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Applications of Lie Groups and Gauge Functions to the Construction of
Exact Difference Equations for Initial and

Two-Point Boundary Value Problems

by

Roy A. Axford∗

ABSTRACT

New methods are developed to construct exact difference
equations from which numerical solutions of both initial value problems
and two-point boundary value problems involving first and second order
ordinary differential equations can be computed. These methods are based
upon the transformation theory of differential equations and require the
identification of symmetry properties of the differential equations. The
concept of the divergence-invariance of a variational principle is also
applied to the construction of difference equations. It is shown how first
and second order ordinary differential equations that admit groups of point
transformations can be integrated numerically by constructing any number
of exact difference equations.

1.0. Introduction
The general objective of this study is to develop methods that are capable of

producing exact difference equations which can provide precise numerical solutions of
initial value problems involving first and second order ordinary differential equations and
two-point boundary value problems involving Sturm-Liouville second order differential
operators. The methods developed herein are based upon the transformation group theory
of both differential equations and variational principles. A given initial value or two-point
boundary value problem is transformed into canonical variables in terms of which an
exact difference equation can be more directly constructed. The canonical variables are
found with the generators of groups of point transformation that are admitted by first and
second order differential equations that appear in initial value and two-point boundary
value problems. New variables in terms of which an exact difference equation can be
constructed are not unique. In principle, an infinite number of new sets of dependent and
independent variables can be determined from the symmetries of first and second order
ordinary differential equations. It is shown that this fact permits the introduction of new
variables in such a way as to simplify the explicit construction of exact difference
equations.

When a linear second order ordinary differential equation is written in its self-
adjoint form, it can be thought of as the Euler-Lagrange equation of a variational

                                                  
∗ Consultant at Los Alamos: Department of Nuclear, Plasma, and Radiological Engineering, University of
Illinois at Urbana-Champaign, 103 S. Goodwin, Urbana, Illinois 61801.



2

principle. A variational principle can be a divergence-invariant of a subgroup of point
transformations of a higher dimensional group admitted by the corresponding Euler-
Lagrange equation. The divergence-invariance property of a variational principle leads to
the construction of a gauge function in terms of which Noether’s theorem yields a
conservation law. Conservation laws can be worked out for each group of point
transformations for which the variational principle is a divergence-invariant and then
used to construct exact two-term recurrence relations that yield exact numerical results
for the solutions of two-point boundary value problems. Exact two-term recurrence
relations that come out of divergence-invariance symmetries can also be used to construct
exact second order difference equations to solve numerically second order ordinary
differential equations. Numerical algorithms that can be developed on the basis of the
concepts discussed above are illustrated by the construction of numerical Green’s
functions for the Sturm-Liouville second order differential operator that appears in two-
point boundary value problems and by the construction of numerical solutions of the
neutron diffusion equation. It is shown that two-term recurrence relations provide more
effective numerical algorithms than second order difference equations for the
construction of numerical solutions of two-point boundary value problems that involve
second order ordinary differential equations.

2.0. Exact Difference Equations for Initial Value Problems
Suppose that a first order ordinary differential equation, namely,

y x f x y1( ) = ( ),   , (1)

is given and that a numerical solution is sought subject to the initial condition at x = x0,

y x y0 0( ) =   . (2)

Many numerical techniques have appeared in the past to provide approximate solutions to
this initial value problem with finite difference simulations. Although approximate results
with acceptable accuracy can be obtained, how is it possible to construct an exact
difference equation simulation, rather than an approximate, in a systemic way to provide
an exact numerical solution to the above initial value problem? An exact difference
equation simulation is defined by the properties that follow: (1) it produces numerically
the exact solution to the differential equation, (2) the solution y(x+h) at x+h can be
computed from the solution y(x) at x for an increment h in the independent variable with
arbitrary value, that is, the difference equation is valid for any size increment in the
independent variable, and (3) the difference equation  and the differential equation it
simulates are both invariant under the same group of point transformations.

2.1. First Method for Constructing Exact Difference Equations
Assume that the ordinary differential equation y1 = f(x,y) admits a one-parameter

group of point transformations whose infinitesimal transformation is represented by the
group generator,

ˆ , ,   ,U x y
x

x y
y

= ( ) + ( )ξ
∂
∂

η
∂
∂

(3)
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in which ξ(x,y) is the Lie derivative of the independent variable x and η(x,y) is the Lie
derivative of the dependent variable y(x). Let X(x,y) and Y(x,y) be a new set of variables
in terms of which the group generator becomes

ˆ ˆ ˆ   .U UX
X

UY
Y

= +
∂
∂

∂
∂

(4)

If these new variables are determined as solutions of the linear first order partial
differential equations,

ˆ , ,   ,UX x y
X

x
x y

X

y
= ( ) + ( ) =ξ

∂
∂

η
∂
∂

0 (5)

and

ˆ , ,   ,UY x y
Y

x
x y

Y

y
= ( ) + ( ) =ξ

∂
∂

η
∂
∂

1 (6)

then the transformed group generator becomes

ˆ   .U
Y

=
∂
∂

(7)

The general form of a first order ordinary differential equation that admits the group of
point transformations with this generator is

dY

dX
H X= ( )   , (8)

in which the function H(X) depends only on the new independent variable X. By
introducing the new variables X(x,y) and Y(x,y) the differential equation y1 = f(x,y) can be
transformed to the alternative form given in Eq. (8) in which the variables are separated.

Integration of Eq. (8) produces the following difference equation:

Y x h y x h Y x y x dX H X
X x y x
X x h y x h

+ +( )( ) = ( ) + ( )( )( )
+ +( )( )∫, , ( )    .
,

,
(9)

In general, this is a transcendental equation for y(x+h), but it is an exact difference
equation that is valid for any increment h in the independent variable. An alternative
integration of Eq. (8) yields

Y x y x Y x y x dX H X
X x y x

X x y x
, , ( )    ,

,

,
( )( ) = ( ) + ( )

( )( )
( )( )

∫0 0
0 0

(10)

which contains the initial condition y(x0) = y0 at x = x0 explicitly.  By comparing the
results obtained in Eqs. (9) and (10) it is seen that the difference equation given by
Eq. (9) can be obtained from Eq. (10) by making the following replacements. In Eq. (10)
replace x0 with x, y(x0) with y(x), x with x+h, and y(x) with y(x+h) for any arbitrary value
h.

An exact difference equation to integrate the linear first order ordinary differential
equation,
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y x P x y x Q x1( ) + ( ) ( ) = ( )   , (11)

can be constructed as follows. This equation admits the group of point transformations
generated by

ˆ   ,U x
y

= ( )η
∂
∂

(12)

where the coordinate function is a solution of

η η1 0x P x x( ) + ( ) ( ) =   , (13)

that is,

η x P x dx( ) = − ( )( )∫exp   . (14)

The canonical variables of this group are given by

X x y x,   ,( ) = (15)

and

Y x y
y

x
,   .( ) =

( )η
(16)

Since dX = dx, and

dY
y x dx

x

dy

x
=
− ( )

( )
+

( )
η

η η

1

2   , (17)

transforming Eq. (11) to canonical variables yields

dY

dX

Q X

X
=

( )
( )η

  . (18)

Integrating between the nth and (n + 1)st arbitrarily located grid points produces the
exact difference equation,

y x
x

x
y x x dx

Q x

xn
n

n
n n

x

x

n

n

+
+

+( ) =
( )
( )

( ) + ( ) ( )
+

∫1
1

1

1
η

η
η

η( )
(19)

The preceeding analysis shows that many exact difference equations can be
constructed to obtain numerical solutions of first order ordinary differential equations.
To illustrate the method developed above for a nonlinear first order differential equation,
consider the one-parameter group that is generated by

ˆ   ,U x y
y

v= ( )φ
∂
∂

(20)

where φ(x) is an arbitrary function and v is a constant. We first derive the general form of
a first order ordinary differential equation that admits this group and then show how to
construct an exact difference equation to obtain its solution numerically.
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The first prolongation of the group generator given in Eq. (20) is

ˆ ( )   .( )U x y
y

x y v x y y
y

v v v1 1 1 1
1= + ( ) + ( )[ ]−φ

∂
∂

φ φ
∂

∂
(21)

An invariant function and first differential invariant are found for this group by solving

the characteristic equations of the first order partial differential equation, ˆ ( )U f1 0= . These
are

dx dy

x y

dy

x y v x y yv v v0

1

1 11=
( )

=
( ) + ( ) −φ φ φ

  . (22)

The first and the second members show that

u x y x,( ) = (23)

is an invariant function, while a first differential invariant is obtained by integrating the
differential equation obtained from the second and the third members, namely,

dy

dy

x y v x y y

x y

x

x

vy

y

v v

v

1 1 1 1 1 1

=
( ) + ( )

( )
=

( )
( )

+
−φ φ

φ

φ
φ

  . (24)

A first differential invariant is found to be

v x y y y y
x

x

y

v
v

v
, ,   .1 1

1 1

1( ) = +
( )
( ) −( )

−
−φ

φ
(25)

Since the general solution of a linear first order partial differential equation is an arbitrary
function of solutions of its characteristic equations, we find that

y
x

x

y

v
y F xv1

1

1
+

( )
( ) −( )

= ( )φ
φ

  , (26)

in which F(x) is an arbitrary function, is the general form of a first order ordinary
differential equation that admits the group with the generator give in Eq. (20).

