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Abstract

As demonstrated by the anthrax attack through the United States mail, people infected by the biological
agent itself will give the first indication of a bioterror attack. Thus, a distributed information system that
can rapidly and efficiently gather and analyze public health data would aid epidemiologists in detecting
and characterizing emerging diseases, including bioterror attacks.

We propose using clusters of adverse health events in space and time to detect possible bioterror attacks.
Space-time clusters can indicate exposure to infectious diseases or localized exposure to toxins. Most
space-time clustering approaches require individual patient data. To protect the patient’s privacy, we have
extended these approaches to aggregated data and have embedded this extension in a sequential
probability ratio test (SPRT) framework. The real-time and sequential nature of health data makes the
SPRT an ideal candidate. The result of space-time clustering gives the statistical significance of a cluster at
every location in the surveillance area and can be thought of as a “health-index” of the people living in this
area.

As a surrogate to bioterrorism data, we have experimented with two flu data sets. For both databases, we
show that space-time clustering can detect a flu epidemic up to 21 to 28 days earlier than a conventional
periodic regression technique. We have also tested using simulated anthrax attack data on top of a
respiratory illness diagnostic category. Results show we do very well at detecting an attack as early as the
second or third day after infected people start becoming severely symptomatic.
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1.0 Introduction

Early detection, identification, and warning are essential to minimize casualties from a biological attack.
Ongoing efforts within Departments of Energy and Defense focus on developing and deploying
environmental sensor systems. However, sensors cannot cover all potential targets, and attacks may be
vector-based rather than environmentally based. Therefore, sick people will likely provide the first
indication of an attack. An enhanced medical surveillance system that detects an attack as soon as people
become symptomatic could dramatically increase the lives saved.

The ultimate surveillance objective would be a distributed information system for gathering and then
analyzing public health data in near-real time, so that epidemiologists can detect and characterize
emerging diseases, including bioterror attacks, more rapidly than ever before. The primary collection
points for data would consist of the health-care providers who will, in the near future, document patient
records electronically. With additional new tools, other researchers can draw on the same data for
epidemiological and medical outcome research giving a wide range of additional benefits for the health of
Americans.

1.1. Problem and Approach

The problem is to use on-line electronic medical information to detect and characterize a biological
weapons attack after only a relatively small number of days (1-2) have passed from when the victims first
begin to present symptoms. To sift through the massive amount of medical records and focus attention on
potentially suspicious places and times, we propose to use space-time clustering. Space-time clustering
searches for statistically significant clusters of adverse health events in space and time, can indicate
exposure to infectious diseases or localized exposure to toxins, and help pinpoint the location of the
contaminant’s source. See (Williams 1984) for an excellent review of space-time clustering tests of
individual case histories.

Clustering has a number of other advantages. Unlike supervised approaches, clustering algorithms belong
to the class of unsupervised algorithms and don’t need data on bioterror events to train the algorithm.
Until the recent anthrax attack through the United States (US) mail, there have been only two published
bioterror attacks on US soil. One happened in Oregon in 1984 when the Bhagwan Shree Rajneesh
religious cult tried to influence a local political election by introducing salmonella into salad bars,
sickening 751 people (Torok 1997). Another happened in 1996 at a Texas medical lab when a disgruntled
worker tainted muffins and doughnuts with shigella bacteria causing dysentery (Kolavic 1997). Even if
these attacks were sufficient to train an algorithm, there was no surveillance system to capture the data.
One could try to simulate data representing a bioterror attack to use as training data, but this is not
without its problems. One runs the risk of having an algorithm key on irregularities in the simulation that
may not occur in real life. Extremely detailed simulations not only take a long time to run, but require
many runs for a classification algorithm to successfully generalize to the full range of possible variables.

Clustering also has a multiple use characteristic. Space-time anomalies not only arise from bioterror
attacks, but new and emerging infectious diseases or epidemics can also lead to space-time clusters. This
dual use goal not only allows one to justify the cost, but also to prove that the algorithms really work. For
example, we will show we can detect influenza epidemics 21-28 days earlier than conventional periodic
regression techniques.

2.0 Detecting a Statistically Significant Cluster

Besides finding space-time clusters we need to determine their statistical significance or understand the
errors of making a decision of whether a cluster exists or not. Figure 2-1 shows a simple example of having
incidence data from one region in time and trying to determine if the maximum incidence (indicated by
the dot) represents an anomaly or not. As you go down, each graph shows the maximum number of cases
increasing. The 200 data samples are randomly generated using a Poisson distribution with a mean of 2.
One approach for detecting the anomaly sets an arbitrary threshold and hopes for the best. The best
approach statistically determines the errors that could occur from a making decision. Obviously we don’t



want to set the threshold so low that we have a false alarm every day. Here, our faith in the system would
quickly degrade. We also don’t want to set the threshold so high that the system would miss true
anomalies.
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Figure 2-1. Monte Carlo Simulation of Incidence in Time for one Region.

The two errors that can occur are called type I and type II errors. If H, represents the hypothesis that the
observed data comes from the background and H, the hypothesis that the data comes from an anomaly,

then the type I error defines the false alarm (FA) error and the type II error defines the missed detection
error. Here, false alarms result from calling a normal background event an anomaly and missed
detections result from calling an anomaly a background event. Often, we can only reduce one error at the
expense of increasing the other error. For example, to reduce the MD error the FA error will increase. To
reduce both errors we need to improve the quality of the data or incorporate data from other sources. As
in space-time clustering, other sources of data can come from neighboring regions or the incidence at
previous times. While we have yet to incorporate disparate sources in our work such as 911 calls or over-
the-counter drug sales, our framework allows incorporation of these sources.

If we understand the stochastic process that generates the background time series then we can set a
threshold to control the FA errors or the P-value. For the simple example in Figure 2-1, the P-value
represents the probability of getting the maximum value or higher in the background noise. The
probability of getting a maximum value z in n independent samples from a Poisson distribution with
mean A is:

z /'Li -2\

P =1- (Z . j (2-1)
i-0 b

Note this requires knowledge that the underlying background process comes from a Poisson distribution

and estimation of the parameter 4. Only when the P-value dips below a small threshold do we want to
sound the alarm.

Figure 2-2 shows the same graphs as before, but now we’ve add P-values. You probably wouldn’t want to
declare an anomaly until the P-value was 9/1000 or 2/1000. Of course it depends of severity of the
disease and how many false alarms you can tolerate.
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Figure 2-2. Same Data as Figure 2-1 with P-values Added.

It’s more difficult to control the MD errors since this requires knowledge of the stochastic process that
generates the anomaly. As we will discuss later, one can use historical data, for example epidemic data, to
understand the stochastic anomaly process or one can use a form of power analysis (Murphy 1998, Cohen
1988). Power analysis assumes knowledge of the effect or anomaly size, which allows estimation of the
power or the probability of detecting the anomaly. Understanding the effect size can come from
experience or simulation.

