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Abstract 

We develop the basic elements of the algebra of Taylor series. This knowledge 
allows us to derive a series expression for an exact root of a general polynomial of 
arbitrary degree. 

1. Introduction: 

Taylor series are commonly used in the mathematical analysis of physical systems. It 
is our purpose in this paper to present systematically the algebra of Taylor series, and 
then to use this knowledge to derive an expression for an exact root of a polynomial of 
arbitrary degree. 

Drawing on the discussion of Taylor series as it appears in Whittaker and 
Watson [ 11, we write the expansion of a function about an offset zo as 

m 

All the quantities in Eq. (1) are complex and the coefficients are defined by the contour 
integral centered at zo 

The radius of convergence for the Taylor series is the lower bound 

n+oo (3) 

2. Algebraic structure for addition and multiplication: 

Our approach to the algebraic properties of the set of Taylor series of the form of 
Eq. (1) is entirely based on Eq. (2) for the coefficients of each element of the set. Thus 
with respect to the binary operation of addition, it is clear that such a set constitutes an 
additive abelian group. The identity element for additon is the element with coefficients 
a,, (z,) = 0 .  Similarly, as we shall verify in the following two sections, the set of 
elements characterized by having a, (zo) # 0 , form with respect to multiplication, a 
multiplicative abelian group with the identity: a,, (z, ) = (1,0,0,. . .) . Since the distributive 
law over addition also holds, we can say that the set of Taylor series expanded about a 
given point z,  constitutes an infinite field over the field of complex numbers [2,3]. 

1 



3. Product of two Taylor series: 

the product of the series f ( z )  with another one g(z)  . Thus, 
As a simple illustration of the method of basing the analysis on Eq. (2), we consider 

m m 

or 
m r n c n  

n=O k=O e=O 

Dividing Eq. ( 5 )  by the quantity ( z  - zo)  and performing the contour integration yields 

Here 6k+e,ois  the Kronecker delta hiction equal to one when (k+.!)=O and zero 
otherwise. Consequently, the zero degree coefficient in the expansion of h(z) is, as 
expected, 

co = aobo . (7) 
Moving on to the nth degree coefficient, we derive in a similar way 

Or, more explicitly, 
n 

( z O )  = E a k  ( z o )  bn-k (20) , n = 0,1,2, * * (9) 
k=O 

It is important to point out that in the derivation of the recursion relation for the 
coefficients, Eq. (9), we have dealt with three series that are all expanded about the same 
non-singular offset point ZO. The product expansion converges within its own radius of 
convergence, R, , specified by Eq. (3) and centered at ZO. 

4. Reciprocal of a Taylor series: 

We next consider the reciprocal of f ( z )  

m 

Since the identity 
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is valid, it follows that 

Therefore, 

b, an-E-l = &. (13) 
@=O 

This recursion relation specifies that the successive values of the coefficients for the 
reciprocal of Eq. (1) are 

bo = l l a o ,  a. + O ,  (144 

and 

5. A Taylor series taken to a power: 

Let us examine the non-binary operation of exponentiation, 

g ( 4  = [ml" 7 

or 

The zero degree coefficient for g ( z )  is evidently 

bo = = b o l a .  
Differentiating Eq. (1 5) with respect to z gives 

f ( z ) g ' ( z )  = a 'W Y 

and, as a result, 
m m 

A division by the quantity ( z  - zo)e  followed by a contour integration leads to the 
equality 

Whence, the recursion relationship assumes the form 

k=l k=I 
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with the result that 

blao = a a l b o ,  C = l ,  

and, for e 2 2 

( l -  k )a  - k 
b, a. = a a ,  bo + ' t - k  bk - 

k=l e 
We observe that since the exponent a has not been restricted to integers, the 

coefficient bo , Eq. (1 7), may be multivalued and corresponds to different elements of the 
set of Taylor series, each equally valid. 

6. Reversion of a Taylor series: 

The series in Eq. (1) converges over a region in the complex z plane centered at 
z = zo . Instead, the reversion of f ( z )  will be a series in the complex f plane centered at 
the offset a, = f ( 2 , ) .  Accordingly, the reversion series is expressed as 

with 
n=O 

z(a0) = bo@,) = 2 0 .  