To obtain an exact difference equation to obtain numerical solutions of this
Bernoulli equation we first transform it to new variables computed with Eqs. (5) and (6),
which for this case become

φ
∂
∂

x y
X

y
v( ) = 0   , (27)

and

φ
∂
∂

x y
Y

y
v( ) = 1  . (28)

Accordingly, the new variables are

X x y x,   ,( ) = (29)

and
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Y x y
x

y

v

v
,   .( ) =

( ) −













−1
1

1

φ
(30)

Since

dX dx=   , (31)

and

dY
x

x

y

v
dx

y

x
y

v v
= −

( )
( ) −( )

+
( )

− −φ

φ φ

1

2

1
1

1
  , (32)

it follows that

dY

dX

x

x

y

v

y

x
y

v v
= −

( )
( ) −( )

+
( )

− −φ

φ φ

1

2

1
1

1
  . (33)

Accordingly, the Bernoulli equation (26) transforms to

dY

dX

F X

X
=

( )
( )φ

  . (34)

From the exact difference equation found in Eq. (9) specialized for this case, it is seen
that the Bernoulli equation,

y
x

v x
y y F xv1

1

1
+

( )
−( ) ( )

= ( )φ
φ

  , (35)

can be integrated numerically with the exact difference equation,

y x h
x h

x
y x v x h dX

F X

X
v v

x

x h

1 1 1− −

+

+( ) =
+( )

( )
( ) + −( ) +( ) ( )

( )∫φ

φ
φ

φ
  , (36)

which is valid for an arbitrary increment h in the independent variable. The indicated
quadrature can be done once the two arbitrary functions F(x) and φ(x) have been
specified.

In the limit as the mesh size h goes to zero, the exact difference equation (36)
should reduce to the Bernoulli equation (26). That this does, in fact, occur can be
demonstrated as follows. By putting the approximations,

φ φ φx h x h x+( ) = ( ) + ( ) +1 K  , (37)

y x h y x v hy x y xv v v1 1 11− − −+( ) = ( ) + −( ) ( ) ( ) +K  , (38)

and

dX
F X

H X

F x

H x
h

x

x h
( )
( )

=
( )
( )

+

+

∫ K  , (39)
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into Eq. (36) and taking the limit as the mesh spacing goes to zero, the Bernoulli equation
(26) is recovered.

2.2. Second Method for Constructing Exact Difference Equations
The new variables X(x,y) and Y(x,y) that are obtained by solving the two first

order linear partial differential equations (5) and (6) are sometimes called Lie’s canonical
variables. The method for constructing exact difference equations for obtaining numerical
solutions of first order ordinary differential equations that was developed in the previous
section follows from the introduction of Lie’s canonical variables, which put the
differential equation into a form that is invariant under translations along the Y-axis and
directly integrable. Variables other than Lie’s canonical variables may also be introduced
to construct exact difference equations.

Suppose that new variables X(x,y) and Y(x,y) are introduced as solutions of the
two linear first order partial differential equations,

ˆ , ,   ,UX x y
X

x
x y

X

y
= ( ) + ( ) =ξ

∂
∂

η
∂
∂

0 (40)

and

ˆ , ,   .UY x y
Y

x
x y

Y

y
Y= ( ) + ( ) =ξ

∂
∂

η
∂
∂

(41)

Then the transformed group generator is

ˆ   ,U Y
Y

=
∂
∂

(42)

and the general form of a first order differential equation that admits the group generated
by Eq. (42)

dY

dX
G X Y= ( )   , (43)

where G(X) is an arbitrary function of the new independent variable. Integration of
Eq. (43) produces an exact difference equation, namely,

Y x h y x h Y x y x dX G X

X x y x

X x h y x h

+ +( )( ) = ( )( ) ( )
( )( )

+ +( )( )

∫, , exp    .

,

,

(44)

This is, in general, a transcendental equation to compute y(x + h) from y(x) for an
arbitrary increment in the independent variable equal to h.

Accordingly, we have the following result. If the differential equation,

y f x y1 = ( ),   , (45)

admits a one-parameter group of point transformation whose infinitesimal transformation
is represented by the group generator,
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ˆ , ,   ,U x y
x

x y
y

= ( ) + ( )ξ
∂
∂

η
∂
∂

(46)

and if new variables X(x,y) and Y(x,y) are introduced as solutions of the two first order
partial differential equations (40) and (41), then the result given in Eq. (44) is an exact
difference equation from which exact numerical solutions of Eq. (45) can be computed
for any grid size h.

To illustrate this theorem, a second exact difference equation to integrate
numerically the Bernoulli equation,

y
x

x

y

v
y F xv1

1

1
+

( )
( ) −

= ( )φ
φ

  , (47)

will be constructed by applying Eq. (44). Since equation (47) admits the group of point
transformations generated by

ˆ   ,U x y
y

v= ( )φ
∂
∂

(48)

the new variables are solutions of

0 0
∂
∂

φ
∂
∂

X

x
x y

X

y
v+ ( ) =   , (49)

and

0
∂
∂

φ
∂
∂

Y

x
x y

Y

y
Yv+ ( ) =   . (50)

Hence, we have

X x y x,   ,( ) = (51)

and

Y x y
v x

y xv, exp   ,( ) =
−( ) ( )

( )










−1
1

1

φ
(52)

so that Eq.(47) transforms to

dY

dX
Y

F X

X
=

( )
( )φ

  . (53)

Hence, the exact difference equation (44) reduces to

Y x h y x h Y x y x dX
F X

Xx

x h

+ +( )( ) = ( )( ) ( )
( )

+

∫, , exp   ,
φ

(54)

from which numerical solutions of (47) can be computed.
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2.3. Proof that Invariant Difference Equations are Exact
Any number of exact difference equations can be constructed to obtain numerical

solutions of first order nonlinear differential equations provided that a symmetry property
of the differential equation is known. The methods developed above follow directly by
introducing new variables computed with the group generator of a transformation group
admitted by the differential equation.

The fact that the difference equations constructed by the above methods are exact
can be demonstrated by the following argument. Consider the difference equation (36)
found for the Bernoulli equation (35), which can be rewritten in the form,

Φ x x h y x y x h y x h
x h

x
y x

v x h dX
F X

X

v v

x

x h

, , ,

                                          .

+ ( ) +( )( ) = +( )−
+( )

( )
( )

− −( ) +( ) ( )
( )

=

− −

+

∫

1 1

1 0

φ

φ

φ
φ

(55)

For equation (55) to be an exact difference equation, it must admit the same group as the
Bernoulli equation itself. This group has the generator given in Eq. (20). Let Û (G) denote
the prolongation of this generator to the grid point values of the dependent variable. This
prolongation is given by

ˆ   .( )U x y x
y x

x h y x h
y x h

G v v= ( ) ( )
( )

+ +( ) +( )
+( )

φ
∂

∂
φ

∂
∂

(56)

The necessary and sufficient condition that the difference equation (55) admits the same
group as the Bernoulli equation it simulates is that

ˆ , , ,   ,   mod( )U x x h y x y x hG Φ Φ+ ( ) +( )( )[ ] = =( )0 0 (57)

That this condition is, in fact, satisfied can be verified by the evaluation of the left hand
side of Eq. (57). Accordingly, the difference equation is exact because it and the
Bernoulli equation (35) it simulates do admit the same group of point transformations.