For space-time clustering with real data, the underlying process may vary from data set to data set, and
we also will have hundreds or thousands of regions each with their own time series. To reduce the errors
we want to combine data across various time and space scales, but correlations in time and space reduce
the amount of “information” available. In the rest of this report we will concentrate on these problems and
their solutions.

3.0 Previous Work on Space-time Clustering
3.1. Data Types

In reviewing previous work on space-time clustering we have found it convenient to divide space-time
data into two types:

1. Point data

2. Aggregate data.
Point data record the exact time and place of where the symptoms occurred and most often arise in the
investigation of a public health concern. For example, a member of the public will report a large number
of cases of a chronic disease. They might want to know if these cases are larger than expected, or if a cause
is still operating and endangering the public. A public health official can interview the people with the
chronic disease and determine the addresses of where each spends the most time and the times of when
the symptoms appeared. This approach uses a number of individual case histories, each of which is
considered to be a single data point.

Aggregated data combine the space-time information in a window of space and time, and are most often
found in publicly available research data sets. For example, instead of reporting a person's home address,
we can report just their zipcode, county, state, or country. Time of the disease's appearance can be
aggregated into days, weeks, months, quarters, or years. Aggregation can reduce the size of the data.
Aggregated data can also insure the privacy of a patient. We can get aggregated data from point data, but
not vice versa. While aggregation is convenient for the reasons cited, valuable information is often lost.
Due to privacy concerns we expect syndrome surveillance systems to aggregate data.



3.2. Clustering in Space and Time

Popular space-time statistical tests like Knox (Knox 1964a and 1964b), Mantel (Mantel 1967), and k-
Nearest Neighbor (Jacquez 1996) require point-type data. See (Williams 1984) for an excellent review of
space-time clustering tests. It’s possible to threshold the adverse health event incidence to get a substitute
to point cases. We have found this approach to require data from a large number of regions in order to
estimate the background distribution of the test (McKenna 2002).

3.3. Clustering in Time Only

Most time clustering tests use data with the results aggregated within a time window. The simplest test
assumes the aggregated samples come from a Poisson distribution (Stroup 1989 and Knox 1982).
Whereas this Poisson test uses disjoint windows, the scan test uses overlapping windows and allows for
the fixed-length aggregation-window to scan along a time series searching for the interval with the
maximum number of cases (Weinstock 1981 and Wallenstein 1980). These tests use distributions
determined by Naus (Naus 1965 and 1966). Tango has developed a clustering index that weights the
distance between time intervals (Tango 1984). Chen uses the time between significant events (Chen 1978).
In the real data sets we have investigated, we have not found evidence of a Poisson distribution. These
wrong assumptions can lead to inaccurate estimates of statistical significance of the clusters.

3.4. Clustering in Space Only

Most space-clustering tests measure spatial auto-correlation between regions and stem from tests
developed by Geary (Geary 1954) and Moran (Moran 1948 and 1950). Variations on these involve a binary
transform of the data (i.e. significant versus not significant) (Moran 1948, Grimson 1981, Hungerford
1991) and using join statistics (Cliff 1981). Other variations include using weighted distances (Cliff 1981,
Lai 1997, Walter 1994), and transforming the data to its rank (Cliff 1981, Lai 1997, Walter 1994).
Combinations of the above possibilities lead to more variations.

In space clustering, many ways exist for determining the distance between the regions. One could use
adjacency of regions, distance between region centroids, minimum distance between major cities for each
region, amount of boundary shared by each region, or distance based on airline routes and major
thoroughfares. Other choices involve how the contagion might spread and use distances based on
population size, population density, or distance from largest outbreak.

One problem with clustering based on spatial-correlation is when the test measures correlation between
non-significant events. For example, an event in a "sea" of non-significant events would result in a large
correlation between the nonsignificant events.

4.0 Controlling The Errors: The Sequential Probability
Ratio Test

Previous space-time clustering approaches (Williams 1984) require individual case data or assumptions of
a Poisson distribution for time clustering or use the of correlation for spatial clustering. We have found
these requirements inadequate for clustering of biosurviellance data and the aggregation typically found
in these data. We have focused on the sequential probability ratio test (SPRT) (Wald 1947) for anomaly
detection (Schoonewelle 1995).

For an analyst to make a decision about a possible cluster in space and time they need to understand the
errors that could result in calling a cluster significant. We use the SPRT to sequentially gather and
combine information over space and time to make a decision that satisfies desired error rates.
Surveillance data often contains dependencies in space and time, so we discuss an extension to the SPRT
for handling dependent data. This concept of sequentially gathering and combining information to make a
decision to satisfy desired error rates fits well within the space-time clustering problem.
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4.1. Wald's SPRT

The SPRT was originally designed to decide between two hypotheses. The test uses observations
X, X,,...,x, todecide in favor of hypothesis H; or H, . Let the variable x represent a random variable with

a probability density function (PDF) f(x|#), where 8 represents the parameter we want to test. Here, we
want to test the hypothesis H| that 6 =6, against the hypothesis A, that 8 =6,. Wald's test is analogous
to the Neyman Pearson's nonsequential test (Neyman 1928). It has been shown that for a fixed number of
independent observations, », the optimal test depends on the likelihood ratio A, where

n

_ f(xi|H1) or _f(X|H1)
ML) o

L= , where X =|x,,x,,...,x,]|. (4-1)
xi|H0 f(X|H0) [1 2 ]

=l .

The test decides to accept or reject H, based on comparing A, to a constant threshold. Choosing the
proper threshold gives the test a desired significance level « or the probability of accepting H, when H,
is true. In principle, selecting n gives the test a desired power (1), where $ defines the probability of
accepting H, when H, is true.

Wald's test procedure has a property analogous to this optimal property except it uses two constant
thresholds A and B. Here, we keep sampling as long as:

B<A,<A. 4-2)
We stop taking observations and reject the hypothesis A, as soon as

A, >4, 4-3)
and we stop taking observations and accept the hypothesis H|, as soon as

A, <B. 4-4)

The constants A and B represent the upper and lower stopping boundaries respectively. Proper selection
of these boundaries produces the desired error rates ¢ and £. In general,

A M and Bzi. 4-5)
o l-a

The number of observations required by the sequential test to reach the desired error rates is not
predetermined, but is a random variable, since the decision to stop sampling is determined by the
observations made so far. We can compute the average number of necessary observations given the true
hypothesis (Wald 1947). If we let

_ f(x|H1) _ _
l_—f(x|H0) and z =log(4) (4-6)
and using
E{log(A,) | H\ } = E{n|H }E{z|H} for k=0, 4-7)

then the expected number of observations for deciding hypothesis H, is

4-8)

and the expected number of observations for deciding hypothesis H, is
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alog(A)+(1-a)log(B)
E{z|H,} '

4.2. SPRT for Cluster Detection

In the space-time clustering problem, we have a list of adverse-health events with each item in the list
containing a date and region of the event. The list of adverse-health events represent a pattern that we
want to classify as background or anomalous. Here, we set 6, to the background class and 6, to the

