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Abstract

The longitudinal and transverse coupled-bunch instabilities of the Tevatron at Run II
are addressed in two scenarios. The first scenario corresponds to the present Run II
condition: 36 proton bunches on 36 antiprotons. Each proton bunch contains 1.7× 1011

particles with a rms bunch length 60 cm. The second scenario is for the future upgrade
when there are 108 proton bunches colliding with 108 antiproton bunches. Each proton
bunch contains 2.7 × 1011 particles with a rms bunch length 50 cm. Our analysis shows
that the growth rates of transverse coupled-bunch instabilities are slow and will be
damped by a small betatron tune spread. On the other hand, growth rates of longitudinal
coupled-bunch instabilities will be fast especially for the 108-by-108 scenario.

∗Operated by the Universities Research Association, Inc., under contract with the U.S. Department of
Energy.



1

1 LONGITUDINAL COUPLED-BUNCH

INSTABILITIES

1.1 SACHERER’S FORMULAS

The long-range wake left by the higher-order resonant modes of the rf cavities may couple

the longitudinal motions of the bunches in the Tevatron. Assuming M bunches of equal

intensity equally spaced in the ring, there are µ = 0, 1, · · · , Ms−1 modes of oscillations in

which the center-of-mass of a bunch leads its predecessor by the synchrotron phase 2πµ/Ms. In

addition, an individual bunch in the µ-th coupled-bunch mode can oscillate in the synchrotron

phase space about its center-of-mass in such a away that there are m = 1, 2, · · · nodes along

the bunch longitudinally (not including the ends). For example, m = 1 is the rigid dipole

mode, where the bunches move rigidly as they execute synchrotron oscillations, m=2 is the

quadrupole mode where the bunch head and tail oscillate longitudinally 180◦ out of phase.

Actually, this has been a simplified description of the modes of perturbation inside a bunch.

The full description involves another eigen-number in the radial direction.

The µ-th coupled mode will be driven if the driving narrow resonance falls on the fre-

quency (kMs + µ + mνs)f0, where f0 is the revolution frequency and k is an integer. For an

excitation of the µth coupled mode and the mth azimuthal mode, the growth rate derived by

Sacherer is [1]
1

τmµ
=

eηMIbRsf0

2πEνsB0
DFm(∆φ) , (1.1)

where M is the number of bunches,† B0 = τ
L
f0 is the single-bunch bunching factor with τ

L

being the total bunch length, νs is the perturbed synchrotron tune, Rs is the shunt impedance

of the sharp driving resonance at frequency fr = ωr/(2π). The factor D is a function of the

decay decrement ατsep between successive bunches, where α = ωr/(2Q) is the half-width-at-

half-maximum (HWHM) of the resonance of quality factor Q and τsep is the bunch separation.

It is defined as

D(ατsep) = −i2ατsep

∞∑
k=0

e−2πikµ/M−k(α−iΩ)τsep sin kωrτsep , (1.2)

†For a symmetrically filled ring with Ms bunches spaced n-buckets apart, the number of coupled modes
is Ms, which is also equal to h/n, where h is the rf harmonic. We assume that the problem will not be
significantly changed if a small fraction of bunches are missing. We therefore can have number of bunches
M . Ms. In the 36-by-36 scenario, n = 21 so that Ms = 53, but M = 36.
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Figure 1: |D|max as a function of bunch-to-bunch decay decrement ατsep. Note that
|D|max ≈ 1 for narrow resonances but drops very rapidly as the resonance becomes broader.

The maximum magnitude of D is shown in Fig. 1. The form factor for parabolic bunches is

given by

Fm(∆φ) =
16m

∆φ

[
J2

m(1
2
∆φ) − Jm+1(

1
2
∆φ)Jm−1(

1
2
∆φ)

]
, (1.3)

where ∆φ = 2πfrτL
is the phase change of the resonator during the bunch passage from head

to tail, and is plotted in Fig. 2. We see that mode m peaks roughly at ∆φ = mπ. This

is reasonable because, as was mentioned above, mode m represents a longitudinal variation

along the bunch with m nodes (not including the ends) and it will be most easily excited

when the bunch sees a phase variation of mπ of the driving resonance as it passes through

the cavity gap from head to tail. Note that Fm decreases as m increases, implying that the

higher m modes will not be excited so easily.
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Figure 2: Form factor for longitudinal oscillation inside a bunch with m =

1, 2, 3, 4, 5 and 6 nodes.

1.2 THE 36×36 SCENARIO OF THE TEVATRON

The higher-order parasitic modes in the Tevatron rf cavities were measured by Sun [2] in

1995 using the method of dielectric bead pull. They were also computed using URMEL [3].

The results are listed side by side in Table I. We find that the URMEL resonant frequencies

and R/Q for these modes agree rather well with Sun’s measurement. On the other hand, the

quality factors Q do not agree so well. This may be because URMEL computes the modes of

the bare cavity, while some of these modes have actually been de-Qued passively. There are

also a lot of structures inside the cavity and these structures have not been included in the

simplified model of the cavity used in URMEL computation. In the discussions below, Sun’s

results will be used.

In the 36-by-36 scenario, the bunch spacing is 21 rf-buckets. If the ring is symmetrically

filled, there will be Ms = h/21 = 53 coupled modes, where h = 1113 is the rf harmonic. The

impedance of these higher-order parasitic resonances for one cavity is plotted in the lower trace

in Fig. 3 as a function of the coupled-bunch mode µ which they will drive. The fundamental

rf resonance is not included. Most of the time, the higher-order resonances of the 8 cavities

will not peak at exactly the same frequencies. In this analysis, we further assume that the
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Table I: Longitudinal modes for one whole cavity.

