for 

transmission experiments, by grinding and polishing.  The Dimpler (described below), 

an instrument that is very useful for automated thinning of a selected region down to 

the order of tens of microns, came in very useful for creating areas of different 

thickness within one freestanding sample.  This allowed for EXAFS experiments to be 

conducted at different K-edge energies on the same sample while maintaining the 

appropriate thickness for those energies (Figure 3-2).     

 

As we can see from Table 3.1 the ideal thickness for the Pd edge for all the 

 Pd edge Ni edge 

Pd3P 0.01166  

Pd60Ni20P20 0.01012 0.00053 

Pd40Ni40P20 0.00879 0.00047 

Pd30Ni50P20 0.00815 0.00044 

Ni80P20  0.00036 

Figure Figure 3-2:  A schematic of a bulk sample for transmission EXAFS 
experiments with regions of differing thickness. 

Thinner center for Ni EXAFS. 

Thicker outer ring for Pd 
EXAFS. 
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samples is about 20 times that for the Ni edge. Lacking the precision in polishing 

controls beyond ~ 2 ìm when using the Dimpler, and ~ 5 ìm when using hand 

polishing, the Pd edge parts of the samples were thinned to about 90 ìm, while the Ni 

parts were thinned to approximately 5 ìm.  

For fluorescence detection, the samples were not thinned since it is a surface 

technique.  In this case, care was taken to ensure that the bulk samples were polished 

with a fine abrasive (1 µm diamond paste) for , and that the powdered samples were of 

fine particle size (400 mesh) . 

Glass samples were crystallized ex-situ in a quartz tube under N2 atmosphere.  

The samples were heated up to the crystallization temperature (Tx), held at Tx for an 

hour, and then cooled back down to room temperature before they were removed from 

the N2 atmosphere.  

3.1.3 Data Collection 

K-edge EXAFS of Pd30Ni50P20, Pd40Ni40P20 , Pd60Ni20P20, Pd3P and Ni80P20 

were measured in transmission at the X23A2, X15B and the X18B beamlines of the 

National Synchrotron Light Source at Brookhaven National Laboratory.  The 

beamlines were equipped with Si (311), Si (111), and Si (111) mochromator crystals, 

respectively.  Data were processed using the WinXAS 97 software [39].  The process 

consisted of a background subtraction, conversion of data from energy space to k 

space, isolation of the oscillation, and weighting by kn to correct for the decaying of 

the amplitude.  Further, the function χ(k)kn was multiplied by a square-Gaussian 
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envelope function, to eliminate artifacts of the subsequent Fourier transformation, 

FT[kn * χ(k)]). FT[kn * χ(k)]) is proportional to the partial radial distribution function, 

or the statistical distribution of atomic neighbors, around the central atom being 

probed. 
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3.2 EXELFS  

3.2.1 Sample Preparation 

For EXELFS, the transmission electron microscope samples of the alloys 

Pd30Ni50P20, Pd40Ni40P20 , and Pd60Ni20P20 were prepared in the following way: 

 

1. First, cross-sectional discs (~ 1 cm diameter) were cut from the sample rods 

to thickness below 0.3 mm using a Struers Acutom 50.  The discs were then 

tripod polished with 3 µm diamond paste down to the range of 50-100 µm sample 

thickness. 

2. Smaller discs of 3mm diameter (the standard size for samples in TEMs) were 

punched from the samples and were then thinned to ~ 10 µm using a VCR Group 

Inc. D500i Dimpler.  

3. The samples were then thinned down to electron transparency using a GATAN 

691 Precision Ion Polishing System.  A low accelerating voltage of 3-4 keV and a 

shallow incident angle were used for the beam of Ar ions.  A thickness of 0.2*λi 

was obtained, where λi is the inelastic mean free path (~ 50 nm), under a 350 kV 

beam.   
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3.2.2 Data Collection  

A JEOL 4000 FX microscope was used for acquiring P K-edge electron energy-loss 

(EEL) spectra with a parallel EEL spectrometer (Gatan 666 PEELS) at ~100 K sample 

temperature and using a 350 keV source.  EELS was carried out indiffraction mode, 

meaning that a diffraction pattern was at the plane of the objective aperture.  In this 

mode, the collection angle, β, which is the angle over which the scattered beams are 

collected by the PEELS spectrometer (Figure 3-3), is controlled by the size of the 

entrance aperture to the spectrometer, and the camera length, L, which is the distance 

between the specimen and the viewing screen in a microscope.  In order for β to be 

large enough to capture all those electrons which suffered up to a specific energy loss, 

an appropriate range of values for L can be calculated using the relation: 

β = (2E/γm0ν2)1/2 ≈ d/L 

where d is the aperture size, γ is the relativistic factor and ν is the velocity of the high 

voltage electrons, and E is the energy-loss of interest.  For energy losses in the range 

of the P-K-edge, a relatively low camera length (< 800 mm) had to be used while 

using the largest entrance aperture (5 mm). 

 

3.2.3 Data Extraction 

Dark counts were subtracted from the raw spectra.  Channel-to-channel gain 

variations were removed by dividing the spectrum with the difference function 
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between the pre-edge background and a power-law fit of this background.  

Contribution of plural scattering (defined as the case when greater than 1 but less than 

twenty 20 scattering events occur by the incident beam) [37] was removed by applying 

Figure 3-3: A schematic of the PEELS system, showing the path of the 
inelastically scattered electrons from the microscope to the detector 
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the Fourier-ratio deconvolution (Egerton, 1996).  The remaining data processing is 

common to both EXELFS and EXAFS. 

 

3.3 XPS 

Core-level and valence-band XPS spectra were obtained for all the samples with a 

Scienta ESCA-300 spectrometer using Al Kα (1486.7 eV) x-rays, with a rotating 

aluminum anode and a high-resolution hemispherical electrostatic analyzer.  The surface 

of each specimen was mechanically cleaned in high vacuum (10-7 Pa) with a diamond 

tool before recording a spectrum.  The Fermi energy of Ag was used as zero on the 

binding energy scale, and the Fermi levels of the samples were in equilibrium with 

that of Ag through proper electrical contact.   

 The spectra were acquired and analyzed using the WinESCA software. 

Whenever the background was isolated from any peak, a Shirley [38] background was 

chosen and fitted over a suitable energy range encompassing the peaks.   
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4 EX(AFS/ELFS) Data Reduction and Its Effects 

 
EXAFS and EXELFS data were processed using the WinXAS 97 software [39].  The 

process consisted of a background subtraction, conversion of data from energy space 

to k space, isolation of the oscillation, weighting of the function χ(k), and the 

subsequent Fourier transformation to real space.  FT[kn * χ(k)]) is proportional to the 

partial radial distribution function, or the statistical distribution of atomic neighbors, 

around the central atom being probed. 

4.1 Data Reduction 

 
WinXAS 2.1 package was used for data processing.  The program performs the 

following steps: 

1. A pre-edge and a post-edge background subtraction using a 1st order 

polynomial for the pre-edge and a low order polynomial for the post-edge 

(1st or 2nd order). 

2. Conversion from energy space to k-space. The magnitude k of the 

wavevector of the ejected electron is given by:  

[ ] ( ) 21
0
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0 123.5/22 EEEmk kin −=≅= hλπ
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where Ekin is the kinetic energy of the ejected inner-shell electron and E0 

the energy corresponding to Ekin = 0.  Here, the inflection point of an edge 

was taken as E0.  
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Figure 4-1: A flow-chart showing the first six steps of data treatment of EXELFS and EXAFS spectra. 
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3. Isolation of oscillatory component of EX(AF/ELF)S (χ(k)function) by 

using a cubic spline function, which is a cubic function with nodes, where 

the number of nodes can be chosen. The k-range of the data is divided into 

several regions, and separate cubic polynomials are fit to the data over each 

region. The cubics are constrained so the values, and the first and second 

derivatives match at the nodes.  

 

4. Correction for k-dependent decaying of the amplitude of backscattering by 

weighting χ(k) with kn. 

5. Damping both ends of k-range of interest χ(k) by multiplying an 

appropriate background function.  A square Gaussian function was used to 

achieve this. 

6. Fourier transform of χ(k) to real space FT[kn * χ(k)]). 

7. Correction for phase shifts. If the phase shift function φ(k) can be 

approximated as a linear function of k, φ(k) = φ0 + kφ1, the r-value 

corresponding to each Fourier transform, FT, peak increases by φ 1 .  

Tentative phase-shift correction can be applied qualitatively by using the 

above equation and assuming the phase shift is linear in k-space.  This does 

not need to be done if only experimental spectra are compared and it is 

believed that the backscattering phase does not change much upon 

composition change. 
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8. Finally, the FT[kn * χ(k)] is fitted with that of a model system using an ab 

initio code.  

 

4.2 The Effects of Each Data Reduction Step 

We shall now examine in more detail the effects of the various parameters on 

the data reduction scheme.  Please refer to D.E. Sayers and B.A. Bunker [40] for 

further reading on this topic.  

4.2.1 Normalization 

In EXAFS experiments, the exact concentration of the absorbing atom is often 

not known and also a variety of materials such as the detector windows, and the 

sample matrix itself add unknown absorption terms to ln (I0/It).  Actually, the 

measured µx is the absorption coefficient of everything between the two ionization 

chambers, including air, entrance and exit windows, etc. Furthermore, the sensitivities 

of the ionization chambers decrease with increasing x-ray energy, so there are a 

number of extraneous factors that multiply the ratio I0/It. When the logarithm is taken, 

these multiplicative factors are transformed into a slowly varying additive background, 

which is easily subtracted out in the background subtraction.  The extraneous materials 

in the beam path are not of concern, as long as they do not contain the elements being 

measured and they do not attenuate the beam very much. 
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As we have said, our method of determining the edge step is to fit first the data 

from a hundred eV or so below the edge using a linear function and also to fit the full 

range of data above the edge with low order polynomials (linear or quadratic), and 

then extrapolate them to the edge.  In the case of EXELFS, a higher order polynomial 

(5th) was necessary to fit the curvature of the rapidly decreasing post-edge spectrum.  

The difference between the pre-edge and post-edge fits extrapolated to the edge 

energy is the edge step, and is normalized to 1. 