Ein|H}=

(4-9)

anomaly class. Thus H|, represents the hypothesis that the pattern comes from the background and H,

represents the hypothesis that pattern comes from an anomaly. The error rate ¢ represents the
probability of alarming on the background and calling it an anomaly or the FA rate, and the error rate S

represents the probability of missing an anomaly and calling it the background or the MD rate. The
observations x,,x,,...,x, represent the number of adverse-health events in a specific region and during a
specific period of time. Note this approach does not preclude the x, observations from representing

disparate observations from other data sources such as a 911 calls or over-the-counter pharmacy records.
Since we could have feature vectors from other sources, the features do not necessarily have an identical
distribution, and we revise the likelihood A, to:

n ' ) H
A, = H/li, where 4, = M (4-10)
i=1 /i (xi |H, )
Here f,(x, |0) represents the PDF for the observation x, given class 6, which represents the background or
anomaly class. We find it more convenient to work in the log-likelihood space:

Z, =log(A,)=> z, (4-11)
i=1

where z, =log(4,) - (4-12)

We call z, the weight of evidence, and if f(x,|H,)< f(x, | H,) giving z, <0 then we say feature x, leads to
negative weight of evidence for a cluster and if f(x, |H,)> f(x, | H,) giving z, >0 we say the feature leads
to positive weight of evidence for a cluster. The test (or (4-2) thru (4-4)) then becomes:

Reject H, IfZ,>a
Accept H, IfZ <b (4-13)
Getmoredata Ifb<Z <a

where

a =log(A)and b =1log(B). (4-14)

Figure 4-1 shows an example of a Monte-Carlo simulation of a SPRT. The independent anomaly and
background features belong to two highly overlapping distributions. Let N (0,1) (Normal with mean 0 and
standard deviation 1) represent the anomaly distribution and N (0,2) the background distribution. The
light gray region labeled "Background" contains 99% of the background traces. A trace represents the log
likelihood ratio output of the SPRT after testing each observation. The darker region labeled "Anomaly"
contains 99% of the anomaly traces. The jagged lines represent a specific example trace of the log
likelihood ratio for samples coming from an anomaly or background distribution. The two horizontal dark
lines represent the stopping boundaries, labeled "a" and "b". These lines come from assuming a FA error
and MD error of 0.001. When a trace goes above the a stopping boundary, the SPRT declares it an
anomaly and when the trace goes below the b stopping boundary the SPRT declares it background. Even
though the standard deviation of the test increases, the mean of the test increases faster allowing
improved detection as the system receives more observations. Note the test will terminate with probability
of one (Wald 1947).
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SPRT Test

Background

20 40 60 80 100 120 140 160 180 200
Observation

Figure 4-1. Monte-Carlo simulation of a SPRT

4.3. Feature Dependence

In the SPRT, the solution for dependent features determines the joint densities for each set of dependent
features. Large numbers of dependent features can make this a challenging and a nearly intractable
problem requiring inordinate amounts of historical background training data. If we incorrectly assume
independent features, then we will have higher than expected error rates due to the incorrect upper and
lower boundaries a and b.

For example, Figure 4-2 shows the Monte-Carlo simulation of Figure 4-1 modified to make the anomaly
and background observations dependent. The Figure shows that the low value of the upper stopping
boundary a (dotted line) causes a portion of the background traces to be labeled as anomaly. This makes
the FA rate increase.

SPRT Test

f,,,-
-
/

20 40 60 80 100 120 140 160 180 200
Observation

Figure 4-2. Monte-Carlo simulation of dependent observations from anomaly and
background.
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Our solution, to the dependent data problem, measures the effective amount of independent observations
n" (Bayley 1946). If the observations x,,x,,...,x, are serially correlated, weakly stationary, and come from
a mesokurtic (between peaked and flattened) distribution then:

A
n" ~ and k= Zpr for n>>A. (4-15)
K

7=-A

Note, we are interested in the worse case « and we ignore any negative correlations. Here n represents
the number of observations, p, the correlation coefficient of the observations taken r lags apart:

_ E{Cy - E(x, — E{x})}
’ E{(x~E{x})’}

(4-16)

and A the largest lag with a non-zero correlation. Note, when no correlation exists p, =1and p, =0 for
r=0giving n" =n.

If the effective number of independent observations decreases by the factor 1/« , then we expect the

average number of observations needed to make a decision to increase by x . Here, we need to make more
observations to make-up for the redundant dependent information. From equations (4-8) and (4-9) if we
want to increase our average number of observations to handle the dependent information then the upper
and lower stopping boundaries A' and B' become

A'=A4" or a'=xa (4-17)
and

B'=B* or b'=xb. (4-18)

These adjustments in the stopping boundaries allow us to handle dependent information. For the Monte-
Carlo example, Figure 4-2 shows the modified boundaries as solid horizontal lines. These modified
boundaries allow the recognition of anomalies and background with dependent information.

Equation (4-15) deals with serial correlations and this translates directly to correlations in time as

n—1
Kk, =1+2) p,, (4-19)

k=1

where p, gives the correlation % >0 lags apart. For correlations in space, the following gives the equation
for x (Gilbert 1997):

’(S = 1 +_/jc(’ls __1) > (‘4'2:())

where n, is the number of regions and p, is the average correlation between the n (n, —1)/2 region pairs.
For correlations across time and space Gilbert shows:

K=KK,. (4-21)
For p, =0 and p, =0 equation (4-21) reduces to x =1 giving n" =n.

5.0 Modeling the Stochastic Process

From the previous section, we saw that we can use the SPRT to control the errors of a decision about the
significance of a cluster. For the SPRT, we need to understand the stochastic process that generates the
time series for background and also for the anomaly. This is captured in the PDF’s f(y,(¢)|6,) and
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http://www.b3e.jussieu.fr/sentiweb/en/

f(r(D)]6). Here y,(¢) represents the aggregated number of cases of an adverse health event in region R
at time ¢, with 6, representing the background class and 6, the anomaly class.

Frequently one assumes the incidence of disease comes from a Poisson distribution, and for large
populations during non-epidemic periods we would expect a Normal distribution to approximate the
Poisson. However, we have found these distributions do not apply to the data sets we investigated.

5.1. French Flu Morbidity Data

For example, from http://www.b3e.jussieu.fr:80/sentiweb/en/ we have downloaded data collected by the
French Sentinel Disease Network (Valleron 2002). These data contain weekly morbidity for eight diseases
including influenza-like-illness. Sentinel general practitioners (about 1% of the French general
practitioners) collect the data from 22 regions of France. Since 1984, the sentinel physicians can
electronically connect to an information system in which they can send their morbidity reports. This gives
us 16 years of flu morbidity data.

We have examined the weekly differences of flu morbidity y,(z) - y,(¢ —1) . Figure 5-1 shows a histogram

of these differences normalized by population for all the regions in France. Along with the histogram is
the best fitting Normal (dotted line) and Cauchy (solid line) PDF’s. The Cauchy PDF does a far better job
of approximating this histogram than does the Normal distribution.

