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Abstract

The ability for scientific simulation software to detect and recover from errors and
failures of supporting hardware and software layers is becoming more important due
to the pressure to shift from large, specialized multi-million dollar ASCI computing
platforms to smaller, less expensive interconnected machines consisting of off-the-
shelf hardware. As evidenced by the CPlant™ experiences, fault tolerance can be
necessary even on such a homogeneous system and may also prove useful in the next
generation of ASCI platforms.

This report describes a research effort intended to study, implement, and test the
feasibility of various fault tolerance mechanisms controlled at the simulation code
level. Errors and failures would be detected by underlying software layers, communi-
cated to the application through a convenient interface, and then handled by the simula-
tion code itself. Targeted faults included corrupt communication messages, processor
node dropouts, and unacceptable slowdown of service from processing nodes. Recov-
ery techniques such as re-sending communication messages and dynamic reallocation
of failing processor nodes were considered.

However, most fault tolerance mechanisms rely on underlying software layers
which were discovered to be lacking to such a degree that mechanisms at the ap-
plication level could not be implemented. This research effort has been postponed and
shifted to these supporting layers.
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An Exploration in Implementing
Fault Tolerance in Scientific
Simulation Application Software

1 Introduction

This report describes the research effort on fault tolerance during the 2001 & 2002 fiscal
years funded by the Laboratory Directed Research & Development Office. The normal
third year was not solicited.

We begin with the research plan, the progress made, and then conclude. We include
a document produced through contract of the LAM/MPI team in the appendix because it
summarizes certain fault tolerance issues quite well.

2 Research Plan

This section describes our plan for researching fault tolerance at the application level. The
subsections derive from the original LDRD proposal.

2.1 Scientific and Technical Soundness

For massively parallel machines, much effort is spent on providing robust hardware, op-
erating systems, and communication subsystems. This allows the application software de-
veloper to concentrate on issues other than detecting and even recovering from errors due
to faults originating from the platform. As a result, little emphasis has been given to fault
detection and recovery in scientific code development and, therefore, there has not been a
demand for software layers or libraries that provide such capabilities. In contrast, network
computing environments are prone to failure and loss of service even for the most robust
networks. This has led to development efforts attempting to improve communication and
resource allocation services in such environments. This technology has yet to become
prevalent in the scientific codes at Sandia.

The problem we address in this research is how to (1) robustly catch faults generated by
the underlying network environment, (2) deliver this information to the application code,
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(3) provide utilities to allow the code to recover or shut down gracefully, and (4) identify
and develop coding patterns that applications can follow that will allow the effective use
of such tools to increase their robustness in regard to communications and handling of
environmental faults.

The main issue for handling catastrophic errors such as the loss of a compute node
is finding/modifying an implementation of MPI that will allow a node to be thrown out
without hanging. Fault recovery may require the ability to dynamically spawn another
process, which is not part of the MPI-1 specification. To avoid hangs, advanced signal
handling will have to be developed to pull the code out of wait states and into error recovery
functions. Finally, a major task is to modify existing codes to take advantage of the error
detection and recovery aids provided at a lower level.

Our approach will be to leverage existing software development efforts that provide
capabilities for fault tolerance and error detection, to make this available to the application
in a convenient interface, and to develop patterns for recovering and coping with errors
at the simulation level. Candidates for lower level software are implementations of the
MPI-2 [2] specification, since it has dynamic process spawning, and the implementation
of MPI by the LAM [4] project, which has emphasized network computing. The use of
signals will be explored and developed to provide simple yet effective methods to prevent
code hangs due to communication problems and loss of service. [5]

Several approaches at the simulation code level will be examined. A communication
pattern will be developed that makes the incorporation of message corruption detection
and re-communication possible. Also, entry points into the code will be made available
that allow the code to either shut down “gracefully” or step back and try again when a
significant error is encountered. For compute node dropouts, we intend to use restart-like
methods either to save previous states of each process to a common disk area or to have
them sent to backup processes and then initialize a new process with the latest available
state of the lost process. The ALEGRA code will be used extensively as a testbed, since it
is massively parallel and has been ported to many different architectures.

The expected results of this project include the underlying error detection and handling
library, the determination of the MPI implementations best able to deal with fault tolerance,
and an integration of these fault tolerance mechanisms in ALEGRA. On the application
side, we hope to converge on a few paradigms in the area of parallel communications and
initialization that are pivotal in error recovery. And finally, we will document procedures
for applying fault tolerance techniques to existing simulation codes from levels of detection
to more advanced recovery.



2.2 Creativity and Innovation

Fault tolerance is not a new idea, but it is usually applied at the hardware level or low level
software layers, such as parity checking and the use of checksums for disk I/O and commu-
nication using IP packeting. In an environment where the communication network is not
highly reliable, the tolerance must occur at much higher layers, possibly in the simulation
code itself. The fault tolerance targeted in this research lies between low level software,
such as the communication layers, and the handling of errors generated in the simulation
code, such as element inversion in a FEM. This will require new exploration in capabilities
and interfaces existing at this level as well as in techniques the application codes can apply
to become more tolerant of errors occurring in a network computing environment.

For catastrophic faults such as compute node dropouts, the software layers implement-
ing MPI must have some special capabilities if recovery is to be possible. But such software
requires significant effort and resources to develop, especially when it must be available on
multiple architectures. To undertake such a project at Sandia would most likely not be cost
effective. Instead, since the recent boom in network related activity has spurred develop-
ment in implementations that address some of the issues of network fault tolerance, we
believe that leveraging the work of universities and other organizations is a better approach
to this problem.

Complementary to catastrophic fault handling, significant capabilities could be devel-
oped by utilizing signal handling mechanisms tailored specifically to fault tolerance and by
creating an interface that is visible to simulation codes. This would not necessarily require
the use of existing external code development.

Some literature exists describing fault detection and recovery implementations in spe-
cialized distributed computing systems such as ISIS [1] and Horus [6], which include a
system of replication allowing for the loss of a computer in the network. Condor [3] uses
check-pointing and restarts to provide robustness. In the PVM-based SNIPE system [5],
fault detection is performed by the PVM daemon, which checks for responses from dae-
mons on other hosts. These and other lessons learned will help steer this project to a
satisfactory set of tools and procedures for improving robustness of the computationally
focused simulation codes at Sandia.

There is some risk of investing in this project, mainly because the amount of effort
needed by the application developers to modify their codes is not clear even with certain
fault tolerance tools available. Incorporation of some level of fault tolerance should be
straightforward, requiring only minor changes, while a more ambitious capability like node
dropout recovery may require a significant effort. The costs will have to be weighed against
the benefits.



Also, some of the desired error handling capabilities rely on the abilities of externally
developed code, which introduces unknowns that can’t be controlled and which may place
restrictions on the platforms available. The level of fault tolerance achievable will depend
to some extent on the abilities of the software available.

2.3 Programmatic Impact

The growing importance of network computing at Sandia will mean an increase in the
need for simulation codes to be more tolerant of faults occurring at the communication and
platform level. Providing knowledge and tools to code developers will help to increase the
robustness of Sandia’s codes when run in a networked environment. Furthermore, network
computing software will be evolving in the future and should be continually evaluated and
integrated into existing simulation codes. This project attempts to make integration of new
software easier by developing a layer and interface between the simulation codes and the
underlying supporting parallel software.

3 Research Progress

From the beginning, we targeted our efforts on the ability of a simulation to recover from
the loss of a compute node. Two important aspects that we looked at were the ability of the
MPI implementation and lower layers to recover from a compute node dropout, and how
the application will be notified of an error and synchronize to a reasonable location in the
code. Both aspects are necessary if the simulation is to recover. The first requires software
which was not really under our control and is only currently being developed. The second
is an interface issue which may have multiple solutions and may depend on the MPI &
communication interface.