3.0. Exact Difference Equations for Two-Point Boundary Value Problems
Methods for obtaining numerical solutions of two-point boundary value problems

that involve second order ordinary differential equations include (1) the shooting method,
which inherits all the stability issues that arise in the numerical solution of initial value
problems, and (2) reduction to systems of algebraic equations by finite differences, finite
elements, and finite volumes. In this section a new method for solving two-point
boundary value problems numerically is developed. It will be shown how the symmetries
of second order ordinary differential equations and relevant variational principles can be
used to derive two-point recurrence relations with which numerical results for two-point
boundary value problems can be computed. These two-term recurrence relations can also
be used to construct exact second order difference equations that simulate second order
ordinary differential equations.
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3.1. Gauge Functions and Invariant Variational Principles
The self-adjoint form of a second order ordinary differential equation, namely,

d

dx
p x y x q x y x s x( ) ( )[ ]− ( ) ( ) + ( ) =1 0   , (58)

for x1 ≤ x ≤ x2, can be regarded as the Euler-Lagrange equation of the variational principle
functional,

J dx p x y q x y ys x
x

x

= ( )( ) + ( ) − ( )








∫

1

2
1 22

2   , (59)

when homogeneous Dirichlet, Neumann or Robin boundary conditions are specified at
the end points of the interval, x1 ≤ x ≤ x2. The Euler-Lagrange equation is

∂
∂

∂

∂

F

y
D

F

y
x−








 =1 0   , (60)

where

F x y y p x y q x y ys x, ,   ,1 1 22
2( ) = ( )( ) + ( ) − ( ) (61)

and Dx is the total derivative operator, namely

D
x

y
y

y
y

x = + + +
∂
∂

∂
∂

∂

∂
1 11

1
K  . (62)

The variational principle functional (59) can be an integral invariant of a group of
point transformations. Let the once-extended group have the infinitesimal transformation,

x x x y a= + ( )ξ δ,   , (63)

y y x y a= + ( )η δ,   , (64)

and

y y x y y a1 1 1 1= + ( )η δ( ) , ,   , (65)

where δa  is a small change in the group parameter away from the identity value. The
functional (59) is said to be divergence-invariant under the group of point transformations
with the once-extended infinitesimal transformations given by Eqs. (63)–(65) with

η η ξ1 11( ) ( ) = ( )− ( )x y y D x y y D x yx x, , , , (66)

provided that the following condition is satisfied:

dx F x y y dx F x y y a dx D x y
x

x

x

x

x

x

x
1

2

1

2

1

2
1 1∫ ∫ ∫( )− ( ) = ( ) , ,  , ,   ,   ,δ φ (67)
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in which the function φ(x,y) is called the gauge function. If φ(x,y)=0, the functional (59)
is said to be absolutely invariant under the group. By introducing the Jacobian of the
infinitesimal transformation, namely,

dx

dx
D x y ax= +1 ξ δ( , )   , (68)

the first integral in Eq. (67) becomes

dxF x y y dx
dx

dx
F x y y

x

x

x

x

1

1

1

2 2
1∫ ∫( ) = ( ), , , ,   . (69)

With a multidimensional Taylor series to terms of order δa , we have

F x y y F x y y U F x y y a, , , , ˆ , ,   ,( )1 1 11( ) = ( ) + ( ) +δ K (70)

where the symbol ˆ ( )U 1  of the once-extended infinitesimal transformation is given by

ˆ , , , ,   .( ) ( )U x y
x

x y
y

x y y
y

1 1 1
1= ( ) + ( ) + ( )ξ

∂
∂

η
∂
∂

η
∂

∂
(71)

Substituting Eqs. (68) and (70) into Eq. (69) yields

dxF x y y dx D x y a F x y y U F x y y a

dxF x y y a dx F x y y D x y U F x

x

x

x

x

x

x

x

x

x

x

1

1

1

1 1

1

1

1

1

2 2

2 2

1 1

1

∫ ∫

∫ ∫

( ) = + ( )[ ] ( ) + ( )[ ]

= ( ) + ( ) ( ) +

, , , , , ˆ , ,   ,

, , , , , ˆ ,

( )

( )

ξ δ δ

δ ξ yy y,   ,1( )[ ]
(72)

to first order terms in δa . With Eq. (72) the divergence-invariance condition given in
Eq. (67) reduces to

ˆ , , , , ,  ,( )U F x y y F x y y D D x yx x
1 1 1( ) + ( ) = ( )ξ φ (73)

which becomes, when written out in full,

   ξ
∂
∂

η
∂
∂

η ξ
∂

∂
ξ φx y

F

x
x y

F

y
D x y y D x y

F

y
F D x y D x yx x x x, , , , , ,   .( ) + ( ) + ( )− ( )[ ] + ( ) = ( )1

1 (74)

This equation can be used to determine groups of point transformations admitted by the
functional (59) when the Lagrangian F(x,y,y1) is given.

With the Lagrangian,

F x y y p x y q x y ys x, ,    ,1 1 2 2 2( ) = ( )( ) + ( ) − ( ) (75)

in the variational principle (59) for which the differential equation (58) is the Euler-
Lagrange equation, the divergence-invariance condition (74) reduces to
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ξ η

∂η
∂

∂η
∂

∂ξ
∂

∂ξ
∂

∂ξ
∂

∂ξ
∂

∂φ
∂

∂φ

p y q y ys qy s

py
x

y
y x

y
y

p y qy ys
x

y
y x

1 1 2 1 2 1

1 1 1 2

1 2 2 1

2 2

2

2

( ) + −








+ −( )

+ + −








− ( )











+ ( ) + −








 +








= +

∂∂y
y1    .

(76)

This equation must be an identity in the derivative y1, so equating coefficients of like
powers of y1 on both sides produces the following four relations:

p x
y

x y( ) ( ) =
∂ξ
∂

,   ,0 (77)

ξ
∂η
∂

∂ξ
∂

∂ξ
∂

x y p x p x
y

x y
x

x y p x
x

x y, , , ,   ,( ) ( ) + ( ) ( )− ( )







 + ( ) ( ) =1 2 0 (78)

2 22p x
x

x y q x y
y

x y ys x
y

x y
y

x y( ) ( ) + ( ) ( )− ( ) ( ) = ( )∂η
∂

∂ξ
∂

∂ξ
∂

∂φ
∂

, , , ,   , (79)

and

ξ ξ η

∂ξ
∂

∂ξ
∂

∂φ
∂

x y q x y y x y s x q x y s x x y

q x y
x

x y ys x
x

x y
x

x y

, , ,

, ( ) , ,   .

( ) ( ) − ( ) ( ) + ( ) − ( )[ ] ( )

+ ( ) ( )− ( ) = ( )

1 2 1

2

2 2

2
(80)

These last four equations are the determining equations for the coordinate functions
ξ(x.y) and η(x,y) in the group generator,

ˆ , ,   ,U x y
x

x y
y

= ( ) + ( )ξ
∂
∂

η
∂
∂

(81)

and the gauge function φ(x,y) such that the functional (59) is divergence-invariant under
the group of point transformations with this generator. From Eq. (77) it follows that

ξ ξx y x,   ,( ) = ( ) (82)

a function of only the independent variable x. This means that the symmetry
transformations generated by (81) are fiber preserving. In view of Eq. (82) the three
remaining determining equations (78) to (80) simplify to

ξ
∂η
∂

ξ ξx p x p x
y

x y x p x x( ) ( ) + ( ) ( )− ( )








 + ( ) ( ) =1 1 12 0,   , (83)

2p x
x

x y
y

x y( ) ( ) = ( )∂η
∂

∂φ
∂

, ,   , (84)

and
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ξ ξ η

ξ
∂φ
∂

x q x y y x s x q x y s x x y

q x y s x ys x x
x

x y

( ) ( ) − ( ) ( ) + ( ) − ( )[ ] ( )

+ ( ) ( )− ( ) ( ) = ( )

1 2 1

2 1 1

2 2

2

,

,   .
(85)

A special case of the determining equations (83) to (85) that is useful in working
out numerical solutions of the two-point boundary value problem based on the
inhomogeneous second order differential equation (58) is found by setting ξ(x) = 0. Then
from Eq. (83) we have

∂η
∂y

x y,   ,( ) = 0 (86)

so that

η ηx y x,   ,( ) = ( ) (87)

a function of the independent variable x only when ξ(x) = 0. In this case we have from
Eqs. (84) and (85)