Non Epidemic
7000 ¥ o
Normal
Gauchy
5000 |
4000+
'S
[a]
o
3000}
2000+
1000
0l - i
-8 -6 -4 -2 0 2 4 6 8
Vi) - Yy(t-1) x10”

Figure 5-1. Histogram of flu morbidity differences normalized by population for all of
France.

The Cauchy distribution belongs to the Levy family. Mandelbrot recognized that Levy distributions have a
deep connection to scale invariant fractal random walk trajectories (Mandelbrot 1982), and Levy
distributions have been used to describe many fractal processes such as search patterns of wandering
albatrosses (Viswanathan 1996), human heart beat and gait (Peng 1994), stock market (Skjeltorp 2000),
and diffusion processes in physics (Klafter 1996).

Since the Cauchy distribution can model a fractal process we conjecture for the French flu data set the
Cauchy distribution with same parameters should generalize to different space and/or time resolutions.
Indeed this appears true. Figure 5-2 shows a Cauchy distribution with the same parameters for flu
morbidity differences for different populations in France (low, medium and high). Figure 5-3 illustrates
the same concept with cases now aggregated over a time of two weeks.
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Figure 5-2. Histogram of Flu Morbidity Differences for Regions in France with Different
Populations and Cauchy Distribution with the Same Parameters.
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Figure 5-3. Histogram of Flu Morbidity Differences for Regions in France with Different
Populations over a Two-Week Aggregation and Cauchy Distribution with the Same
Parameters.

Individual

Large tails characterize Levy distributions. Figure 5-4 compares the tails of a Cauchy distribution with
that of a Normal distribution in Log space. Physically, the large tails mean that we would expect small
week-to-week differences of flu morbidity with occasional large random swings. These large swings
become more prevalent during epidemic periods. The infinite moments of Levy distributions make it
difficult to predict these swings using standard time series methods based on moments. It’s important to
note that we are not trying to predict anomalies from morbidity data, but detect them as early as possible.
This distinction is clear in the next section when we show it’s possible to find the log-likelihood ratio of
the Generalized Beta Prime Distribution.
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Figure 5-4. Comparison of Tails for the Cauchy and Normal Distributions.

Instead of working with differences, sometimes it’s easier to work in the original morbidity space. Using
the knowledge that x,(¢) = y,(¢) — y,(¢ —1) has the Cauchy distribution

1
7{1 G o)’ }1

12

fi(0)= (5-1)

and assuming y,(¢) is stationary, we can derive the distribution for y,(?):

42
fy(y)—;(m)- (5-2)

This distribution belongs to the family of Generalized Beta Prime (Gf’) Distributions.

Using a periodic regression model, we can determine epidemic and non-epidemic periods. Section 7.1.1
discusses this in more detail. Figure 5-5 shows a histogram of y,(¢) during non-epidemic periods

normalized by population with the best fitting GB’ distribution using 1 =2.90x10"*. Figure 5-6 shows a
similar histogram of y,(¢) , but for epidemic periods with 1 =3.36x107. Notice the order of magnitude

increase in morbidity from Figure 5-5 to Figure 5-6 during epidemic periods. Figure 5-7 shows the Gf*
distribution for both epidemic and non-epidemics.
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Figure 5-5. Histogram of flu morbidity during nonepidemic periods normalized by
population for all of France with best fitting Generalized Beta Prime Distribution.
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Figure 5-6. Histogram of flu morbidity during epidemic periods normalized by population
for all of France with best fitting Generalized Beta Prime Distribution.
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Figure 5-7. The Gf’ Distribution for French Flu during Epidemic and Nonepidemic Periods.

5.2. California Flu Morbidity Data

We also have a large data set from the California Office of Statewide Health Planning and Development
(OSHPD). This database is derived from admissions to all hospitals in the state of California from 1990 to
1999. The database provides, among other information, the primary diagnosis in the form of an ICD-9-
CM (International Classification of Diseases, 9th Revision, Clinical Modification) code for each patient
record along with the patient’s home zipcode, the zipcode of the hospital and the date of discharge.

Figure 5-8 shows three time series of flu morbidity over 5 years from zipcodes in Los Angeles (LA)
County. At most, each day and region contains one or two cases and very often no cases. The differences
between the flu morbidity data from France and LA come from the fine space (zipcode vs. region level)
and time (daily vs. weekly) resolutions of the OSHPD data and from the use of sentinel practitioners in
France versus hospital admissions in the OSHPD data. Here, continuous distributions cannot
approximate the discrete flu data from OSHPD.

Zip: 91501, Pop: 18050
2, , :

1 [ L] - L]
0. L L | L L | L

Zip: 90712, Pop: 28812

Zip: 90011, Pop: 96074

Cases

L N I L *e -e &

0. 1 1 A 11 4 1l 1
Jangs Jangs Jang7 Jangg

Figure 5-8. Flu morbidity from zipcodes in LA County California.
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5.3. Handling Multiple Distributions: The Critical Threshold

In the previous section, we saw how different distributions arise based on how the data are collected and
the space and time resolutions. While it’s possible, at the very least, to derive an empirical distribution for
different data sets, empirical distributions make it difficult to do the power analysis required to control
the MD errors. Instead of using empirical distributions we transform the data into a binomial distribution
using a critical threshold. The critical threshold gives the value of incidence for when the background
likelihood equals the anomaly likelihood. Below the critical threshold the incidence of adverse-health
events more likely belongs to the background and above the critical threshold the incidence of adverse-
health events more likely belongs to the anomaly class.

Let y,(¢) represent the number of adverse-health event cases in region R at time t. By identifying the

critical threshold, 7, for every region R we can transform the random variable y,(¢) with any
distribution into a binomially distribution random variable. Here, let

()= 1 If yu(t)> 7
# 0  Otherwise
(5-3)

As an example, Figure 5-9 shows the corresponding log-likelihood ratio using the data in Figure 5-7. The

solid curve represents the log-likelihood ratio for the Gf’ distributions and the dotted curve the
approximation based on the binomial transform. The critical threshold occurs when the background and
epidemic PDF’s intersect or when the log-likelihood ratio equals zero. This occurs when the normalized

morbidity has a value of approximately 5x107*.
Log Likelihood
Ratio Binomial LLR

-4 10x10°4 15x10°4 20x10°4

Morbidity

Figure 5-9. Log likelihood ratios for different levels of morbidity for the French flu data set

6.0 Binomial SPRT

Let x represent a binomial random variable that can take on the values (0,1). For example, in acceptance
testing x =0 means a nondefective product and x =1 means a defective product. In our space-time
clustering problem x =0 means the number of adverse-health events most likely belongs to the
background and x =1 means the number of adverse-health events most likely belongs to an anomaly. Let
prepresent Pr(X =1). We want to determine if a sequence of x’s in space and time has a p that belongs

to the background or a p that belongs to an anomaly. Our solution uses a specified parameter p' and a
sequential hypothesis test where the null hypothesis H, represents p < p' and the alternative hypothesis
H, represents p > p'. These two hypotheses define a composite hypothesis, since the hypothesis does not

completely specify the distribution. To make the hypotheses simple, where the distributions are
completely specified, we define the tolerated risk. For the tolerated risk, we specify two values p, and p,

such that p, < p'< p, . We now have two errors of a practical consequence:
1. p<p, and we reject the H, hypothesis
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2. p>p, and we accept the H hypothesis.
If p, < p < p, then we don’t particularly care which decision the test makes. From p, and p, we can
define our two types of error. For the type I error a we want

Pr(reject H0|p <p))<a (6-1)
and for the type I error S we want

Pr(accept H0|p >p)<p. (6-2)
Here, o represents the acceptable FA error and S represents the acceptable MD error. Together the

quadruple (a, 8, p,,p,) defines the tolerated risk.