Caution: one should not use an edge feature, such as the highest peak in the 

spectrum, as a measure of the edge jump, because such XANES features are strongly 

dependent on the environment of the absorbing atom, and are therefore unreliable 

indicators of the total amount of the absorbing atom present in the sample. The fitting 

method described above puts little emphasis on the XANES region which is quite 

variable and therefore unreliable for normalization purposes, and compensates for 

trends in the background.  

4.2.2 Choice of E0 

To convert to k-space, the value of E0, the threshold energy must be specified. 

Fortunately the precise value is immaterial as long as it is within a rydberg (13.6 eV) 

or so of the edge, and that it is consistent for standard and unknown. 

Physically, it makes more sense to choose E0 somewhere near the bottom of 

the edge, close to the Fermi level.  Since only relative shifts in E0 between standard 
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and unknown are important, it does not matter whether the half-maximum point on the 

edge, or the bottom of the edge, or the top, is taken.  

Relative E0 shifts primarily affect the data at low values of k, which are 

distinguishable from changes in other structural parameters. Thus. ambiguities in 

absolute E0 position, and small (< 3 eV) differences in relative E0 position, do not 

introduce corresponding ambiguities in structure, determination by EXAFS. The 

choice of E0 does pose significant uncertainties for k-space analysis in the XANES 

region, however. 

 

4.2.3 Conversion to k-space 

To be rigorous, conversion to k-space should be done before background 

subtraction so that the background fit does not preferentially follow the data at high 

energy (which oscillate slowly in energy space). This can be addressed ahead of time 

by collecting the experimental data on an even grid in k-space (which is possible with 

most data acquisition softwares), and therefore interpolation is performed when the 

change of variable is made. In any case, this turns out not to be an important issue in 

the end. A uniform grid in k- space is desirable so that standard discrete Fourier 

transform algorithms can be used. The sampling frequency must be high enough that 

the shortest wavelength in the data is sampled twice in a period, otherwise a rapid 

oscillation in the data may be confused with an oscillation at half the frequency. We 

have used a grid in k-space of <0.05 A-1, which is within standards. 
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5 Atomic Structure 

In this chapter we examine the atomic structure of the Pd-Ni-P system from a 

semi-quantitative approach.  We observe the atomic structure around all the 

constituent elements in Pd30Ni50P20, Pd40Ni40P20, and the P60Ni20P20 BMGs, in the 

corresponding crystals for some cases, and in the alloys near the binary compositional 

ends.  

The parameters that are of consequence in a qualitative discussion of the 

EXAFS and EXELFS results are: a) the distance and type of nearest neighbor, b) the 

coordination number of atoms at that distance, and c) the mean-squared displacement 

for a specific neighbor distance.   

The position of the peaks can be affected by the phase shift, but for the Pd and 

Ni distances, we have calculated the phase functions for the nearest neighbors to be 

nearly the same for the Pd3P and the Ni3P model structures.  The last of these is 

difficult to estimate if the entire peak of at that particular distance is not well resolved.  

The beat frequency for a peak splitting of ∆R is given by k=π/(2∆R) and the 

resolution, so the resolution limit is ∆R>=π/(2kmax), where kmax is the end of the k-

range used.  The mean-squared displacement can be obtained from a least squared fit 

(as you will find for the Pd3P structure in Appendix A), but for that a model of the 

structure is required.  Finally, the scattering amplitudes are different for the different 

elements, and this can lead to confusion as peak amplitudes are compared across a 

composition series. Please refer to the analysis of the Pd EXAFS as the interpretive 
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methodology to be used for the analysis of the local environments around Ni and P, to 

follow. 

5.1 Local Structure Around Pd: Compositional Trends 

In Figure 5-1a we have the comparison between the Pd FT[k2 ∗χ(k)] of three 

ternary BMG alloys as well for the Pd3P crystal.  We observe a continuous change in 

structure as a function of increasing Pd concentration.  The nearest neighbor (nn) 

environments of Pd in (Pd-Ni)80P20 glasses and the Pd3P crystal are shown in Figure 5-

1.  We can clearly see two distinct nearest neighbor environments, from 0.9 – 2 Å and 

from 2 - 3 Å in the Pd3P crystal, keeping in mind that these distances are not absolute, 

since amplitude and phase shift corrections have not been made for this structure.  

These two regions, in fact, delineate the two sets of nearest neighbor distances around 

a Pd atom, the Pd-P and Pd-Pd distances which are separated by an average distance 
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of about 0.7 Å.   Since we used information out to k=14.4 Å-1 for the Fourier 

transform displayed in Figure 5.1a, we are able to observe any splitting ∆R greater 

than π/(2 x 14.4) = 0.109 Å.  This is why we are able to see the separation of the Pd-P, 

Pd-Pd peaks in Pd3P, where the difference in average nearest neighbor distance is 

(2.931-2.485)=0.446 Å [25].   

We see that with the addition of Ni at the intermediate distances (between Pd-P 

and Pd-Pd distances) the peak at ~ 1.85 Å becomes less resolved, while at the same 

time we begin to see the peak at the intermediate distance of about 2.2 Å (which we 

may attribute to a Pd-Ni distance) increase in amplitude and thereby become better 

resolved.    
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The increase in amplitude of the peak attributed to the Pd-P distance (~ 1.8 Å) 

is large as one goes from Pd3P to Pd60Ni20P20 considering that only about 20% of Ni 

has been intruduced into the structure.  Further, the peak loses intensity in 

approximately the ratio of the concentration of Pd (Figure 5-1b).   A similar, and 

opposite effect takes place at 2.2 Å, where we may assume that Ni is being introduced 

to the structure.  If the peak at 2.2 Å is due to the Ni neighbors of Pd, then we observe 

a continuous substitution of Ni for Pd as we go from Pd3P to Pd60Ni20P20.   

The same is not true for the Pd-P peak at ~ 1.85 Å.  Here we see that with the 

addition of Ni, as we go from Pd3P to Pd60Ni20P20, and then further to alloys with 

higher concentrations of Ni, we do not observe any significant change in the 

amplitude. So, the peaks at the two distances are not changing in a concerted way as a 

function of composition.  Is it, then, possible to still consider the Pd3P crystal as the 

structural motif for these glasses?   

To answer this question, we look at the near-edge structure of the Pd edge in 

this series. For a selection rule allowed transition, as in the case of the K-edge, the 

near-edge structure in an X-ray absorption spectrum can be approximated by the 

density of states weighted by the transition matrix element.  In Figure 5-2 we observe 

the change in the local density of states in the conduction band at the Pd sites.  We see 

that this change is continuous, suggesting that the chemical environment around Pd in 

the glasses is similar to that of Pd3P with a continuous modification electronic 

structure as Ni is incorporated into the glass structure.  
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Once again, it is imperative that we not forget that the amplitude of a peak in 

|FT[k2 ·  ÷(k)]| is proportional to the coordination number but is also proportional to 

other functions that may have an influence.  It is possible that the tails of the Pd-Ni 

scattering paths in the region of the Pd-P paths provide the excess amplitude.  Without 

a rigorous fit of the experimental spectrum to a model one, we cannot be very certain 

of this.  The problem is that we do not yet have a model in which we have enough 

confidence! 

All is not lost, however.  We have at our disposal the imaginary part of the 

FT[k2 ·  ÷(k)], which gives us the phase information from the scattered electrons.  The 

difference in the peak positions of |FT[kn ·  ÷(k)]| and Im{FT[kn ·  ÷(k)]} (henceforth 

referred to as |FT| and Im{FT}, respectively) can be defined as δ.  This δ parameter is 
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related to the chemical environment of the excited atom as well as that of the scatterer 

[41].  If we compare the imaginary parts and the magnitudes of the Fourier transforms 

of the [k2 ·  ÷(k)] functions for Pd3P and Pd60Ni20P20, we should get further clues as to 

the types of nearest neighbors of Pd in the two cases through changes in δ. 

We observe in Figure 5-3 that the Im{FT} functions line up very well in the 

region of 2.2-2.8 Å where the Pd-Pd bonds occur.  More importantly, the δ for the two 

alloys in this region appears to be the same.  This tells us that the type of scatterer at 

this distance does not change upon the introduction of Ni into the system.   

An inspection of the region of the Pd-P bond, 1.7-1.9 Å, reveals that the δ does 

not change for this nearest neighbor.  Therefore, the incorporation of Ni into a Pd3P-

like structure in order to obtain Pd60Ni20P20, does not involve a change in the nearest 
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neighbor environment of Pd. 

In the region of 2.0-2.25 Å, however, we do begin to observe some changes 

occurring.  The Im{FT} function for Pd3P goes through a minimum and a maximum 

while that for Pd60Ni20P20 does not.  This tells us that there is a significant change 

occurring in the type of scatterer at the intermediate distances, which does not have 

any impact on the higher bond distances (Pd-Pd bonds) but leaves a scattering 

contribution at lowest bond distances (Pd-P bonds).  The Pd nn environment in 

Pd60Ni20P20, therefore, resembles a modified Pd3P structure, with new atomic 

neighbors (most likely Pd-Ni) at distances between Pd-P and Pd-Pd ones.  The peak 

due to these new atomic neighbors increases in amplitude with increasing Ni content 

(at the expense of Pd neighbors) and at distances in between Pd-P and Pd-Pd bonds.   

We are now in a position to attempt to model the theoretical EXAFS for the 

Pd60Ni20P20 structure using the Pd3P motif.  The following is a scheme for First an 8 Å 

cluster of Pd3P was created using its crystal structure.  Next, the theoretical scattering 

amplitude and phase functions for each of the scattering paths of the photoelectron 

were calculated using the FEFF 7 [42] program.  Since Pd3P has two non-equivalent 

Pd sites at each Bravais lattice point, two separate cluster calculations had to be 

performed, one for each of the two Pd absorbers.  The model functions were fit to the 

experimental through a least-squares analysis.  In doing so, the weighted contributions 

of each of the two Pd sites were used.  The details of the best fit of model Pd3P to 

experimental Pd K-edge data are given in Appendix A.  
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The Pd60Ni20P20 alloy was simulated by substituting some of the Pd-Pd 

distances with Pd-Ni ones to attain a stoichiometry of Pd3NiP.  As in the case of Pd3P, 

the fit used the weighted contributions of the two non-equivalent Pd sites.   In Figure 

5-4 we see the comparison between the experimental and model (from FEFF 7) |FT| 

plots for Pd3P and Pd60Ni20P20 alloys.    We can see that the region of Pd-P, Pd-Ni and 

Pd-Pd neighbors is very well accommodated by the Pd3P crystal with its the necessary 

Ni substitution. 