∂φ
∂

η
y

x y p x x,   ,( ) = ( ) ( )2 1 (88)

and

∂φ
∂

η
y

x y q x y s x x,   .( ) = ( ) − ( )[ ] ( )2 (89)

Integrating Eq. (88) gives

φ ηx y p x x y A x,   .( ) = ( ) ( ) + ( )2 1 (90)

The function A(x) is to be determined from

∂φ
∂

η
x

x y
d

dx
p x x y A x,( ) = ( ) ( )[ ] + ( )2 1 1 (91)

and Eq. (89). Comparing Eqs. (89) and (91) shows that

d

dx
p x x q x x( ) ( )[ ] = ( ) ( )η η1   , (92)

and

A x s x x1 2( ) = − ( ) ( )η   , (93)

so that

A x dx s x x( ) = − ( ) ( )∫2    ,η (94)

and the gauge function is given by

φ η ηx y p x x y dx s x x,    .( ) = ( ) ( ) − ( ) ( )∫2 21 (95)

The above calculations may be summarized by the following theorem. The
variational principle functional,
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J dx p x y q x y ys x
x

x

= ( )( ) + ( ) − ( )








∫

1

2
1 2 2 2   , (96)

for which the Euler-Lagrange satisfying homogeneous Dirichlet, Neumann, or Robin
boundary conditions is the second order ordinary differential equation,

d

dx
p x y q x y s x( )[ ]− ( ) + ( ) =1 0   , (97)

is divergence-invariant under the group of point transformations generated by

ˆ   ,U x
y

= ( )η
∂
∂

(98)

where the coordinate function η(x) is a solution of the homogenous counterpart of
Eq. (97), namely,

d

dx
p x x q x x( ) ( )[ ]− ( ) ( ) =η η1 0   , (99)

and the gauge function is given by

φ η ηx y p x x y dx s x x,    .( ) = ( ) ( ) − ( ) ( )∫2 21 (100)

This theorem leads to a conservation law which is a form of Noether’s theorem with a
gauge function.

To derive this conservation law we start from

dx FD U F D
x

x

x x
1

2 1 0∫ + −[ ] =ξ φˆ   ,( ) (101)

the divergence-invariance condition, which in expanded form is given by

dx FD
F

x

F

y
D y D

F

y
D x y

x

x

x x x x
1

2 1
1 0∫ + + + −( ) − ( )









 =ξ ξ

∂
∂

η
∂
∂

η ξ
∂

∂
φ ,   . (102)

With the identities,

FD D F D Fx x xξ ξ ξ= ( )−   , (103)

D
F

y
D

F

y
D

F

y
x x xη

∂

∂
η
∂

∂
η

∂

∂1 1 1=








 −









   , (104)

y D
F

y
D y

F

y
y D

F

y
y

F

y
x x x

1
1

1
1

1
1

11
1

ξ
∂

∂

∂

∂
ξ ξ

∂

∂
ξ

∂

∂
=









−









−   , (105)

and

D F
F

x
y

F

y
y

F

y
x = + +

∂
∂

∂
∂

∂

∂
1 11

1
  , (106)

the divergence-invariance condition of Eq. (102) takes the alternative form,
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dx D F y
F

y

F

y
x y y

F

y
D

F

yx

x

x x
1

2
1

1
1

1
0∫ − + − ( )












+ −( ) −


































=ξ ξ

∂
∂

η
∂

∂
φ η ξ

∂
∂

∂

∂
,   . (107)

This equation can be interpreted as follows. On solutions of the Euler-Lagrange equation,

∂
∂

∂
∂

F

y
D

F

yx−
′









 = 0   , (108)

the conservation law,

ξ
∂

∂
η
∂

∂
φF y

F

y

F

y
x y−









 + − ( ) =1

1 1 , constant  , (109)

holds and is, in fact, a first integral of (97). Accordingly, it follows that, when the
coordinate functions of the group generator,

ˆ , ,   ,U x y
x

x y
y

= ( ) + ( )ξ
∂
∂

η
∂
∂

(110)

are ξ(x,y)=0 and η(x,y)=η(x), a solution of the homogeneous equation,

d

dx
p x q x x( ) ( ) ( )   ,η η1 0[ ]− = (111)

a first integral obtained from Eqs. (100) and (108) for the second order differential
equation,

d

dx
p x y q x y s x( ) ( ) ( )   ,1 0[ ]− + = (112)

is given by

p x x y p x x y dx x s x( ) ( ) ( ) ( ) ( ) ( )   .η η η1 1− + =∫ constant (113)

This is a first order ordinary differential equation that admits the group generated by

ˆ ( )   ,U x
y

=η
∂
∂

(114)

with first extension,

ˆ ( ) ( )   ,( )U x
y

x
y

1 1
1

= +η
∂
∂

η
∂

∂
(115)

the same group admitted by both the second order differential equation (112) and
variational principle functional (59). The canonical variables X(x,y) and Y(x,y) of this
group are solutions of the first order partial differential equations,

0 0
∂
∂

η
∂
∂

X

x
x

X

y
+ =( )   , (116)

and
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0 1
∂
∂

η
∂
∂

Y

x
x

Y

y
+ =( )   . (117)

These solutions are

Y x y
y

x
,

( )
  ,( ) =

η
(118)

and

X x y x,   .( ) = (119)

Since

dY
x

x
ydx

dy

x
= − +

η

η η

1

2
( )

( ) ( )
  , (120)

and

dX dx=   , (121)

we have

dY

dX x
x y x y= −[ ]1

2
1 1

η
η η

( )
( ) ( )   . (122)

Hence, in terms of the canonical  variables the first integral in Eq. (113) of Eq. (112) is
given by

dY

dX p X X
dX X s X

X X
=

−( )
( ) ( )

( ) ( ) +
( ) ( )∫1

2 2η
η

η

constant

p
  . (123)

This relation can be applied in the following way to construct two-term recurrence
relations with which numerical solutions of the two-point boundary value problem based
on the second order differential equation (112) with homogeneous boundary conditions
can be constructed. Let

H X
p X X

dX X s X
X X

( ) =
−( )

( ) ( )
( ) ( ) +

( ) ( )∫1
2 2η

η
η

constant

p
  , (124)

so that Eq. (124) becomes

dY

dX
H x= ( )   . (125)

Then integrating this equation yields the two difference equations that follow:

Y x h y x h Y x y x dX H X

X x y x

X x h y x h

+ +( )( ) = ( ) + ( )
( )

+ +( )

∫, , ( )   ,

, ( )

, ( )

(126)

and
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Y x y x Y x h y x h dX H X

X x h y x h

X x y x

, ( ) ,   .

,

, ( )

( ) = − −( )( ) + ( )
− −

( )

( )( )
∫ (127)

These difference equations are exact because the simultaneous symmetry properties of
the second order ordinary differential equation (112) and its corresponding variational
principle functional (59) are not lost in the discretisation process, which is, accordingly,
symmetry preserving. Also, by subtracting Eq. (127) from Eq. (126) a second order
difference equation that is exact is obtained.

3.2. Exact Difference Equations for Computing Green’s Functions
Green’s functions for the self-adjoint differential operator in Eq. (58) satisfy the

differential equation,

d

dx
p x

d

dx
K x q x K x x( ) ( )   ,ξ ξ δ ξ( )







− ( ) + −( ) = 0 (128)

on a domain x1≤x≤x2 such that x1≤ξ≤x2 with two-point homogeneous Dirichlet, Neumann
or Robin boundary conditions specified at x=x1 and x=x2. At x=ξ the Green’s function is
continuous, and its derivative is discontinuous with the discontinuity,

lim
  .

ε
ξ ε ξ ξ ε ξ

ξ→
+( )− −( )







=

−( )
( )0

1d

dx
K

d

dx
K

p
(129)

In this section two-term recurrence relations, which are exact difference equations, are
obtained for computing numerical solutions of Eq. (128) for three cases. These are for
(1) a single region domain in slab geometry, (2) a single region domain in spherical
symmetry, and (3) a two region composite domain in slab geometry.