We now have two simple hypotheses with H,, representing p = p, and H, representing p = p, . Let m
represent the number of regions and times considered for a space-time cluster, x, the result of whether

the number of adverse-health events more likely belong to background or anomaly, and / an index into a
specific region (zipcode, county, etc.) and time (day or week). Let the following equation define the test:

D, = ixi . (6-3)
i=1

Here D, represents the number of “successes” in an experiment with m trials or we have a binomial
distribution

P(D, =d,) = (:l"jp (1= py" (6-2)
where again p =Pr(X =1). For H, the PDFof D, is

[;" jp (1=py)" ™ (6-5)
and for H, the PDF of D,, is

Lijﬁﬂ—me“ (6-6)

For the SPRT the log-likelihood ratio becomes

Pr(D, =d |H
A, =lo 2D, =d|f) (6-7)
Pr(Dm = dm HO)
or
1—
A =d 10g(ﬂj +(m— dm)log(—plj . (6-8)
Po 1-p,
From equation (4-13) we have
Reject background hypothesis If 4, >2a
Accept background hypothesis If 4, <b (6-9)

Get more observations Ifb<A, <a

where the decision boundary thresholds ¢ and » come from the desired error rates and are defined by
equation (4-14).
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From equation (6-8) we can show that

Ay =2, + AL (6-10)
where
,if =1
A= 1 et , (6-11)
d,ifx,,, =0
c=2, (6-12)
Po
c=logC, (6-13)
p-l=r , (6-14)
1-p,
and
d=logD . (6-15)

We call ¢ positive evidence for an anomaly and d negative evidence for an anomaly.

Introducing an auxiliary parameter % allows us to estimate the operating characteristic (OC) function and
the expected number of observations given the tolerated risk quadruple («, S, p,, p,) (Wald 1947). Let p

represent the true proportion of having X =1, L(p) the OC function or the probability of accepting
H, for a given p, and E(n) the expected number of observations required to make a decision then

1_Dh

P=Gi_p (6-16)
Ah _
L(p)= YO (6-17)
E(l’l) — bL(p)+a[1_L(P)] . (6'18)
cp+d(1-p)
Some points on the L(p) and E(n) can be computed without the auxiliary parameter 4 :
L0)=1, L(1) =0, L(py) =1-a, L(p,) = B, L(s) =# ) (6-19)
and
b a b[l-al+aa bp+all- p] ba
EQO)=—, E()=—, E(p))=————, E(p))=————, E(s) =— 6-20
0=+ B = E(p) = =0 B(p) = = =S B = (620)
where
d
= 6-21
* d-c ( )
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As an example, let the probability of X =1 for the background p, equal 0.1 and let the probability of
X =1 for the anomaly p, equal 0.9, the missed detection error g =0.01, and the false alarm error

a =0.01. Figures 6-2 and 6-1 shows the resulting E(n) and L(p) curves with the triangles showing the
points computed from equations (6-19) and (6-20). Figure 6-1 shows E(n) the average number of
observations for making a decision, for different values of the true proportion of X =1, p. For
p<p,=0.10or p>p, =09 the expected number of observations is about 2.5 or less. The maximum
number of average observations is about 4.5at p=0.5.

sl

3.5;

E(n)

1.5+

"o 01 02 03 04 05 06 07 08 08 1
P
Figure 6-1. Average Number of Observations, £(n), Versus the True Proportion for X =1,

p,for p,=0.1, p,=0.9, =0.01,and £=0.01

Figure 6-2 shows that for the probability of accepting H, (the background hypothesis) for different values
of the true proportion of X =1, p.For p< p,=0.1 the probability of accepting H,is 1—a =0.99 and this
probability increases as p gets smaller. This produces false alarms errors less than « =0.01. For

p > p, =0.9 the probability of accepting H, is #=0.01 and this probability decreases as p gets bigger.
This produces missed detection errors less than f=0.01. For 0.1=p, < p < p, =0.9 the test accepts

H, with probabilities between 1-a =0.99 and

S =0.01. In this interval we don’t care which decision the test makes. If we want to make this interval

smaller then E(n) would increase requiring more observations on average to make a decision. Figure 6-3
shows an example for p,=0.3 and p, =0.7.
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Figure 6-2. Probability of Accepting H,, L(p), Versus the True Proportion for X =1, p, for
Py=0.1, p,=0.9, a =0.01,and £=0.01
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Figure 6-3. Average Number of Observations, £(n), Versus the True Proportion for X =1,
p,for p,=0.3, p,=0.7, «=0.01,and S =0.01

6.1. Space-Time Clustering based on Binomial SPRT

Our approach for space-time clustering takes an analysis date and for every region searches back in time
and over nearby regions for all possible space-time clusters. The user determines the maximum cluster
size in time and space, and the Binomial SPRT determines the cluster’s significance. Let Y, =[y,,..., 1, ]
represent a vector of adverse-health event cases to be considered as a possible space-time cluster centered
at region r. Here, y, represents the number of adverse-health event cases for a specific time and place,
and k£ an index to a specific region (zipcode, county, etc.) and time (day or week). The algorithm searches
over different sizes of clusters, m, with the user determining the largest m. The user also specifies the
largest acceptable FA ¢ and MD g error rates over all the possible cluster sequences.
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To use the binomial SPRT we need to transform the vector Y, into a binomial 0/1 vector X, =[x,,...,x,].
We accomplish this by using the critical threshold z, :

1 Ify, 27,
k=

. 6-22
0 Otherwise ( )

In general, 7, varies for different regions and could depend upon, among other things, the region’s
population, area, average income, and doctors, hospitals, and insurance companies that service the area.
For example, in determining flu epidemics high-income people might go to their doctor at the first sign of
the flu more often than lower income people, or certain insurance companies might allow more tests in
the diagnosis of flu. Determination of 7, depends on the disease of interest, and the amount of historical
data available, and knowledge about the anomaly. We will discuss determining 7, more for the specific

applications of space-time clustering in the section 7.0.

Next we convert X, to evidence using equation (6-11). Conversion to evidence requires knowledge of the
tolerated risk parameters p, and p, . Like 7, determination of p, and p, depends on the amount of

historical data and knowledge about the anomaly. We will postpone discussion of their determination
until we discuss specific applications.