To solve the MPI issue, we explored three avenues. In the first, we made contact with
the developers of the LAM/MPI research & development code who were interested in fault
tolerance in their MPI implementation. A contract was agreed upon and research efforts
began on fully describing the issues involved in applying reliability features into the MPI
standard. The document resulting from their research is contained in the appendix of this
report. Secondly, we established a dialog with another LDRD research group consisting of
some CPlant™ operating system developers which resulted in some fault recovery consid-
erations in their project. Lastly, we looked into the capabilities of the Argonne National
Laboratory version of MPICH which uses tools available from the Globus project.
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At the application level, we encapsulated in a C++ object, a mechanism with a simple
interface that is used to initiate a timeout or a signal catch of some type. The initiation
occurs at some level in the call stack and function and if an error is encountered in sub-
sequent code, the instruction pointer returns to this rendezvous point and can branch in a
different direction. It can also continue on which would be equivalent to trying again. So
if a catastrophic error occurred like a node crash, a recovery handler can be called. Or if a
communication was determined to be faulty, the whole communication phase can be tried
again.

4 Conclusion

We knew up front that it would be risky to rely on the fault tolerance technologies of
supporting software, including the critical MPI implementation. Fault tolerance research
in this area is active but has not produced a usable prototype for allowing the application
code something to write towards. Progress with Indiana University’s LAM/MPI team has
been fruitfull but will not produce an MPI implementation with fault tolerance capabilities
for some time now.

We do know that the application will have to make non-trivial changes in order to
recover from a compute node dropout. The communication patterns and use of MPI com-
municators can help or hinder the necessary recovery actions. In all cases, the underlying
MPI layer will have to recover sufficiently and the state of health of the virtual machine
will have to be communicated to the application.

There is a certain amount of code that can be written to help the application detect and
recover from errors. The timeout/signal catching mechanism is one example.

In the end, we feel it is premature as an application to try to perform fault tolerance
when the underlying software layers are not ready to provide the necessary support.
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Reliability Document

This appendix contains the unaltered document produced by the LAM/MPI team under
contract by Sandia National Laboratories.
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1 Introduction

Cluster computing has recently emerged as a cost effective platform for high performance computing [20,
22]. Since it is so well-suited to the distributed memory architecture presented by clusters, message passing
programming has emerged as an important paradigm for high performance applications running on clusters.
The Message Passing Interface (MPI) was developed to provide a standard (and vendor-neutral) set of library
functions for message passing parallel programming and is presently the de facto standard [14, 15, 16, 23].

1.1 Clustering and Failures

There are some practical aspects of clusters that can present difficulties for MPI programs. In particular,
clusters (and in the limit, the Grid) tend to be more dynamic and less reliable than the massively parallel
processors that were in vogue when MPI was developed. Issues such as reliability and fault-tolerance are
not well defined by MPI, nor are they handled well by existing MPI implementations. Failure of a single
node or network link in a large cluster means having to restart an entire parallel job, either from the most
recent checkpoint or from the very beginning.

As shown in Figure 1, the structure of a typical MPI application consists of multiple instances, each
comprised of several software layers. Abstractly, entities such as the application or MPI cut across the
nodes. Failure of a particular node introduces challenges at all levels: in the run-time environment (shown
as LAM RTE in the figure), in MPI, in the application. For the application to survive the failure of a node
requires participation at all levels.

l ] | ] | ] | ] User Application

l | [ ] | ] | ] MPI Layer
l | [ | | [ | LAMRTE

l | [ ] | ] | ] Operating Systen

l | | | | Hardware

Network

Figure 1: The structure of a typical MPI environment. Each vertical stack represents a single machine.

1.2 Reliable LAM/MPI

This project is to address some particular aspects of reliability in an MPI environment, focusing on run-
time environment and its interactions with MPI and the application layer. Unlike traditional fault tolerant
systems, which attempt to protect against a wide variety of errors, many of which are highly unlikely events
in a cluster environment, this project seeks to allow execution to continue in the presence of a small set of
common events. As the project seeks to provide a reliable environment in which to execute MPI applications,
the term “reliable LAM/MPI” is used to describe the project.

Development will be in the context of LAM/MPI [5, 26], a project developed and maintained by the
Open Systems Laboratory at Indiana University. LAM/MPI was originally developed at the Ohio Super-
computing Center, was adopted by the University of Notre Dame, and recently moved with its developers
to its current home at Indiana University. LAM/MPI is an open source project, with binaries distributed as
part of almost all major open source operating systems, including Red Hat Linux, Debian GNU/Linux, and
FreeBSD. LAM/MPI contains a full implementation of MPI-1, as well as a significant portion of MPI-2.
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This document describes the software requirements necessary to allow a parallel software application
running on top of LAM/MPI to detect and recover from a catastrophic fault such as a compute node crash.
The requirements include

1. Definition and categorization of failures to be handled by a reliable LAM/MPI application,

2. The behavioral (implementation) and interface requirements for LAM/MPI to provide reliable execu-
tion capabilities, and

3. The development of a preliminary design interface between LAM/MPI and an application wishing to
recover from such an error.

The remainder of this report is organized as follows. Section 2 reviews previous work in the area of fault
tolerance in parallel computing, particularly within the context of MPI. Section 3 provides an analysis of the
types of failures that occur in a cluster environment and that this project will properly handle. Sections 4, 5,
and 6 provide an overview of the current abilities of the LAM run-time environment, MPI layer, and user
application (respectively) to determine when a failure has occurred, and how each can continue execution in
the presence of failures. Section 7 presents a model for the extension of LAM/MPI to allow execution of an
MPI application in a variety of failure scenarios. Finally, Section 8 provides a list of requirements for the
Reliable LAM/MPI project.

2 Related Work

The problem of reliability in a distributed environment is not a new research topic. Research spanning at
least three decades ranges from theoretical work on group management to checkpoint/restart systems for
fault tolerant message passing environments. Specifically within MPI, a variety of methods for provid-
ing fault tolerance have been investigated, including checkpoint/restart, process notification, and redundant
calculations.

2.1 Fault Detection

Fisher, Lynch, and Paterson’s 1985 paper, “Impossibility of Distributed Consensus with One Faulty Pro-
cess” [19], offers a formal proof that consensus on which processes are still alive in asynchronous systems
is impossible when at least one process has failed (often referred to as the FLP impossibility result). Hence,
within any asynchronous system (such as a point-to-point message passing system), it is impossible to pro-
vide a distributed application with consistent information on which processes are alive and which have
failed.

Cristian and Schmuck [7] researched the concept of group membership in synchronous systems. They
provided three protocols for solving consensus in synchronous systems in the presence of failures. Their
results built upon earlier work that provided a method for implementing the needed synchronization sys-
tem on a point to point network [8]. Other work [6] provides consensus algorithms with a weak level of
synchronization.

Urbén, Défago, and Schiper [27] performed empirical studies on the applicability of the FLP impossibil-
ity result to real-world situations. Their results show that in a typical LAN environment and using an atomic
broadcast, consensus can be correctly reached, even under extreme processor and network loads. The work
shows that the FLP impossibility result often does not apply in a LAN setting, as there is some synchronous
behavior in the environment.
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2.2 Message Passing Fault Handling

PVM [3, 4,9, 11] was the first widely used message passing system to implement a fault handling system.
PVM allows processes to register with the local PVM daemon (the “pvmd”) in order to be made aware of
the failure of another process in the overall parallel job. When a pvmd is alerted to a failure in the run-time
environment, it sends messages to the PVM user processes that registered for failure notices. Once alerted,
the user process can perform appropriate recovery actions. PVM avoids the FLP impossibility result by
never needing to reach consensus on group membership for its fault tolerance model. Instead, PVM only
guarantees that each user process will eventually be notified of the failure.

CoCheck [24] provides a method for checkpointing a PVM job, allowing restart of a job after a failure.
CoCheck uses the Condor [25] checkpoint library and focuses on allowing process migration in a network
of workstations environment. Later releases of CoCheck also allow rudimentary checkpoint/restart and
migration of MPI applications. While the focus is on migration, the checkpoint system provided by CoCheck
also allows a job to be restarted in the presence of failures.

2.3 Fault Handling and MPI

One of the significant issues in making MPI more resistant to faults is the static nature of MPI communi-
cators. William Gropp and Ewing Lusk proposed extensions to the MPI-1 standard [12] to allow dynamic
process control from an MPI application. In particular, MPI.COMM _MODIFY allowed the dynamic re-
sizing of a communicator. While many of the proposed extensions where added in the MPI-2 standard,
MPI_.COMM_MODIFY was not added, leaving communicators defined as static structures.