URMEL Results Sun’s Measurements

Mode Type Frequency R/Q Q Frequency R/Q Q

(MHz) (Ω) (MHz) (Ω)

TM0-EE-1 53.49 87.65 9537 53.11 109.60 6523

TM0-ME-1 84.10 22.61 12819 56.51 18.81 3620

TM0-EE-2 166.56 18.47 16250 158.23 11.68 6060

TM0-ME-2 188.94 10.83 18235

TM0-EE-3 285.94 7.53 20524 310.68 7.97 15923

TM0-ME-3 308.46 4.07 22660

TM0-EE-4 402.69 4.93 25486 439.77 5.23 13728

TM0-ME-4 431.34 1.72 26407 424.25 1.28 6394

TM0-EE-5 511.69 5.57 25486 559.48 6.73 13928

TM0-ME-5 549.57 1.36 29453

748.18 10.90 13356

768.03 2.47 16191

resonances of the 8 cavities overlap each other in such a way that the total shunt impedance

remains the same as for one resonance while the total width becomes broadened (or de-Qued)

8 times.‡ The driving impedance of all the 8 cavities are shown in the upper trace in Fig. 3.

Although de-Qued, each resonance is still narrow enough to maintain a value of |D| > 0.95 in

Eq. (1.2) if its peak falls on a synchrotron sideband. However, the resonances are broad enough

to cover a number of revolution harmonics. As a result, nearly every coupled-bunch mode is

affected. Above transition, the upper synchrotron sidebands correspond to growth while the

lower synchrotron sidebands correspond to damping. As a result, some coupled-bunch modes

will grow and some will be damped.

The growth rate for each coupled-bunch mode is computed at the injection energy of

150 GeV for each higher-order parasitic resonance. The total growth rate is obtained by

summing the contribution from all the resonances. The results are listed in Table II. The

injection energy was chosen because the growth rate is inversely proportional to energy and

therefore the most severe instabilities will occur at the injection energy. These growth rates

‡If the total width is broadened only n < 8 times, the total shunt impedance will be increased 8/n times.
The total number of coupled-bunch modes driven will be less; but the growth or damping rates will be faster.
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Figure 3: (color) The real part of the impedance of the higher-order parasitic resonances
are plotted as a function of the coupled-bunch mode µ that they will drive. The lower
(green) trace is for one cavity while the upper (red) trace corresponds to 8 cavities assuming
that each resonance spread out 8 folds. The bunch spacing is 21 buckets.

and damping rates are also plotted in Fig. 4. A resonance that drives coupled-bunch mode

µ will also damp coupled-bunch mode Ms − µ. Thus a resonance at µ and one at Ms − µ

will compensate each other for both coupled-bunch modes µ and Ms − µ. Unfortunately, we

do not have such matching resonance pairs in Fig. 3. As a result, as indicated in Fig. 4, the

coupled modes that grow are not compensated very much by other resonances.

There is a spread of the synchrotron frequency due to the nonlinear sinusoidal rf wave

form. This spread from the center to the edge of the bunch is given by

∆ωs

ωs
=

1

16

(
1 + Γ2

1 − Γ2

) (
hτ

L
f0

2

)2

= 0.00353 or ∆fs = 0.308 Hz , (1.4)

where the rms bunch length τ
L

has been taken as 60 cm, the nominal synchrotron tune

νs = 1.83 × 10−3 is assumed at the injection energy of 150 GeV with an rf voltage of 1 MV

and the synchronous phase φs = sin−1 Γ is taken to be zero. This spread supplies Landau

damping. The mode will be stable if

1

τ
<

√
m

4
∆ωs = 0.483

√
m s−1 . (1.5)

The Landau damping rates are listed in the last row of Table V. We see that all coupled modes
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Table II: Longitudinal coupled-bunch growth rates driven by the higher-order modes of
the rf cavities at injection for the 36× 36 scenario in Run II with rms bunch length 60 cm
and bunch intensity 1.7 × 1011.

Coupled Growth Rate in sec−1

Bunch Mode m=1 m=2 m=3 m=4 m=5 m=6

0 −0.549 −0.085 0.010 −0.042 0.010 −0.043
1 −0.059 −0.102 −0.171 −0.174 −0.133 −0.141
2 −0.107 −0.195 −0.272 −0.247 −0.177 −0.178
3 −0.148 −0.270 −0.374 −0.336 −0.234 −0.225
4 −0.202 −0.370 −0.500 −0.439 −0.299 −0.280
5 −0.260 −0.484 −0.613 −0.514 −0.347 −0.330
6 −0.332 −0.636 −0.710 −0.536 −0.357 −0.361
7 −0.435 −0.857 −0.832 −0.537 −0.339 −0.362
8 −0.417 −0.827 −0.770 −0.463 −0.285 −0.330
9 −0.265 −0.517 −0.507 −0.314 −0.200 −0.270

10 −0.153 −0.292 −0.308 −0.182 −0.107 −0.198
11 −0.084 −0.154 −0.174 −0.069 −0.013 −0.125
12 −0.040 −0.065 −0.082 0.021 0.067 −0.068
13 −0.013 −0.012 −0.025 0.076 0.115 −0.031
14 0.026 0.004 −0.011 0.076 0.109 −0.029
15 0.010 0.010 −0.003 0.051 0.072 −0.047
16 0.032 −0.002 −0.005 0.032 0.041 −0.057
17 0.098 −0.018 −0.018 0.009 0.016 −0.060
18 0.235 −0.029 −0.022 −0.001 0.004 −0.055
19 0.143 −0.054 −0.025 −0.006 −0.002 −0.048
20 −0.107 −0.096 −0.029 −0.008 −0.005 −0.042
21 −0.327 −0.157 −0.035 −0.009 −0.006 −0.036
22 −0.492 −0.210 −0.041 −0.009 −0.006 −0.032
23 −0.552 −0.217 −0.040 −0.009 −0.006 −0.028
24 −0.377 −0.147 −0.025 −0.002 −0.001 −0.018
25 −0.195 −0.075 −0.013 0.000 0.001 −0.014
26 −0.059 −0.024 −0.005 −0.002 −0.001 −0.002
27 0.060 0.024 0.005 0.002 0.001 0.002
28 0.195 0.075 0.013 0.000 −0.001 0.014
29 0.377 0.147 0.025 0.002 0.001 0.018
30 0.552 0.218 0.040 0.009 0.006 0.028
31 0.491 0.210 0.041 0.009 0.006 0.032
32 0.326 0.156 0.035 0.009 0.006 0.036
33 0.106 0.096 0.029 0.008 0.004 0.042
34 −0.144 0.053 0.025 0.006 0.002 0.048



7

Table II continued.

