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Abstract - Formulae necessary to relate the quantity

of radionuclides excreted to that assimilatedin

exposures that are acute and those that are multiple

or continuous are derived from power function re-

lationships. Particular attention is given to

providing equations having variables for which the

bio-assayer can easily derive numerical values.

Introduction

Evidence accumulated since 1946 indicates that the decrease in body

retention of many bone-seeking elements , when achninistered as sol-

uble compounds readily accessible to circulating fluids, may be

better described in terms of a power rather than an exponential

function. In laboratory animals, this was found to be true for

calciuml, 25
strontium ‘ , and for radiuml’6Y7’8’g. In humans, Norris

et al7 have shown that all available data from studies of raditi

metabolism over a 25-year period following administration cm be

better fitted by power functions. Stehney md

power function to describe the increase in the

h~an subjects at the natural level of dietary

.t.l presented data to show that retention and

Lucas10 used the

radim burden of

intake. Langham

excretion of plutoni-

um by mm over a 5-year period cm also be described in this

mmerll,12,13
.

A case in which soluble plutonium was accidently assimilated through

a wound by a normal healthy individual at the Savannah River Plant

has been followed for over four years14. Here the decrease in the

*
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urinary excretion rate could also be best described in terms of a

power function. Similarly, Bernard and Stru.xness15 have found it

applicable to the description of uranium retention by humans.

Admittedly, the application of the power function to the description

of the metabolism of bone-seeking elements is based on experimental

observations and is of little value in explaining the mechanisms

involved. However, it is able to describe the fraction of certain

radionuclides excreted per day in simple mathematical fashion over

extended periods of time. For this reason the revised report of

the Committee on Permissible Dose for Internal Radiation16 includes

an appendix on the calculation of the maximum permissible concentra-

tion in air and water based on a power function model.

Now bio-assayers are expected to interpret the dose to an individual

due to radiation within the body from the quantity of radioactivity

excreted. These interpretations should be based on a power function

in cases where the retention of the assimilated radionuclide is

known to be best represented by such a function. Formulae having

the same parmeters used in the appendix of the revised report16

are derived in this report for use in making these interpretations.

.
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of

Relation of Quantity Excreted to That

Assimilated in Acute Exposures

experimental observations where the power function has been found

describe retention of bone-seeking elements, the basic equation

retention (neglecting radioactive decay) is expressed as the

power function

R(t) = At-n t ~ A1/n ()<n <~ (1)

where R(t) is the fraction of assimilated radioactive material re-

tained t days postassimilation, A is a constant which is equal to

the fraction of the assimilated dose retained when t is equal to

one day, and -n is a constant equal to the slope of the linear log-

log trmsform of the retention function. It should be noted that

since this slope is negative, the power function increases without

bound as t approaches zero. Therefore it

the time of assimilation (t = O) and some

where the fraction retained equals unity.

has no meaning between

minimum value of t (t = x)

If R(x) = 1, then Ax-n =

~ ~d x . Al/n . From equation (1) the accompanying

rate of excretion is obtained by differentiating

~(t) _
dt

-mt-(n + 1) .

instantaneous

(2)

Substituting equation (1), the basic equation of retention, in equa-

tion (2) gives

m(t) nR(t)—. -
dt t“

(3)

.

..
-.
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The expression is negative since the fraction retained must always

decrease. To the rate of loss by excretion may be added the rate

of loss by radioactive decay

lated material is eliminated

short. This gives

to obtain the rate at which the assimi-

from the body should the half life be

~(t) .
dt

where Lr is the radiological

(4)

decay constant. The fraction of the

assimilated radioactive material retained, R(t), when the radioactive

decay is appreciable* ca be obtained by integrating equation (4)

giving

R(t) = At-n e-Ar(t - 1)
, when t>l. (5)

See Appendix I

However, of interest to the bio-assayer is that fraction excreted.