Other groups tried different approaches towards handling faults in MPI. Egida [21] is a toolkit for low-
overhead recovery using checkpoint/restart and message logging/rollbacks. The project’s goal is to provide a
framework for developing and studying rollback recovery protocols in a variety of environments. In order to
increase use, a modified version of the MPICH [13, 17] implementation of the MPI standard which utilizes
the Egida library is provided. The Egida version of MPI provides the ability to restart after a failure without
imposing high overhead operations during normal execution. After a failure, a watchdog script is used to
restart the application using the logged data.

Starfish [1] is an attempt to provide a high-performance fault tolerant parallel environment. Starfish
applications benefit from the checkpoint/restart abilities of the Starfish run-time environment. A set of
daemons form a run-time environment capable of restarting applications after a failure, controlling check-
pointing, and message passing. Since a significant portion of the infrastructure resides in the daemons, the
size of the data that must be checkpointed is greatly reduced from other systems. In addition to check-
pointing, Starfish provides a mechanism to register failure notification handlers that allow applications to
re-partition themselves to continue without the need to restart.

The FT-MPI [10] project provides the ability to continue execution in the presence of failures. The
project redefines MPI communicators, allowing them to be “healed” when a failure occurs. MPI functions
return an error when communication is attempted with a failed process. Unlike Starfish, the notification of a
failure is not asynchronous — it occurs only while the application makes an MPI call. Upon notification of the
failure, the user application is then responsible for “healing” the communicator and continuing execution.

MPI/FTTM [2] proposes a model in which MPI is extended to provide fault tolerance in an unreliable
environment. In addition to traditional checkpoint/restart failure protection, MPI/FT provides redundant
calculations, voting, and guarantees about the internal state of the MPI layer in the presence of application
failures. While receiving maximum fault tolerance requires using non-portable MPI/FT calls, the system
provides some failure protection against legacy MPI applications.

All existing fault tolerance models have their drawbacks for the problem this project is attempting to
solve. Egida does not provide the possibility of continuing after a failure, only restarting. Starfish’s asyn-
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chronous notification scheme is only intended for trivially parallel applications and does not provide a well-
defined process for continuing after a failure. FT-MPI defines a method for rebuilding communicators, but
requires non-portable extensions to MPI. In addition, the project only implemented a small subset of the
MPI standard. MPI/FT is intended for environments much more hostile than the large cluster of dedicated
hardware this project targets. As a result, use of MPI/FT involves dedicating a large portion of the available
resources to redundant calculations in case a failure occurs.

3 Failures, Failure Models, and Reliability

A failure can occur in any of the layers of a parallel application. Generally, failures that occur in lower layers
will propagate to upper layers. The sections below discuss failures that occur in the context of a parallel
run-time environment and parallel user application running on multiple nodes. Each section attempts to
answer the following questions:

1. What happens to the parallel run-time environment and application when a failure occurs?

2. Can the parallel run-time environment and/or application recover? If so, how?

l | [ ] | ] | ] User Application

l ] | ] ] ] MPI Layer

l | | | | Parallel Run—time Environment

l | ] ] ] Operating System

l ] ] ] | Hardware

Network

Figure 2: A typical parallel run-time environment and user application, each comprised of the union of local
instances, potentially distributed across multiple nodes. User application instances each span two layers —
MPI is, by definition, a library, and therefore shares the same Unix process space with the user application.

Figure 2 shows a typical parallel run-time environment and user application. The overall parallel run-
time environment is comprised of the set of local instances of run-time environments, one on each node.
Similarly, the user MPI application is comprised of the union of individual instances of the user program
(which may be distributed across multiple nodes).

Section 3.1 discusses the conditions necessary for successful operation of a parallel run-time environ-
ment. Sections 3.2 through 3.6 discusses several types of failures in a parallel run-time environment, and
the resulting behavior of the top layers from Figure 2.

3.1 Ciriteria for Successful Operations

There are many conditions that can cause failures for a distributed parallel run-time system or parallel
application. Rather than define a large number of failure-causing errors, it is easier to discuss the criteria
required for success for the lowest layer of software in the system. Any condition not meeting that criteria
is therefore a failure.

The lowest software layer of interest is the parallel run-time system itself. Its criteria for successful
operation are:
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e An instance of the run-time environment executing on each node

e Continuous network connectivity between each pair of individual run-time environment instances

Any condition that causes either of these criteria to not be met will cause a failure in the overall run-time
system. Examples of such conditions include (but are not limited to):

e Death of an entire node (i.e., killing all processes that were running on it), such as a power failure,
manual reboot, or other hardware / operating system reset

e Death of the local run-time environment process on a node, although the node itself is otherwise
functional

e Interruption of network services between nodes, such as hardware failure, heavy congestion and data
loss, or physical network media disconnect

As such, the layers under the run-time environment are treated as a black box system. Failures that
propagate from anywhere in the black box into the run-time system are examined only in the context of the
run-time system itself. This is, after all, the purpose of a layered architecture.

While the exact condition and cause of the error is unimportant to the run-time environment itself,
several broad types of errors must be examined to define the desired behavior of the run-time environment
and the user application.

3.2 Transient Failures

Transient failures are defined as “temporary” errors that occur in layers below the run-time system. These
types of failures appear for some length of time, and then correct themselves with no outside assistance. An
example of a transient failure is a network that drops packets when congested (such as a TCP/IP network).
This can be seen when network connections are rejected even though both the client and server nodes are
both available and functioning properly.

While the hardware and operating system will propagate these kinds of errors up into the run-time
system, there is usually no way for the run-time system to know that the failure is only temporary. Indeed,
there is typically no way to distinguish it from other kinds of lower-layer errors. Typical approaches to
this problem are to try the failed action multiple times over a defined timeout period. If the action finally
succeeds, no failure needs to propagate to a higher level. If the action does not succeed within the timeout
period, it is deemed a failure, and the appropriate error condition must be propagated up to a higher level.

Transient failures are addressed in the run-time system itself. It will retry actions (as appropriate) over
a timeout period before declaring that the action has failed. The parallel user application then only needs
to receive the ultimate “success” or “failure” result and not be concerned with retrying an action or timeout
periods.

3.3 Operating System Failures

Operating system failures are rare, but can occur when an operating system either has a bug or makes
specific policy or resource decisions while operating. Bugs in operating system library or system calls
result in unreliable or erroneous behavior of both run-time environment and user programs (both serial and
parallel). Since the failure is a bug, there is no guaranteed reliable way to handle the error at run-time, and
therefore the failure must be fixed by altering the application code to not invoke the bug.

Indeed, many portable software projects are distributed with a GNU “configure” script that attempts
to discover characteristics of the operating system that it is running under, and configure the software as
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appropriate. It is not uncommon to see configure scripts that check for specific operating system bugs in
order to activate alternate code paths to workaround known erroneous behavior.

An operating system may also decide to kill an application and/or reduce the resources that have been
allocated to it (perhaps while under heavy load). In such cases, operating systems typically send some kind
of asynchronous notification to the process indicating that reduction that will occur. It is up to the application
to handle these failures; specific code must be supplied that can catch, recognize, and handle these operating
system-specific events.

For example, if a local instance of the parallel run-time environment is notified that it is going to be
killed, appropriate handling may include killing all of the local user applications on that node before dying.

3.4 Run-Time Environment Failures

The run-time environment acts as a distributed service provider between the user and a collection of nodes
and operating systems. It therefore only relays service requests to the appropriate destination and returns
exit statuses from the underlying services. Hence, all errors in the parallel run-time environment are the
result of failures that have propagated up from lower levels — no errors are originated from within a properly
functioning run-time environment itself.

For example, a network error may indicate that a remote node is no longer alive. The run-time environ-
ment must handle these kinds of errors by closing down stale network connections, cleaning up all orphaned
state, freeing excess memory, marking remote nodes as “failed,” etc.

l I [ [ ] [ ] [ ] User Application
l ] | ] ] ] MPI Layer

E:j [@] E:j E:j Parallel Run—time Environment

l [ ] I ] I ] I | Operating System

l ] ] ] | Hardware

Network

Figure 3: A parallel user application running on four nodes. Although node B itself does not fail, the
run-time environment fails on B, which will propagate up to the user application and cause it to fail as well.