Taking this analysis further to now include all three bulk glass compositions, 

we see that in Figure 5-5 a discontinuity occurs in the region of the first peak, as we 

move from the Pd60Ni20P20 to the Pd40Ni40P20 glass.  At this position, the δ parameter 

for Pd60Ni20P20 glass is not the same as that for Pd40Ni40P20.  Going from Pd40Ni40P20 
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to Pd30Ni50P20 in the same region, we observe that there is no change in δ.  This 

implies that there is a change in the type of the average scatterer at the Pd-P distance 

as we go from Pd60Ni20P20 to Pd40Ni40P20, but the same is not true in the change from 

Pd40Ni40P20 to Pd30Ni50P20.   

If we believe that the structure around Pd in the three glasses are a part of a 

continuous series, then the |FT| function for Pd40Ni40P20 should be a linear 

combination of those from Pd30Ni50P20.  In Figure 5-6, we observe that the match 

between the simulated spectrum and the actual |FT| functions is particularly good in 

the region of the Pd-Pd distances, but there is a slight discrepancy between the width 

and distribution of the first major peak.  This peak is too narrow in the simulated 

spectrum, suggesting an overestimation of the influence of the Pd60Ni20P20 structure in 
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this region.  As we have seen in Figure 5-5, the Pd environment in Pd40Ni40P20 follows 

the Pd30Ni50P20 structure more closely. 

The compositional trends in the structure around Pd can be summarized as 

follows: 

1. The nearest neighbor distances in Pd60Ni20P20 glass can be resolved into 

the Pd-P and Pd-Pd distances similarly to the Pd3P crystal, with the 

exception that in the region where Pd-Ni distances are expected some 

additional peaks appear in the PRDF of the ternary glass.  This 

accommodation, of the new Pd-Ni neighbors, can be modeled by a 

Pd3NiP structure based on the Pd3P structural motif. 

2. The Pd local DOS in the conduction band is similar in the ternary 

glasses to that of Pd3P with a continuous change as a function of 

composition. 

3. In the region of Pd-P and Pd-Ni neighbors, the Pd40Ni40P20 and the 

Pd30Ni50P20 glasses are very similar to one another in the type and 

positions of these neighbors.  In the same region, the neighbors of Pd in 

Pd60Ni20P20 are, however, different in type.   

4. In the region of Pd-Pd distances, the atom types and the positions in all 

three glasses are the same and follow the Pd3P structure.   
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5.2 Local Structure Around Ni: Compositional Trends 
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We may begin the analysis of the local environment around Ni in the same 

manner as we have done for Pd.  We will compare the ternary glassy alloys along with 

the binary Ni3P in order to map the progression of the local atomic and electronic 

structure as a function of composition.  In Figure 5-7 we see that the addition of Pd to 

the Ni3P alloy to produce ternary alloys causes a discontinuous change in the 

conduction band electronic structure.  Unlike local environment of Pd atoms, the 

chemical bonding around Ni in the ternary glasses does not show a continuous change 

from the environment around Ni in the binary Ni3P crystal.  

If we now look at the nearest neighbors of Ni we see a progression of peak 

intensities in the region of Ni-Pd distances in |FT| (Figure 5-8) as we had around the 

Pd environment (Figure 5-1a).  As the Ni concentration increases, the peak 

corresponding to the Pd neighbor decreases.  However, the peak at the shorter distance 
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(at ~ 1.8 Å) first increases and then appears to decrease again in amplitude as a 

function of increasing Pd concentration.  The discontinuity in amplitude occurs at 

Pd40Ni40P20 as a function of Ni concentration.  The decrease in amplitude in this first 

peak as we go from Pd40Ni40P20 to Pd60Ni20P20 may or may not be real.  For now, we 

can say that in this coordination shell, these two glasses seem isostructural.   

We may continue, in analogy with our examination of the Pd environment, by 

asking whether or not Pd30Ni50P20, the BMG composition with the highest 

concentration of Ni is isostructural with Ni3P.  The phase information once again 

provides us with the answer to this.   In figure 5-9a we see that, indeed, the δ 

parameter does not change as Pd is incorporated into Ni80P20 to attain Pd30Ni50P20.  

However, in Figure 5-9b∗, we observe a change in δ in the first coordination shell, as 

we substitute some Ni atoms for Pd ones to go from Pd30Ni50P20 to Pd40Ni40P20.  The 

change from Pd40Ni40P20 to Pd60Ni20P20, again, is not accompanied by a change in δ.   

                                                 
∗   The careful reader will have noticed that the plots of |FT| for the ternary glasses in Figure 4.8b are not 
identical to those in Figure 4.7.  This is simply a result of a fact that the k-range of the data available to 
the author for Ni 3P is more limited than those for the ternaries and so in the first plot, for accurate 
comparison, Fourier transform was taken over this limited range for all the data.  This restriction was 
lifted for the ternaries in the later plot so that more detail could be revealed.   
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For the sake of completion we should look at a comparison between |FT| of 

Pd40Ni40P20 and a weighted average of the Pd30Ni50P20 and Pd60Ni20P20, as we had 

done for the Pd environment.  In Figure 5-10, we see that the match is good for the Ni-

Ni and Ni-Pd distances, but the amplitude is underestimated by the simulated plot in 

the region of the first peak where Ni-P distances should occur.   The Pd40Ni40P20 glass 

is closer to the Pd60Ni20P20 glass in this region, as we have already seen from the phase 

information.  Therefore, while the Pd30Ni50P20 glass is isostructural to the Ni3P crystal, 

the Pd40Ni40P20 glass is isostructural to the Pd60Ni20P20 glass. 

We can summarize the compositional trends of the Ni nearest neighbors in the 

following way: 
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1. The Ni local DOS in the conduction band of the ternary glasses are 

different from that of Ni3P,  while the change within the alloys is 

continuous. 

2. The Pd30Ni50P20 glass is isostructural with the Ni3P crystal, while 

Pd40Ni40P20 and Pd60Ni20P20 glasses are similar to the Pd30Ni50P20 glass 

only at the Ni-Pd distance. 

3. The Pd40Ni40P20 and Pd60Ni20P20 glasses are isostructural. 

 

5.3 Local Structure Around P: Compositional Trends 

We finally come to the local environment around P.  So far, we have 

discovered that there are at least two types of structural units, based on the Pd3P and 

the Ni3P motifs, that exist in the PdxNi(80-x)P20 glasses.  It is perhaps best to examine 

the structural changes in this composition range from the perspective of the P atom 

since it is the only element whose concentration is fixed across this range. 

In Figure 5-11a we see that the first main peak in |FT| moves to larger 

distances as a function of increasing Pd concentration, as expected.  At first glance, 

Pd40Ni40P20 seems to follow the structure of Pd30Ni50P20, albeit, with a slightly larger 

nearest neighbor distance. However, if we look in the same region in Figure 5-11b, we 

notice that the relative phase shift measured between the peak positions of |FT| and 

Im{FT} functions in Pd40Ni40P20 glass is the same as that for the Pd60Ni20P20 glass. 
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One important distinction can be drawn between the Im{FT} functions for the 

transition metal edges, versus that of P.  If we look back at the Im{FT} functions for 
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the Pd and Ni edges of the ternary glasses, we notice that the tendency is for these 

functions to remain aligned across the composition series.  That is, in the case of the 

electrons ionized from Pd and Ni, the potential field encountered by these electrons 

was nearly the same even as the average composition changed.  This is not the case for 

the electrons ionized from P atom electrons.  In Fig 5-11b we can clearly see that the 

Im{FT} does not remain aligned as a function of composition. The electronic structure 

around the transition metals is not very sensitive to the composition changes while that 

around P is.  If, indeed, the Pd3P and Ni3P structures are found in the ternary glasses 

then, in either case, P sits inside a cage of 9 transition metals.  P will most likely have 

chemical bonds with these metals due to the electronegativity difference between them 

and itself.   Therefore, the environment around P will be highly sensitive to changes in 

chemical bonding, and so, as we move from the Pd30Ni50P20 to the Pd40Ni40P20 glass, 

the Im{FT} functions for the two cases do not remain in phase.  We propose that 

being in phase would be a manifestation of the pseudo band-structure stabilization 

coming from an interference between the Fermi surface and the first peak in the 

structure factor.  This stabilization governs the phase alignment for the environment of 

the transition metals, but it fails in the immediate neighborhood of P.  We will explore 

this point further when we examine the electronic structure in these alloys. 

The δ parameter remains nearly equal between the Pd40Ni40P20 and the 

Pd60Ni20P20 while being different for differs from that of Pd30Ni50P20.  This leads us to 

conclude that the P nearest neighbor environment around P in Pd40Ni40P20 is similar to 



 55

that of Pd60Ni20P20 (which has been ascribed a modified Pd3P structure) but different 

from that of Pd30Ni50P20 (which has been ascribed the Ni3P structure). 
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5.4 Crystallization 

We have observed the changes in the local atomic structure as a function of 

crystallization.  In Figure 5-12 we show the change in local structure of the transition 

metals as a function of crystallization.  Both the |FT| and the Im{FT} functions are 

plotted for each composition and for each transition metal.   