Thus the fractional excretion rate at time t, y(t), expressed as the

fraction excreted per unit time, is the rate of elimination from the

body at time t less the rate of loss by radioactive decay or

m(t) -~rR(t) .
Y(t) = - dt

Substituting equation (4) and (5) in equation (6) gives

Y(t) = nAt
-(n+ l)e-lr(t - 1)

(6)

(7)

.693

()
* If the radiological half life, Tr —

-Lrt

kr
, is ~ 606t, 0.9 @

<1.0, and if Tr Z 66t, 0.99 <e ‘Art <1.00.
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The excretion rate at time t, E(t), is equal to the product of the

fractional excretion rate at time t and the quantity assimilated

q(o), or

E(t) = q(o) Y(t) . (8)

Substituting equation (7) in

q(o) =

It should be remembered that

equation (8) ad solving for q(o) gives

E(t) tn+ 1

~e.kr(t - 1) “
(9)

dR(t)
2-L in equation (6) is the instmtan-
Ul,

eous rate of elimination, md as such, should be integrated to de-

termine the amount eliminated per day. However, this is unnecessary

except at values of t close to the time of assimilation or when the

unit of time considered is several weeks instead of one day, since

the decrement in retention shortly becomes very small. When t is

close to the time of assimilation or the unit

excreta is collected is long, the fraction of

eliminated from the body during the period of

of time over which the

material which will be

time from tl to tz

will be R(tl) - R(t2). The fraction of the material which will be

found in the urine and feces during this same period, Y, will be

the fraction eliminated less that which has decayed due to radio-

activity

(t2 - tl)
Y = R(tl) - R(t2) - R(tl)(l - e-*r )

or
-Ar(t2 - tl) ~(t2)

Y = R(tl) e .

or
-A (t2 - 1)

Y = A(tl-n - tz-n) e r

(6’)

Substituting equation (5) in (6’) gives

.

Y = Atl-n e
-~r(t~-1)e-xr(t2 - tl) - Atz-n e‘Ar(tz - 1)

(7’)
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Substituting equation (7’) in equation (8) and solving

gives

where E is

Should the

was taken,

E
q(o) =

A(tl-n - t~-n) e
-~r(t2 - 1)

for q(o)

(9’)

the quantity excreted during this period.

qumtity of material in the body at the time a sample

q(t), be desired, it can be calculated by substituting

equation (5) and equation (9) in the simple relationship

q(t) = q(o) R(t) (lo)

giving

(11)

41

.

.

.
*

Frequently an acute assimilation is discovered as the result of

routine smpling, and later confirmed by a resmple. The time of

assimilation is usually not known and must be calculated before the

qumtity assimilated, q(o), can be determined. Here equation (9)

for the excretion rate of the first s~le is

.Ar(tl - 1)

E(tl) =
q(o) nAe

t~n+l

and for the second sample is

-Ar(t2 - 1)

E(t2) =
q(o) nAe

(t, + At)n+ 1

(12).

(13)

where At is t2 - tl. Assuming that the exponential functions in

these two equations are approximately equal, they can be solved

simultmeously for tl giving
I
See Appendix II

t=
At

1
. (14)

()

E(tl) n+l-1

E(t2)
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Substituting this in equation (9) gives

I

n+l

q(o) =
* ‘t. ~ “5)

()

E(tl)n+l-l

E(t2)

It should be noted here that the exponential term for radioactive

decay, e
-Art

, in the above equation is essentially unity for

plutonium-239 and natural uranium. With radium-226

the exponential term becomes less than unity when t

large; however, it cm

is equal to an average

can also be considered

never be less than 0.98 (the

the value of

becomes very

value when t

occupational exposure of’50 years), =d thus

unity. With strontium-90, e
-Art

becomes

appreciably less than unity for large values of t. For values of

t less than four years, however, it may be assumed to be unity with-

out introducing an error greater than ten percent.

Table 1 gives the values which have been recommended for the con-

stants used in the calculation of MC values for soluble compounds

and are applicable in the above equations.

In the above equation the term E(t) refers to the total amount ex-

creted per unit time. This includes material eliminated via the

urine, Eu(t), ad via the feces, Ef(t). Consequently

calculated from either one or both of the above terms

be used in these calculations.

E(t) must be

before it can
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Table 1. Values Recommended for Power Function Constants

Nuclide A n H

(O.65** o.35** 0.29
~8Srg0

.g5**t .254**t .81

88Ra226 .54**++ .52**tt .31

~4PU239 ,99* .01** .37

( .72** .80** .66
Natural Uranium

) O.60* 0.50* 0.36

*

**

t

tt

*

ICRP Sub-Committee on Permissible Dose for

Intmal Radiation .

Marinelli21.

Norris7.