Figure 3 shows a failed local instance of the run-time environment on node B. When the local instance
of the run-time environment on A fails to communicate with its peer on node B (after a timeout and/or series
of retried communications), A will declare node B “failed.”

Note that this may happen even if neither node B nor the user application running on node B have
failed. For example, if the run-time environment’s network connectivity success condition is not met, the
other nodes in the run-time environment will assume that everything on node B has failed. This is consistent
with the stack-based model shown in Figure 3 — if a module in the stack fails, all levels above that module
must also fail. Hence, the failure of the run-time environment is an unrecoverable error for a user application.

The remaining local run-time environment instances need to propagate this failure to the surviving in-
stances of the user application. The user application must take appropriate actions to handle the failure event.
This may include peer data structure management and cleanup, attempting to start a new user application
instance, etc.
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3.5 Application Failures

Failures in the application, for the purposes of this document, are considered bugs. This class of failures
include (but is not limited to): segmentation faults, buffer overflows, data mis-management, not checking
the return codes from system, library, and parallel run-time API calls, etc. These all need to be handled by
the application itself — the parallel run-time environment is not directly involved. If errors are not handled
by the application, the operating system defaults will be used instead, which usually terminates the process.

If a process terminates without properly shutting itself down to the parallel run-time environment, it is
the run-time environment’s responsibility to clean up any state associated with that process, and notify other
instances of the user application that the local instance has failed.

3.6 Split-Brain Behavior

Figure 4: A parallel application running on eight nodes with a failed network between them. Each of the
two groups think that the other group has failed. This is called “split brain” behavior.

A notable type of error is called “split brain behavior.”” Figure 4 shows a parallel user application
running on eight nodes with a failed network between them, effectively splitting the parallel application into
two groups. Each group thinks that the nodes in the other group have failed, when only the interconnecting
network has failed — not any nodes or processes.

Hence, no nodes have actually failed, but it appears to each group that the other has failed. This kind of
error spans both the run-time environment and the user application — both may potentially need to execute
specific recovery steps. Since the network is part of the black box beneath the run-time system, it can be
quite difficult to distinguish between the failure of remote nodes from the failure of intermediate hardware.

A typical solution to avoid split brain behavior is for the run-time environment to designate one node
as a “master” node (e.g., node 1 in Figure 4). If any local run-time environment instance can no longer
communicate with the master node, it will abort. Adhering to the stack model, this will also abort any user
processes on that node. Hence, in the case of a network failure (as shown in Figure 4), split brain behavior
will not occur because nodes 5 through 8 will abort when they realize that they can no longer communicate
with the master node (node 1).

While this approach is effective, it does create a single point of failure. Indeed, if the master node
itself fails, it will cause the rest of the run-time environment (and user application) to abort. Although this
is undesirable, protecting against failure on just the one node can be relatively inexpensive as compared
to “hardening” all nodes.! Additionally, the relative cost of trying to reassemble fragmented results from
a parallel job that degenerated into split-brain behavior could be much higher than simply re-running the
entire job.

'Common protections against failure include uninterruptable power supplies, RAID filesystems, redundant power supplies,
processors, RAM, etc.
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Figure 5: A typical LAM run-time environment configuration. A 1amd on each node is the local instance
of the run-time environment, the union of which comprises the overall parallel run-time environment.

lamd, T =lamd|

lamboot
,
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Figure 6: The 1lamboot command launches a 1amd locally on each node to create the overall parallel
run-time environment.

4 The LAM Run-Time Environment

LAM is a user-level run-time environment that provides a framework for running parallel programs. LAM
utilizes user-level daemons on each machine to create a persistent run-time environment. Figure 5 shows a
typical configuration, with a local instance of the run-time environment running on each node; each instance
is referred to as a 1amd. While a 1amd may actually be one or more Unix processes, it is always discussed
as a single entity in this document.

4.1 Startup / Shutdown

The collection of 1amds is started by the 1amboot command. lamboot is invoked with a list of hosts on
which to create the run-time environment. The lamboot command dispatches requests on each machine
(typically via rsh or ssh) to individually start each 1amd. Figure 6 shows this process.

As each lamd is started, it is seeded with a routing table containing the addresses of all the other 1amd
processes. In this manner, each 1amd becomes aware of its peers and starts coordinating on a global scale.
This transforms the group of individual 1amd processes into a unified parallel run-time environment.

The 1amhalt command is used to shut down a LAM run-time environment; it sends a shutdown control
messages to each 1amd. A notification of the global shutdown is first sent to each node so that each 1amd
knows that its peers will be shutting down and it should not generate failure notices. This is followed by
sending a “shut yourself down” message to each 1amd. Upon receipt of this message, each 1amd kills all
user processes, releases resources, and generally exits in an orderly fashion.
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4.2 Steady-State Operation

Once a LAM run-time environment has been successfully booted, it enters steady-state operation. Two kinds
of actions occur during steady-state operation:

e User-initiated actions

e Failure detection and router table maintenance

User-initiated actions are commands (or library calls) issued to the LAM run-time environment. These
commands are requests from the user to specific parts of the run-time environment to perform some action,
and typically involve sending some control messages between 1amd instances. The 1amexec command,
for example, launches arbitrary executables on nodes in the run-time environment. This entails sending a
short control message to each node that the executable is to be run on containing the name of the executable,
command line arguments, relevant environment variables, etc. Other user-initiated actions include direct
message passing, manipulation of files on remote nodes, and relaying stdin, stdout, and stderr
between processes.

Failure detection is periodically performed by each 1amd with “heartbeat” messages and normal com-
munication traffic. Each 1amd monitors the “health” of all the other 1 amd instances. The health of a node is
judged by its ability to continue to send and receive run-time environment control messages. Healthy nodes
can send and receive message traffic (and therefore assumedly correctly process the individual messages).
Unhealthy nodes either do not respond to control messages or do not send any control messages.

An obvious problem with this approach is that each 1amd is responsible for monitoring the health of
all other nodes. This leads to scalability problems, mainly in the form of propagation delays since each
node individually determines when another node has failed. The heartbeat mechanism does have a scalable
bandwidth-limiting mechanism, although with the tradeoff that it may take a long time to find out if a given
node is down. This can lead to inconsistent state in the run-time environment about what nodes are available
and what nodes have failed, race conditions with failure notices, and deadlock conditions in some cases.

4.3 Failures

LAM’s current heartbeat mechanism will eventually discover when a node has failed. Upon detection, the
run-time environment will heal itself and continue operating correctly. In most cases, however, the run-time
environment will not propagate the error to the MPI layer and user applications. As such, the MPI layer (and
user application) may deadlock while waiting for a failed process because it is not aware that the process
has died.

Another problem is that once the run-time environment on a node dies, there is no mechanism to recover
that node back into the overall run-time system once it has been “fixed”. For example, if a failed node gets
rebooted and is capable of handling computations again, LAM currently provides no way to bring that node
back into the run-time environment. Indeed, upon detection of a failed node, LAM will completely remove
that node from its routing tables. This precludes the possibility of cleanly “bringing a node back from the
dead” because the identity of that node has been removed.

5 MPI

LAM also provides an implementation of MPI. MPI is layered on top of the LAM parallel run-time system
and uses many of the services that LAM provides, including process control, out-of-band message passing,
and meta-data storage. Although not shown in Figure 7, the MPI layer does directly interact with the
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Figure 7: Layered implementation of MPI in LAM.

operating system to maintain its own communication channels for MPI processes (mainly for optimization
reasons).

5.1 Startup / Shutdown

An MPI process is started with the LAM command mp i run. This invokes a complicated sequence of events
that includes:

1. Passing the executable name, relevant command line parameters, environment variables, and other
meta data to each of the target nodes

2. Loading and starting the executable on each of the target nodes

3. Synchronization and mutual self-awareness of the new MPI processes

Process control is mainly handled by the LAM run-time environment. The synchronization and mutual
self-awareness phase is handled within MPI_INIT. Once MPLINIT returns, all MPI processes have become
aware of each other and have formed a consistent MPI_ COMM_WORLD.