3.2.1. Numerical Green’s Function for a Single Region Domain in Slab Geometry
In this case we want a numerical solution of the differential equation,

D
d

dx
K x K x xa

2

2
0ξ ξ δ ξ( )− ( )∑ + −( ) =   , (130)

that satisfies the two-point boundary conditions,

dK

dx
0 0ξ( ) =   , (131)

and

K aξ( ) = 0   , (132)

on the domain 0≤x≤a. Within the context of the neutron diffusion equation, the notation
in Eq. (130) is that Σa is the absorption cross section, and D is the diffusion coefficient.
We can interpret Eq. (130) as the Euler-Lagrange equation of the variational principle,
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J dx
a

= ∫0
D

d

dx
K x K x K x xaξ ξ ξ δ ξ( )







+ ( )[ ] − ( ) −( )∑













2
2

2   . (133)

Both the Green’s function differential equation (130) and its corresponding functional
admit the group of point transformations generated by

ˆ ( )   ,U x
K

= η
∂
∂

(134)

where the coordinate function η(x) is a solution of

η α η11 2 0( ) ( )   .x x− = (135)

Here α is the inverse diffusion length given by

α2 =
∑a
D

  . (136)

The functional (133) is divergence-invariant under this group with the gauge function,

φ η ξ η δ ξx K D x K x dx x x, ( ) ( )   .( ) = ( )− −( )∫2 21 (137)

which takes one of two forms depending upon whether or not x<ξ or x>ξ. For the
interval 0≤x≤ξ, the gauge function is

φ η ξx K D x K, ( )   .( ) = ( )2 1 x (138)

For the interval ξ≤x≤a, the gauge function is given by

φ η ξ η ξx K D x K x, ( )   .( ) = ( )− ( )2 21 (139)

The conservation law,

D x
d

dx
K x D x K x dx x xη ξ η ξ η δ ξ( ) ( ) ( )( )− ( ) + −( ) =∫1 constant  , (140)

can be simplified by using the boundary condition at x=0 on the derivative of the Green’s
function and taking the solution of Eq. (135) for the coordinate function η(x) that satisfies
the boundary condition,

η1 0 0( ) =   . (141)

That is, for these boundary conditions, we have

η α( ) cosh   .x x= ( ) (142)

Hence, the constant in the conservation law given by Eq. (140) can be taken to be zero, so
it now takes two forms. These are

η ς η ξ( ) ( )   ,x
d

dx
K x x K x( )− ( ) =1 0 (143)

for the interval 0≤x≤ξ, and
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D x
d

dx
K x D x K xη ξ η ξ η ξ( ) ( )   ,( )− ( ) + ( ) =1 0 (144)

for the interval ξ≤x≤a. These last two equations can be written in the alternative forms,

d

dx

K x

x

ξ

η
( )











=
( )

  ,0 (145)

for 0≤x≤ξ, and

d

dx

K x

x D x

ξ

η

η ξ

η

( )











=
−( ) ( )

( ) ( )
  ,

1
2

(146)

for ξ≤x≤a.

We now introduce grid points xi for 1≤i≤N1 for 0≤xi≤ξ and grid points xj for
1≤j≤N2 for ξ≤xj≤a. The grid points need not be uniformly spaced but can be arbitrarily
selected. Integrating Eq. (146) between  two grid points xj and xj+1 in the interval ξ≤x≤a
produces

K x

x

K x

x D

dx

x

j

j

j

j x

x

j

j
+

+

( )
( )

−
( )

( )
=

−( ) ( )
( )

+∫1

1
2

1 1ξ

α

ξ

α

αξ

αcosh cosh

cosh

cosh
  . (147)

Since

dx

x

x x

xcosh

sinh cosh

cosh
  ,

2
1

α α

α α

α( )
=

( )− ( )
( )











∫ (148)

the two-term recurrence relation in Eq. (147) reduces to

K x
x

x
K x

x x

D x
j

j

j
j

j j

j
ξ

α

α
ξ

αξ α

α α
( ) =

( )
( ) ( ) +

( ) −( )[ ]
( )+

+
+

+

cosh

cosh

cosh sinh

 cosh
  .

1
1

1

1
(149)

From the boundary condition on the Green’s function at x=a, we have

K xN2
0ξ( ) =   , (150)

so for j=N2–1  we obtain from Eq. (149)

K x
x x

D x
N

N N

N
2

2 2

2

1
1

−
−( ) =

( ) −[ ]
( )

ξ
αξ

α α

cosh sinh

 cosh
  . (151)

Numerical values for the Green’s function at all remaining grid points in the interval
ξ≤x≤a can be computed with the two-term recurrence relation of Eq. (149) by setting
j=N2–2, N2–3, N2–4, … , 3, 2, 1 sequentially.

Integrating Eq. (145) between two grid points xi and xi+1 that lie in the interval
0≤x≤ξ yields the two-term recurrence relation,
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K x
x

x
K xi

i

i
iξ

α

α
ξ( ) =

( )
( ) ( )

+
+

cosh

cosh
  ,

1
1 (152)

which is evaluated sequentially for i=N1–1, N1–2 N1–3, , 3, 2, 1 after using the fact that
the Green’s function is continuous at x=ξ, so that

K x K xN j1 1ξ ς( ) = ( )=   . (153)

The two-term recurrence relations found in Eqs. (149) and (152) produce exact values for
the Green’s function at arbitrarily located grid points in both the intervals 0≤x≤ξ and
ξ≤x≤a. The evaluations with these two recurrence relations proceed from right to left
through the grid points because of the Dirichlet boundary condition imposed on the
Green’s function at the right boundary point, x=a.

3.2.2. Numerical Green’s Function for a Single Region Domain in Spherical
Geometry
The Green’s function in this case satisfies the differential equation,

D

r

d

dr
r

dK

dr
r K r

r

r
a2

2
24

0ξ ξ
δ ξ

π
( )







− ( )∑ +

−( )
=   , (154)

together with the boundary conditions that K 0ξ( ) is finite and

K aξ( ) = 0   , (155)

when the domain is defined by the inequality 0≤r≤a. This differential equation for the
Green’s function can be thought of as the Euler-Lagrange equation that corresponds to
the variational principle functional,

J dr
a

= ∫0
Dr

d

dr
K r K r r

K r r
a

2
2

2 2

2
ξ ξ

ξ δ ξ

π
( )







+ ( )[ ]∑ −

( ) −( )










  . (156)

The differential equation (154) defining the spherical geometry Green’s function is a
differential invariant of the group generated by

ˆ ( )   ,U r
K

= η
∂
∂

(157)

where the coordinate function η(r) is a solution of

1
02

2 2

r

d

dr
r

d

dr
r r

η
α η( ) ( )   .




− = (158)

Since the Green’s function is finite at r=0, we take this solution as

η
α

( )
sinh

  .r
r

r
=

( )
(159)

The variational functional (156) is divergence-invariant under this same group with the
gauge function,
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φ η ξ
π

η δ ξr K Dr r K r dr r r, ( ) ( )   .( ) = ( )− −( )∫2
1

2
2 1 (160)

The corresponding conservation law is given by

Dr r
d

dr
K r Dr r K r dr r r2 2 1 1

4
η ξ η ξ

π
η δ ξ( ) ( ) ( )   ,( )− ( ) =

−( )
−( )∫ (161)

which takes one of two forms. These are

d

dr

K r

r

ξ

η
( )







 =

( )
  ,0 (162)

for the interval 0≤r≤ξ, and

d

dr

K r

r Dr r

ξ

η

η ξ

π η

( )







 =

−( ) ( )
( ) ( )

  ,
1

4 2 2 (163)

for the interval ξ≤r≤a. To derive a two-term recurrence relation for the interval ξ≤r≤a
from Eq. (163), we can use the fact that

dr

r r

dr

r

r r

r2 2 2
1

η α α
α α

α( ) sinh ( )

sinh( ) cosh( )
sinh( )

  .= =
−







∫∫ (164)

Let rj be the jth grid point in the interval ξ≤r≤a for 1≤j≤N2. Then integration of Eq. (63)
produces

K r

r

K r

r D

dX

X

j

j

j

j r

r

j

jξ

η

ξ

η

η ξ

πα
α

α( )
=

( )
+

( )
( )

+

+

+∫( ) ( ) sinh
  .