We observe that the Pd60Ni20P20 glass undergoes very little change in the local 

atomic configuration of both Ni and Pd.  Ni-P distances (r < 1.8 Å) for this glass 

remain unchanged in both position and type, as we can ascertain from the Im{FT} and 

|FT| plots.  The same is true for the Pd-P distances.  As we move to the 2nd and 3rd 

peaks, we observe that upon crystallization, the Ni-Ni nearest neighbors increase at the 

expense of Ni-Pd ones, while the opposite happens for the Pd environment, where the 

Pd-Pd neighbors increase at the cost of Pd-Ni ones.  We can say the following about 

the process of crystallization of the Pd60Ni20P20 glass:  

1. In the process of crystallization a phase separation takes place whereby 

Ni atoms have an increase in Ni neighbors while sacrificing some Pd 

ones, and vice versa for Pd environment.  This change takes place with 

a minimum readjustment of the coordination environment around both 

the transition metals.  No shifts in either Im{FT} or |FT| at the TM-P 

(TM = Ni,Pd) distances indicate that for this glass, crystallization does 

not require breaking of nearest neighbor bonds with P. 
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2. Upon crystallization, the TM-TM distances increase, as seen by shifts 

in Im{FT}.  Since the density of this alloy increases slightly upon 

crystallization [43] (Figure 5-13), the increase of the Pd-Pd bond 

distance indicates that the Pd atoms are packing more efficiently upon 

crystallization. There is an increase in ordering for the Pd-Pd 

neighbors. 

 

Compared to the case of Pd60Ni20P20, the Ni neighborhood in the Pd40Ni40P20 and the 

Pd30Ni50P20 glasses undergo much more dramatic changes upon crystallization.  The 

effect of crystallization on the Ni-P distances in these alloys is difficult to resolve from 

changes in the Ni-Ni distances. However, what can be said unambiguously is that, 

unlike what we observe for the Pd60Ni20P20 alloy, there are increases in the amplitudes 

of both the Ni-Ni and the Ni-Pd neighbors in these two alloys.  That is, even if the 

increase in the Ni-Ni nearest neighbor peak amplitude does occur at the expense of 

decreasing Ni-Pd neighbors, the peak amplitude in |FT| is offset by an increase in 

overall ordering.
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Looking at the Ni and Pd environment for Pd40Ni40P20 we see from a no 

discernable change in δ upon crystallization even with the significant shift in |FT| to 

larger distances, indicating that all the nearest neighbors of the TMs in this alloy move 

to slightly larger distances upon crystallization without a change in the type of nearest 

neighbor. The fact the bond distance increase upon crystallization, is consistent with 

the increase in the volume of this glass upon crystallization from the data of Chen et 

al., but is contentious with that from Harms and Schwarz [44].  Therefore, it is 

difficult to say, in this case, whether the increase in the bond distance is associated 

with an overall lattice expansion or an increase in ordering.  However, the increase in 

amplitude of the |FT| function for Ni at the Ni-TM neighbors is not offset by a 

corresponding decrease in amplitude for the Pd-TM, indicating that there is more than 

Figure 5-13: Density changes as a function of crystallization of the NixPd(80-x)P20 glass as reported 
by Chen et al. [43], showing negative density changes for the Pd40Ni40P20 and the Pd30Ni50P20 
(interpolated) alloys!  The density change is positive for the Pd60Ni20P20 alloy.  Harms and Schwarz 
have also measured the density change for the Pd40Ni40P20 glass and report a density increase 
(shown as ð in the figure) for this alloy upon crystallization [44].  
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just the readjustment of the TM-TM coordination.  There must necessarily be an 

increase in ordering taking place at TM-TM distances in this alloy. 

In the case of the Pd30Ni50P20, the amplitude of the both the TM-P peaks are 

increasing with crystallization.  However, the P concentration remains fixed during 

this transformation, and so the number of P neighbors cannot increase for both of the 

TMs.  Therefore, it can be concluded that the increase in the amplitudes must 

necessarily include an increase in ordering of the TM-P bonds. 
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6 XPS Data 

The following core level shifts were observed: 

a. Pd 3d5/2 binding energies in the alloys are shifted higher by 0.87-0.97 eV in 

comparison to those of pure Pd obtained experimentally.   

b. Ni 2p3/2 binding energy in the alloys are shifted higher by 0-0.16 eV in 

comparison to those of pure Ni.  Ni binding energy in crystalline Pd70Ni10P20 is 

the same as that for pure Ni.  The binding energy for pure Ni was obtained 

experimentally. 

c. P 2p1/2 and 2p3/2 binding energy in the alloys are shifted lower by 0.32-0.45 

eV and 0.15-0.31 eV in comparison to those of pure P.  The core levels for 

pure P was obtained from literature [45] 

d. For glasses the shifts in binding energies with respect to those of the pure 

elements are constant in the case of Pd and Ni.  The shifts for P, however, are 

similar to those in the crystals.   

Table 6-1:  The core-level energies of the glassy and crystalline alloys in the PdxNi(80-x)P20.  The values 
of the elemental core levels are given as ‘e’.  

Glassy Crystalline  

  

Pd60Ni2 0P20  

 

Pd4 0Ni4 0P2 0 

 

Pd30Ni50P2 0 

 

P d7 0 Ni1 0P2 0  

 

Pd4 0Ni4 0P20  

 

Pd2 0Ni6 0P2 0 

Ni 

(2p3/2)/eV 

(e - 852.62) 

852.75 852.74 852.75 852.62 852.70 852.78 
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Pd 

(3d5/2)/eV 

(e – 335.05) 

336.00 335.99 336.00 335.92 335.94 336.02 

P (2p3/2)/eV 

(e – 130.0 ) 

129.84 129.74 129.69 129.85 129.77 129.72 

 
The valence band and core-level XPS spectra of the Pd40Ni40P20 are shown in 

Figure 6-1.   The P and the Pd core-levels are exhibiting both the spin-orbit split 

 Figure 6-1.   The P and the Pd core-level spin-orbit split peaks, and only the 2p3/2  peak for Ni.  
Spectra were obtained for the alloys in Table 6-1, Ni80P20 glass and the Pd3P crystal. 
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peaks, whereas in Ni we show only the 2p3/2 peak.  Similar spectra were obtained for 

all the alloys listed in Table 6-1, as well as the Ni80P20 glass and the Pd3P crystal. 
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7 Stabilization of the Glass Structure  

The stability of a glass system stems from its fundamental atomic and electronic 

structure.  It is the result of a specific compositional mix of different atomic species at 

a given thermodynamic point.  Its stability against crystallization depends on the 

relative stabilities of both the glass and crystal at particular thermodynamic point.  The 

Pd-Ni-P BMGs, therefore, receive their stability from cumulative, and interrelated, 

effects of both atomic and electronic origin.  We will explore the effect of packing 

(treating the atoms as non-interacting), the effect thermo-kinetic hindrances to 

crystallization (from our structural study of the crystallization), the effect of the 

electronic structure through the lowering of the electronic component of the free 

energy, and finally attempt to point out the interrelated nature of the atomic and the 

electronic effects of stabilization. 

7.1  Atomic Structure Stabilization 

7.1.1 Frustration 

One important feature of the packing in 3-dimensional space by hard spheres is 

that of frustration.  A ”frustrated” structure is one in which the particles in a ground 

state can not each assume the minimum free energy that is ideally available to each of 

them by virtue of interactions with only its nearest neighbors.  Some of the particles 

are indeed at this minimum, but this necessarily forces others to be at a slightly higher 
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energy, or in structural terms, to have a lower packing density with their respective 

nearest neighbors.  Therefore, there is a large degeneracy in the global ground state of 

the particle system. 

How does this frustration come about?  Is there not a 3-dimensional 

arrangement of hard spheres that can be attained starting from a liquid-like state that 

allows all the spheres to have the densest possible packing around them?  

The densest possible packing of mono-sized spheres in two dimensions has an 

obvious non-degenerate solution.  The equilateral triangular arrangement is the densest 

packing of 3 spheres.  Adding another sphere creates a rhombus with one of its 

diagonals equal to the sides of the now two equilateral triangles.  In this way all space 

can be filled resulting in densest possible arrangement in two dimensions.  

How would this model translate to three-dimensional space?   To simplify 

things, we will examine the features of the structure that are not sensitive to very local 

phenomena such as directional bonding and charge transfer between atoms.  Also, for 

the sake of simplicity, we consider a static structure where the positions of atoms are 

fixed points in 3-dimensional space; i.e. thermal vibrations are ignored.  We are 

therefore left with the structural issues of a dense random arrangement of atoms 

interacting with each other through an isotropic Lennard-Jones-like potential that is 

characterized by strong core-core repulsion and a weak long-range attraction.   

Now if we try to carry the packing onto three dimensions under the energy 

minimization scheme lain out above, we see first of all that the densest way to pack 4 

spheres is a regular tetrahedron.  However, if we try to tile all 3-dimensional space 
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with regular tetrahedra, we run into pockets of empty space.  Let us look at the  

example of placing regular tetrahedra around a bond and trying to come full circle.  

We can place 5 tetrahedra and then we are left with 7.4° of unfilled space.  This space 

can be filled up if we allow the tetrahedra to be slightly irregular.  Allowing the bond 

that is shared by the 5 tetrahedra to be 5% smaller than the other bonds in the 

tetrahedra the structure can swallow up the pocket.  This results in a regular fivefold 

bipyramid.  Now, if we can extend the fivefold bipyramid to all space then we will 

have, after all, the same environment around all the atoms, and we will have an 

unfrustrated structure.  Placing 12 fivefold bipyramids around one of the axial atoms 

we end up with the icosahedron.  Yet all of the flat 3-dimentional space cannot be 

filled by such icosahedra!   This frustration of three-dimensional space leads to the 

stabilization of a dense randomly packed liquid against crystallization since there is be 

no stable crystalline phase as an alternative.  An attempt to create a crystal would not 

be possible while still maintaining an overall tetrahedral close-packing.  In order to 

form a crystal, therefore, some of the packing efficiency has to be sacrificed. 

7.1.2 Modeling a Dense Randomly Packed System 

Finney and Wallace [46] found in their molecular dynamics simulation of 999 

particles that not a single particle had 12 fivefold bonds emerging from it; i.e. not a 

single icosahedron was found.  The frustration of 3-dimensional packing further limits 

us in our use of fivefold bipyramids.  Gaskell [47] argues that growing such structures, 

with a 7.4° angular mismatch, incorporates a cumulative strain and the structure 
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becomes ultimately self-limiting.  When the elastic strain becomes large enough it 

becomes energetically preferable to nucleate a new structure.  

The first physical simulation of the packing of hard spheres by long-range 

attractive forces was carried out in a set of groundbreaking experiments by Bernal 

[26].  He packed ball bearings into rubber bladders, kneaded them, and set them in 

black paint, to simulate the dense random packing of hard spheres (DRPHS).  The 

positions of the balls then were individually determined methodically by hand and eye.  