The MPI standard mandates that all of the the MPI processes in MPI_.COMM_WORLD must invoke
MPI_FINALIZE before exiting. MPI_FINALIZE performs the bookkeeping of shutting down the MPI layer,
shutting down the LAM layer, and exiting in an orderly fashion such that its death will not cause failure
errors in its peer MPI processes.

5.2 Steady-State Operation

Once MPLINIT has returned, the user application is free to perform its own computations. MPI provides a
number of API function calls to effect message passing, such as MPI_SEND and MPI_RECV. LAM’s MPI
layer will choose one of the available channels for message passing: TCP sockets, shared memory, Myrinet,
or the so-called “lamd” channel. The 1amd channels routes all MPI traffic through the 1amd instances.

Message passing failure detection is handled by the MPI layer, or propagated up lower layers. As such,
user MPI programs do not need to be concerned with retransmission, timeouts, network errors, etc. MPI_-
SEND and MPI_RECV will either succeed or fail — user applications are not required to provide extra code
to assist MPI_SEND/MPI_RECV.

5.3 Failures

It is important to note that the MPI-1 and MPI-2 documents make few stipulations about run-time errors.
Indeed, MPI-1 states that implementations are free not to handle errors. Failures are completely left up to
the implementation to decide how to handle (or not). MPI-1 section 7.2 states:
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“After an error is detected, the state of MPI is undefined. That is, using a user-defined error
handler, or MPI_.ERRORS_RETURN, does not necessarily allow the user to continue to use
MPI after an error is detected. ... An MPI implementation is free to allow MPI to continue
after an error but is not required to do so.”

Hence, any additional guarantees that LAM/MPI is able to provide about failures are not required, but
will be compliant with the MPI standards. LAM/MPI’s default error handler, however, will still be MPI -
ERRORS_ABORT — which will abort the user program — as mandated by the MPI standard. To use LAM’s
additional error-handling capabilities, another error handler (such as MPI_LERRORS_RETURN) must be
used.

If an MPI function involving another MPI process returns a failure indicating that the remote process has
failed (i.e., something other than MPI_SUCCESS), the user application can safely assume that the target
MPI process will be unavailable for the remainder of the computation.2 Indeed, the default error handler
for MPI programs (including LAM/MPI programs) is to abort on any error, so many MPI programs do not
attempt to handle errors at all.

Failures will either be propagated up from the LAM layer or operating system, or will be detected by
the MPI layer itself.

The LAM run-time system detects an error. In most cases, LAM will kill the entire parallel user appli-
cation.? There are some cases where LAM will not kill the user application (e.g., where the error handler
has been set to MPI_. ERRORS _RETURN), and the MPI layer will allow all the other MPI processes to
continue. In these cases, MPI calls to communicate with the dead MPI process(es) will return appropriate
error codes. The state of MPI should be stable, but the code has not yet been audited closely to verify this.

The MPI layer detects an error. The MPI layer has a secondary mechanism for discovering that MPI
processes have failed. This mechanism relies on the communication channel itself reporting errors. Each
time an MPI communication is started, the initiating MPI process checks the status of the communication
channel between itself and its peer. This works well with TCP sockets because the operating system will
report if the remote peer has closed the socket.

It does not always work well for connectionless communication channels such as Myrinet, shared mem-
ory, or the “lamd” mode communication. This is because these channels will not report if a remote process
dies because there is no concept of a single remote peer. Hence, there are failure cases where LAM will
hang indefinitely because the MPI layer may be unable to detect the error. This is a shortcoming of the
current LAM failure detection model; it only happens when the LAM run-time environment also does not
detect the error immediately (e.g., when both the user application and the 1amd are simultaneously killed
on a node when a node is rebooted).

If the MPI layer detects a failure, the error handler actions are the same as if the LAM layer detects a
failure — if the error handler is MPI_.ERRORS_ABORT, the entire user parallel process will will be killed.
If the error handler is MPI_.ERRORS_RETURN, the process may continue with the same stipulations noted
above.

2Errors returned from MPI collective calls do not necessarily inform the caller which MPI process has failed.
?Note that this is a completely asynchronous action — even though LAM is a single-threaded MPI implementation, the remaining
MPI processes will be killed regardless of whether they are in MPI functions or not.
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6 Application

MPI applications running under existing MPI implementations have little ability to withstand failures in the
run-time environment. Most MPI implementations, including LAM/MPI and MPICH, default to aborting
execution of an entire application if any one process in the application fails. The best-case scenario for
many MPI applications is to be killed — the worst-case scenario is a deadlocked application that will never
complete.

The LAM/MPI implementation allows the use of MPI-2 dynamic process control to avoid the death of
an entire job when one process fails. LAM/MPI will not kill the entire application when a process created
by MPI_.COMM_SPAWN dies. The solution is imperfect, however, because it makes no guarantees about
notification of the failure and does not lend itself to all parallel computing models. In addition, not all
common implementations of the MPI standard have a full implementation of the dynamic process control,
so code utilizing MPI_.COMM_SPAWN currently has limited portability.

Checkpoint/restart mechanisms offer a practical method of surviving failures. When integrated into the
MPI implementation itself, the user program does not need to be modified — in many cases, the entire ap-
plication can be checkpointed and restarted without the application’s knowledge. User-level checkpointing
is more common, however, where only critical user data is saved (this also provides portability to non-
checkpointing MPI implementations).

Neither checkpointing model alone, however, allows the application to automatically recover from a
failure and continue execution. Additional mechanisms must be in place for restarting the application after
a failure has occurred. This can be implemented in the MPI system itself (and/or paired up with a batch
queueing system), or be an external user mechanism (which may be as simple as a shell script).

Checkpoint/restart mechanisms provide a convenient method of saving the state of an application and
restarting after a failure. However, if the application is to continue execution without a complete restart,
the application must be informed that a failure has occurred so that it can re-partition itself in order to
avoid relying on the dead process for data or computation. The MPI interface and underlying run-time
environment must also ensure that it does not cause a process to “hang” as the result of a failure — otherwise
applications will require human intervention to restart.

7 Reliable LAM/MPI1/Application Models

The LAM implementation of MPI aims to provide a level of reliability that enables the LAM run-time
environment and a user’s MPI application to survive some kinds of failures. Additionally, it is desirable
to provide this reliability in an MPI-compliant fashion. That is, user MPI code that exploits the reliable
functionality in LAM/MPI should be able to be written portably; when running under LAM/MP], the failure
detection and handling code is used at run time. But when running under another MPI that does not support
the same reliability model, the failure detection and handling code is effectively ignored, or never triggered.

Sample failure scenarios are described below (with respect to previous failure definitions) to provide a
framework for a discussion of the role of the MPI layer in failure detection, as well as the programming
models that are necessary to recover from such failures.

7.1 Failure Scenarios

Several common scenarios are described, as well as their ramifications and possible recovery options. Note
that all of the scenarios assume that the both the LAM run-time environment is running in “reliable” mode*

“There is long-standing precedent in parallel run-time environments that the failure of one parallel process will kill the entire
rest of the parallel application. LAM’s default behavior therefore will still utilize this model; LAM must be specifically told to run
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and that the user’s parallel application is an MPI job that has been written to utilize the LAM failure detection
mechanism and includes application-specific recovery logic.

Complete failure of a node. A power supply failure causes the complete failure of a node in a cluster. A
user’s MPI application was running under LAM on the node at the time of the failure.

A total power failure guarantees that all processes on the machine at the time of failure are lost. The
LAM run-time environment will notice that the 1amd on the failed node is no longer responding and will
reorganize the run-time environment to exclude the failed node. The LAM run-time environment will notify
the remaining MPI processes in the MPI application. The notification will convey the fact that the failed user
application instances disappeared, as opposed to terminating abnormally or exiting gracefully. The surviving
processes in the user’s MPI application can take whatever action is appropriate, including reorganization of
internal data structures, aborting, spawning a new MPI process to replace the failed processes, etc.

Node becomes disconnected from the network. A cabling failure results in two groups of nodes being
disconnected from each other (see Figure 4, on page 10).

The system has essentially been divided into two groups of nodes, each with separate MPI jobs running
under their control. Only one of the two groups will contain the master node.’ The run-time environment
instances in the non-master group will realize that they can no longer communicate with the master run-time
environment instance, and therefore abort. This will cause any user applications running on these nodes to
also abort.