To get the total evidence for the space-time cluster we add the evidence together and account for
dependencies using the formulas for effective number of independent observations and equations (4-17)
and (4-18). If the total evidence goes above the a decision boundary we call the cluster an anomaly,
otherwise we don’t have enough observations to make a decision or the cluster belongs to the background.
The a decision boundary comes from the user specified false alarm and missed-detection error rates

aand g3 :
a =1og{(l_/’) )} : (6-23)

7.0 Results

We test our space-time clustering algorithm on two types of problems. One test is the early detection of flu
epidemics, and the other is the early detection of a simulated anthrax attack.

7.1. Early detection of flu epidemics

One way to measure the performance of space-time clustering is in the early detection of flu epidemics.
We test our algorithm on two flu data sets, one from France and other from CA OSHPD.

7.1.1. Determining the Start of an Epidemic

Currently, a technique developed by Serfling (Serfling 1963) determines the start of a flu epidemic in
France (Toubiana 1998). The method of Serfling defines the start of an epidemic as an "observed value of
incidence above the 95% confidence threshold for a periodic-regression-model for two consecutive
weeks." This method doesn't use any space information, since the reported flu incidences are combined
for the entire country. The Center for Disease Control and Prevention (CDC, 2000) also uses periodic
regression models to determine the seasonal baseline for flu. Figure 7-1 shows a periodic regression
model, derived using the French flu data set, to determine the start of epidemics in France. The filled
circle shapes indicate the start of an epidemic. As in (Toubiana 1998) the years 1984 and 1986 have
multiple starts of an epidemic and we drop those years from consideration, leaving us with 14 of the
possible 16 epidemics.
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Figure 7-1. Defining the start of a flu epidemic using a periodic regression model, for the
entire French data set. The darker bars represent the periods of possible correct detections
and the lighter bars represent periods of possible false alarms.

Figure 7-2 shows weekly flu data from Los Angeles county California. The best-fit periodic regression
model determines the start of flu epidemics, indicated by the filled circle shapes.
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Figure 7-2. Defining the start of a flu epidemic in Los Angeles County California. The
darker bars represent the periods of possible correct detections and the lighter bars
represent periods of possible false alarms.

7.1.2. Measuring Performance

We assume we can't detect the start of the flu more than four weeks in advance (Toubiana 1998). The
week the epidemic starts and the four weeks before define a correct detection. The darker shaded regions
in Figures 7-1 and 77-2 indicate these periods. The lighter shaded regions show the FA period as any
detection six months before the four-week correct detection period. Using these definitions we can
determine the sensitivity (probability of detection) and specificity (1.0-<probability of false alarm>).
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7.1.3. Determination of parameters

For determining algorithm parameters in the French flu data, we define epidemics as whenever the
morbidity goes above the periodic regression curve plus four weeks on either side of this period. All the
other weeks we define as non-epidemic. Using four years of the French flu data as training data we get the
histograms and fits of the Gf’ distribution shown in Figures 5-5 and 5-6. Where these PDF’s intersect

gives us the critical threshold 7, of 5x10™ for all the regions k =1,2,.... Using the training data we also
estimate the tolerated risk parameters p, and p, . Recall for region k with flu morbidity y, :

Py =Pr(y, >1, |Non— Epidemic) (7-1)
and

p, =Pr(y, > rk|Epidemic) . (7-2)

For the CA OSHPD data, we define epidemics as whenever the weekly morbidity goes above the periodic
regression curve plus 28 days on either side of this period. All the other days we define as non-epidemic.
Because of the fine time resolution (daily) and space resolution (zipcode level), the number of cases is very
sparse with at most 1 or 2 cases and very often zero cases. Due to the sparseness of this data set, we use a
critical threshold 7z, of 0.5. Using two years of CA OSHPD flu data as training data, we estimate the

tolerated risk parameters p, and p, for each zipcode using equations (7-1) and (7-2).

Some zipcodes don’t have any cases during the non-epidemic periods. To handle this problem we estimate
p, and p, using a Bayesian approach and a prior Beta PDF of

I'v, +w,) p""l
h(p)=Tw)(w,)" "
0, Otherwise

_ ﬂA_l
(I-p)™", O0<p, <l fork =01 (7-3)

Using a posterior mean, this gives a Bayesian estimator of (Hogg 1978):

d v
py=—"6,+ .
m v, + o,

(1-6,) fork=0,1 (7-4)

where d, represents the total number of days the morbidity goes above the critical threshold, m the
number of samples, and

6, =

=——  fork=0]l. (7-5)
m+v, + o,

We estimate the constant parameters v, and @, using the method of moments and the appropriate
training data from all the zipcodes. As m — « , the parameter 8 — 1 making the Bayesian estimator equal

. . d . . .
to the unbiased estimate of — . For m =0 or no data, the parameter ¢ =0 making the Bayesian estimate
m

equal to the mean of the Beta Distribution Vi .
v, + @,

7.1.4. Performance Results

Figure 7-3 shows a false alarm (FA) vs. probability of detection (PD) plot for detecting flu epidemics in the
French flu data using space-time clustering with a binomial SPRT. We define lead-time as the number of
weeks a significant cluster was found before the periodic regression model detection of an epidemic. The
max cluster size in time is 4 weeks and the maximum cluster size in space is up to 3 adjacent regions. The
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Figure shows perfect results for 0, 1, and 2 weeks of lead-time with only a very small degradation in PD for
up to 3 weeks. With a lead-time of 4 weeks the PD performance drops noticeably, but is still very high.

French Flu Detection
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Figure 7-3. FA vs. PD for the French flu data

Figure 7-4 shows the FA vs. PD plot for detecting flu epidemics in the CA OSHPD data using our space-
time clustering. The maximum cluster size in time is 21 days and the maximum size in space is up to the
50 closest zipcodes. The Figure shows perfect results for 14 days of lead-time with only a very small

degradation in PD for up to 21 days. With a lead-time of 28 days the PD performance drops noticeably,
but is still good.
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Figure 7-4. FA vs. PD for the LA flu data

7.2. Early detection of a simulated anthrax attack

For the Weapons of Mass Destruction Decision Analysis Center (WMDDAC) project, a simulation
capability is being developed to enable decision makers to simulate an event and make choices over the
course of the event. The final system would allow decision makers to run through several scenarios and
simulate the response to their inputs. The initial focus is on biological terrorism with a prototype of a
simulated anthrax attack. A simple disease model for anthrax as well as background health data (from the
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OSHPD database) has been developed. A space-time clustering algorithm gives a possible tool for the
decision maker. In this section, we show how space-time clustering based on the binomial SPRT could aid
a decision maker in early detection of a small-scale anthrax attack.

In its early stages, a health care professional might classify anthrax as respiratory illness or major
diagnostic category (MDC) 04 in the OSHPD database. Figure 7-5 shows the MDC 04 morbidity for the
years 1991 through 1997 in San Francisco County and the 8 surrounding counties of Alameda, Contra
Costa, Marin, Napa, San Mateo, Santa Clara, Solano, and Soma. These data provide training data and the
data from the simulated anthrax attack gives a signal to add to the 1998 background data. From the
Figure, one can see that the MDC 04 data has a seasonal component with peaks in the winter months and
also a slight trend due mostly likely to the increasing population.