This experiment initiated a host of similar simulations, with computers eventually 

taking over ball bearings and rubber bladders.  In this DRPHS model Bernal found 

only five different canonical polyhedra with equal triangular faces, which were not 

large enough to allow another sphere of the same size inside them [Fig 7-1].  He found 

these polyhedra by examining the empty spaces defined by the nearest neighbor 

bonds.  The relative concentration of each of these structures was found to exhibit a 

strong preference for tetrahedra (48% by volume), followed by octahedra (27% by 

Figure 7-1:  The Bernal holes showing the (i) tetrahedron, (ii) the octahedron, (iii) the trigonal 
prism, (iv) the tetragonal dodecahedron and (v) the Archmedian antiprism. 
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volume).  The remaining volume was found to be occupied by the larger cavities; the 

tetragonal dodecahedra, the trigonal prisms and the Archemedian antiprisms 

occupying 15%, 8% and 2% of the volume respectively.  

The results of Bernal’s work were supported by a similar simulation study 

carried out by Finney [48] who developed a 7994 atom DRPHS model with a packing 

density η = 0.6366 ± 0.0004.   

It is with Finney’s model that Cargill [49] compared his experimentally 

determined structure for amorphous Ni76P24.  The fit was found to be very good 

considering that the comparison was between a model structure of densely packed 

spheres which have no interactions with one another except through surface contact 

and a real solid structure of two different types of atoms which are condensed to retain 

liquid-like disorder! 

It will not be an exaggeration to say that the striking structural similarities 

between these early DRPHS models and Cargill’s experiment revolutionized the 

existing concepts of the structure of metallic glass.  An explanation for the success of 

the monoatomic DRPHS model with binary transition metal (TM) – metalloid (M) 

glass was given by Polk [50] who claimed that the three larger Bernal cavities from 

the DRP of TM atoms could be filled by the M atoms to attain the a-TM80M20 

composition.  It was later shown by others, that Polk’s conjectures underestimated the 

size of the M atoms in fitting them into the undistorted cavities [47].  The trigonal 

prism, for example, of TM atoms with its cavity filled by an M atom remains 

undistorted only if the radius ratio of the M atom to the TM atom is less than 0.53.  
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For a-Ni76P24 it is ~ 0.72.  If the radius ratio for Ni and P had been ~ 1, then by a 

simple geometrical argument, we would expect both Ni and P atoms to occupy the 

vertices of undistorted trigonal prisms.  The larger cavities of the monoatomic DRPHS 

model are therefore ideal cavities, and it is safe to say that a densely packed system of 

two atoms whose radius ratios lie between 0.53 and 1.0 will try to distort those cavities 

somewhat while still retaining the denser tetrahedral and octahedral units. 

So far the models we have considered have been constructed only on space 

filling criteria.  No interatomic potentials have been used, no structural ‘design’ has 

been imposed on the model.  Yet, even so we now already have some physical 

intuition into how structure of a TM-M metallic glass may be understood as a DRPHS.  

We have learned that: a) A set of 5 polyhedra can fill all space in a DRPHS model, 

and b) The proportions of tetrahedra to octahedra in a monoatomic DRPHS are 

followed quite impressively by a real metallic glass. 

Glassy Ni76P24 is not unique in being essentially a DRPHS solid.  Of course the 

DRPHS simulates very well monoatomic metallic glass but even for other TM-M 

glasses the model is just as applicable.  For example the Fe-P, Co-P, Pd-Si and Pd-Ge 

glasses all show the tertrahedral-(split)octahedral features of the DRPHS model [47].   

To pose a seminal question we may ask the following:  How well does such a 

model structure for a dense, randomly packed, solid of equivalent atoms compare to an 

experimentally determined structure for a ternary metallic glass? 
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7.1.3  The structure of Pd-Ni-P 

The applicability of Pd3P and Ni3P motif in describing the structure of 

PdxNi(80-x)P20  glass has been investigated and is discussed in Chapter 5.   

We find the local structure around the Pd in Pd60Ni20P20 glass can be resolved 

into the Pd-P and Pd-Pd distances similarly to the Pd3P crystal, with the exception that 

in the region where Pd-Ni distances are expected some additional peaks appear ternary 

glass.  This accommodation, of the new Pd-Ni neighbors, can be modeled by a Pd3NiP 

structure based on the Pd3P structural motif. 

We find that he Pd30Ni50P20 glass is isostructural with the Ni3P crystal, and that 

from the perspective of the Ni atoms, the Pd40Ni40P20 and the Pd30Ni50P20 glasses are 

nearly isostructural.  On the other hand, from the perspective of the Pd atom, 

Pd60Ni20P20 glass is isostructural to Pd3P while Pd40Ni40P20 and Pd30Ni50P20 are nearly 

Figure 7-2:  The trigonal prism is a naturally occurring structure in both Pd3P and Ni3P crystals.  
Here we see the Pd3P structure where P sits in between two trigonal planes of Pd atoms and has 
three more Pd atoms laterally three half octahedral caps. 
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isostructural.  In other words, Ni3P and Pd3P are structural motifs that can be 

combined to describe the structure of the whole BMG-forming range of PdxNi(80-x)P20. 

It stands, therefore, that the Pd3P and the Ni3P structural motifs are indeed 

suitable for describing the local environments around Pd and Ni, respectively, in 

ternary Pd-Ni-P glass. Figure 7-2 shows the P environment of the Pd3P structure.   

One can see that the Pd2-Pd7 atoms form a trigonal prism, where Pd3-Pd4-Pd5 forms 

one face and Pd2-Pd6-Pd7 forms the other.   This prism is capped by the equatorially 

by the Pd8, Pd9 and Pd10 atoms.  The capped trigonal prism is one of the canonical 

holes that Bernal had found in his analysis of the DRPHS model (see 7.1.2).  This 

structure occurs naturally in both the Pd3P and Ni3P structures and, by extension, in 

the Pd-Ni-P glasses.  This tells us that the densely packed structure of the glass is 

stabilized by the fact that alternative crystalline phases are themselves not very stable 

due to frustration of three-dimensional space. 

Since P sits inthe middle of 6 transitional metal atoms (TM-P cluster) one can 

imagine the P to be at the center of an octahedral hole.  In such a case, the average 

length of the bonds on the triangular faces (Pd3-Pd4-Pd5 and Pd2-Pd6-Pd7 in Fig. 7-

2) should be close to the average length of the bonds forming the columns of the prism 

(Pd5-Pd6, Pd4-Pd7 and Pd3-Pd2 in Fig. 7-2).  As the structure of this cluster 

approaches that of an octahedron, the ratio of average bond-lengths on the columnar 

faces (Cavg) to those of the triangular faces (Tavg) will approach 1. The Cavg/Tavg ratio 

for the P nearest neighbors in Pd3P and Ni3P crystals are tabulated in Table 7-1. 
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Table 7-1: The lengths of the bonds on the triangular faces, their average (Tavg), and similarly for the 
columnar faces, their average (Cavg), and the ratio of Cavg/Tavg. 

 Triangle1 Triangle2 Tavg Column Cavg Cavg/Tavg 

Ni3P 2.483 2.968 2.969 2.7608 2.709 2.577 2.859 2.903  3.394 3.484 3.26 1.181 

Pd3P 2.926 2.776 2.926 3.212 2.776 3.212 2.971 3.101 3.217 3.101 3.14 1.057 

As we see, the Cavg/Tavg for Pd3P is closer to 1 than that for Ni3P.  Since the 

ratio of atomic sizes of Pd to P is larger than that of Ni to P, it makes sense that a near-

octahedral cluster of Pd atoms can accommodate a P atom in its center whereas a 

similar cluster of Ni atoms need to be distorted further away from an octahedron for a 

similar accommodation.   

We further observe in Table 7-1 that the P nearest neighbor environment in 

Ni3P is more disordered than that of Pd3P.  This is evidenced by the 5 non-equivalent 

bond distances seen on the triangular faces of the former versus the 3 seen in the latter.  

This difference is also seen in the columnar bonds.  This higher ordering in the P 

nearest neighbors in Pd3P compared to those of Ni3P occurs in spite of the fact that the 

Pd3P is a lower symmetry crystal than Ni3P.  This is an evidence of stronger Pd-P 

chemical interactions than Ni-P ones.  The idea of dense random packing of hard 

spheres is therefore less applicable to Pd3P and, by extension, Pd60Ni20P20 glass than it 

is to Ni3P and Pd30Ni50P20 glass. 
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7.2 Thermo--kinetic Stability Against Crystallization 

In general, a small change in the local structure indicates that the glass and the 

crystal have nearly identical local units, but differ only in the long-range arrangement 

of them.  Typically in these situations, the driving force for the nucleation of a crystal 

from the glassy matrix is low.  On the other hand, a large change in structure, 

especially beyond the first coordination shell indicates a large kinetic component to 

crystallization.  From a thermodynamic point of view, if the Gibbs free energy 

difference ∆Gx(T) between the liquid and the available crystalline phases is low, then 

the glass-forming ability should be high.  In terms of the changes in enthalpy, ∆Hx, 

and entropy, ∆Sx, upon crystallization from the glassy (pseudo-liquid) phase, 

∆Gx = ∆Hx - T∆Sx [7.1] 

If the glassy and crystalline structures are nearly similar, then ∆H of 

transformation between the two should be small.  This is the case for P60Ni20P20.  

A large positive ∆Sx will also reduce the thermodynamic incentive for 

crystallization.  This is what we observe for the Pd40Ni40P20 and the Pd30Ni50P20 

glasses. 

The homogeneous nucleation and growth rates, (I) and (U) for a nucleus with a 

spherical morphology have been expressed as [51]: 
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and  
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where Tr is the reduced temperature(T/Tm), ∆Tr is the difference in temperature from 

Tm,  η is the viscosity, f is the fraction of the nucleation sites which are present at the 

growth interface, and α and β are related to σ, the liquid/solid (in this case, 

glass/solid) interface energy, and to  ∆Hx and Sx given by, α=(NV) 1/3σ/∆Hx and β= 

∆Sx/R.   Here V, N and R are the atomic volume, Avogadro’s number and the gas 

constant, respectively.  