Bernard15,

Generally, data on the rate of urinary elimination are more available

and the total mount excreted is calculated from it. (This may be

done even when data on fecal elimination are available due to the

difficulty in establishing the period of time represented by a

single defecation and the fluctuations in the quantity of radioac -

tivityin successive samples.) The total excretion rate for plutoniw

compounds readily accessible to circulating body fluids at time t

can be calculated from the urinary excretion rate alone using the

formula

E(t) = 4Eu(t) t-0”2 , when t <1024 . (16)

.
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This can be calculated from data provided by Lmgham12 Bernard15

found that the excretion of uranium takes place largely in the urine.

The fraction of the daily excretion from humans injected with soluble

compounds which appeared in the feces ranged from 1.1 X 10-3 to

6.6 percent but seldom exceeded one percent. Thus all of the uani-

m accessible to the circulating body fluids may be considered to

be excreted in the urine. In contrast to manium, the excretion of

radim takes place largely in the feces. The average value for the

radium excreted in the urine probably lies between 1.5 and 5 per-

cent17. There also appears to be no trend of this ratio as a func-

tion of time after radium assimilation as in the case of plutonium.

The ratio for a single day’s sampling may vary several fold from

individual to individual and in the same individual. Therefore,

inferences about the daily excretion rate based on a single 24-hour

urine sample will be, at best, approximations.

Very little systematic study of strontium metabolism in man is avail-

able. Clinical investigation by Harrison18 using nonradioactive

strontium md by Laszlo, Spencer, e~~lg’20 using strontiw-85 have

resulted in some data which cm be used to relate urinary to fecal

excretion. For the first five days following intravenous injection

of soluble strontiw,the main avenue of excretion is via the urine.

However,- as the urinary excretion rapidly drops, the fecal excretion

increases. For times longer than five days, roughly 60 Percent of

the daily excretion is urinary. About 80 percent of the ingested

soluble strontim remains unabsorbed and is eliminated in the feces

over a six-day period. After this time roughly 80 percent of the

daily excretion is urinary.
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r: ~,~:~itbe p:fP12ine~.t!n.attile‘power-function formulae used fOr

r~tes in the past11)12Y13 cannot be used to

exc~-etion, since their negative exponents are

the integral of such a function is divergent

(17)

is

and has no value. However, using the above constants, the negative

differential of the retention equation for plutonium,

R(t) = 0.99t-0”01

m
-z

= o.oo99t-1”01 = Y(t) . (18)

This is not too different from the equation previously used by

Lmghamll,

YU+f = o.oo79t-0”g4 . (19)

These two equations may

m.
Y-U+f

The numerical values of

be further compared by taking their ratio

o.oo99t-1”01 = ~ *5t-o.07

o.oo79t-0”y4 ‘
. (20)

this ratio with increasing time are given

in table 2.

Table 2. Chmge in Ratio of Two Plutoniu Retention Equations
With Time

t, days y(t)/yu+ -f

1 1.25

10 1.07

100 0.91

1000 0.77
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Calculation of Integral Absorbed Dose

in an Acute Assimilation

Having estimated the quantity assimilated into the body as the re-

sult of a single acute exposwe~ q(0)~ it is usually desirable to

assess the relative dose the body will receive from the ionizing

radiation. It should be noted that the values given in the litera-

ture
22,23 for q*, are calculated on the premise that the accumul-

ationof the burden in the critical body organ is due to the exclusive

use of air or water contaminated with a fixed concentration of the

nuclide for a time that is much longer than the effective half life

of the nuclide in the critical body organ, but not greater than 50

or 70 years. These values are not comparable in the case of a single

acute assimilation. In assessing these cases, the average dose rate

in rem per unit of time over a specified interval of time, viz. rem

per week for the first week , must be calculated from q(o).

The RBE dose in rem can be defined as the quotient of the integral

absorbed RBE dose divided by the mass of either the critical body

organ or the whole body, depending on the parameters used. The unit

of integral absorbed RBE dose is the grm-reml which is the product

of the integral absorbed dose in grm-rad24 and an agreed convention-

al value of the RBE with respect to a partictiar form of radiation

effect. Since radiation dosage accumulates as the product of

* The maximum permissible body bmden of a radioactive nuclide in a

standard man.

