
SAND REPORT
SAND2003-1651
Unlimited Release
Printed May 2003

An Exploration in Implementing Fault
Tolerance in Scientific Simulation
Application Software

Richard R. Drake and Randall M. Summers

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

ITED

STATES OF AM

ER
IC

A

SAND2003-1651
Unlimited Release
Printed May 2003

An Exploration in Implementing Fault Tolerance
in Scientific Simulation Application Software

Richard R. Drake and Randall M. Summers
Computational Physics Research & Development

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0819

Abstract

The ability for scientific simulation software to detect and recover from errors and
failures of supporting hardware and software layers is becoming more important due
to the pressure to shift from large, specialized multi-million dollar ASCI computing
platforms to smaller, less expensive interconnected machines consisting of off-the-
shelf hardware. As evidenced by the CPlanttm experiences, fault tolerance can be
necessary even on such a homogeneous system and may also prove useful in the next
generation of ASCI platforms.

This report describes a research effort intended to study, implement, and test the
feasibility of various fault tolerance mechanisms controlled at the simulation code
level. Errors and failures would be detected by underlying software layers, communi-
cated to the application through a convenient interface, and then handled by the simula-
tion code itself. Targeted faults included corrupt communication messages, processor
node dropouts, and unacceptable slowdown of service from processing nodes. Recov-
ery techniques such as re-sending communication messages and dynamic reallocation
of failing processor nodes were considered.

However, most fault tolerance mechanisms rely on underlying software layers
which were discovered to be lacking to such a degree that mechanisms at the ap-
plication level could not be implemented. This research effort has been postponed and
shifted to these supporting layers.

3

Contents
1 Introduction . 5
2 Research Plan . 5

2.1 Scientific and Technical Soundness . 5
2.2 Creativity and Innovation . 7
2.3 Programmatic Impact . 8

3 Research Progress . 8
4 Conclusion . 9
References . 10

Appendix

Reliability Document . 11

4

An Exploration in Implementing
Fault Tolerance in Scientific

Simulation Application Software

1 Introduction

This report describes the research effort on fault tolerance during the 2001 & 2002 fiscal
years funded by the Laboratory Directed Research & Development Office. The normal
third year was not solicited.

We begin with the research plan, the progress made, and then conclude. We include
a document produced through contract of the LAM/MPI team in the appendix because it
summarizes certain fault tolerance issues quite well.

2 Research Plan

This section describes our plan for researching fault tolerance at the application level. The
subsections derive from the original LDRD proposal.

2.1 Scientific and Technical Soundness

For massively parallel machines, much effort is spent on providing robust hardware, op-
erating systems, and communication subsystems. This allows the application software de-
veloper to concentrate on issues other than detecting and even recovering from errors due
to faults originating from the platform. As a result, little emphasis has been given to fault
detection and recovery in scientific code development and, therefore, there has not been a
demand for software layers or libraries that provide such capabilities. In contrast, network
computing environments are prone to failure and loss of service even for the most robust
networks. This has led to development efforts attempting to improve communication and
resource allocation services in such environments. This technology has yet to become
prevalent in the scientific codes at Sandia.

The problem we address in this research is how to (1) robustly catch faults generated by
the underlying network environment, (2) deliver this information to the application code,

5

(3) provide utilities to allow the code to recover or shut down gracefully, and (4) identify
and develop coding patterns that applications can follow that will allow the effective use
of such tools to increase their robustness in regard to communications and handling of
environmental faults.

The main issue for handling catastrophic errors such as the loss of a compute node
is finding/modifying an implementation of MPI that will allow a node to be thrown out
without hanging. Fault recovery may require the ability to dynamically spawn another
process, which is not part of the MPI-1 specification. To avoid hangs, advanced signal
handling will have to be developed to pull the code out of wait states and into error recovery
functions. Finally, a major task is to modify existing codes to take advantage of the error
detection and recovery aids provided at a lower level.