1

1 4 2

1

(165)

This reduces to the two-term recurrence relation,

K r
r

r

r

r
K r

r r

D r r
j

j

j

j

j
j

j j

j j
ξ

α

α
ξ

αξ α

πα ξ α
( ) =

( )
( )

( )
( ) ( ) +

( ) −( )[ ]
( )+

+
+

+

+

sinh

sinh

sinh sinh

sinh
  ,

1

1
1

1

14
(166)

for j=N2–2, N2–3, N2–4, … , 3, 2, 1. From the Dirichlet boundary condition at r=a, we
have

K rN2
0ξ( ) =   . (167)

Hence, evaluating Eq. (166) at rN2 1−  yields

K r
r r

Dr r
N

N N

N N
2

2 2

2 2

1
1

14
−

−

−
( ) =

( ) −( )[ ]
( )

ξ
αξ α

πα α

sinh sinh

sinh
(168)

to start the grid point evaluations of the Green’s function with Eq. (166) in the interval
ξ≤r≤a. Let ri be the ith grid point in the interval 0≤r≤ξ for 1≤i≤N1 with r1=0. Integration
of Eq. (162) produces
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K r
r K r

r

r

ri
i i

i

i

i
ξ

α ξ

α
( ) =

( ) ( )
( )











+

+

+sinh

sinh
  1

1

1 (169)

as the two-term recurrence relation to obtain numerical values of the Green’s function in

the interval 0≤r≤ξ for i=N1–1, N1–2, N1–3, … , 3, 2, 1. It may be noted that K rN1
ξ( ) is

known from the computations in the interval ξ≤r≤a, so computations for the interval
0≤r≤ξ can be started by using the continuity of the Green’s function at r=ξ. Also, since

lim sinh
  ,r

r

r→
( )





=0

α
α (170)

the recurrence relation (169) yields a finite value for the Green’s function at r1=0 which
is

K r
r K r

r1
2 2

2
ξ

α ξ

α
( ) =

( )
( )sinh

  . (171)

The locations of the grid points in the two regions can be selected arbitrarily. The two
recurrence relations (166) and (169) produce exact numerical values for the Green’s
function in the two intervals 0≤r≤ξ and ξ≤r≤a, irrespective of the locations of the grid
points because they are exact difference equations that preserve symmetry properties of
the Green’s function differential equation (154) and the corresponding variational
principle given in Eq. (156).

3.2.3. Numerical Green’s Function for a Two-Region Composite Domain in Slab
Geometry
When the material properties are spatially dependent, the Green’s function for the

neutron diffusion operator satisfies the differential equation,

d

dx
D x

d

dx
K x x K x xa( ) ( )   ,ξ ξ δ ξ( )







−∑ ( ) + −( ) = 0 (172)

on a specified domain in slab geometry together with homogeneous two-point boundary
conditions. This differential equation can be regarded as the Euler-Lagrange equation of
the variational principle,

J
x

x
= ∫

1

2
dx D x

d

dx
K x x K x x K xa( ) ( )







+∑ ( )[ ] − −( ) ( )












ξ ξ δ ξ ξ

2
2

2( )   . (173)

Numerical solutions of Eq. (172) are found below for the case of a two-region composite
domain in which the material properties are assumed to be piecewise constant. That is, it
is assumed that

D x
D x a
D a x a T( )

   ,
   ,  =

≤ ≤
≤ ≤ +





1
2

0for
for (174)

and
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=∑a

   ,

   .
 

for

for

0
1

2

≤ ≤

≤ ≤ +







∑
∑

x a

a x a T
a

a
(175)

It will also be assumed that 0≤ξ≤a and that the Green’s function satisfies the two end
point boundary conditions,

d

dx
K 0ξ( ) = 0   , (176)

and

K a T+( ) =ξ 0   . (177)

The Green’s function is continuous at x=ξ, and its first derivative is discontinuous at x=ξ
with the discontinuity,

lim   .ε ξ ε ξ ξ ε ξ→ +( )− −( )






=

−( )
0

1

1

d

dx
K

d

dx
K

D
(178)

The interface between the two regions is at x=a, and at this interface the Green’s function
and its corresponding net currents are continuous, that is,

lim   ,ε ε ξ ε ξ→ +( )− −( )[ ] =0 0K a K a (179)

and

lim   .ε ε ξ ε ξ→ +( )− −( )






=0 01 1D

d

dx
K a D

d

dx
K a (180)

The Green’s function differential equation (172) and the variational principle
(173) both admit the group of point transformations that is generated by

ˆ ( )   ,U x
K

= η
∂
∂

(181)

where the coordinate function η(x) is given by

η
η

η
( )

( )    ,

( )    ,
x

x x a

x a x a T
=

≤ ≤

≤ ≤ +





1

2

0for

for
(182)

with solutions of

η α η1
11

1
2

1 0( ) ( )   ,x x− = (183)

η α η2
11

2
2

2 0( ) ( )   ,x x− = (184)

where the following inverse diffusion lengths are defined by

α1
2 1

1
=
∑a

D
  , (185)

and
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α2
2 2

2
=
∑a

D
  . (186)

Since the Green’s function satisfies a homogeneous Neumann boundary condition at x=0,
the solution of (183) used is

η α1 1 0( ) cosh  ,    .x x x a= ( ) ≤ ≤( ) (187)

Also, the solution of (184) is given by

η α α2 1 2 2 2 0( ) cosh sinh  ,    .x A x A x x a T= ( ) + ( ) ≤ ≤ +( ) (188)

The coordinate function must satisfy the boundary conditions,

η η1 2( ) ( )   ,a a= (189)

and

D a D a1 1 2 2′ = ′η η( ) ( )   , (190)

at the interface between the two regions. These two boundary conditions become

cosh sinh cosh   ,α α α2 1 2 2 1a A a A a( ) + ( ) = ( ) (191)

and

sinh cosh sinh   .α α
α
α

α2 1 2 2
1 1

2 2
1a A a A

D

D
a( ) + ( ) = ( ) (192)

Solving these last two equations yields

A a a
D

D
a a1 2 1

1 1

2 2
2 1= ( ) ( )− ( ) ( )cosh cosh sinh sinh   .α α

α
α

α α (193)

and

A a a
D

D
a a2 2 1

1 1

2 2
2 1= − ( ) ( ) + ( ) ( )sinh cosh cosh sinh   ,α α

α
α

α α (194)

and combining Eqs. (193) and (194) with Eq. (188) produces

η α α
α
α

α α2 1 2
1 1

2 2
1 2( ) cosh cosh sinh sinh   .x a x a

D

D
a x a= ( ) −( )[ ] + ( ) −( )[ ] (195)

Evaluating this expression gives at x=a+T

η α α
α
α

α α2 1 2
1 1

2 2
1 2a T a T

D

D
a T+( ) = ( ) ( ) + ( ) ( )cosh cosh sinh sinh   , (196)

which will be used to simplify the notations for further results.

Let the Green’s function for the two regions be denoted by

K x
y x x a
y x a x a Tξ( ) =

≤ ≤
≤ ≤ +





1
2

0( )   ,
( )   .

for 
for (197)

Then the conservation law in the first region defined by 0≤x≤a is given by
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D x y x D x y x dx x x E1 1 1
1

1 1
1

1 1 1η η η δ ξ( ) ( ) ( ) ( ) ( )   ,− + −( ) =∫ (198)

and the conservation law in the second region, a≤x≤a+T is given by

D x y x D x y x Ex2 2 2
1

2
1

2 2η η( ) ( ) ( ) ( )   ,− = (199)

since 0≤ξ≤a. Here E1 and E2 are constants. For a homogeneous Neumann boundary
condition at x=0, we have

E1 0=   , (200)

but E2≠0 as shown below.

Assume that 0≤x≤ξ. Then the conservation law (198) becomes

d

dx

y x

x
x1

1
0 0

( )
( )

 ,     .
η

ξ








 = ≤ ≤( ) (201)

With the assumption that ξ≤x≤a, the conservation law reduces to

d

dx

y x

x D x
x a1( )

( ) ( )
  ,     .

η

η ξ

η
ξ

1

1

1 1
2

1







 =

−( ) ( )
≤ ≤( ) (202)

To apply the conservation law (199) for the second region a≤x≤a+T, it is
necessary to evaluate the constant, E2, which can be done as follows: From the
conservation law (198) evaluated at x=a, we have

D a y a D a y a1 1 1
1

1 1
1

1 1η η η ξ( ) ( ) ( ) ( )   ,− = − ( ) (203)

and from (199) evaluated at x=a,

D a y a D a y a E2 2 2
1

2 2
1

2 2η η( ) ( ) ( ) ( )   .− = (204)

By subtracting Eq. (203) from Eq. (204) and noting the continuity of net currents at x=a
it is found that

E2 1= − ( )η ξ   . (205)

With this result the conservation law (199) for the region a a≤x≤a+T can be written in the
form,

d

dx

y x

x D x
2( )

( ) ( )
  .