We note that this series is expanded about the point a0 , and therefore it does not belong 
to our original set expanded about 20 .  Eq. (23) is rewritten in the convenient expanded 
form 

Our task at this point is that of expressing the b,, (a,) coefficients in term of the a,, (zo)  
coefficients of Eq. (1). To accomplish this end, we write 

f - a0 = adz  - zo>g(z),  (26) 

where the function 

has the coefficients 

Since the differential relation 

z'(f)df =dz 

holds, it is evident that 
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Integration of both sides of Eq. (30) about the corresponding points aoand zo results 
directly in 

When we develop that last factor in Eq. (3 1) into a Taylor series 

and realize that the left-hand side of Eq. (3 1) is the Taylor coefficient for the derivative of 
z(. f)  we arrive at the equation 

Cb, = B(CyC-l)/a,e. (33) 

Because Eq. (32) is itself the (-e) -th power of a Taylor series, we can explicitly, per 
Eq. (22), write B(C, k )  as the sequence: 

B(&,O) = 1, (344 

B(&,l) = -& (?) 

In summary, the reversion series is Eq. (25) with the b,,(a,) coefficients dependent upon 
the original [see Eq. (l)] a,,(zo) coefficients through Eq. (34d). Briefly then 

We have not found in the literature the recursion relations for the reversion of a Taylor 
series. This observation is coiisistent with the statements made by K. Knopp in his two 
texts [4,5] that the recursion relations are unluiown. 
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7. Root of a polynomial of arbitrary degree: 

A polynomial is a Taylor series characterized by aN(z0 )  = 0 above some term of 
degree N, that is 

In agreement with the previous development, such a series has a corresponding reversion 
series of the form of Eq. (35). Under the condition that the value of the polynomial 
vanishes f = 0 ,  Eq. (35) becomes an explicit expression for the root, z(O), 

It is important to mention that the right-hand side of this formula depends only on the 
value of the offset ZO. It will be the root z(0) when the value, f = 0 ,  is within the circle 
of convergence of the reversion series, Eq. (3.9, centered at ao(zo) in the complex f 
plane. 

It behooves us, in view of this situation, to locate an appropriate offset zo in the 
complex z plane. We therefore give, in the following, one way of doing this. To start, let 
us assume that we are initially given a polynomial having N distinct roots distributed 
arbitrarily in the complex z plane about the origin, zo = 0, of the coordinate system. 
Therefore 

We now carry out the following three numerical manipulations: 

1. With the aid of Eqs. (14a,b), we calculate the coefficients of the reciprocal of the 
given polynomial, Eq. (3 8). 

2. Applying Eq. (3) up to some high-degree coefficient, we derive an estimate of the 
radius of convergence, &, , of this reciprocal series. 

3. We now numerically sweep at small angular intervals along this approximate circle of 
convergence searching for a complex value of z for which the initial polynomial, 
Eq. (38), takes on its smallest absolute value. This value of z is the complex offset zo 
that we seek. 

At this juncture in our discussion we must emphasize that the successful outcome of 
our 3-step algorithm is that it give a value of zo such that the circle of convergence of 
Eq. (35) contains the value f = 0 .  Subject to this condition, the particular complex value 
of zo is not critical. When the initial polynomial, Eq. (38), is displaced by this value of 
the offset zo , it becomes 
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The coefficients a,(zo) that appear in this displaced form of the polynomial are the ones 
we insert in Eq. (37), and thereby calculate z(O), a root of Eq. (38). 

8. Summary and Conclusions: 

We have presented the basic elements of the algebra of Taylor series and verified 
that for the binary operations of addition and multiplication the set of Taylor series 
expanded about a point constitutes a field over the field of complex numbers. For the 
non-binary operations of exponentiation and reversion we have derived the appropriate 
recursion relations for the expansion coefficients. Section 7 has dealt with the problem of 
solving for a root of a general polynomial. The remaining roots are found by following, 
for each of them, the same procedure of locating the pertinent offset with the help of the 
3-step algorithm, and then calculating the nearby root employing Eq. (37). As a check on 
the validity and generality of these ideas, we have written a computer program and 
successfully solved for the numerical roots of a large variety of polynomials of many 
degrees (up to N =  17). The accuracy of these calculated roots has been equal to the 
expected machine precision of about one part in 10”. In these exercises, polynomials 
with roots of multiplicity greater than one have been reduced to equivalent ones that have 
the same roots but with a multiplicity of one. The procedure for carrying out this 
operation is clearly explained in reference [6]. 

In conclusion, we can state that Eq. (37), in conjunction with a method of locating an 
appropriate offset zo , is an answer to the long-standing problem of finding an expression 
for the exact roots of a general polynomial of arbitrary degree. This statement does not 
contradict the “Impossibility Theorem” of Abel [7], since his landmark theorem 
addresses itself only to the specific question of which polynomials are solvable 
algebraically by radicals [2,8,9]. As a final remark, we would like to add that by “an 
exact root” we mean one that is obtainable directly from a formula, like Eq. (37), without 
employing successive approximations or iterations. 
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