450
400

350+

=]
=

MDCO04 Morbidity
]
o

Jang5  Jan%6  Jan97  Jangs

Figure 7-5. Respiratory illness or major diagnostic category (MDC) 04 from the OSHPD
Database

Figure 7-6 shows the MDC 04 morbidity for four individual zipcodes. This time series appears discrete
even at the higher populations. For the two smaller zipcode populations the MDC 04 incidence has at
most one case with a single instance of two cases over the seven years of data. For zipcodes with larger
populations some periodicity exists, not necessarily in the number of cases, but in the frequency of cases
with a higher frequency occurring in the winter months.
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Figure 7-6. Respiratory illness MDC 04 Morbidity for four individual zipcodes in the San
Francisco Bay Area, CA.

On top of this data we put the number of simulated anthrax cases computed from the WMDDAC
simulator. The date assigned to a simulated anthrax case depends on the dosage a person receives and
when their symptoms become severe. The transition times from exposed to mildly symptomatic to
severely symptomatic to dead/recovered is variable and depends on a Monte-Carlo simulation. The
zipcode assigned to the cases is determined by where the patient lives. Figure 7-7 shows 3 simulated
anthrax plumes originating in the San Francisco Bay Area, CA. Shape and size of the simulated plume
depend on canned weather conditions used by simulator. The two outer contours don’t contain enough
anthrax to cause any cases.

Figure 77-7. Simulated anthrax plumes originating in the San Francisco Bay Area, CA.

Figure 7-8 shows the number of anthrax cases generated by the simulated plume 2 in each of the 7
affected zipcodes. Here, only one person presents severe symptoms by day 3. Only by day 4 when 36
people become severely symptomatic do we have a chance of detecting the attack. Figure 7-9 shows the
plume 2 attack starting on 1/11/1995 with the first 4 days of the attack on top of the MDC 04 data. From
this aggregated data it’s impossible to find the local anomaly.
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Figure 7-8.

Plume 2
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Figure 7-9. Simulated anthrax plume 2 attack starting on 1/11/1995 with the first 4 days of
the attack on top of the respiratory illness MDC 04 data.

7.2.1.

Modeling the Background

To find anomalies in the input data, we need to remove the seasonal and trend components from the
input data. One approach uses regression techniques to fit a model to the data. Figure 7-10 shows the
best-fit periodic regression model with a trend for the MDC 04 data normalized by population. While the
model adequately removes the background seasonal component and trend from the data over the 9
counties, it would not work very well at the individual zipcode level where the data is more discrete and
the frequency of cases marks the periodicity and not necessarily the number of cases.
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Figure 7-10. Best Fit Periodic Regression Model with a Trend for the MDC 04 Morbidity
Data

We have chosen to use differencing (Box 1976) to remove the seasonal component. If y,(¢) represents the
number of MDC 04 cases in region & at time ¢, y,(r) the number of simulated anthrax cases, and L
represents the periodicity of the time series then computing:

() =y, (O +y, () =y, (t=L) (7-6)

allows removal of the seasonal MDC 04 component. For L=365 days, J,(¢) represents a new time series

with the seasonal component removed. Figure 7-11 shows examples of the differenced time series for the
background in 4 zipcodes of varying populations in the 9 county areas of interest. In this approach, we
ignore the trend components, since it is so small from year to year.

Jip: 94822, Pop: 100
T T

4 -

2

0 [H] [LI [] [[]] [[[[] ][H] ][
-2

-4 I Iﬁp: YTy Pop: 1061

4

2_ 4
ol LI T 11 8 O | 1
_zlll T IimmrIir 11 T ormIrmT T ImTTa
-4 Zip: 94506, Pop: 10173

4

2_
o e 1
-4 Zip: 94568, Pop: 20188

4 -

2

0

-2

J:n92 Jan93 Jang4 Jarl\‘QS Jan9é Jang7 Jangg

Figure 7-11. Differenced time series for the background in 4 zipcodes of varying
populations in San Francisco Bay Area.
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7.2.2. Determination of parameters
The binomial solution requires us to find the critical threshold 7, and the tolerated risk parameters p, (k)
and p,(k):

po(k) =Pr(5, > 7,[MDC 04) 7-7)
and
p,(k)=Pr(6, > z’k|An0maly) . (7-8)

Figure 7-12 shows a cartoon of a background distribution f(5|H,) . This distribution we can get from
historical data, and we assume the distribution is symmetric about the y-axis. Given different critical
thresholds r we can estimate p,.The problem is the selection of the critical threshold r and the

estimation of p, for all the zipcodes.

A PDF
f(3H,)

po=Pr(§"? Ho)

)

A

0 ¢

Figure 7-12. Background distribution /(5 |H,).

To solve this problem, we introduce two new parameters ¢, and ¢, and define the zipcode with largest
population as the standard zipcode, s. The parameter ¢, represents the number of cases above the
standard zipcode’s background that we are still willing to call background. The parameter ¢, defines the

number of cases above the background for sounding the alarm for an anomaly. Figure 7-13 shows a
cartoon illustrating the worse case background f(5 +c¢,|H,) and anomaly f(J +¢, |H,) distributions

with knowledge of the two parameters ¢, and ¢, .
PDF

A
f(£ ¢, |Hy) f(£ ¢, |H))

po= Pr(2* ¢, >4 H))

Figure 7-13. The Worse Case Background f(J +c¢,|H,) and Anomaly f(5+c¢, |H,)
distributions with Knowledge of the Two Parameters ¢, and ¢, .

33



From the Figure and assuming symmetry about the mean, the critical threshold for the standard zipcode
is just the average of ¢, and ¢ :

Cc,+c
s == (7-9)
2
To compute p,we translate the distributions in Figure 7-13 so that ¢, equals 0 with a new threshold or

virtual threshold of 7, =7, —¢,. The parameter p, can be estimated from historical data using this virtual
threshold of

7, = % (7-10)

and because of symmetry p, =1- p,. Based on the standard deviation ( o, ) of the other zipcodes, we scale
the standard zipcode’s ¢, and ¢, to get the ¢, and ¢, for other zipcodes. Having ¢, and ¢, for all the
zipcodes allows us to compute their critical thresholds and probabilities.