One can immediately see that with an increase in atomic volume during the 

process of crystallization, the nucleation rate will be reduced.  This is possibly what is 

happening with the Pd40Ni40P20 and the Pd30Ni50P20 glasses for which Chen et al. [43] 

report a reduction in density upon crystallization (Figure 5-13). 
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7.3 Chemical Bonding: 

We have investigated the possibility that chemically the ternary PdxNi(80-x)P20 

glasses are composed of Pd3P and Ni3P – like local environments.  We have 

considered the valence band structure of the binary alloys of Ni80P20 and Pd3P as 

possible components of the valence band structure of PdxNi(80-x)P20.  Fig. 7-3 shows 

the development of the valence band DOS upon alloying Ni, Pd and P.  The overall 

width of the valence band is greatly increased when Pd is added in Ni80P20 (Fig. 7-3b) 

to make Pd40Ni40P20 (Fig. 7-3e).   

A similar broadening has been also suggested by theoretical band structure 

calculations for glassy Pd40Ni40P20 in which Pd atoms are substituted for Ni atoms in 

 

Figure 7-3: The valence band DOS of a) Ni, b)Ni80P20 glass, c) Pd, d) Pd3P crystal, and 
e) Pd40N40P20 glass.  The spectra are scladed to match their maximum intensities. 
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the Ni80P20 structure [52] (Figure 7-4).  In these calculations, the structural origins of 

these X seem to be a result of new states in Pd.  



 

77

 

-15 -13 -11 -9 -7 -5 -3 -1 1 3

-ve Binding Energy

- 1 9 - 1 4 -9 -4 1

- v e  b i n d i n g  e n e r g y  ( e V )

A
rb

it
ra

ry
 S

c
a

le
Experimental and theoretical VB spectra for Pd40Ni40P20 

Figure 7-4 : The valence band for the Pd40Ni40P20 glass calculated using the Ni80P20 starting structure in a locally self-consistent multiple scattering 
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Looking back at Figure 7-3, insofar as the breadth of the band is concerned, the 

valence band of Pd3P is closer than that of Ni80P20 to the valence band of the ternary 

glass.   More interestingly, note that compositionally weighted linear combinations of 

the binary DOS can not simulate the DOS of the ternary glass Pd40Ni40P20 in the 

region marked X (~ 3.5 - 4.5 eV).  This extra valence band structure is a unique 

feature of these BMGs.  

It has been observed by Miller et al. [53] by atom probe field ion microscopy 

that Pd40Ni40P20 glass decomposes into three distinguishable phases upon 

crystallization, viz., Pd28Ni48P24, Pd69Ni9P22 and an fcc phase of Pd45Ni40P15.  The 

implication of these results is that the crystalline (Pd,Ni)80P20 is not simply a solid 

solution of Ni3P and Pd3P- like phases, but that some stable crystal structures exist at 

the intermediate compositions.  The question, therefore, remains as to how closely the 

ternary glasses in this system follow the atomic and crystalline structure of the 

crystals, and how this affects the glass-stability of the intermediate compositions. 

As we know, Pd30Ni50P20 and Pd60Ni20P20 mark the limits of BMG formation.  

The former is close compositionally to the first crystalline phase identified by Miller et 

al. to exist in crystallized Pd40Ni40P20.  The latter approaches the composition of the 

second phase.  If we expect that the structure of Pd40Ni40P20 glass follows that of its 

crystalline counterpart, then its structure should be an average of those glasses with 

Pd30Ni50P20 and Pd70Ni10P20 nominal composition.  For the same reason, we should be 

able to construct the valence band of glassy Pd40Ni40P20 from a linear combination of 
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the DOS of glassy Pd30Ni50P20 and Pd70Ni10P20.  Since Pd70Ni10P20 is outside the glass 

forming range, for our simulation we used Pd60Ni20P20 as the closest glass.  Indeed we 

find (2/3 • DOSPd30Ni50P20 + 1/3 • DOSPd60Ni20P20) simulates the experimental 

DOSPd40Ni40P20 quite accurately (Figure 7-5).  Thus, the electronic structure of the most 

stable glass in the PdxNi(80-x)P20 system, Pd40Ni40P20, is in fact an average of the 

electronic structure of Pd60Ni20P20 and Pd30Ni50P20 glasses.  

Similar attempts fail to simulate the valence band DOS of Pd60Ni20P20 and 

Pd30Ni50P20 using any one of the binary alloy DOS (Ni80P20 or Pd3P) along with that of 

Pd40Ni40P20 [54, 55].  This confirms that chemical bonding in bulk glass formation 

range of the PdxNi(80-x)P20 system,  30≤ x≤60, is qualitatively different from those of 

the binary alloys.  

Figure 7-5:  A comparison of the valence band of Pd40Ni40P20 and that of a 
simulated spectrum using a weighted average of Pd60Ni20P20 and of Pd30Ni50P20 
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Let us look back at the core-level binding energies for Ni, Pd and P as a 

function of composition of glasses and crystals in the PdxNi (80-x)P20 system (Table 6-

1).  We can examine which glass in the series has the closest chemical bonding with 

respect to its of the corresponding crystal.  Fig. 7-6 shows this characteristically for 

core level binding energies.  The relative errors estimated for the XPS setup used was 

> 0.03 eV [56].  Here, 0.02 eV error is used to display the band of possible core-level 

shifts for both the glassy and crystalline cases.  We can, therefore, encompass a large 

range of possible points of intersection between the trend-lines for the glasses and the 

crystals from ~ 36.5 % to about 68.9 % Pd.  The closest electronic structure between a 

glass and its corresponding crystal in PdxNi(80-x)P20 system is occurs at ~ Pd53Ni27P20 

composition, which, is close to the Pd rich end of BMG formation.  That is, from an 

electronic structure point of view, the Pd60Ni40P20 glass is closer to its crystalline 

counterpart than are Pd40Ni40P20 and Pd30Ni50P20 glasses.  This substantiates what we 

have already observed through EXAFS from the changes in the local environment 

around the transition metals upon crystallization. 

 



 

81

 

  

 

Figure 7-6:  The P 2p3/2 core level positions of the glasses and crystals in the 
PdxNi(80-x)P20 glass. 
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7.4 Nagel and Tauc Criterion 

A quasicrystalline phase, characterized by a five-fold rotational symmetry but 

no long-range order, is known to be stabilized by conduction electrons.  A dip-like 

anomaly was reported in the DOS at EF [57] which has been claimed to stabilize to the 

quasicrystalline phase.   

To gain an understanding of the reasons why a dip, or a pseudo-gap in the 

Fermi level can give rise to electronic stability we have to first ask how such 

singularities originate.  Van Hove [58] had shown that in a two-dimensional system a 

saddle point in the momentum dispersion can cause logarithmic divergences in the 

DOS (Figure 7-7).  If all the states up to infinite energy would be occupied, then these 

pseudo-gaps would have no effect on the total energy, since a dip in the DOS (away 

Figure 7-7: Schematic showing the how creation of saddle points in the E-k dispersion can cause 
singularities in the DOS driving it away from the Fermi-Dirac ideal. 
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from, let us say, a free electron ideal) would be counterbalanced by a peak elsewhere 

(Figure 7-8). However, if there is a dip in the DOS at EF, D(EF ), corresponding peaks 

must lie above EF and are not accessed by the ground state electrons and results in an 

overall stabilization of the system.  Electronic states get raised or depressed at zone 

boundaries creating anomalies in the DOS similar to Van Hove singularities, and so, 

when Brillouin zone boundaries and the Fermi sphere overlap, this electronic 

stabilization is expected to be the greatest. 

Various ideas have been proposed for increased stability of the overall alloy, or 

specifically the glassy alloy with respect to that of the crystal.  Most of these involve 

some form of a constructive interference between the peak in the structure factor, S(q), 

as obtained from a diffraction experiment, with the surface of the Fermi  sphere.  That 

is, Sp(q), the peak positions in the structure factor is twice the Fermi wave vector;  

Sp(q) = 2kF. 

Free e 
 
 
 
Isotropic (glass) 
 
 
Anisotropic (xtal)

Figure 7-8: A schematic of the DOS of free electrons in a metal, and those in metallic glass and its 
corresponding crystal. 
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In the free electron approximation it can easily be derived that we know that: 

3

1

23













=

•

V
NZ

kF π   [7.4] 

where N is Avogadro’s number and V is the molar volume, and ¯ is the 

average valence electron concentration, or the nominal number of electrons per atom 

in the valence band calculated simply as ¯ = (pec + qea)/(p+q),  where p and q are the 

concentrations of cations and anions and ec and ea are the numbers of valence 

electrons of  the cations and anions, respectively. 

The relevance of the super-positioning of kF with peaks in the structure factor 

to the stability of metallic glass was explored by Nagel and Tauc [59].  They extended 

concepts of Ziman’s theory of liquid metals to the case of metallic glass.  Nagel and 

Tauc argue that a metallic glass where the Fermi sphere touches the pseudo-Brillouin 

zone should be more stable against crystallization than a glass where this does not 

happen.  This is because the deep minimum in D(EF) requires the first pseudo-

Brillouin zone to be as spherically symmetric as possible, so that its overlap with the 

Fermi sphere, and this isotropy is destroyed by the process of crystallization.   

We have examined the relationship between the D(EF) and the known 

stabilities of the PdxNi(80-x)P20 glasses.  Over the composition range, D(EF ) is 

difficult to compare partly because the Fermi levels themselves are shifting, and partly 

because of the different photoionization cross-sections for the valence electrons of the 

different constituent elements.  There is an indirect method for comparing the electron 



 

85

 

occupancy at the Fermi level (Briggs and Seah 1983)[60].  When an electron is ejected 

from a core level, it can perturb the valence-band, which is manifested in the 

excitation of electrons to the conduction band.  The probability for the occurrence of 

this event is determined by the level of occupancy of electrons at the Fermi level.  