The run-time environment instances in the master group will realize that they can no longer communicate
with the nodes in the other group, and will declare those nodes as failed. This will trigger the standard
notification mechanism to all the surviving MPI processes.

User application failure. A programming error causes some of the MPI processes in a parallel application
to abort from a segmentation fault.

The LAM run-time environment will be alerted to the abnormal death of the MPI processes by means
of normal Unix process control semantics. LAM will notify the surviving MPI processes by the same
mechanism described above. The fact that the failed MPI processes died abnormally will be conveyed to
the survivors, since it may influence their decision as to whether to try to recover and continue or to outright
abort.

Note that the default action for an MPI application is to abort upon process failure, which may be the
safest alternative for the application, given that an abnormal death may indicate that the application itself is
at fault.

7.2 MPI Layer

The MPI layer will be notified of failures in peer MPI processes in at least one of two ways: the commu-
nications channel to the remote process will indicate that the remote process has disconnected, or the LAM
run-time environment will asynchronously signal that a specific MPI process has failed. Figure 8 shows
both mechanisms — a user application on node A fails, triggering a notification from the 1amd on node A
to the 1amd on node B, which is then propagated up to the MPI layer. Additionally, the MPI layer may be
notified directly by the communications channel that it has been broken.

in “reliable” mode where it will not kill an entire parallel job when one MPI process fails. This will likely be through a command
line switch to 1amboot or mpirun.

SNote that LAM/MPI implicitly defines the master node as the node on which 1amboot was executed to launch the overall
run-time environment.
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Figure 8: A user MPI process on node A has failed. If supported, the communications channel on node B
will notify the MPI layer that its peer on node A has unexpectedly shut down. The 1amd on A will notice
that the application has failed, and send a failure notice to the 1amd on B, which will be propagated up to
the MPI layer. The user application may also choose to receive the asynchronous failure notices (but from
the MPI layer, not from the run-time environment directly).

Note that if node A completely fails, the end result is the same (the MPI layer on node B is asyn-
chronously notified of the failure of the user application on node A), but the mechanism is different. In this
case, there will be no 1amd on A to send a failure notice. Instead, the 1amd on node B will notice that it
can no longer communicate with the 1amd on A, and therefore directly propagate a failure notice up to the
MPI layer.

The user application may register a callback with the MPI layer to receive failure notifications. The MPI
layer will invoke the user callback(s) when it is notified of process failures from the LAM layer.

7.3 User Programming Models

Reliable MPI user applications must be written to handle the fact that MPI processes may fail. User appli-
cations are notified via two different mechanisms when one of its peers has failed: user-supplied callback
functions that are asynchronously invoked when the MPI layer learns of a process failure, and MPI functions
returning error codes other than MPI_.SUCCESS (and therefore triggering an MPI exception).

7.3.1 Asynchronous Failure Notices

An asynchronous failure notice mechanism can be used by the user application to discover peer MPI process
failures. The user application can register a callback function that will be invoked when the MPI layer is
notified of the failure of a remote process. Each MPI process failure will eventually trigger the invocation
of callbacks on all of its peer processes that have registered to receive failure notices. The callback function
is associated with a communicator; the callback will be invoked (on each process) once for each “wounded”
communicator that the failed MPI process was in.

The semantics of the callback function are similar to a Unix signal handler — it can be called at any time,
and only async-signal safe functions are allowed to be invoked from within the handler. No MPI functions
can be invoked from the callback. Its main purpose is to record the failure in some global state that can be
seen on the main code path.

The callback is a local action. The exact timing of the callback across all processes in the parallel user
application is not rigidly defined. The callback mechanism may be viewed as a lazy updater providing
out-of-band information about the state of the user application.
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In practice, the callback will be “soon” after the actual failure — the main delays are the detection time
required by the LAM run-time environment, and the propagation time throughout the rest of the surviv-
ing processes. The lazy updating mechanism provides the following guarantee: upon return from MPI_-
BARRIER invoked on wounded communicator A, callbacks will have been invoked for each failed process
in A on each of the surviving processes in A.

In the event of multiple failures, or where one MPI process was in multiple MPI communicators (each
of which was registered to receive failure notices), the ordering of callbacks is undefined.

7.3.2 MPI Function Failures

Regardless of whether the user application utilizes the asynchronous notification method or not, MPI com-
munication functions involving dead processes will fail.

MPI Exceptions. If an MPI process fails, its peer processes will generate an MPI exception when attempt-
ing to communicate with it. Examples of actions that will generate an MPI exception include (but are not
limited to): calling MPI_SEND to send a message to a failed MPI process, calling MPI_RECV to receive a
message from a failed process, calling MPI_BARRIER on a wounded communicator. Once the MPI layer
marks a process as “failed,” all future MPI communications involving that process will fail immediately.®

The default MPI exception handler is MPI_LERRORS_ABORT, which kills the entire MPI application.
Hence, an important setup step in a reliable MPI program is to assign a different MPI exception handler
that will not kill the entire application, such as MPI_LERRORS_RETURN or MPI::ERRORS_THROW _-
EXCEPTIONS (C++ only). This will enable failed MPI calls to return, allowing the user application to
catch the error and attempt to handle it. See Figure 9.

int main(int argc, char* argv[]) {
MPI_Init (&argc, &argv);
MPI_Comm_set_errhandler (MPI_COMM_WORLD, MPI_ERRORS_RETURN) ;
// ...rest of program...
MPI_Finalize();
return 0;

Figure 9: Sample code setting MPI_.COMM_WORLD’s exception handler to be MPI_ ERRORS_RETURN.
All communicators derived from MP|_COMM _WORLD will inherit this error handler setting.

Non-blocking MPI functions can also cause exceptions. For example, MPI_ISEND could trigger an
MPI exception when used to send to a process that is already marked as failed. However, if MPI_LISEND is
used to send a message to a process that later fails (but before the message is actually transferred), the MPI
exception won’t be triggered until the MPI request is checked via MPI_TEST or MPI_WAIT.

°A subtle side-effect of failure detection is that any “unexpected” messages that have already been received from the failed
process by the local MPI layer will be discarded. Unexpected messages are messages that have been received and buffered by the
MPI layer even though no matching receive has been posted by the user application.
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Point-to-Point Failures. Failed calls to point-to-point functions that do not use MPI_ANY_SOURCE’
will return an error code that is not equal to MPI_.SUCCESS. This indicates that the remote MPI process
has failed.

Notification of process failures are delivered to the MPI layer in each MPI process, and may arrive
before, during, or after the point-to-point function call:

1. If the failure notification is delivered before point-to-point function is invoked, the point-to-point
function can immediately invoke the appropriate MPI error handler without attempting any commu-
nication.

2. If the failure notification is delivered after the point-to-point function started, but before the mes-
sage transfer has completed, the point-to-point function will abort the message transfer, clean up any
auxiliary state, and then invoke the appropriate MPI error handler.

3. If the failure notification is delivered after the message transfer has completed, the point-to-point
function will return MPI_.SUCCESS and defer the failure notification until the next invocation of a
communications function involving the failed process.

In all cases, however, any future point-to-point (or collective) message passing involving the failed
process will trigger an MPI exception. Figure 10 shows sample pseudocode checking the return status
of a call to MPI_SEND. Point-to-point failures involving the use of MPI_.ANY_SOURCE have semantics
similar to failed collectives, and are described below (see page 21).

if (MPI_Send(..., dest, tag, mycomm) != MPI_SUCCESS) ({
// ...error handling here...
// These calls will immediately fail
MPI_Send(..., dest, tag, mycomm);
MPI_Barrier (mycomm) ;

Figure 10: Sample pseudocode showing how to check for the failure of a typical point-to-point operation.
Also note that the calls to MPI_.SEND and MPI_BARRIER will immediately fail because the de st process
is now known to have failed.

Collective Failures. A collective function that fails with an error code not equal to MPI_.SUCCESS
indicates that at least one MPI process in the communicator has failed. Any future collective message
passing on that wounded communicator will fail. The fact that a collective operation has failed does not
necessarily indicate which process (or processes) on the wounded communicator has failed — it only indicates
that one or more have failed.