As with the estimation of p, and due to the sparseness of the data some zipcodes, we use a Bayesian
approach (Hogg 1978) to estimate the standard deviations o, of &, for each zipcode k. Using the Inverted
Gamma Distribution as the prior PDF:

/1C 1 I+c ,
(L), oo

glo?)= T(c)\ o’ (7-11)
0, Otherwise
we get a Bayesian estimator of:
2 A
o =yt9+—1(1—t9) (7-12)
c—
where y represents the unbiased estimate of the variance, m the number of samples, and
m
9 = ——_—_:! -1
m+2c-2 (7-13)

We estimate the constant parameters 4 and ¢ using the method of moments and the appropriate
training data from all the zipcodes. As m — « , the parameter 8 — 1 making the Bayesian estimator equal
to the unbiased estimate. For m =0, the parameter 6 =0 giving the Bayesian estimate as the mean of the

Inverted Gamma Distribution ( 4 )
c_

Figure 7-14 shows the result of picking different virtual thresholds (7-10), computing p, and p, =1- p,

from the MDC 04 data of the largest zipcode s, and then computing the expected number of observations
to a decision E(n) (6-18). The graph shows that as the virtual threshold gets smaller or as ¢, and ¢, get

closer it takes more observations to detect the difference between anomaly and background. Since we
want to detect an anomaly as soon as possible and we don’t expect to have small anomalies around long
enough to detect, we advocate using a virtual threshold of 6 or 7. Small values for ¢, of 1, 2, or 3 also

appear adequate for detecting an attack early without a lot of false alarms.
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Figure 7-14. Expected Number of Observations to Make a Decision for the Standard
Zipcode for Different Virtual Thresholds.

7.2.3. Results

Table 1 shows the number of simulated anthrax cases for each plume versus the days after the start of the
attack. The table shows that in most cases infected people do not become severely symptomatic until at
least the fourth day after the attack, and for the other cases it’s the third day. Simulated plumes 4 and 10
produce very few cases due to the small attack size and its location in a low populated area. These attacks

disappear into the MDC 04 background.
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Table 1. Number of Simulated Anthrax Cases for each Plume Versus the Days after the

Start of the Attack.
Number of Days After Simulated Anthrax Attack
Cases o 1 2 3
1 o o o 2 32 54 57 42 39
2 o o o 1 98 129 118 118 102
3 o o o 2 54 72 83 70 40
4 | o | o[ o] 1 2 | 3 | 0o | 2 [ 2 |
Plume | 5 o o o o 25 28 19
# 6 0 0 0 1 15
7 o o o o 52
8 o) o) o) o)
9 o o o o
10 o o o o
11 o o o o
12 o o o o
13 o o o 1

To estimate FA probabilities we look for space-time clusters in the MDC 04 background from 7/1/1992 to
6/30/1994. This gives 2x365 = 730 FA possibilities. To estimate the probability of detecting an attack we
took the next three years of data and added an attack on one day. We did this for every possible day, which
gave 3x365=1090 possible attacks for each plume.

Using ¢, =1and ¢, =15 and the above test procedure, we compute the performance of the algorithm.

Figure 7-15 shows two graphs. The top graph plots the morbidity of the background from 7/1/1992 to
6/30/1994, and the bottom graph shows the space-time clustering response to the background for each
day. The response is the maximum SPRT value over all the zipcodes and possible clusters. Since we
removed the seasonal variation, the background response appears fairly uniform over the 2 year time
period. The maximum SPRT background response of 7.36 seems inordinately high since that would

require a SPRT false alarm error rate of approximately 6.5x10™* . The reason stems from the maximum
operation. If U is the maximum of m independent observations with each observation having a
cumulative distribution function (CDF) of F(-) then the CDF for U is:

Fy(u)=Pr(U <u)=F(u)". (7-14)

From equation (77-14), the relationship between the false alarm error of «_, resulting from the maximum
response over all zipcodes and possible clusters, and the underlying false error of « is

a,. =1-(1-a)". (7-15)

For our problem, we estimate m to have a value of at least 20. This gives an ¢, of 0.01.

X
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Figure 7-15. Space-Time Clustering Maximal Response over all Zipcodes and Possible
Clusters.

Figure 7-16 shows the estimated actual false alarm error plotted against the theoretical error. The
theoretical error easily bounds our actual error and we conclude the space-time clustering models
conservatively estimate the true models.
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Figure 7-16. Actual Error Versus the Theoretical Error for SPRT response to the MDC 04
Background.

Referring back to Table 1, the dark gray areas indicate when the space-time clustering algorithm detects a
cluster with no false alarms and greater than 99% probability of detection. The lighter gray areas indicate
detection, but at a reduced PD (above 90%). The table shows we do very well at detecting an attack by the
second or third day of when infected people start becoming severely symptomatic.

37



8.0 Conclusion

Our goal is to use on-line electronic medical information to detect and characterize a biological weapons
attack after only a relatively small number of days (1-2) have passed from when the victims first begin to
present symptoms. To sift through the massive amount of medical records and focus attention on
potentially suspicious places and times, we use space-time clustering. Space-time clusters can indicate
exposures to infectious diseases or localized exposures to toxins, and help pinpoint the location of the
source of the contaminant.

We have presented statistical tests for finding space-time clusters in medical data. Current techniques for
space-time clustering assume individual patient or point data, whereas most electronic medical
information aggregates the space and/or time information. These space-time clustering algorithms,
usually based on correlation, only indicate the presence of a cluster, but not its location and size. We have
developed clustering approaches that operate on aggregated data and have embedded the test in a
sequential probability ratio test (SPRT) framework. Most space-time clustering algorithms only indicate
the presence of a cluster, but not its location and size. We have extended these clustering approaches to
aggregated data and have embedded the test in a sequential probability ratio test (SPRT) framework. The
real-time and sequential nature of health data makes the SPRT an ideal candidate. The SPRT keeps
gathering and combining observations as long as the statistical test has a value between the upper
stopping boundary, A, and the lower stopping boundary, B. Once the test goes above A or below B, the
SPRT cluster-detector makes a decision. These upper and lower stopping boundaries determine the
desired FA error rate and the desired missed-detection error rate. We have extended the SPRT to handle
the spatial and temporal dependencies often found in space-time data. The resulting test not only allows
us to control the error rates, but also pinpoint the cluster’s location in space and time.

Most space-time clustering algorithms assume an underlying Poisson distribution. We have found that
the data are far from Poisson and often best described as a Levy process. Levy distributions often
characterize fractal processes and have large tails, infinite moments, and non-closed form density
functions. Data collected at the zipcode and day resolution can be sparse with no more than one or two
events per location and often no events. These two reasons have forced us to develop statistical tests
where very little is assumed about the distribution underlying the disease process.

As a surrogate to bioterrorism data, we have experimented with two flu data sets. One set comes from the
French Sentinel Disease Network and the other from the California Office of Statewide Health Planning
and Development. In France, Sentinel general practitioners collect the data from 22 regions and record
the week and region of the patient presented flu symptoms. The CA database is derived from admissions
to all California hospitals from 1995 to 1999. For each patient record, the database provides the primary
diagnosis, the admission date, and the zipcode of the patient and hospital. For both databases, we show
that space-time clustering can detect a flu epidemic up to 21 to 28 days earlier than a conventional
periodic regression technique.

We have also tested on simulated anthrax attack data on top of a respiratory illness diagnostic category.

Results show we do very well at detecting an attack by the second or third day of when infected people
start becoming severely symptomatic and start reporting to the hospital.
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