These excitations reduce the kinetic energy of the ejected core electrons and leave a 

tailing effect on the high binding energy side of the core level peak.  The larger the 

resulting asymmetry of a core-level peak, the greater is the occupancy at the Fermi 

level.  Based on this understanding the degree of asymmetry was determined in the Ni 

2p3/2 core-level peaks.  A Voigt function, which is a linear mix of a symmetric 

Gaussian and a Lorentzian with variable asymmetry, was used.  Curve fitting required 

that highly correlated parameters, in this case, the mixing coefficient and the 
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Figure 7-9: a) an example of the multiple fits carried out in order to avoid correlations, and b) the 
asymmetry parameter for the different alloy compositions. 
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asymmetry parameter, were not allowed to run free simultaneously (Figure 7-9a).  It 

was found by curve fitting that indeed the asymmetry for the g-Pd30Ni50P20 alloy 

was higher than that for the g-Pd40Ni40P20 one, which is consistent with the Nagel 

and Tauc criterion (Figure 7-9b).  However, the minimum asymmetry does not occur 

at the g-Pd40Ni40P20 composition but rather at g-Pd60Ni20P20.  The asymmetry 

increased once again, beyond the bulk glass formation range of composition, for the 

Pd70Ni10P20 alloy.  The highest glass stability of the g-Pd40Ni40P20 alloy in the 

composition range is not reflected in a minimum in D(EF ) for this alloy.  So, a 

minimum in D(EF) has been found for the Pd60Ni20P20 glass, but this still indicates an 

alloy stability and not necessarily a glass stability.  Unfortunately, the D(EF) for a 

recrystallized Pd60Ni20P20 is not available. 

 

7.5 Valence Electron Concentration (VEC) Effect 

The peak in the structure factor, on the other hand depends on the average 

valence electron concentration (VEC), ¯.  In fact, Nagel and Tauc showed that this 

peak position scales with ¯.  It has been suggested by Haüssler [61] that a ¯ of 1.8 e/a 

ensures an optimal positioning of the peak in the structure factor with respect to the 

surface of the Fermi sphere.  Putting in ¯alloy=1.8 we can calculate the optimal alloy 

composition for this stability.  For this simple calculation, however, one must assume 
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a VEC for all the elements in the system.  If we use the nominal, ground state ¯ for the 

elements, i.e., ¯Pd=0, ¯Ni=2 and ¯P=5, thenfor the PdxNi(80-x)P20 we can solve for x: 

{x(0) + (80-x)(2) + (20)(5)}/100 = 1.8   [7.4] 

which gives us the solution of x=0.4, giving us the Pd40Ni40P20 alloy.  It is not 

likely that ¯Pd = 0, and that ¯Ni = 2.  We have observed that the entire valence bands of 

TM-P alloys are shifted with respect to elemental TM ones, indicating that a charge 

transfer is taking place between P and the TMs.  Further, since we observe some states 

in the valence band of only the ternary alloys, we should assume that, with the mixing 

of Pd and Ni to produce the ternary glass, some charge transfer takes place between Pd 

and Ni atoms.  This would shift the VEC of Ni and Pd away from their nominal 

values.   

We can attempt to back-calculate the VEC, assuming that the total VEC of 

Pd+Ni remains 2 and that the VEC of P is 5, and further assuming that the VEC is the 

same for the two compositions at the end of BMG formation.  The first assumption 

tells us that we are only allowing for a charge transfer between Pd and Ni atoms.  The 

second assumption,  that the two end compositions of BMG formation Pd30Ni50P20 and 

the Pd60Ni20P20 have the same VEC, implies that VEC is forced to stay constant 

throughout the BMG formation range, allowing a proper matching of kF with the first 

peak in the structure factor.  This is not unreasonable since we observed in both the Pd 

and Ni the near-edge structure no shift in the band, and the oscillations remained in 

phase throughout the composition (Figures  5-2,7). 

We can then construct the following equalities: 
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0.6x + 0.2 (2-x) + 0.2 (5) =  ̄  [7.5] 

and  

0.3x + 0.5 (2-x) + 0.2 (5) =  ̄  [7.6] 

 

Solving equations 7.5 and 7.6 for ¯ gives us ¯ = 1.8.  Thus, our assumptions 

are validated. 

Looking at equation 7.4, it seems that a change in ¯ should not affect the 

position of kF very sharply since kF increases only as the cube root of ¯.  However, we 

are describing a system which is already very close to its thermodynamic equilibrium, 

and so even small changes in ¯ could effectively push the system away from its glass 

formation region.   

Unfortunately, in order to match the peak positions of our k-space information 

with calculated kF values, we need an accurate determination of EF on the EXAFS 

edge, and we do not know that absolutely.  Also, even though ÷(k) is related to Sp(q) 

[62] the comparison fails in the region of k< ~ 2.5 Å-1, because the final-state electrons 

at these low energies have long mean free paths, leading to multiple-atom scattering.  

It is therefore not useful to speak of peaks in valleys in the ÷(k) in this region, in the 

same manner as one would for Sp(q).   We can, however, calculate, using kF, the 

position of the minima in the pair potential function, and compare these minima to the 

peak positions in real-space. 
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7.6 Size effect 

Hafner [63] proposed a theory whereby the phase, whether glassy or crystalline 

will be stabilized when the peaks in pair distribution functions coincide with the 

minima in the inter-atomic pair potential function.  The pair potential he uses has the 

form 

 

V (r) = A {sin (2kF*R)/R3}  [7.7] 

 

Using kF calculated by equation 7.4, where the molar volumes of the 

Pd60Ni20P20 and the Pd30Ni50P20 glasses are used, we can calculate the V(r) function 
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Figure 7-10: V(r) for the molar volumes of Pd60Ni20P20 and Pd30Ni50P20 and ¯=1.8.  The arrows mark the 
range of TM-P and TM-TM distances, Ni-P, Pd-P, Ni-Ni and Pd-Pd, respectively, for the Pd3P and the 
Ni3P alloys.  The values are ~2.35 Å, 2.48 Å, 2.77 Å and 2.93 Å, respectively.  
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using equation 7.7, for these two glasses, respectively.  In Figure 7-10 we observe the 

effect of ¯ and the molar volume, on the minimum in V(r). 

It is clear that the decrease in molar volume as Ni concentration increases, is 

pushed to a lower distance.  The molar volume of Pd30Ni50P20 places a deeper potential 

at all the nearest neighbor distances, and so is a more stable structure based on the size 

effects only.  On the other hand, Pd-P neighbors are at a lower potential than the Ni-P 

ones for either molar volumes, and the same is true for the Pd-Pd neighbors, versus the 

Ni-Ni ones.  This is consistent with what we observe upon crystallization where the 

Ni-Ni nearest neighbors are seen to undergo a more dramatic change than Pd-Pd ones.   
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8 Conclusions 

We have shown that the stability of the Pd-Ni-P bulk metallic glasses depend 

on the interaction of both the atomic and electronic effects on the structure.  The 

PdxNi(80-x)P20 system was selected because it is the starting composition for the best 

known bulk metallic glass former and because it is representative of a whole class of 

BMGs.  At the same time with only three elements, a study of the structural response 

to composition change and the interpretations of these changes from the point of view 

of glass-stability, remains tractable in the PdxNi(80-x)P20 system. 

In the composition range of the PdxNi(80-x)P20 system, the ends of bulk glass 

formability are marked by Pd30Ni50P20 and Pd60Ni20P20 glasses.  These two ternary 

glasses have been shown to be isostructural to Ni3P and Pd3P binary crystalline alloys, 

respectively.  The atomic and electronic structure of Pd40Ni20P20 composition, which is 

the best glass former in this composition range, is a simple weighed sum of those of 

Pd60Ni20P20 and Pd30Ni50P20 glasses.    

The trigonal prism structure, which is one of the larger holes predicted by 

Bernal in his analysis of a dense, random packing of hard spheres, occurs naturally in 

both the Pd3P and Ni3P structures and, by extension, in the Pd-Ni-P glasses.  The 

densely packed structure of the glass is stabilized by the fact that alternative crystalline 

phases are themselves not very stable due to frustration of three-dimensional space. 
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Nagel and Tauc had proposed that a valence electron concentration of 1.8 e/a 

ensures the super-positioning of the first peak in the structure factor with twice the 

Fermi vector and stabilizing a metallic glass system through a lowering of the DOS at 

the Fermi level.  From XPS, we have demonstrated that the DOS at the Fermi level in 

the ternary PdxNi(80-x)P20 glasses are lower than those of the binary alloys near the 

composition end,  consistent with the Nagel and Tauc criterion.  However, the 

minimum in the DOS is not found to occur at Pd40Ni40P20, the composition best suited 

for glass forma tion, but rather at Pd60Ni20P20. 

Using the valence electron concentration of 1.8 e/a, the interatomic potential of 

the alloys were calculated.  We found from EXAFS that the Pd nearest neighbors are 

placed at more attractive positions in the interatomic potential than are Ni ones.  

However, the molar volume of Pd30Ni50P20 places all the nearest neighbor distances 

nearer to a minimum in the interatomic potential.  Chemical bonding, as revealed by 

new states in the valence band (from XPS) that are present only in the ternary alloys, 

points to a further stabilization of the system through a negative heat of mixing 

between Pd and Ni atoms. 

Next, the stability of PdxNi (80-x)P20 glasses was investigated from the point of 

view of their resistance to crystallization.  It is proposed that the Pd60Ni20P20 glass is 

stabilized against crystallization through a low enthalpy component to the Gibbs free 

energy.  We conclude this based on our observation that the crystallization of this 

glass requires a minimum amount of rearrangement in the metal environment.  The 

Pd30Ni50P20 and Pd40Ni40P20 glasses are stabilized against crystallization, we propose, 
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through a large entropy change upon crystallization because the crystallization of these 

alloy involves a large ordering of the local atomic structure.   The Pd40Ni40P20 glass 

receives additional stability  against crystallization due to the kinetic hindrances 

imposed by having to create both a Ni rich as well as a Pd rich phase close to the 

compositions of Ni3P and Pd3P. 