Coupled Growth Rate in sec−1

Bunch Mode m=1 m=2 m=3 m=4 m=5 m=6

35 −0.235 0.029 0.022 0.000 −0.005 0.055
36 −0.097 0.018 0.018 −0.009 −0.017 0.060
37 −0.032 0.002 0.005 −0.032 −0.041 0.057
38 −0.010 −0.010 0.002 −0.052 −0.072 0.046
39 −0.026 −0.004 0.011 −0.077 −0.110 0.029
40 0.013 0.013 0.025 −0.076 −0.115 0.031
41 0.040 0.066 0.083 −0.020 −0.066 0.069
42 0.084 0.155 0.175 0.070 0.014 0.126
43 0.153 0.293 0.310 0.184 0.109 0.200
44 0.265 0.520 0.510 0.316 0.201 0.272
45 0.418 0.829 0.773 0.465 0.286 0.331
46 0.434 0.856 0.831 0.537 0.339 0.362
47 0.332 0.635 0.708 0.536 0.358 0.360
48 0.260 0.483 0.612 0.513 0.346 0.329
49 0.201 0.369 0.499 0.438 0.298 0.278
50 0.148 0.269 0.373 0.334 0.233 0.224
51 0.107 0.194 0.271 0.246 0.176 0.177
52 0.059 0.102 0.170 0.173 0.133 0.140

Laudau Damping rate (s−1)
0.483 0.684 0.837 0.967 1.081 1.184

are damped with the exception of the dipole mode (m = 1) in coupled modes µ = 30 and 31,

and the quadrupole mode (m = 2) in the coupled modes µ = 45, 46, and 47.

We would like to point out that the stability criterion mentioned in Eq. (1.5) is a rough

Keil-Schnell type criterion. The actual stability criterion is distribution dependent and is also

nonsymmetric with respect to the sign of the reactive impedance. As an example, consider the

inductive impedance of the vacuum chamber, which gives rise to an incoherent synchrotron

frequency shift of

∆ωs

ωs
= − 3Ib Im(Z‖/n)

2π2hVrf cos φsB3
0

= −0.00684 or ∆fs = −0.595 Hz , (1.6)

where Im(Z‖/n) = 3 Ω has been used. This shift is towards lower frequencies because the

Tevatron is operated above transition. However, the coherent synchrotron frequency remains

the same as the unperturbed synchrotron frequency fs0. Thus the incoherent spread of the
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Figure 4: (color) Plot of growth rates (positive) and damping rates (negative) of each
coupled-bunch mode driven by the higher-order parasitic resonances of the 8 Tevatron
cavities for the 36-by-36 scenario. Landau damping rates are shown in dashes.

synchrotron frequency will not cover fs0, and will not supply any damping at all. This is

illustrated in Fig. 5. However, when the impedance involves a real part, it can be shown

that Landau damping may exist if the real part is not too large. On the other hand, if we

consider an unperturbed distribution with a vanishing gradient at the edge, the situation will

be different and some Landau damping does exist even if the impedance is purely inductive.

In short, more detailed solution of a dispersion relation is necessary to determine whether a

certain mode is damped or antidamped.

If the growth turns out to be harmful, a fast 36 × 36 bunch-by-bunch damper may be

necessary to damp the dipole mode (m = 1). A bunch-to-bunch damper for the quadrupole

mode (m = 2) may also be necessary. This consists essentially of a wall-gap pickup monitor-

ing the changes in bunch length and the corresponding excitation of a modulation of the rf

waveform with roughly twice the synchrotron frequency.

The Tevatron bunches will be formed by coalescing 9 or more bunches in the Main Injector
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Figure 5: Schematic drawing showing the incoherent spread of ∆fs ≈ 0.308 Hz is

shifted by −0.595 Hz from the coherent synchrotron frequency fs0, thus not being

able to provide Landau damping.

(formerly in the Main Ring). Usually there will be a 10% difference in the number of particles

in the final bunches. Each bunch will be experiencing a slightly different wake force and will

therefore be driven slightly differently. Such broken symmetry of the coupled-bunch system

will lead to some damping also.

1.3 THE 108×108 SCENARIO

We would like also to compute the longitudinal coupled-bunch growth rates for the 108-by-

108 scenario. The 108 bunches are mostly at 7-bucket spacing and contain 2.7×1011 particles

each. The rms bunch length is expected to be 50 cm. If the ring is symmetrically filled with

7-bucket spacing, there will be in total Ms = h/7 = 159 coupled-bunch modes. For each

coupled-bunch mode, the real part of the impedance of the higher-order parasitic resonances

in the rf cavities driving the coupled-bunch mode µ = 0, 1, 2, · · · , 158 are plotted in Fig. 6.

The lower trace is for one cavity. The upper trace is for all 8 cavities with the assumption that

the quality factors will be de-Qued 8 folds due to the fact that these resonances will not peak

at exactly the same frequencies in the 8 cavities. Here, the resonances appear not as crowded

as in the 21-bucket spacing in Fig. 3, the reason being that there are 3 times as many coupled

modes here. We also notice that the resonances do not come in complementary pairs, i.e., µ

and Ms −µ. As a result, the resonances are not helping each other much in growth reduction.