The only reliable way for the application to discover which MPI process has failed is to attempt a point-
to-point communication with every other process. Since this can be expensive for large communicators,
LAM will provide an alternative local mechanism to retrieve the information. An attribute (or set of at-
tributes) will be set on wounded communicators, indicating which process(es) have failed. The user process

"Receiving messages from MPI_ANY_SOURCE shares behavioral characteristics with collective functions; see page 21 for
discussion of calls to point-to-point functions that use MPI_ANY_SOURCE.
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can retrieve this attribute (or attributes) to discover which process(es) had failed by the end of the failed
collective operation. Figure 11 shows example pseudocode for this process.

if (MPI_BRarrier (MPI_COMM_WORLD) != MPI_SUCCESS) {
MPI_Comm_get_attr (MPI_COMM _WORLD, MPI_FAILED_LIST, &dead, &f);
if (£ == 1) {
MPI_Comm_get_attr (MPI_COMM_WORLD, MPI_FAILED_SIZE, &size, &f);
for (1 = 0; 1 < size; ++1)

print ("Rank %d has died\n", dead[il]);

Figure 11: Pseudocode showing that the list of dead MPI processes can be retrieved from wounded commu-
nicators. This is example pseudocode only, meant to show that standard MPI mechanisms will be used to
retrieve this type of information. MPI_FAILED _LIST, MPI_FAILED SIZE, and an array of rank numbers
are only one possibility for how the MPI implementation may provide the information to the user applica-
tion.

Asynchronous Collectives. MPI allows for collective operations to return different error codes on partic-
ipating MPI processes. Specifically, it is legal for some participating processes to return successfully while
other processes trigger MPI exceptions. MPI-1 section 4.1 states:

Collective routine calls can (but are not required to) return as soon as their participation in the
collective communication is complete. The completion of a call indicates that the caller is now
free to access locations in the communication buffer. It does not indicate that other processes
in the group have completed or even started the operation (unless otherwise indicated in the
description of the operation). Thus, a collective communication call may, or may not, have the
effect of synchronizing all calling processes. This statement excludes, of course, the barrier
function.

Hence, any collective that does not imply a global synchronization may allow some MPI processes to
return successfully, even on wounded communicators. Only global synchronization functions such as MPI_-
BARRIER are guaranteed to behave identically (in terms of detecting failures) across the set of surviving
processes in a wounded communicator.

For example, non-root processes in an MPI_REDUCE call only need to send their contribution to one
other process; if each non-root process can communicate with its designated reduction peer, it will not
notice that any other process has failed because no global synchronization is required. Figure 12 shows that
processes C and D complete MPI_REDUCE successfully, even though process B has failed. Only the root,
process A, is made aware of the failure.

In general, rooted collective communication functions exhibit this behavior, mainly for performance
optimization reasons.® User applications that require uniform success/failure semantics from collectives
should follow calls to rooted collectives with a call to MPI_LBARRIER. If an error occurs in MPI_BARRIER,
appropriate error handling measures can then be taken relative to the rooted collective operation.

$Imposing synchronization on all collective operations would significantly degrade message passing performance.
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C D
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Figure 12: In this example, four processes are in a common communicator. Process B has failed. Processes
A, C, and D call MPI_ REDUCE on the common communicator. It is possible that processes C' and D will
perform their part of MPI_REDUCE and complete successfully, and that only A will recognize that B has
failed.

Point-to-Point Failures with MPI_ANY_SOURCE. Receiving messages using MPI_ANY_SOURCE is
similar to asynchronous collectives — failures may or may not be detected. Since failures are only guaranteed
to be detected during synchronizing communications, previously undetected failures may not cause errors if
the receive operation can complete with local information.

Figure 13 shows an example scenario where an MPI_RECV using MPI_ANY_SOURCE may succeed
even though a failure has already occurred. At ¢ = 0, process C sends a message to A. All three processes
synchronize at the next timestep, which allows process A to receive the message from C into its unexpected
message queue. Att = 2, process B fails. The LAM run-time environment initiates the failure notification
to processes A and C, but it takes time to propagate to its destinations.

Process
A B C

t=0 Send to A

t=1 MPI_Barrier MPI_Barrier MPI_Barrier
£ =2 — Fail —
a

t=3 ANY_SOURCE

t=4 Failure recvd Failure recvd

t=5 ANY_SOURCE

Figure 13: Timeline showing possible behavior of MPI_-RECV with MPI_ANY_SOURCE in the presence
of failures.

Meanwhile, at ¢ = 3, process A calls MPI_.RECV with MPI_LANY_SOURCE. A sees that it has a
matching unexpected message buffered from C, and therefore returns successfully. The asynchronous fail-
ure notice is finally delivered at t = 4, and the MPI layer in processes A and C' mark process B as “failed.”
When process A calls MPI_LRECV with MPI_LANY_SOURCE again at t = 5, a failure will be returned
immediately since process B has been marked as “failed.”
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7.3.3 Extending MPI Function Semantics

Two MPI functions need to be extended in order to allow effective use of the reliable MPI semantics de-
scribed in previous sections: MPI.COMM_FREE and MPI_ COMM _SPLIT.

MPI Communicator Destructors. When an MPI process dies, its peers will likely need to free state
that was associated with the dead process — including MPI communicators. MPI-1 section 5.4.3 defines
MPI_COMM_FREE as a collective operation, meaning that by definition, MPI_.COMM_FREE must fail
on communicators that contain failed processes. But a reliable MPI implementation clearly must allow
the successful completion of MPI_.COMM_FREE on wounded communicators, or possibly face a deadlock
situation during MPI_FINALIZE.

An “advice to implementors” section follows the definition of MPI_.COMM_FREE in MPI-1, stating
that MPI_.COMM_FREE is normally expected to be implemented as a local operation, and therefore not
require any communication. Given this stipulation, allowing MPI_.COMM_FREE to free wounded commu-
nicators is clearly in the spirit of the original definition. Indeed, MPI_.COMM_FREE can be considered an
asynchronous collective — each process just happens no to notice the other failed processes in the communi-
cator, and therefore completes successfully.

MPI Communicator Constructors. If surviving MPI processes need to use collective operations, wounded
communicators must be subsetted to exclude the failed processes and create healthy communicators that can
be used for future collective operations. MPI includes several communicator constructor functions, each
of which are collective operations. By definition, they all must fail when used with a wounded source
communicator. A reliable MPI implementation must therefore change the definition of at least one of the
communicator constructors to allow creating healthy communicators from wounded communicators.

There are three constructor functions that could be modified to allow reliable behavior:

1. Changing MPI_COMM_DUP to allow copying wounded communicators would result in two wounded
communicators, which is not useful.

2. MPT’s rich set of algebraic group operations could be used to create an MPI group representing the set
of surviving processes. This group could then be given to a modified MPI_.COMM_CREATE to create
a new communicator containing just the surviving set of processes. This is difficult because each
surviving process must atomicly agree on exactly which processes are still alive when building the
new group. As proven in [19], building such consensus in an asynchronous environment is impossible.

3. MPI_.COMM_SPLIT is the functional opposite of MPI_.COMM_CREATE - no group needs to be
constructed ahead of time. Instead, each process that invokes MPI_COMM_SPLIT effectively says
“I am alive.” This is therefore a synchronization point between surviving members of the wounded
communicator, and a distributed consensus of which processes are still alive can be achieved.

Hence, a reliable MPI extends the definition of MPI_COMM_SPLIT as follows:

e The comm argument may be a wounded communicator

e Failed processes will implicitly supply a color of MPI_LUNDEFINED, and therefore not be included
in any communicators returned on the surviving nodes.

Using these extended MPI functions, user applications that utilize collective operations can reliably
continue in the presence of faults by creating new communicators. Figure 14 shows pseudocode using the
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two extended functions to subset a wounded communicator into a new, healthy communicator. Note that
the new communicator will potentially change the rank numbers of surviving MPI processes — the user
application will need to map old rank numbers to new rank numbers.

MPI_Comm subset_comm (MPI_Comm orig_comm) {
MPI_Comm_split (orig_comm, 0, 0, &new_comm);
MPI_Free (&orig_comm) ;
return new_comm;

Figure 14: A wounded communicator can be subsetted to create a new, healthy communicator with the
extended definitions of MPI_.COMM_SPLIT and MPI_COMM_FREE.