.
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concentration
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of the radioelement and time) the integrated dosage*

over t days, D(t), is

D(t) = q(o) Kf(R) (21)

where q(o) is the quantity assimilated

The qu=tity f(R) is in every case the

tion integrated with respect to t over

in disintegrations per minute.

appropriate retention fwc-

the period in question. K

is the radiation dosage rate per day

K= (1440)(1.6 X 10-6) ZE(RBE)N
100

where

1440 =

.L.6X 10-6 =

ZE =

RBE =

N=

100 =

per disintegration per

= 2.3 X 10-5 2E(RBE)N

minute.

(22)

rein/day

ergs/Mev

effective ener~ per disintegration in Mev

relative biological effectiveness in rem/rad

relative dmage

ergs/gram-rad

Substituting equation (5) for the

gives t

D(t) = q(o) KA
J
x

where x is that fraction of a day

1/n
and is numerically equal to A .

factor

quantity, f(R) in equation (21)

(23)

when the

This is

fraction retained is one

the Laplace transform of

*

.
.

The integrated dosage should not be confused with the integral

absorbed dose which is related to the dose in reinsas follows:

dose in reins=
integral dose

weight of tissue



13

.

.’

.

the function T-n ad can be solved by converting it to the form

~[l(u,P)-l(u,P)]~ (l-n). (24)D(t) = q(o) KAeLr

ISee Appendix III

I Art
Where the arguments to the function (u,p) are p = -n,u = —

~n

hrX
and u’ = — .

~n
1( )The numerical values for the function u,p are

given in tables 2 and 3 of “Tables of the Incomplete I’- Function’’25.

The

any

nmerical values for the function r(l - n) can be computed from

table of the r - function using the relationship

r(2 - n)
r(l-n)= ~-n .

should tables of the incomplete r - function

(25)

not be available, D(t)

can be calculated from the infinite series

w

I

(Xrt)j - n e-krt - (LrX)j - n e-hrx . (26)
l)(t)= q(o) me~r

~rl - n J -n
j=l

See Appendix III

Where the radiological half life is very

D(t) = ‘~”~ ~ (tL - n

and can be obtained from either equation (23) or equation (26).

long and Lr is insignificant

- X1 - ‘) (26’)

However, should this equation be used to calculate the integral ab-

sorbed dose from strontium-90 over the average occupational exposure

of 50 years, D(50Y) would be 175 percent of the true value.

.
.

.
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Relation of Quantity Excreted to Rate of Assimilation

in Multiple or Continuous Exposures

In the case of multiple assimilations of dissimilar quantities of a

radioactive nuclide or of similar quantities assimilated at long or

dissimilar intervals, estimates of retained mounts must be derived

by summation of individual items over the appropriate time intervals.

However, this may be impossible if, as is often the case, informa-

tion on the time of the assimilations or the quantity previously

assimilated is lacking. Here it is necessary to assume a chronic

invariant assimilation. This is a hypothetical case in which m

individual assimilates a radioactive nuclide continuously at a fixed

rate, q,

in which

nuclides

(e.g.the

over an interval of time T. There are instances, however,

such hypothetical cases are approached, in that radioactive

are made available to the body from its own metabolic pool

lungs), at very slow rates. However, when repeated assimi-

lations of similar magnitude occur at reasonably short and constant

intervals, the resulting picture can be closely approximated by the

chronic invariant case.

If the excretion rate resulting from each increment assimilated is

described by equation (9),

E(t) = q(o) nAt-(n+ 1) e
-Lr(t - 1)

9

the total excretion on day t resulting from a continuous assimila-

tion, Et(t), can be considered as the sum of the excretion rates

from each of the incremental steps or

T

Et(t) = qti
I

(t- T+x)-(n +l)e-~r(t-T +x-l) dT (27)

x
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where the time following assimilation in equation (9) is given by

the difference between the time of excretion t and T, the time of

each incremental assimilation. The constant x, which is the time

when the fraction retained is unity, is added here since, according

to the previous model, no excretion occurs during times less than x.

Thus the values of the time following assimilation will never be

less thm x, ad will approach t - T asymptotically as t increases.

This equation cannot be solved using the present tables of

r - functions, but can be expressed as the infinite series

m

incomplete

Et(t) . - qnAe
-Lr(t - 1)

I
Lrj(t . T + x)j-n-tj-n

(1 2 (j-n)
. (28)

- n)( - n) .....
j=o

See Appendix IV I

Wnere the radiological half life is very long and Ar is insignificant

Et(t) = qA [(t -T+ X)-n -t-n] (29)

cm be obtained from either equation (27) or equation (28).