η

η ξ

η2

1

2 2
2

1







 =

−( ) ( )
(206)

Numerical algorithms in the form of two-point recurrence relations to compute the
composite domain Green’s function can be found with the forms of the conservation
theorems given in Eqs. (201), (202), and (206).

Grid points are required in three intervals as defined by

a x a T k N

x a j N
k

j

≤ ≤ + ≤ ≤

≤ ≤ ≤ ≤

 ,   ,

 ,   ,

for  

for  

1

1
3

2ξ

and
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0 1 1≤ ≤ ≤ ≤x i Ni ξ  ,   .for 

These grid points can be located at arbitrary positions.  Since the Green’s function
satisfies a homogeneous Dirichlet boundary condition at x=a+T, the numerical
evaluations are done by moving through the grid points from right to left. To start with
the conservation law (206) in the region a≤x≤a+T, we need the intigral,

dx

x

x x

A A xη

α α

α η2
2

2 2

2 1 2 2( )

sinh cosh

( )
  ,=

( )− ( )
+( )∫ (207)

where η2(x) is as given in Eq. (188). Then it is found that, from the conservation law
(206), the integral between adjacent grid points,

dx
d

dx

y x

x D

dx
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x
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k

k

k+ +∫ ∫







=

−( ) ( )1 1
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  ,
η

η ξ

η
(208)

simplifies to the following two-term recurrence relation:

y x
x

x
y x

x x

D xk
k

k
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k
2
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2 1
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1 2 1

2 2 2 1
( ) =
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( )
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( ) −( )[ ]

( )+
+
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+
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η ξ α

α η

sinh
  . (209)

In this expression η2(xk) and η2(xk+1) are evaluated with

η α α
α
α

α α2 2 1 2 2
1 1

2 2
1 2x a x a

D

D
a x ak( ) = ( ) −( )[ ] + ( ) −( )[ ]cosh cosh sinh sinh   , (210)

and so forth. Since

y xN2 3
0( ) =   , (211)

the calculation is started with

y x
a T x

D a T
K xN

N
N2 1

1 2 1

1 2 2
13

3

3−
−

−( ) =
( ) + −( )[ ]

+( )
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η ξ α

α η
ξ

sinh
  . (212)

Then the Green’s function at grid points such that a≤xh≤a+T is found numerically with
the two-term recurrence relation,

K x K x
x x

D xk
k

k
k

k k

k
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η η

η η
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η ξ α
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1 2 1

2 2 2 1

sinh
  , (213)

for k=N3–2, N3–3, …, 3, 2, 1.

For grid points in the first region such that ξ≤xj≤a, the conservation law (202)
integrated between two adjacent grid points becomes

dx
d

dx

y x

x D

dx
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j
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1( )
( ( )

  ,
η

η ξ

η
(214)
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which, in view of the integral given in Eq. (148) reduces to the two-term recurrence
relation,

K x
x K x

x

a x x

D x
j

j j

j

j j

j
ξ

α ξ

α

α ξ

α α
( ) =

( ) ( )
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+
( ) −( )[ ]

( )
+

+

+

+

cosh

cosh

cosh sinh

cosh
  .

1 1

1 1

1 1 1

1 1 1 1
(215)

The computation runs through the sequence j=N2–1, N2–2, N2–3, …, 3, 2, 1 because

K xN2
ξ( ) is known from the continuity of the Green’s function at the interface x=a

between the two regions. For grid points in the first region such that 0≤xi≤ξ, the
conservation law (201) gives

y x
x

x
y xi

i

i
i1

1

1 1
1( ) =

( )
( ) ( )

+
+

η

η
  , (216)

which is the same as

K x
x

x
K xi

i

i
iξ

α

α
ξ( ) =

( )
( ) ( )

+
+

cosh

cosh
  ,1

1 1
1 (217)

where i=N1–1, N1–2, N1–3, …, 3, 2, 1. The Green’s functions in this equation at i=N1,
namely is known from continuity at x=ξ, that is,

lim   ,ε ε ξ ε ξ→ −( )− +( )[ ] =−0 0
1 1K x K xN j (218)

and

cosh cosh   .α α ξ1 11
xN( ) = ( ) (219)

The three two-term recurrence relations, (213), (215), and (217), are exact
difference equations that yield exact numerical results for the composite domain Green’s
function for arbitrary locations of the grid points in each of the three intervals.

3.3. Exact Difference Equations for the Neutron Diffusion Equation
The self-adjoint form of the neutron diffusion equation is given by

1
01

x

d

dx
D x x y x y Q xN

N
a( ) ( ) ( )   ,[ ]− ∑ + = (220)

where N=0 for slab geometry, N=1 for cylindrical geometry and N=2 for spherical
geometry. This equation can be regarded as the Euler-Lagrange equation of the
variational principle,

J dx D x x y x x y x yQ x
x

x
N N

a
N= ( ) + ∑ −









∫

1

2
1 2 2 2( ) ( ) ( )   . (221)

For a region with spatially uniform properties these last two equations can be written in
the simpler forms,
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1
01

x

d

dx
x y y S xN

N[ ]− + =( )   , (222)

and

J dx x y x y yx S x
x

x
N N N= ( ) + −









∫

1

2
1 2 2 2 ( )   , (223)

when distance is measured in units of the diffusion length L given by

L D a= ∑( )/ ,/1 2 (224)

and the volumetric source term is replaced with

S x
Q x

a
( )

( )
  .=

∑
(225)

Symmetry properties of homogeneous and inhomogeneous second order ordinary
differential equations and their corresponding variational principles can be used to
construct exact difference equations. The homogeneous second order differential
equation,

a x y b x y c x y( ) ( ) ( )   ,11 1 0+ + = (226)

or its corresponding self-adjoint form

d

dx
p x y q x y( ) ( )   ,1 0[ ]− = (227)

where

p x dx
b x

a x
( ) exp

( )
( )

  ,= ∫ (228)

and

q x p x
c x

a x
( ) ( )

( )
( )

  ,= −( )1 (229)

both admit an eight-parameter group of point transformations. Let u2(x) and u1(x) be two
linearly independent solutions of the self-adjoint form given in Eq. (227) with the
Wronskian W(x) which satisfies

dW x

dx

W x

p x

d

dx
p x

( ) ( )
( )

( )   .= −( )1 (230)

Then the Lie algebra of the generators of the eight-parameter group that is admitted by
the self-adjoint form (227), or by the nonself-adjoint form (226), can be written with the
following basis:

ˆ   ,U y
y1 =
∂
∂

(231)
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ˆ ( )   ,U x
y2 1= µ
∂
∂

(232)
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∂
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(233)
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ˆ
( )

( ) ( )   ,U
y

W x
x

x
y x

y5 2 2
1= +









µ

∂
∂

µ
∂
∂
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1 1
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ˆ ( )
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µ
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µ
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(237)

and

ˆ
( )

( ) ( ) ( ) ( )   .U
W x

x x
x

y
d

dx
x x

y8 1 2 1 2
1

2= + ( )








µ µ

∂
∂

µ µ
∂
∂

(238)

The variational principle for which the self-adjoint form (227) is the Euler-Lagrange
equation is given by

J dx p x y q x y
x

x
= ( ) +









∫

1

2 1 2 2( ) ( )   . (239)

This functional is a divergence-invariant of a five-parameter subgroup of the eight-
parameter group admitted by the corresponding Euler-Lagrange equation (227). The Lie
algebra of the five-parameter subgroup admitted by the functional is given by the five
generators, Û2, Û3, Û6, Û7, and Û8, in Eqs. (231)–(238). This fact leads to five
conservation laws from each of which difference equations can be constructed by the
methods of Section 2 to compute numerical solutions of two-point boundary value
problems based upon the self-adjoint form (227) of a homogeneous second order ordinary
differential equation.

The inhomogeneous case is exemplified by the neutron diffusion equation (220)
and its variational principle (221). If the volumetric neutron source term S(x) in the
diffusion equation is an arbitrary function of position, then the diffusion equation and its
variational principle will both admit the two-parameter group with the Lie algebra basis
given by

ˆ ( )   ,U x
y1 1= µ
∂
∂

(240)

and
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ˆ ( )   ,U x
y2 2= µ
∂
∂

(241)

where the coordinate functions µ1(x) and µ2(x) are solutions of the homogeneous
diffusion equation,

d

dx
x

d

dx
x x xN Nµ

µ( ) ( )   .