Our approach will be to leverage existing software development efforts that provide
capabilities for fault tolerance and error detection, to make this available to the application
in a convenient interface, and to develop patterns for recovering and coping with errors
at the simulation level. Candidates for lower level software are implementations of the
MPI-2 [2] specification, since it has dynamic process spawning, and the implementation
of MPI by the LAM [4] project, which has emphasized network computing. The use of
signals will be explored and developed to provide simple yet effective methods to prevent
code hangs due to communication problems and loss of service. [5]

Several approaches at the simulation code level will be examined. A communication
pattern will be developed that makes the incorporation of message corruption detection
and re-communication possible. Also, entry points into the code will be made available
that allow the code to either shut down “gracefully” or step back and try again when a
significant error is encountered. For compute node dropouts, we intend to use restart-like
methods either to save previous states of each process to a common disk area or to have
them sent to backup processes and then initialize a new process with the latest available
state of the lost process. The ALEGRA code will be used extensively as a testbed, since it
is massively parallel and has been ported to many different architectures.

The expected results of this project include the underlying error detection and handling
library, the determination of the MPI implementations best able to deal with fault tolerance,
and an integration of these fault tolerance mechanisms in ALEGRA. On the application
side, we hope to converge on a few paradigms in the area of parallel communications and
initialization that are pivotal in error recovery. And finally, we will document procedures
for applying fault tolerance techniques to existing simulation codes from levels of detection
to more advanced recovery.

6

2.2 Creativity and Innovation

Fault tolerance is not a new idea, but it is usually applied at the hardware level or low level
software layers, such as parity checking and the use of checksums for disk I/O and commu-
nication using IP packeting. In an environment where the communication network is not
highly reliable, the tolerance must occur at much higher layers, possibly in the simulation
code itself. The fault tolerance targeted in this research lies between low level software,
such as the communication layers, and the handling of errors generated in the simulation
code, such as element inversion in a FEM. This will require new exploration in capabilities
and interfaces existing at this level as well as in techniques the application codes can apply
to become more tolerant of errors occurring in a network computing environment.

For catastrophic faults such as compute node dropouts, the software layers implement-
ing MPI must have some special capabilities if recovery is to be possible. But such software
requires significant effort and resources to develop, especially when it must be available on
multiple architectures. To undertake such a project at Sandia would most likely not be cost
effective. Instead, since the recent boom in network related activity has spurred develop-
ment in implementations that address some of the issues of network fault tolerance, we
believe that leveraging the work of universities and other organizations is a better approach
to this problem.

Complementary to catastrophic fault handling, significant capabilities could be devel-
oped by utilizing signal handling mechanisms tailored specifically to fault tolerance and by
creating an interface that is visible to simulation codes. This would not necessarily require
the use of existing external code development.

Some literature exists describing fault detection and recovery implementations in spe-
cialized distributed computing systems such as ISIS [1] and Horus [6], which include a
system of replication allowing for the loss of a computer in the network. Condor [3] uses
check-pointing and restarts to provide robustness. In the PVM-based SNIPE system [5],
fault detection is performed by the PVM daemon, which checks for responses from dae-
mons on other hosts. These and other lessons learned will help steer this project to a
satisfactory set of tools and procedures for improving robustness of the computationally
focused simulation codes at Sandia.

There is some risk of investing in this project, mainly because the amount of effort
needed by the application developers to modify their codes is not clear even with certain
fault tolerance tools available. Incorporation of some level of fault tolerance should be
straightforward, requiring only minor changes, while a more ambitious capability like node
dropout recovery may require a significant effort. The costs will have to be weighed against
the benefits.

7

Also, some of the desired error handling capabilities rely on the abilities of externally
developed code, which introduces unknowns that can’t be controlled and which may place
restrictions on the platforms available. The level of fault tolerance achievable will depend
to some extent on the abilities of the software available.

2.3 Programmatic Impact

The growing importance of network computing at Sandia will mean an increase in the
need for simulation codes to be more tolerant of faults occurring at the communication and
platform level. Providing knowledge and tools to code developers will help to increase the
robustness of Sandia’s codes when run in a networked environment. Furthermore, network
computing software will be evolving in the future and should be continually evaluated and
integrated into existing simulation codes. This project attempts to make integration of new
software easier by developing a layer and interface between the simulation codes and the
underlying supporting parallel software.