The growth rates at 150 GeV are computed as in the 36×36 scenario. The results are plotted

in Fig. 7 for each of the 159 coupled-bunch modes. They are also listed in Table III with the



10

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100 120 140

R
e 

Lo
ng

itu
di

na
l I

m
pe

da
nc

e 
(O

hm
s)

Coupled Bunch Mode

7-bucket spacing, 8 cavities
7-bucket spacing, 1 cavity

Figure 6: (color) The real part of the impedance of the higher-order parasitic resonances
are plotted as a function of the coupled-bunch mode µ that they will drive. The bunches
are at 7-bucket spacing. The lower (green) trace is for one cavity while the upper (red)
trace corresponds to 8 cavities assuming that each resonance spread out 8 folds.

rates of Landau damping due to synchrotron frequency spread in the last row.

We see that with the number of bunches tripled and the bunch intensity increased by

about 60%, coupled-bunch growth rates become very much faster. It appears that the spread

in synchrotron frequency is not large enough to provide the necessary Landau damping. Ob-

viously a fast bunch-to-bunch damper is required for the dipole mode (m = 1) and the

quadrupole mode (m = 2). Some higher azimuthal modes (m > 2) are also unstable and

cannot be damped by bunch-by-bunch dampers. To stabilize these modes and to reduce the

growth rates of the dipole and quadrupole modes, one may resort to (1) passively de-Quing

some annoying parasitic resonances inside the cavities and (2) increasing the bunch length. A

longer bunch length will push the excitation to higher azimuthal modes, whose growth rates

are usually slower and the corresponding Landau damping larger. However, longer bunches

implies lower luminosity. This is especially true in the 108× 108 scenario, where the bunches

collide at a small angle.
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Table III: Longitudinal coupled-bunch growth rates driven by the higher-order modes of
the rf cavities at injection for the 108 × 108 scenario in Run II with rms bunch length
60 cm and bunch intensity 2.7 × 1011.

Coupled Growth Rate in sec−1

Bunch Mode m=1 m=2 m=3 m=4 m=5 m=6

0 −2.676 −0.257 0.049 −0.023 −0.595 −0.638
1 −0.257 −0.603 −0.690 −0.363 −0.106 −0.020
2 −0.625 −1.208 −1.135 −0.549 −0.155 −0.029
3 −0.894 −1.726 −1.622 −0.785 −0.222 −0.041
4 −1.267 −2.403 −2.208 −1.057 −0.298 −0.055
5 −1.720 −3.085 −2.624 −1.203 −0.332 −0.060
6 −2.386 −3.885 −2.801 −1.151 −0.300 −0.053
7 −3.431 −5.133 −3.074 −1.067 −0.249 −0.041
8 −3.385 −4.937 −2.768 −0.890 −0.195 −0.031
9 −2.099 −3.117 −1.827 −0.617 −0.141 −0.023

10 −1.235 −1.901 −1.208 −0.441 −0.106 −0.018
11 −0.800 −1.284 −0.882 −0.344 −0.086 −0.015
12 −0.568 −0.948 −0.696 −0.284 −0.072 −0.012
13 −0.430 −0.741 −0.571 −0.240 −0.062 −0.011
14 −0.337 −0.596 −0.475 −0.204 −0.053 −0.009
15 −0.397 −0.356 −0.314 −0.153 −0.043 −0.008
16 −0.419 −0.239 −0.161 −0.073 −0.019 −0.003
17 −0.530 −0.247 −0.139 −0.061 −0.016 −0.003
18 −0.708 −0.275 −0.123 −0.052 −0.014 −0.002
19 −1.008 −0.337 −0.113 −0.044 −0.011 −0.002
20 −1.522 −0.457 −0.111 −0.037 −0.010 −0.002
21 −2.370 −0.666 −0.119 −0.033 −0.008 −0.001
22 −3.377 −0.917 −0.134 −0.030 −0.007 −0.001
23 −3.530 −0.949 −0.130 −0.026 −0.006 −0.001
24 −2.590 −0.680 −0.070 0.015 0.045 0.047
25 −1.657 −0.432 −0.038 0.024 0.053 0.054
26 −1.065 −0.273 −0.014 0.034 0.063 0.063
27 −0.716 −0.176 0.005 0.044 0.075 0.074
28 −0.557 −0.199 −0.124 −0.101 −0.003 0.055
29 −0.429 −0.169 −0.132 −0.114 0.000 0.066
30 −0.347 −0.153 −0.146 −0.131 0.003 0.081
31 −0.294 −0.147 −0.166 −0.153 0.007 0.101
32 −0.074 −0.100 −0.189 −0.182 0.013 0.128
33 −0.089 −0.119 −0.229 −0.222 0.021 0.164
34 −0.112 −0.146 −0.287 −0.281 0.029 0.211
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Table III continued.