The stability of Pd-Ni-P bulk metallic glasses originates from cumulative and 

interrelated effects, both atomic (packing efficiency, low symmetry) as well as 

electronic (pseudo-gap near the Fermi level, chemical bonding and valence electron 

concentration).   
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9 Appendix A 

The parameters for the various coordination shells of the Pd3P structure used in 

the fit are given below.  At the bottom is located a part of the correlation matrix 

showing a high correlation between parameters 1 and 4.  These are the S0
2 and the 

sigma2 parameters, which we know are correlated.  During the fit, these two 

parameters were not allowed to vary simultaneously.  If they were allowed to vary 

simultaneously, then at least one of the parameters was made to vary within a narrow 

range.  As we see, in these last 50 iterations, the S0
2 parameter was allowed to vary 

only between 0.8 and 1.  A fit was deemed acceptable if the reduced chi-squared value 

was < 100.  

 
Iterations:    50 
(CHI)'2:       26552.307 
Residual:      15.013313 
Exp.Error:     1.172E-005 
chi2 w/o err:  2.7360759E-006 
reduced chi2:  84.026288 
data points:   321 
Lambda:        0.01 
termination:   1E-005 
Delta(part.):  1E-005 
 
Fit carried out in R space. 
   Bottom border: 0 
   Top border:    3.10375 
   k range from   1.8699  to  15.986 
Number of independent parameters   :  28.8 
Number of free running parameters  :  6 
 
Number of single scattering paths  :  20 
Number of multiple scattering paths:  0 
 
  Weight for FEFF file No. 1 :  0.16667 
  Weight for FEFF file No. 2 :  0.16667 
  Weight for FEFF file No. 3 :  0.33333 
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  Weight for FEFF file No. 4 :  0.33333 
 
----------------------------- 
 
 feff cluster fit: 
  xyz-Coeff. #1: -0.015052391 
  xyz-Coeff. #2: -0.014285256 
  xyz-Coeff. #3: -0.042121761 
............................. 
 
   Einstein Temperature:   350.71066 K 
 
  FT Mag + Imag. saved as 4-col ascii file: 
   'XAFS_FT_i_mag.dat' 
 
.............................                  initial parameter 
 feff-S0  
............................. 
#1  S0^2:         0.8259871     +- 0.00161976          0.82304   
CONSTRAIN from : 0.8 to : 1 
----------------------------- 
 feff-Fit  - feff0001.dat, Pd - P  
............................. 
#2  Coord.No.:    2             +- 0                   2        FIXED 
#3  distance R:   2.273203      +- 0                   2.3079   FIXED  
xyz lattice correlated 
#4  sigma^2:      0.005481019   +- 1.75047             351.080 
#5  E0 shift:    -2.589896      +- 0.0139738           -2.5390 
----------------------------- 
 feff-Fit  - feff0002.dat, Pd - P  
............................. 
#6  Coord.No.:    1             +- 0                   1        FIXED 
#7  distance R:   3.094446      +- 0                   3.1417   FIXED  
xyz lattice correlated 
#8  sigma^2:      0.005481019   +- 0                   0.00547   
FIXED 
#9  E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0001.dat, Pd - Pd 
............................. 
#10 Coord.No.:    2             +- 0                   2        FIXED 
#11 distance R:   2.803732      +- 0                   2.8444   FIXED  
xyz lattice correlated 
#12 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#13 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0002.dat, Pd - Pd 
............................. 
#14 Coord.No.:    2             +- 0                   2        FIXED 
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#15 distance R:   2.874578      +- 0                   2.9162   FIXED  
xyz lattice correlated 
#16 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#17 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0003.dat, Pd - Pd 
............................. 
#18 Coord.No.:    2             +- 0                   2        FIXED 
#19 distance R:   2.886055      +- 0                   2.9279   FIXED  
xyz lattice correlated 
#20 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#21 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0004.dat, Pd - Pd 
............................. 
#22 Coord.No.:    2             +- 0                   2        FIXED 
#23 distance R:   2.887617      +- 0                   2.9295   FIXED  
xyz lattice correlated 
#24 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#25 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0005.dat, Pd - Pd 
............................. 
#26 Coord.No.:    2             +- 0                   2        FIXED 
#27 distance R:   3.168095      +- 0                   3.214    FIXED  
xyz lattice correlated 
#28 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#29 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0006.dat, Pd - Pd 
............................. 
#30 Coord.No.:    2             +- 0                   2        FIXED 
#31 distance R:   3.175973      +- 0                   3.222    FIXED  
xyz lattice correlated 
#32 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#33 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0001.dat, Pd - P  
............................. 
#34 Coord.No.:    1             +- 0                   1        FIXED 
#35 distance R:   2.22074       +- 0                   2.3184   FIXED  
xyz lattice correlated 
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#36 sigma^2:      0.005481019   +- 0                   0.00547   
FIXED 
#37 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0002.dat, Pd - P  
............................. 
#38 Coord.No.:    1             +- 0                   1        FIXED 
#39 distance R:   2.286982      +- 0                   2.3876   FIXED  
xyz lattice correlated 
#40 sigma^2:      0.005481019   +- 0                   0.00547   
FIXED 
#41 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0003.dat, Pd - P  
............................. 
#42 Coord.No.:    1             +- 0                   1        FIXED 
#43 distance R:   2.488188      +- 0                   2.5976   FIXED  
xyz lattice correlated 
#44 sigma^2:      0.005481019   +- 0                   0.00547   
FIXED 
#45 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0001.dat, Pd - Pd 
............................. 
#46 Coord.No.:    1             +- 0                   1        FIXED 
#47 distance R:   2.660727      +- 0                   2.7777   FIXED  
xyz lattice correlated 
#48 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#49 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0002.dat, Pd - Pd 
............................. 
#50 Coord.No.:    1             +- 0                   1        FIXED 
#51 distance R:   2.724555      +- 0                   2.8444   FIXED  
xyz lattice correlated 
#52 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#53 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0003.dat, Pd - Pd 
............................. 
#54 Coord.No.:    1             +- 0                   1        FIXED 
#55 distance R:   2.747264      +- 0                   2.8681   FIXED  
xyz lattice correlated 
#56 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
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#57 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0004.dat, Pd - Pd 
............................. 
#58 Coord.No.:    2             +- 0                   2        FIXED 
#59 distance R:   2.76091       +- 0                   2.8823   FIXED  
xyz lattice correlated 
#60 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#61 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0005.dat, Pd - Pd 
............................. 
#62 Coord.No.:    1             +- 0                   1        FIXED 
#63 distance R:   2.7934        +- 0                   2.9162   FIXED  
xyz lattice correlated 
#64 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#65 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0006.dat, Pd - Pd 
............................. 
#66 Coord.No.:    1             +- 0                   1        FIXED 
#67 distance R:   2.804553      +- 0                   2.9279   FIXED  
xyz lattice correlated 
#68 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#69 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0007.dat, Pd - Pd 
............................. 
#70 Coord.No.:    1             +- 0                   1        FIXED 
#71 distance R:   2.806071      +- 0.000499779         2.9295  xyz 
lattice correlated 
#72 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#73 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 feff-Fit  - feff0008.dat, Pd - Pd 
............................. 
#74 Coord.No.:    2             +- 0                   2        FIXED 
#75 distance R:   2.976603      +- 9.2312E-005         3.1075  xyz 
lattice correlated 
#76 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#77 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
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----------------------------- 
 feff-Fit  - feff0009.dat, Pd - Pd 
............................. 
#78 Coord.No.:    1             +- 0                   1        FIXED 
#79 distance R:   3.078628      +- 5.94874E-005        3.214   xyz 
lattice correlated 
#80 sigma^2:      0.002471695   +- 0                   0.00246   
FIXED 
#81 E0 shift:    -2.589896      +- 0                   -2.5390   
CORRELATED to #5 * 1 
----------------------------- 
 
 
  Pair     ;  CN      ;   R        ;  sig^2     ;  E0      ;  w(%) 
           ;          ;            ;            ;          ;  
  Pd - P   ;  2       ;  2.273     ;  0.00548   ; -2.59    ;  75.42   
  Pd - P   ;  1       ;  3.094     ;  0.00548   ; -2.59    ;  14.62   
  Pd - Pd  ;  2       ;  2.804     ;  0.00247   ; -2.59    ;  49.13   
  Pd - Pd  ;  2       ;  2.875     ;  0.00247   ; -2.59    ;  45.57   
  Pd - Pd  ;  2       ;  2.886     ;  0.00247   ; -2.59    ;  45.27   
  Pd - Pd  ;  2       ;  2.888     ;  0.00247   ; -2.59    ;  45.23   
  Pd - Pd  ;  2       ;  3.168     ;  0.00247   ; -2.59    ;  34.14   
  Pd - Pd  ;  2       ;  3.176     ;  0.00247   ; -2.59    ;  33.94   
  Pd - P   ;  1       ;  2.221     ;  0.00548   ; -2.59    ;  82.11   
  Pd - P   ;  1       ;  2.287     ;  0.00548   ; -2.59    ;  74.56   
  Pd - P   ;  1       ;  2.488     ;  0.00548   ; -2.59    ;  60.56   
  Pd - Pd  ;  1       ;  2.661     ;  0.00247   ; -2.59    ;  55.39   
  Pd - Pd  ;  1       ;  2.725     ;  0.00247   ; -2.59    ;  52.38   
  Pd - Pd  ;  1       ;  2.747     ;  0.00247   ; -2.59    ;  50.65   
  Pd - Pd  ;  2       ;  2.761     ;  0.00247   ; -2.59    ;  100     
  Pd - Pd  ;  1       ;  2.793     ;  0.00247   ; -2.59    ;  49.08   
  Pd - Pd  ;  1       ;  2.805     ;  0.00247   ; -2.59    ;  48.57   
  Pd - Pd  ;  1       ;  2.806     ;  0.00247   ; -2.59    ;  48.49   
  Pd - Pd  ;  2       ;  2.977     ;  0.00247   ; -2.59    ;  81.44   
  Pd - Pd  ;  1       ;  3.079     ;  0.00247   ; -2.59    ;  36.76   
 
 
 
- Correlation matrix  : 
------------------------------------------------- 
            1          4          71          75          79          
82          83          84          85           
 1   1           -0.7571     -0.2563     0.03916     0.08948      
 4   -0.7571     1           0.1879      0.335       0.02383      
 71   -0.2563     0.1879      1           0.09907     0.003574     
 75   0.03916     0.335       0.09907     1           0.6196       
 79   0.08948     0.02383     0.003574    0.6196      1            
 82    
 83    
 84    
 85    
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