3 Research Progress

From the beginning, we targeted our efforts on the ability of a simulation to recover from
the loss of a compute node. Two important aspects that we looked at were the ability of the
MPI implementation and lower layers to recover from a compute node dropout, and how
the application will be notified of an error and synchronize to a reasonable location in the
code. Both aspects are necessary if the simulation is to recover. The first requires software
which was not really under our control and is only currently being developed. The second
is an interface issue which may have multiple solutions and may depend on the MPI &
communication interface.

To solve the MPI issue, we explored three avenues. In the first, we made contact with
the developers of the LAM/MPI research & development code who were interested in fault
tolerance in their MPI implementation. A contract was agreed upon and research efforts
began on fully describing the issues involved in applying reliability features into the MPI
standard. The document resulting from their research is contained in the appendix of this
report. Secondly, we established a dialog with another LDRD research group consisting of
some CPlanttm operating system developers which resulted in some fault recovery consid-
erations in their project. Lastly, we looked into the capabilities of the Argonne National
Laboratory version of MPICH which uses tools available from the Globus project.

8

At the application level, we encapsulated in a C++ object, a mechanism with a simple
interface that is used to initiate a timeout or a signal catch of some type. The initiation
occurs at some level in the call stack and function and if an error is encountered in sub-
sequent code, the instruction pointer returns to this rendezvous point and can branch in a
different direction. It can also continue on which would be equivalent to trying again. So
if a catastrophic error occurred like a node crash, a recovery handler can be called. Or if a
communication was determined to be faulty, the whole communication phase can be tried
again.

4 Conclusion

We knew up front that it would be risky to rely on the fault tolerance technologies of
supporting software, including the critical MPI implementation. Fault tolerance research
in this area is active but has not produced a usable prototype for allowing the application
code something to write towards. Progress with Indiana University’s LAM/MPI team has
been fruitfull but will not produce an MPI implementation with fault tolerance capabilities
for some time now.

We do know that the application will have to make non-trivial changes in order to
recover from a compute node dropout. The communication patterns and use of MPI com-
municators can help or hinder the necessary recovery actions. In all cases, the underlying
MPI layer will have to recover sufficiently and the state of health of the virtual machine
will have to be communicated to the application.

There is a certain amount of code that can be written to help the application detect and
recover from errors. The timeout/signal catching mechanism is one example.

In the end, we feel it is premature as an application to try to perform fault tolerance
when the underlying software layers are not ready to provide the necessary support.

9

References

[1] K. Birman. The process group approach to reliable distributed computing. Communi-
cations of the ACM, 36(12):37–53, 1993.

[2] J. Dongarra, et. al. MPI–2: Extensions to the Message-Passing Interface. World Wide
Web. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[3] M. Litzkow, M. Livny, and M. Mutka. Condor: a hunter of idle workstations. In Proc
8th Intl Conf on Distributed Computing Systems, pages 104–111, 1998.

[4] Andrew Lumsdaine. LAM/MPI Parallel Computing. World Wide Web. http://www.lam-
mpi.org.

[5] K. Moore, G Fagg, A. Geist, and J Dongarra. Scalable networked information environ-
ment (SNIPE). In Proceedings of Supercomputing ’97, 1997.

[6] R. van Renesse, T. Hickey, and K. Birman. Design and performance of horus: A
lightweight group communications system. Technical Report 94-1442, Cornell Uni-
versity, 1994.

10

Reliability Document

This appendix contains the unaltered document produced by the LAM/MPI team under
contract by Sandia National Laboratories.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

DISTRIBUTION:
4 MS 0819

Richard R. Drake, 9231

2 MS 0819
Randall M. Summers, 9231

1 MS 0316
Sudip S. Dosanjh, 9233

1 MS 9018
Central Technical Files,
8945-1

2 MS 0899
Technical Library, 9616

2 MS 0612
Review & Approval Desk, For
DOE/OST I, 9612

41

	Abstract
	Contents
	1 Introduction
	2 Research Plan
	2.1 Scienti c and Technical Soundness
	2.2 Creativity and Innovation
	2.3 Programmatic Impact

	3 Research Progress
	4 Conclusion
	References
	Reliability Document
	DISTRIBUTION