Calculation of Quantity Assimilated in

Multiple or Continuous Exposures

Generally, with chronic assimilations the values for

not known. However, if two measurements are made of

q, t, and T are

the quantity

of material excreted at time tl and tz~ where tz = tl + At, the total

quantity assimilated can be calculated by solving equation (29) for

t. In order to do this the term (t - T + X)-n must be expanded.

This can be done by considering it as a binomial, [t - (T - X)l-n,

and expanding it using the binomial series. Since the exponent is

not a positive integer this will result in an infinite series which
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is approximated here by using only the first two terms. Thus ,

(t- T+x)-n~t-n +n(T-x)t-(n+ l). (30)

From the above relationship it can be seen that as T approaches t

the approximation becomes poorer. Therefore a minimum value for

the ratio of t - T + x to t below which this approximation will not

be valid must be established for each element. Table 3 gives the

values for the ratio of t - T + x to t above which

of the binomial will be better than 90 percent.

Table 3. Values for the Ratio t - T + x to t

the approximation

Above Which the
Approximation of the Binomial is Better Tha 90~

t -T+x
Nuclide n t

=9g~Pu 0.01 0.0001

90
38Sr .35 .45

Natural Uranium .50 .55

~8Ra226 0.52 0.55

These ratios were calculated by relating the approximate formula

to the binomial as a percent or

%=
[t-n + n(T - X)t-(n + 1)] 100

(t - T+ x)-n
. (31)

Setting T - X= 1, the values for t which would give 90 percent were

fowd by trial and error. These values of t were then substituted

in

t -1
t

to give the above ratios. It can be seen from table 3 that the ap-

proximation may be used to describe the excretion of plutonium at
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any time t; however, some discretion must be used with the other

elements. Substituting this approximation [equation (30)] in equa-

tion (29) gives

Et(t) = qA [t-n +n(T-x) t
-(n+l) - t-n]

or

E=(t) =qAn(T - X) t-(n + 1)

Substituting tl and tz in the preceding equation and

equations simultmeously for q(T - x) similar to the

equation (15) gives

I
n+

Ec(tl) At
q(T - X) = ~

1

()

Ee(tl) -

Ee(t=)
-1

(32)

solving the two

derivation of

1

. (33)

L J

This formula represents the quantity of material assimilated due to

a chronic invarimt exposure since it is the product of the qumtity

assimilated daily and the period of the exposure in days. It is

particularly significant here that , using this formula, the total

quantity assimilated can be calculated when only the quantity ex-

creted on two different days and the time interval between the ex-

cretions are known.

Calculation of Integral Absorbed Dose

in Multiple or Continuous Exposures

sake of simplifying the derivations, only the hypothetical

invarimt assimilation discussed earlier will be considered.

For the

chronic

In this

is described by

case if the dose resulting from each increment assimilated

equation (26’)

D(t) =w(tl-n-xl- ‘),
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where K = 2.3X 10-5 ZE(RBE)N) the total dose can be considered as

the sum of the doses from each of the incremental steps. In setting

up this equation, the time since assimilation in equation (26’) must

be taken as

the time of

stint x has

the difference between the time of observation t and T,

assimilation, or (t - T + x). The reason for the con-

been discussed earlier. Integrating equation (26’) over

the period of exposure, T,

T

De(t) = ~~n
I

[(t -
1 -n-xl-n

T+X) ] dT (34)

x

gives

[ 1-qMl-nDc(t)=n.~~+2 t2-n-(t-T+x)2-n 1
(T-x). (35)

-n

~

Where the radionuclide is Pu-239 and n is a small n~ber, equation

(35) can be approximated by

q ‘A [t2 - (t-T+x)2] - qKA X (T-x)De(t) : ~

or

Although a value

this formula, as

De(t) ~ q(T - X) ~ (36)

See Appendix VI
1

for q(T - x) may be obtained from equation (33),

well as equation (35), will be of little value un-

less some information on t and T is available. Therefore, a better

appraisal of the magnitude of the damage resulting from a multiple

or continuous assimilation of these nuclides, particularly if t and

T are large, may be made by comparing the qumtity assimilated, cal-

culated using equation (33), with the values of the maximm permis-

sible total body burden for a 70-kg man found in the literature22’23.