Coupled Growth Rate in sec−1

Bunch Mode m=1 m=2 m=3 m=4 m=5 m=6

35 −0.146 −0.189 −0.374 −0.371 0.030 0.268
36 −0.195 −0.252 −0.504 −0.511 0.008 0.325
37 −0.280 −0.379 −0.732 −0.752 −0.077 0.353
38 −0.404 −0.574 −1.068 −1.112 −0.262 0.313
39 −0.537 −0.793 −1.430 −1.505 −0.513 0.202
40 −0.601 −0.909 −1.610 −1.704 −0.682 0.086
41 −0.553 −0.843 −1.484 −1.574 −0.668 0.026
42 −0.476 −0.751 −1.284 −1.380 −0.702 −0.130
43 −0.368 −0.588 −0.995 −1.074 −0.577 −0.141
44 −0.286 −0.465 −0.776 −0.844 −0.487 −0.154
45 −0.230 −0.382 −0.626 −0.687 −0.434 −0.174
46 −0.194 −0.330 −0.529 −0.588 −0.412 −0.201
47 −0.171 −0.301 −0.470 −0.529 −0.412 −0.235
48 −0.159 −0.289 −0.439 −0.501 −0.431 −0.276
49 −0.154 −0.291 −0.429 −0.498 −0.468 −0.327
50 −0.157 −0.305 −0.439 −0.516 −0.524 −0.389
51 −0.166 −0.332 −0.467 −0.555 −0.601 −0.467
52 −0.182 −0.372 −0.514 −0.618 −0.703 −0.565
53 −0.171 −0.378 −0.492 −0.611 −0.807 −0.705
54 −0.209 −0.463 −0.602 −0.749 −0.988 −0.863
55 −0.258 −0.572 −0.743 −0.924 −1.219 −1.065
56 −0.319 −0.707 −0.918 −1.143 −1.507 −1.317
57 −0.391 −0.866 −1.125 −1.400 −1.847 −1.613
58 −0.466 −1.033 −1.341 −1.668 −2.201 −1.922
59 −0.526 −1.167 −1.515 −1.885 −2.486 −2.170
60 −0.550 −1.220 −1.583 −1.969 −2.597 −2.266
61 −0.526 −1.166 −1.513 −1.883 −2.482 −2.165
62 −0.466 −1.032 −1.339 −1.665 −2.195 −1.914
63 −0.391 −0.866 −1.123 −1.397 −1.841 −1.605
64 −0.319 −0.707 −0.916 −1.140 −1.503 −1.309
65 −0.258 −0.572 −0.741 −0.922 −1.215 −1.059
66 −0.209 −0.463 −0.601 −0.748 −0.985 −0.858
67 −0.019 −0.374 −0.491 −0.611 −0.805 −0.701
68 0.101 −0.306 −0.405 −0.505 −0.665 −0.579
69 0.314 −0.248 −0.338 −0.422 −0.555 −0.483
70 0.781 −0.194 −0.286 −0.356 −0.469 −0.408
71 1.633 −0.137 −0.243 −0.304 −0.400 −0.348
72 1.454 −0.117 −0.210 −0.262 −0.345 −0.300
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Table III continued.

Coupled Growth Rate in sec−1

Bunch Mode m=1 m=2 m=3 m=4 m=5 m=6

73 0.676 −0.119 −0.182 −0.228 −0.300 −0.261
74 0.318 −0.112 −0.160 −0.199 −0.263 −0.228
75 0.167 −0.103 −0.141 −0.176 −0.232 −0.202
76 −0.044 −0.097 −0.126 −0.157 −0.206 −0.179
77 −0.039 −0.087 −0.112 −0.140 −0.184 −0.160
77 −0.039 −0.087 −0.112 −0.140 −0.184 −0.160
78 −0.035 −0.078 −0.101 −0.126 −0.166 −0.144
79 0.000 0.000 0.000 0.000 0.000 0.000
80 0.000 0.000 0.000 0.000 0.000 0.000
81 0.035 0.078 0.101 0.126 0.166 0.144
82 0.039 0.087 0.112 0.140 0.185 0.161
83 0.044 0.097 0.126 0.157 0.207 0.180
84 −0.168 0.103 0.141 0.176 0.232 0.202
85 −0.319 0.112 0.160 0.200 0.263 0.229
86 −0.678 0.119 0.183 0.228 0.300 0.262
87 −1.458 0.117 0.210 0.262 0.346 0.301
88 −1.630 0.138 0.244 0.305 0.401 0.350
89 −0.778 0.195 0.286 0.357 0.470 0.410
90 −0.313 0.249 0.339 0.423 0.557 0.485
91 −0.101 0.306 0.406 0.506 0.667 0.581
92 0.019 0.375 0.492 0.613 0.808 0.704
93 0.209 0.464 0.602 0.750 0.989 0.862
94 0.258 0.572 0.743 0.925 1.220 1.064
95 0.319 0.708 0.918 1.144 1.508 1.316
96 0.391 0.867 1.125 1.401 1.847 1.612
97 0.466 1.033 1.341 1.669 2.201 1.921
98 0.526 1.167 1.515 1.885 2.486 2.169
99 0.550 1.220 1.583 1.969 2.597 2.266

100 0.526 1.166 1.513 1.882 2.482 2.166
101 0.465 1.031 1.339 1.664 2.195 1.915
102 0.390 0.865 1.123 1.396 1.840 1.606
103 0.319 0.706 0.916 1.139 1.502 1.311
104 0.258 0.571 0.741 0.921 1.214 1.060
105 0.209 0.463 0.601 0.746 0.984 0.859
106 0.171 0.378 0.491 0.610 0.804 0.702
107 0.182 0.372 0.514 0.617 0.701 0.562
108 0.166 0.331 0.466 0.554 0.599 0.465
109 0.157 0.305 0.439 0.515 0.523 0.388
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Table III continued.