− = 0 (242)

On the other hand, if the volumetric source term in the diffusion equation is spatially
uniform, that is, if

s x s( )   ,= = constant (243)

then the neutron diffusion equation is invariant under an eight-parameter group with the
Lie algebra of generators that follows:

ˆ   ,U y
y1 =
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(244)
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∂
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and
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µ µ
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µ µ (251)

where µ1(x) and µ2(x) are linearly independent solutions of Eq. (242), and W(x) is their
Wronskian. The associated variational principle, namely,

J dx x y x y yx s
x

x
N N N= ( ) + −









∫

1

2
1 2 2 2   , (252)

for the case of a spatially uniform source is a divergence-invariant of the five-parameter
subgroup with Lie algebra basis given by Û2, Û3, Û6, Û7, and Û8 in Eqs. (245), (246),
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(249), (250), and (251), respectively. In view of the symmetry properties found above,
there are two conservations laws for the case of a spatially arbitrary source term and five
conservation laws for the case of a spatially uniform volumetric source term from which
exact difference equations to obtain numerical solutions of two-point boundary value
problems involving the neutron diffusion equation can be constructed. Two examples of
applying the above symmetries to determining gauge functions and exact difference
equations are illustrated below.

In the first example we want to solve the diffusion equation with a spatially
dependent source, namely,

y y s x x a11 21 0 0− + −( ) = ≤ ≤ε  ,       ,for (253)

in slab geometry with a homogenous Neumann boundary condition,

y1 0 0( ) =   , (254)

at x=0, and a homogeneous Dirichlet boundary condition,

y a( )   ,= 0 (255)

at x=a. The associated variational principle is given by

J dx y y ys x
a

= ( ) + − −( )







∫0

1 2 2 22 1 ε (256)

with the constant ε. Both the diffusion equation and the variational principle (256) admit
the group of point transformations generated by

ˆ cosh( )   .U x
y

=
∂
∂

(257)

The condition that the functional in Eq. (256) be divergence-invariant under the group
generated by (257), namely,

ξ
∂
∂

η
∂
∂

η
∂

∂
ξ φ

F

x

F

y

F

y
FD Dx x+ + + =( )   ,1

1
(258)

from Eq. (73), reduces in this case to

2 1 22 1 1cosh( ) sinh( )   .x y s x x y
x y

y− −( )[ ] + = +ε
∂φ
∂

∂φ
∂

(259)

Hence, we have

∂φ
∂y

x= 2sinh( )   , (260)

and

∂φ
∂

ε
x

x y s x= − −( )[ ]2 1 2cosh( )   , (261)

so that the gauge functions given by
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φ εx y y x dx x s x,  sinh( )  cosh( )    .( ) = − −( )∫2 2 1 2 (262)

The corresponding conservation law is

cosh( ) sinh( )  cosh( )    ,x y x y dx x s x1 21− + −( ) =∫ ε constant (263)

in which the constant can be taken as zero for the homogeneous Neumann boundary
condition at x=0. The canonical variables of the group with the generator in Eq. (257) are

y x y
y

x
,

cosh( )
  ,( ) = (264)

and

X x y x,   .( ) = (265)

Since

dx x s x s x x x x x x cosh( )  sinh( ) sinh( ) cosh( ) sinh( )   ,1 2 22 2−( ) = − − +[ ]{ }∫ ε ε (266)

we obtain by writing the conservation law (263) in terms of canonical variables the result,

dY
dx

s

x
x x x x x x=

−( )
− − +[ ]{ }1

2 2
2

2

cosh ( )
sinh( ) sinh( ) cosh( ) sinh( )   .ε (267)

By integrating this result from x to x+h we obtain the exact difference equation,
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
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

cosh
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1 1 2 2
2 2

ε (268)

Also, integrating Eq. (267) from x–h to x yields a second exact difference equation,
namely,
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y x

x
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cosh( ) cosh( ) cosh cosh( ) cosh( )
  .

1 1 2 22 2

ε (269)

These two difference equations are exact, and can be used to show the limitations of a
standard difference scheme to solve the diffusion equation (253). If the standard three-
point difference formula is used to approximate the second order derivative in Eq. (253),
the standard finite difference scheme for this equation is

y x h y x h y x

h
y x s x

+( ) + −( )−
− + −( ) =

2
1 0

2
2( )

( )   ,ε (270)

where h is a uniform grid spacing. By adding the two exact two-time recurrence relations
found in Eqs. (268) and (269) we obtain the following exact second order difference
equation:
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or

y x h y x h y x h

s h x h x h

+( ) + −( ) =

+ − + +( ) − − −[ ]{ }
2

2 2 2 2 2 2 42 2 2

( )cosh( )

cosh( ) cosh( )   .ε
(272)

This exact second order difference equation that comes out of exact two-term recurrence
relations simplifies to the form,

y x h y x h h y x s h h x+( ) + −( ) = +( ) + − +( )2 2 2 2 2( )   ,ε (273)

with the approximation that

cosh( )   .h
h

= + +1
2

2
K (274)

This result obtained by approximating exact two-term recurrence relations is the same as
the standard second order difference equation written in Eq. (270) for the diffusion
equation. This second order difference equation leads to a set of algebraic equations for
approximate solutions of the diffusion equation at the grid points of a uniformly spaced
grid. In contrast either of the two-term recurrence relations (268) and (269) will yield
exact solutions of the diffusion equation at arbitrarily located grid points without solving
a set of algebraic equations.

In the second example we want to develop exact difference equations to obtain numerical
solutions of the neutron diffusion equation is spherical geometry with a spatially uniform
source. The neutron balance in differential form is

d

dx
x y x y x s x a2 1 2 2 0 0( )− + = ≤ ≤ ,       .for (275)

Let

w xy=   , (276)

so that

d w

dx
w xs

2

2
0− + =   , (277)

with the associated variational principle,
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J dx w w xsw
a

= ( ) + −








∫0

1 2 2 2   . (278)

The boundary conditions are both homogeneous Dirichlet boundary conditions, that is,

w 0 0( ) =   , (279)

and

w a( ) = 0   . (280)

Both the diffusion equation (277) and the variational principle admit the group of point
transformations generated by

ˆ sinh( )   .U x
w

=
∂
∂

(281)

The functional (278) is divergence-invariant under this group with the gauge function,

φ x w w x s dx x x, cosh( ) sinh( )   ,( ) = − ∫2 2 (282)

or

φ x w w x s x x, cosh( ) cosh sinh( )   .( ) = − −[ ]2 2 (283)

The conservation law found with this gauge function is given by

sinh( ) cosh( ) cosh( ) sinh( )   .x w x w s x x x1 − + −[ ] = constant (284)

The constant in this equation can be taken as zero because of the homogeneous Dirichlet
boundary condition at x=0. The canonical variables of the group generated by (281) are

Y x w
w

x
,

sinh( )
( ) =   , (285)

and

X x=   . (286)

In terms of these canonical variables the conservation law (284) becomes
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dx

s
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x x x=

−( )
−[ ]

1
2sinh ( )

cosh( ) sinh( )   . (287)

As

dx
x x x

x

x

x

cosh( ) sinh( )

sinh ( ) sinh( )
  ,

−[ ] =∫ 2 (288)

we obtain from Eq. (287) the two two-term recurrence relations that follow:
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  , (289)

and
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w x h
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These two results are exact, and can be added to produce an exact second order difference
equation, namely,

w x h w x h
w x x h x h

x

s x
x x h x h

x

+( ) + −( ) =
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(291)

or

w x h w x h w x h xs h+( ) + −( ) = ( ) + − ( )[ ]2 2 1( )cosh cosh   . (292)

With the approximation,

cosh( )   ,h
h

= +1
2

2
(293)

this exact difference equation reduces to

w x h w x h w x h w x xsh+( ) + −( )− − + =2 02 2( ) ( )   , (294)

which is a standard approximate second order difference equation for the diffusion
equation (277) found with the standard three-point central difference formula for second
order derivatives. Numerical solutions of the spherical geometry diffusion equation (276)
can be computed with either of the exact two-term recurrence relations at grid points with
arbitrary locations. These two-term recurrence relations produce exact numerical results
without having to solve a system of algebraic equations as is required with the standard
approximate second order difference equation (294).
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