.
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Summary

If a power function formula is used to describe the retention of

radionuclides in the body, the relationship between the quatity

assimilated in a acute exposue q(o) and that excreted at time t

days postassimilation, E(t), is given by

q(o) =
*

where A is a constant which is equal to the fraction of the assimi-

lated material retained when t is equal to one day, n is a constmt

equal to the negative slope of the linear log-log transform of the

retention function, ad Ar is the radiological decay constant. When

the values of t are close to the time of assimilation or when the

unit of time, tl - tz, over which the excreta is collected is long,

the relationship will be better represented by

Whereas

urinary

E(t) or

minary

E
q(o) =

t2-1)”
A(tl-n - t2-n) e-~r(

in the past, power function equations have been given for

or fecal excretion alone, the quantity expressed here by

E represents the total excretion. Therefore, if only

excretion data are available, the value of E(t) or E must

be extrapolated based on experimental data.

If multiple assimilations are of similar magnitude and occur at

reasonably short and constmt intervals, and if the radiological

decay constmt is approximately zero, the relationship between the

quantity assimilated per unit time, q, over a period of T days ~d
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Et(t), the quantity excreted at time t daYs after ‘he ‘omenCement

of the exposure cm be given by

Et(t) =qA[(t-T+x)-n-t-nl

where x is that fraction of

unity.

Frequently, the fact that a

discovered as the result of

a day when the fraction retained is

radionuclide has been assimilated is

routine sampling and later confirmed

by a resmple. Here the qumtity assimilated as the result of an

acute exposure can be calculated using the relationship

r 1

q(o) =
* *

()E(t2) -1

n+l

L-_ 1

where E(tl) and E(t2) are the quantities excreted on the two dif-

ferent occasions At days apart. Within the limits shown in table 3,

the relationship between the quantity of a radionuclide assimilated

over a period of T - x days, q(T - x), and that excreted on two dif-

ferent occasions can be given by

Ec(tl)

[ 1’

At
n+l

q(T-x)= ~ 1

()

Ec(tl) n + 1
-1

Ec(t2)

me calculation of the integral absorbed dose due to a chronic in-

variant assimilation requires information which in most cases is not

available and must be approximated. Therefore, the magnitude of the

damage resulting from such m exposwe may be better appraised by

comparing the quantity assimilated With the values of the maximum

permissible total body burden for a 70-kg man found in the
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literature22~23. The integral absorbed dose in grin-rem over a

period of time t, which is due to an acute exposure,
,

lated from the equation

may be calcu-

D(t)=ti(tl -n-xl-n)
1 -n

where K = 2.3 X 10-5 2E(RBE)N. When the radiological decay constmt

is appreciable the equation

must be used. Here the arguments to the f~ction I(ujp) arep= -n,

Art
“=*.u=+~n,ydu The nmerical values for the function

T
I(u,P) are given in tables 2 and 3 of ,“Tables of the Incomplete , -
L

Function’’25,.-d the values for

from my table of i’-,functions

r(l - n) =

the fmction T(l - n) can be computed

us~ng the relationship

r)(,2-n)
‘l-n “
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Appendix I
0

.

Integration of equation (4).

m(t) nR(t)— =.— . LrR(t)

] ~~) = ~~ ‘~rdt

lnR(t)=C-nlnt-Lrt

Taking R(1) equal to ~, as defined in equation (1), then

hA=c-k~

C=h A+Ar

lnR(t)=ln A- Xr(t -l)

R(t) = At-n e
-Ar(t - 1)

.

(4)

(5)

.
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Appendix II

,,P.

Simultaneous solution of equation (12) and (13) for tl.

.kr(tl - 1)

E(tl) =
q(o) nAe

t~n+l

.Ar(t2 - 1)

E(t2) =
q(o) nAe

(tl + At)n + 1

(R)
1

Et)n+l t~ + At
E tz

=
t~

(m)

1
E(t) n+l
E ta -1=~

1

-tI = At
1

.

()

E(tl) n+l-1

E(t2)

(12)

(13)

(14)
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APPENDIX III

<

Conversion of equation (23) to a soluble form

t

[

~-hr(T - 1) ~T
D(t) = q(o) ~

~-n (23)

If the function

T = x becomes v

Substituting in

x

dv
xr~ = v, the differential dT = ~ the lower limit

= Xrx, md the upper limit T = t becomes v = Xrt.

equation (23) gives

krt

q(o) KA
D(t) = ~r f

hrX

-n
v e-(V - Xr) dv

T
‘r

or

[

Art k rX 1D(t) .- J v-n e-v dv - J V-n e-v dv .
0 0

The values given in the tables of incomplete r - functions25 are

for the ar~ents u and p in the function.