Coupled Growth Rate in sec−1

Bunch Mode m=1 m=2 m=3 m=4 m=5 m=6

110 0.154 0.291 0.429 0.498 0.468 0.326
111 0.159 0.289 0.439 0.501 0.431 0.275
112 0.171 0.302 0.470 0.530 0.412 0.234
113 0.194 0.331 0.530 0.589 0.412 0.200
114 0.230 0.383 0.627 0.689 0.435 0.174
115 0.287 0.465 0.778 0.847 0.488 0.154
116 0.369 0.589 0.998 1.078 0.579 0.140
117 0.477 0.752 1.287 1.385 0.704 0.130
118 0.554 0.844 1.486 1.578 0.670 −0.026
119 0.601 0.908 1.610 1.703 0.681 −0.088
120 0.536 0.792 1.427 1.500 0.509 −0.205
121 0.404 0.573 1.064 1.106 0.258 −0.315
122 0.280 0.378 0.729 0.748 0.074 −0.353
123 0.194 0.251 0.502 0.508 −0.009 −0.324
124 0.146 0.189 0.373 0.369 −0.030 −0.266
125 0.112 0.146 0.286 0.280 −0.028 −0.210
126 0.089 0.118 0.228 0.222 −0.021 −0.163
127 0.074 0.100 0.189 0.181 −0.013 −0.127
128 0.294 0.147 0.165 0.152 −0.007 −0.101
129 0.347 0.153 0.146 0.130 −0.003 −0.081
130 0.429 0.170 0.132 0.114 0.000 −0.066
131 0.558 0.199 0.124 0.101 0.003 −0.054
132 0.717 0.176 −0.004 −0.044 −0.075 −0.073
133 1.067 0.274 0.014 −0.034 −0.063 −0.063
134 1.659 0.434 0.038 −0.024 −0.053 −0.054
135 2.594 0.682 0.070 −0.015 −0.045 −0.047
136 3.532 0.950 0.130 0.026 0.006 0.001
137 3.374 0.916 0.134 0.030 0.007 0.001
138 2.366 0.664 0.119 0.033 0.008 0.001
139 1.520 0.456 0.111 0.038 0.010 0.002
140 1.006 0.336 0.113 0.044 0.011 0.002
141 0.708 0.274 0.123 0.052 0.014 0.002
142 0.529 0.247 0.139 0.062 0.016 0.003
143 0.419 0.239 0.161 0.073 0.019 0.003
144 0.397 0.356 0.314 0.154 0.043 0.008
145 0.337 0.597 0.476 0.204 0.053 0.009
146 0.430 0.742 0.572 0.241 0.062 0.011
147 0.569 0.950 0.697 0.285 0.073 0.012
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Table III continued.

Coupled Growth Rate in sec−1

Bunch Mode m=1 m=2 m=3 m=4 m=5 m=6

148 0.801 1.287 0.885 0.345 0.086 0.015
149 1.237 1.908 1.213 0.443 0.106 0.018
150 2.103 3.129 1.836 0.621 0.141 0.023
151 3.389 4.949 2.777 0.894 0.196 0.031
152 3.427 5.125 3.071 1.069 0.250 0.042
153 2.383 3.877 2.799 1.152 0.301 0.053
154 1.718 3.080 2.621 1.203 0.332 0.060
155 1.265 2.397 2.202 1.053 0.296 0.054
156 0.893 1.721 1.616 0.781 0.221 0.041
157 0.625 1.205 1.131 0.547 0.154 0.028
158 0.257 0.601 0.687 0.361 0.106 0.020

Laudau Damping rate (s−1)
0.336 0.475 0.581 0.671 0.751 0.822

2 TRANSVERSE COUPLED-BUNCH

INSTABILITIES

2.1 RESISTIVE WALL

A most serious transverse coupled-bunch instability in a storage ring may be driven by

the resistive wall. If there are Ms identical equally spaced bunches in the ring, there are

µ = 0, · · · , Ms−1 transverse coupled modes when the center-of-mass of one bunch leads its

predecessor by the betatron phase of 2πµ/Ms. At the same time, each bunch can execute

longitudinal motion with m = 0, 1, · · · nodes. The growth rate for the mode µm is [4]

1

τµm
= − 1

1+m

eMIbc

4πνβE

∑
k

Re Z⊥[(kMs + µ + νβ + mνs)ω0]F
′
m(ωτ

L
−χ) , (2.1)

where M is the number of bunches. Strictly speaking Eq. (2.1) is correct only if M = Ms or

a completely filled ring. For example, in the 36 × 36 scenario with 1.7 × 1011 particles per

bunch and rms bunch length 60 cm, the bunch spacing is 21 buckets; therefore M = 36 and

Ms = H/21 = 53. On the other hand, in the 108×108 scenario with 7-bucket spacing, 2.7×1011

particles per bunch and rms bunch length 50 cm, M = 108 and Ms = 1113/7 = 159. There

are many unfilled buckets in both scenarios; thus Eq. (2.1) will not be an accurate description
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Figure 7: (color) Plot of growth rates (positive) and damping rates (negative) of each
coupled-bunch mode driven by the higher-order parasitic resonances of the 8 Tevatron
cavities. The bunch spacing is 7 buckets. The Landau damping rates are shown in dashes.

of the beam dynamics.

As the frequency ω → ±0, the real part of the resistive-wall impedance approaches first

±|ω|−1/2, then |ω|−1 when the skin depth exceeds the thickness of the pipe wall, and finally

zero when the frequency is exactly zero. At the residual betatron tune of the Tevatron,

[νβ] ∼ 0.57, we are in the regime of ±|ω|−1/2 dependency. Therefore, there is always a

mode µ that corresponds to a large negative Re Z⊥ and drives the transverse coupled-bunch

instability. For example, with the betatron tune νβ = 20.57, mode µ = 53 − 21 = 32

(µ = 159 − 21 = 138 for the 108-by-108 scenario) or frequency −0.43 ω0/(2π) with k = 0 in

the summation of Eq. (2.1) contributes the largest negative Re Z⊥, which is −66.70 MΩ/m

according to our former estimate made in Ref. [5]. The next contribution with k = 1 will give

Re Z⊥ = +6.03 MΩ/m in the 36× 36 scenario and +3.47 MΩ/m for protons in the 108× 108

scenario. The average current per bunch is Ib = 1.300 mA for the first scenario and 2.064 mA

for the second. The growth rate is therefore given mostly by the k = 0 term in the summation
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Figure 8: Plot of form factor F ′
m(ωτ

L
−χ) for modes m = 0 to 5. With the normal-

ization in Eq. (2.3), these are exactly the power spectra hm.

and is very insensitive to the choice of Ms in Eq. (2.1). For such a low driving frequency, only

the lowest longitudinal mode m = 0 will be excited. The growth rates after doing the actual

summations are 19.5 and 93.2 s−1, respectively, for the two scenarios. Modes µ = 31, 30, 29,