7.4 A Higher Abstraction Model

While a reliable MPI implementation provides a base layer of abstraction and the necessary functionality
to implement a reliable MPI application, the data structure bookkeeping and maintenance necessary to
effect the required programming models is both complex and repetitive. Details such as obtaining correct
results from collective operations in an unreliable environment, automatic subsetting and/or re-launching
of failed processes, and maintaining rank-to-process mappings even in the presence of process failures and
communicator subsetting can all be maintained by a standalone library. Specifically, some higher-level
abstractions are required to provide a reliable and easy-to-use basis for user applications.

l ] | ] ] ] User Application
l | [ J ] | ] Robust MPI Layer

l ] | ] ] ] MPI Layer

l ] | ] ] Parallel Run—time Environmen

l ] ] ] | Operating System
l ] ] ] | Hardware

Network

Figure 15: The robust MPI library exists as a layer between the user application and the native MPI library.
Hence, the user application process on each node now spans three layers.

A library implemented on top of a reliable MPI implementation can provide both the required func-
tionality while hiding the necessary data structure bookkeeping behind abstraction. As shown in Figure 15,
this “robust MPI” library will exist as a layer between the user application and the native MPI library. This
library may provide the following:

e An interface similar (if not identical) to MPI itself, thereby streamlining the process of adapting user
applications to exploit robust functionality.
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e Automatic detection and handling of most MPI exceptions, eliminating the need for laborious return
code checking and error handling.

e Refined semantics of collective operations in MPI to effectively allow collective operations on com-
municators with failed processes by transparently providing services to rebuild communicators over
the set of surviving processes (as described in Section 7.3.3).

e Bookkeeping services to maintain mappings of communicator/rank to MPI process, particularly when
failed processes cause the underlying MPI to renumber ranks in a rebuilt communicator.

e Portability services that transparently enable robust behavior when used with reliable MPI implemen-
tations, and automatically disable most functionality (effectively becoming a thing passthru layer)
when used with an unreliable MPI implementation.

e Full source code compatibility so that user applications can compile and link on multiple MPI imple-
mentations (regardless of whether the MPI implementation supports reliable behavior or not) with no
code modifications.

This library will be a standalone component — separate from LAM/MPI. It will be fully compatible
with any MPI implementation, although it may fall back to “abort on failure” behavior for unreliable MPI
implementations. Hence, although robust behavior will be exhibited on reliable MPI implementations, user
applications will be fully portable to any MPI implementation.

8 Requirements

The requirements outlined in this section allow for user-written MPI programs to execute in a reliable man-
ner. They are broken down into three component areas: requirements for the LAM run-time environment,
requirements for the MPI layer, and requirements for the user application.

8.1 Requirements for LAM

The LAM run-time environment requires several changes and new functional aspects in order to operate in
a reliable manner.

1. The orderly shutdown of a 1amd by any of the LAM utility commands listed below will not cause
spurious asynchronous failure notices between peer 1amd processes (any other method of shutting
down a 1amd is considered an “unexpected death”):

(a) lamhalt
(b) wipe

2. Each 1amd must become aware of the unexpected death of any other 1amd in the run-time environ-
ment. As a result of becoming aware of a peer 1amd’s unexpected death, each 1amd will:

(a) Not leak memory or file descriptors

(b) Continue correct operation of the overall run-time environment without causing deadlock or
livelock
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(c) Provide diagnostic information in the form of an error message giving, at a minimum, the name
of the node where the 1amd failed and the date/timestamp when the local 1amd became aware
of the failure

(d) Cause any pending and future operations with the failed 1amd to fail and return appropriate
error statuses

3. If any 1amd cannot communicate with the 1amd on the origin node,? it will kill all user applications
on its node and then abort

4. The LAM utility commands will be hardened to allow for fault detection and recovery, including (but
not limited to):

(a) No LAM utility command may “hang” indefinitely; all operations/commands will complete
within finite time

(b) The 1lamnodes command will indicate which nodes have been marked “down” by the run-time
environment

(c) The lamhalt command will ensure that all nodes remaining in the run-time environment will

kill themselves, even in the presence of failed nodes; if it cannot guarantee that all nodes have
been shut down, a warning message will be displayed

5. When an MPI process dies and meets the criteria listed below, the local 1amd will notify all of its
peer MPI processes that it failed

(a) The MPI process did not call MPI_FINALIZE
(b) The MPI process was not killed by the 1amclean command

8.2 Requirements for MPI

The MPI layer that is part of each user MPI process requires several changes and new functional aspects in
order to operate in a reliable manner. All of the requirements listed below assume that user MPI applications
are correct MPI programs, and, at a minimum, invoke MPI_INIT and MPI_FINALIZE.
The requirements below only apply to the MPI library layer in each of the user MPI processes. For
example, even correct MPI programs can leak memory that the MPI library layer has no control over.
“Failed MPI processes™ are defined as processes that terminate before calling MP1_FINALIZE.

1. The MPI layer in each MPI process will not leak memory or file descriptors, even in the presence of
faults of peer MPI processes

2. The MPI library layer in each MPI process will be able to receive asynchronous notifications of
unexpected MPI process failures from the local 1amd

(a) The asynchronous failure notifications will not affect the correctness of MPI functions

3. After the MPI layer in an MPI process has been notified that a peer MPI process has failed, all MPI
operations involving communicaton with the failed process will fail immediately and return an error
code that is not equal to MPI_.SUCCESS

The “origin node” in LAM terminology means the node that 1amboot was invoked from.
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(a) MPI operations involving a failed peer MPI process will not “hang” (deadlock or livelock)

4. The MPI library layer will provide infrastructure for MPI processes to optionally register a callback
function in order to receive asynchronous notifications of unexpected MPI process failures

(a) Callback functions will be associated with communicators
(b) Callback functions will have, at a minimum, the same restrictions as Unix signal handlers

(c) Callback functions will be invoked in each MPI process exactly once for each failed MPI pro-
cess / communicator pair, where the communicator both contains the failed MPI process and
registered a callback function

(d) Callback functions are guaranteed to be invoked before the completion of an MPI_BARRIER
on any communicator that includes a failed MPI process

5. The MPI library layer will be complaint with the MPI-1 and MPI-2 standards, except for the following:

(a) The definition of MPI_.COMM_SPLIT will be extended/changed per Section 7.3.3.
(b) The definition of MPI.COMM_FREE will be extended/changed per Section 7.3.3.

6. User MPI processes will be able to perform a local operation on a communicator to obtain a list of
ranks which correspond to the failed MPI processes in that communicator

7. The orderly shutdown of an MPI process by any of the MPI function calls listed below will not cause
spurious asynchronous failure notices between peer MPI processes:

(a) MPI_ABORT
(b) MPI_FINALIZE

8. The mpirun command will provide additional infrastructure for reliable functionality

(a) A command line switch will specify that a parallel MPI application should be run in “reliable”
mode

(b) When running in “reliable” mode, tolerate MPI process failures without killing the entire appli-
cation

(c) Process failure status information will be provided through optional error messages or mpirun’s
Unix exit status

8.3 Requirements for User MPI Applications

User applications must be written specifically to allow continued operations in the presence of peer MPI

process failures. The requirements listed below do not include discussion of fault recovery methods, such
as user-level checkpointing, restarting user applications, etc.

1. User MPI applications will notify the MPI system to run in “reliable” mode!'®

2. User MPI applications will set the MPI error handler to an error handler other than MPI_LERRORS -
ABORT on all communicators that require reliable operation

'"The requirements in Section 8.2 dictate that this is actually a command line switch to mpi run and not included directly in the

user program; it is mentioned here only because it is a necessary precondition for reliable behavior.
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. If required, user applications will register a callback function on relevant communicators to be asyn-
chronously notified of peer MPI process failures

. When notified of failures, the user application will subset wounded communicators with MPI_COMM._-
SPLIT to create healthy communicators if future collection operations are required

. User applications will check the returned error code of all MPI functions and take appropriate recovery
action if the returned error code is not MPI_.SUCCESS
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