Udp + 1

I(u)P) = ~ f
vpe-v dv .

0

Therefore, the above equation can be mitten

D(t) =

where p = n, u =

*[I ]r(p+l)(u,P) -l(U1,P)

krt

-md u’=*”
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The eqUatiOn

x~t

q(o) KAelr
/

-n -v
D(t)= ~-n ve dv

ir k~x

can also be integrated using the fundamental

f f
xdy = xy - yd.x

where x and y denote the following functions

-v v’

theorem

of v:

-n
X=e” y. .—

1 -n

dx = -e-v dv dy = V-n dv

giving

D(t) .
n -v

e dv

1

.

v2-n 1
Integrating the last term again using Y = z - n ~d dy = v

-n

gives

[

v’-ne-v +v’-nv+v+ne-vdvvdv
D(t) = q(o~ ~exr f 1.-n 1 -n 2 -n 2 -n

‘r

This may be continued ad infititum giving

krt

[
( v’D(t)=q(O\meArvl-ne-v++*+~ +. . .

-n )]

‘r h~x

or
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J.

Integrating using the fundamental theorem

J fxdy = Xy - ydx

where x md y denote the following functions of v:

-n
-v

x=e y=-+

dx = - e-v dv dy=v
-(n+ 1) dv

gives

Et(t) = ‘~n

‘r
‘r[v-n:-v+f%e-vdv] ~

V’-n
Integrating the last term again using y = ~ - n md dy = v‘n dv

gives

[

‘r ~-n e-v Vi-n e-v vi-n e-v
EC(t) = ‘~n +

)f
+

n n(l - n n(l - n)
‘r

Again integrating the last term gives

1dv .

Et(t) = qAe
-Lr(t - 1)

1
(t-T+x)

-n e~r(T - X) - t-n +

1 - n eAr(T - X) 1 -n
hr t -T+x) - Art

1
+

-n

xr2(t -T +x)2 ‘ne~r(T ‘x) - ~r2t2 ‘n
(1 - n)( - n) 1+.....

This may be written as an infinite series

m

Et(t) = - qnAe
-Lr(t - 1)

x
Lrj(t - T + x)j-n. tj-n

(1
. (28)

- n)(2 - n) .....(j-n)
j=o
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APPENDIX V

The integration of equation (34).

T

qm
f

[(t -
1 - n - xl -n

De(t) = ~ T+x) ] dT (34)

x

If the function t - T + i = v, the differential dT =
-dv, the lower

limit T = x becomes v = t, and the upper limit T = T becomes v .

t --T + X.

Substituting in equation (34) gives

t -T+x

De(t) = - ~ f (vl-n-xl-n)dv

t

Integrating gives

t -T+x -’I!+x

qm,
De(t) = - (1 -n)(’2 -n) v2-n 1 qKA 2-”V!

‘G
t t

or

qKA
I)c(t) = n=

[

t2-n 1-(t- T+ x)2-n+
-3n+2

-n
q W1

1
(t- T+ i-t)

-n

or

[. 1-qKAxl-nDc(t)=n2::+2 t2-n-(t-T+x)2-n 1
(T - X). (35)

-n

F

●
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mPENDIX VI

When n is a small number, equation (35) can be approximated by

[

qm ~2
De(t) = ~ 1-(t- T+ x)’ -q KAx (t-x)

The expression (t - T + X)2 cm be expanded as follows:

I

(t- T+x)2=t2+ T2+x2-2tT-2xT+ 2xt

(t- T+x)2=t2+ (T-x) 2-2t (T-x)

Substituting this in the above equation gives

De(t) = y
[ 1qw2t(T-~).-(T-X)2 -qKAx(T-x)

or
,-

qw(T-x)2-q~(T-X)De(t) =KAqt(T-x)-~

or

‘mT-~)2Dc(t)=KA q(T-x) (t-x) -—
2(

or

[
De(t) =KAq(T -x) (t-x)-T~ 1

or

De(t) =KAq(T -X) (2t ‘: ‘x)

,

‘k

“.

*