· · · (µ = 137, 136, 135, · · · for the 108-by-108 scenario) are also unstable; the growth rates

are, respectively, 10.6, 8.0, 6.6, · · · s−1, and 51.0, 39.0, 32.8, · · · s−1 for the two operating

scenarios. The computation has been performed at zero chromaticity (ξ = 0), so that the

chromatic phase χ = ξω0τL
/η = 0. Also, we have used the form factor F ′

0(0) = 8/π2 ≈ 0.811,

where, for convenience, Sacherer’s sinusoidal modes of excitation have been assumed. These

growth rates are much larger than those in Run I because there are more bunches. If one

operates at chromaticity ξ = +6, χ = 5.69 and F ′
0(5.69) ≈ 0.142 from Fig. 8 for the first

scenario, while χ = 4.75 and F ′
0(5.69) ≈ 0.255 for the second scenario. The growth rates

for µ = 32 (or 138) drop to 3.42 and 29.3 s−1, respectively, which can be damped by a tune

spread. For example, a tune spread of ∆νβ = 0.0001 will lead to a spread of betatron angular

frequency of ∆νβω0 = 30 s−1, and will damp a growth rate up to ∼ 17.0 s−1 (FWHM for

a Gaussian spread) [4]. For further discussion, we need to study the sinusoidal modes of

excitation in the next subsection.
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2.2 SINUSOIDAL MODES

The Sacherer’s sinusoidal modes of excitation consist of the orthonormal set

pm(τ) =




cos(m+1)π
τ

τ
L

m = 0, 2, · · · ,

sin(m+1)π
τ

τ
L

m = 1, 3, · · · ,
(2.2)

such that pm(τ) has m nodes along the bunch not including the ends. The power spectrum is

proportional to

hm(ω) =
4(m+1)2

π2

1 + (−1)m cos πy

[y2 − (m+1)2]2
, (2.3)

where y = ωτ
L
/π and ω = kMs − µ + νβ + mνs − χ/τ

L
. They are plotted in Fig. 9. The

normalization of hm(ω) in Eq. (2.3) has been chosen in such a way that, when the smooth

approximation is applied to the summation over k, we have

B

+∞∑
k=−∞

hm(ω) ≈ B

Msω0

∫ +∞

−∞
hm(ω)dω = 1 . (2.4)

Here B = Msω0τL
/(2π) is the bunching factor, or the ratio of full bunch length to bunch

separation. Then the form factor F ′
m(ω) in Eq. (2.1) just equals hm(ω).

Figure 9: Power spectra hm(ω) for modes m = 0 to 3 with zero chromaticity.
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The Sacherer integral equation for transverse instability is an eigen-value-eigen-function

problem when the unperturbed longitudinal distribution g0(r) in the longitudinal phase space

is given. Physically, the modes of excitation pm(τ) are the projection of the eigen-functions

in the longitudinal phase space onto the time axis. The sinusoidal modes correspond to the

water-bag distribution in phase space, so that the linear distribution is

ρ(τ) ∝
√

τ̂ 2 − τ 2 . (2.5)

For the distribution g0(r) ∝ (τ̂ 2 − r2)−1/2 in the longitudinal phase space, pm(τ) are the

Legendre polynomials and the Fourier transforms the spherical Bessel functions jm. When

g0(r) is bi-Gaussian, pm(τ) are Hermite polynomials. Sometimes the growth rates computed

are rather sensitive to the longitudinal bunch distribution assumed. Therefore, results in this

section are estimates only.

We now learn that a chromaticity of ξ = η/(f0τL
) = +10.73 will push the power spectra

in Fig. 9 to the right (or positive frequency side) by two ωτ
L
/π units. The m=0 will then only

see the positive-frequency impedance and no instability will result. However, the m = 1 mode

will now peak at zero frequency and the resistive wall impedance will drive the m = 1 mode

unstable and a quadrupole transverse damper will be required, if Landau damping coming

from tune spread is not large enough.

2.3 TRANSVERSE COUPLED-BUNCH INSTABILITY

DRIVEN BY RESONANCES

The narrow transverse resonant modes of the rf cavities will also drive transverse coupled-

bunch instability. The growth rate is described by the general growth formula of Eq. (2.1).

When the resonance is narrow enough, only one frequency −ωr/(2π) contributes in the sum-

mation. Thus the growth rate becomes

1

τµm
= − 1

1+m

eMIbc

4πνβE
Re Z⊥(ωr)F

′
m(ωrτL

−χ) , (2.6)

where M is the number of bunches and the frequency ωr is negative.

There have not been any measurements for the dipole modes in the rf cavities, and we

need to rely on the URMEL results, which are listed in Table IV. The contribution of all

the resonances to the 53 coupled-bunch modes in the 36-by-36 scenario is shown in Fig. 10.



20

Table IV: Transverse modes for one whole cavity.

Mode Type Frequency R/Q Q

(MHz) (Ω/m)

1-EE-1 486.488 229.80 31605

1-ME-2 486.864 148.95 31487

1-EE-2 513.370 117.38 33262

1-ME-3 518.317 117.93 34008

1-EE-3 561.727 81.62 33029

1-ME-4 575.298 3.84 35810

1-EE-4 625.123 61.00 32598

1-ME-5 650.853 35.21 37592

1-EE-5 699.723 54.76 33407

Because we are looking at negative frequencies, the real part of the transverse impedance is

negative. The upper trace is for one cavity while the lower trace for 8 cavities again assuming

8-fold de-Quing. Together with each coupled-bunch mode µ, certain longitudinal azimuthal

modes m will be excited and transverse oscillations along the bunch will be observed. These

azimuthal modes are usually called head-tail modes. As it will be shown later that the growth

rates for various modes are small, we do not compute the growth rates for all the modes.

Instead, we compute only the fastest growing modes excited by each resonance. The results

are listed in Table V for the 36-by-36 scenario.

Some comments are in order. Here, we assume that the higher-order modes of the 8 rf

cavities do not fall on top of each other at exactly the same frequencies. Instead, we assume

that the resonances summed over 8 cavities will be de-Qued 8 times and the shunt impedance

corresponding to a certain resonance will be the same as that for a single cavity. At the same

time, we assume that a peak of a resonance, when summed over the 8 rf cavities, falls exactly

on top of a particular synchrotron sideband of the betatron line.§ The frequencies of the

lowest 9 higher-order modes range from 486.5 to 699.7 MHz. Therefore ωrτL
/π − χ/π (ωr is

negative) for the 36-by-36 scenario ranges from −8.7 to −12.5 at zero chromaticity. From the

power spectra in Fig. 9, this implies modes roughly from m = 8 to 11 will be excited. These

are listed in column 4 of the table. We can see in Table V that the growth rates actually peak

for these modes. Since the growth rates are affected so much by the mode of excitation, we

also give the bare growth rate for each resonance in column 5 when the form factor F ′
m and

§This assures the fastest growth rates.
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Figure 10: (color) The real part of the transverse impedance of the higher-order dipole
resonances are plotted as a function of the coupled-bunch mode µ that they will drive. The
upper (green) trace is for one cavity while the lower (red) trace corresponds to 8 cavities
assuming that each resonance spreads out 8 folds. The bunch spacing is 21 buckets.

Table V: Growth rates for transverse coupled-bunch modes driven by higher-order dipole
modes of the rf cavities in the 36 × 36 scenario. The fastest growth rate driven by each
higher-order dipole mode is underlined.

fr Rs Q mpk Growth Rate (s−1) Coupled

MHz Ω/m Growth m=5 m=6 m=7 m=8 m=9 m=10 m=11 Mode
µ

Chromaticity ξ = 0
486.5 7262 31605 7.7 2.627 0.006 0.004 0.098 0.141 0.029 0.002 0.004 12
486.9 4689 31487 7.7 1.696 0.004 0.002 0.063 0.091 0.019 0.001 0.003 4
513.4 3904 33262 8.2 1.412 0.003 0.001 0.020 0.075 0.043 0.001 0.004 32
518.3 4010 34008 8.3 1.451 0.002 0.001 0.016 0.073 0.050 0.002 0.003 34
561.7 2695 33029 9.1 0.975 0.000 0.002 0.000 0.017 0.048 0.022 0.000 25
575.3 137 35810 9.3 0.050 0.000 0.000 0.000 0.000 0.002 0.002 0.000 6
625.1 1988 32598 10.2 0.719 0.000 0.000 0.001 0.000 0.008 0.031 0.018 22
650.9 1323 37592 10.7 0.479 0.000 0.000 0.000 0.001 0.001 0.014 0.019 12
699.7 1829 33407 11.5 0.662 0.000 0.000 0.000 0.000 0.001 0.002 0.021 48
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the factor (1+m)−1 are not included. Increasing the chromaticity shifts the mode spectra of

the bunch to the right (positive frequency side); so head-tail modes of much higher m will

be excited. On the other hand, running the Tevatron at negative chromaticities will shift the

bunch mode spectra to the right. and head-tail modes with lower m will be excited instead.

As a whole, the growth rates are extremely slow. A tune spread of ∆νβ = 0.0001, for example,

will damp a growth rate up to ∼ 17 s−1.

We next look at the 108-by-108 scenario. For the symmetrically filled ring with 7-bucket

spacing, there are 159 coupled-bunch modes. The real parts of the transverse impedance

contributing to these modes are depicted in Fig. 11. The upper trace is for one cavity while

the lower trace for 8 cavities again assuming 8-fold de-Quing. Again, we compute only the

fastest growing modes driven by individual resonances. The results are listed in Table VI.
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Figure 11: (color) The real part of the transverse impedance of the higher-order dipole
resonances are plotted as a function of the coupled-bunch mode µ that they will drive. The
upper (green) trace is for one cavity while the lower (red) trace corresponds to 8 cavities
assuming that each resonance spreads out 8 folds. The bunch spacing is 21 buckets.

In this scenario, because of the shorter bunch length |ωrτL
/π| will be smaller and modes

m = 6 to 9 will be driven instead. These are shown in Table VI. Due to the presence of more

bunches, high bunch intensity, and short bunch length, the growth rates are relatively faster
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Table VI: Growth rates for transverse coupled-bunch modes driven by higher-order dipole
modes of the rf cavities in the 108× 108 scenario. The fastest growth rate driven by each
higher-order dipole mode is underlined.

fr Rs Q mpk Growth Rate (s−1) Coupled

MHz Ω/m Growth m=5 m=6 m=7 m=8 m=9 m=10m=11 Mode
µ

Chromaticity ξ = 0

486.5 7262 31605 6.3 12.518 0.185 0.816 0.534 0.018 0.038 0.004 0.012 118

486.9 4689 31487 6.3 8.083 0.118 0.525 0.347 0.012 0.025 0.002 0.008 110

513.4 3904 33262 6.7 6.729 0.017 0.303 0.399 0.073 0.008 0.011 0.002 32

518.3 4010 34008 6.7 6.912 0.010 0.281 0.421 0.093 0.006 0.014 0.002 87

561.7 2695 33029 7.4 4.646 0.006 0.040 0.246 0.200 0.013 0.011 0.003 131

575.3 137 35810 7.6 0.237 0.001 0.001 0.010 0.012 0.002 0.000 0.000 6

625.1 1988 32598 8.3 3.427 0.005 0.003 0.032 0.168 0.124 0.006 0.008 75

650.9 1323 37592 8.7 2.281 0.001 0.005 0.003 0.076 0.110 0.023 0.002 12

699.7 1829 33407 9.4 3.153 0.001 0.003 0.004 0.018 0.129 0.116 0.010 101

than those for the 36-by-36 scenario. The fastest growth rate shown is 0.816 s−1, which will be

damped by a small betatron tune spread. As a whole, transverse coupled-bunch instabilities

driven by the higher-order modes in the rf cavities should not represent a problem at all.
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