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1. Main Purpose and Some Issues 

The main purpose of this document is to  describe the thermal energy balance 
used in the USNT module of the NUFT code (Nitao, 1998) and its derivation. 
We also address several specific issues that have arisen within the Yucca 
Mountain Project. Since the reader may not be aware of these issues, we list 
them here in the form of questions. 

Issue 1. Isn’t the energy balance equation used by NUFT as described in 
the NUFT USNT manual (Nitao, 1998) incorrect because internal en- 
ergy is used in the time derivative, or accumulation, term instead of 
enthalpy? Does the balance equation in NUFT assume constant pres- 
sure? Constant volume? 

Issue 2. Does NUFT “double account” for heat transfer by mass transfer 
in the thermal conductivity‘? 

Issue 3. Shouldn’t the specific heat for the solid in the NUFT energy bal- 
ance equation be specific heat, c,, at constant volume,and not specific 
heat, c p ,  at constant pressure? 

The answer to  all of these questions is in the negative. This document 
answers these issues by presenting a detailed and rigorous derivation of the 
thermal energy balance equation used in NUFT . From this derivation, we 
can answer these questions as follows. 

Response to Issue 1. The internal energy in the time derivative term is 
correct under assumptions widely used in the literature and similar 
computer codes. The balance equation is based on established lit- 
erature, such as in Bird et al. (1960), with the following common 
approximations made: that the viscous dissipation term, ( T  : VV),  
and the pressure gradient term, (V . Vp), are negligible compared to  
other terms in the equation. The resulting balance equation is the  
same as given in the N U F T  manual. In this document, we estimate 
the magnitude of the two neglected terms and show tha,t they are, in- 
deed, negligible for the Yucca Mountain system. 

The balance equation used in NUFT dates back many years, at least 
to  1974 (Coats et al., 1974), in the thermal modeling of petroleum 
reservoirs and is still widely used in the petroleum industry. I t  is also 
the same equation in the TOUGH2 code (Pruess, 1991, see pp. 91-92), 
which is a thermal-hydrologic code also used in the Yucca Mountain 
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Project. 

(Note: The assumption that the term (V . Vp) is negligible does not 
mean that constant pressure is assumed - only that this particular 
term is neglected. In fact, pressure is a variable in all remaining terms 
in the equation in which it appears.) 

Response to Issue 2. There is no double accounting for heat transfer in 
the thermal conductivity. As will be seen in our derivation and as 
described in the NUFT manual (Nitao, 1998), the thermal conductivity 
that is input to the NUFT model is the bulk thermal conductivity of 
the porous medium. The heat transfer due t o  diffusion and advection 
of mass are separate terms in the balance equation and are not part of 
the thermal conductivity. This point is clear from the balance equation 
described in the NUFT manual. Of course, it is up to the user to  
input thermal conductivity into the code, and not a n  effective transfer 
coefficient lumping together thermal conduction and heat transfer by 
mass movement. 

Response to Issue 3. The conditions at the Yucca Mountain for the solid 
phase are closer to constant stress conditions than to  constant vol- 
ume conditions because of the weight of the thick overburden over the 
repository. As will be shown in the detailed derivation, under constant 
stress conditions the specific heat a t  constant pressure is more applica- 
ble than the specific hea,t a t  constant volume. The erroneous conclu- 
sion, that  specific heat at consta.nt volume should be used, is shown t o  
arise from an incorrect derivation of the thermal energy equation that 
nb initio assumes that terms containing the solid velocity are negligi- 
ble. When these terms are kept until the final step of the derivation, 
we show that, under constant pressure conditions, cp, and not e,, is 
the correct term in the thermal conduction equation, 

(It is well-known that numerical values of cp and c,  are only a few 
percent apart for geological materials. Moreover, highly respected ref- 
erences in the field of thermal conduction such as, Carslaw and Jaeger 
(1959), use cp.  It might, therefore, appear that  a detailed discussion 
of this issue is not needed. However, we give a detailed discussion of 
this issue in order to give a. complete documentation, and to  resolve 
particular concerns within the Yucca Mountain Project.) 
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2. Introduction 

NUFT solves the coupled partial differential equations which describe the 
flow and transport of multiple mass components and energy in a porous 
medium containing multiple fluid phases. These equations are obtained from 
differential mass and energy balances. The purpose of this document is to 
describe the derivation of one of these equations, the thermal energy balance 
equation. We will use as a starting point, the equation given in established 
literature and, then, describe and justify the approximations made for its 
use on the Yucca Mountain Project. 

2.1. The Microscopic Level 

In order to  mathematically model flow and transport in a porous medium, we 
need t o  distinguish between microscopic versus macroscopic balance equa- 
tions. The microscopic balance equations describe processes a t  and below 
the pore-scale level. The microscopic balance equations are obtained from 
averaging the mechanics of molecular motion over a microscopic represen- 
tative elementary volume (pREV) much larger than the mean free-path of 
the molecules and over a time interval when a sufficient number of particle 
collisions occurs (Hirschfelder et al., 1954). 

A pREV is associated at  each point in a phase, so that,  by suitable aver- 
aging, smooth thermodynamic fields for various quantities, such as temper- 
ature, stress, and chemical potentials of each mass component, are defined 
over the region occupied by the phase. Each pREV is assumed to be wholly 
contained inside a phase, whether it be in a solid or fluid phase. Interfaces 
between the phases are often idealized as sharp surfaces a t  which bound- 
ary conditions must be specified. A more detailed analysis requires that 
interfaces be treated as transition zones between phases (Adamson, 1982). 

A pREV exists a t  a given point as long as fluxes in energy, mass, and 
momentum are sufficiently small. This condition can be expressed more pre- 
cisely as requiring that the gradients in temperature, chemical potentials, 
and stress tensor, be small over the pREV compared to the average value 
of the respective potentials over the pREV (Kreuzer, 1981; Bear and Nitao, 
1995). This assumption is often called “local thermodynamic equilibrium” in 
textbooks. Throughout this document we will assume that this condition is 
satisfied over the relevant physical domain. The assumption of local thermo- 
dynamic equilibrium allows us to  use the results of classical thermodynamics 
at each infinitesimal volume within our domain and makes it possible to  de- 
fine the necessary equations of state that relate various properties within the 
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phases. 

2.2. The Macroscopic Level 

Each solid or fluid phase has  a microscopic balance equation defined within 
the region occupied by that phase. that  must be solved along with boundary 
conditions a t  interfaces between phases for the continuity of component mass 
and energy fluxes crossing the interfaces. In a porous medium, the solution 
of the resulting system is not practical because the geometry of the region 
occupied by the phases, and the interfaces between phases, is too complex. 
To avoid this difficulty, macroscopic governing equations are obtained by 
volume-averaging the microscopic balance equations (Bear and Bachmat, 

A t  each point in the macroscopic continuum an  elementary representa- 
tive volume (REV) is assumed to  exist. Volume-averaging of the microscopic 
equations is performed over each REV. The solutions to  the resulting equa- 
tions are volume-averaged physical quantities that  are continuous over the 
domain. The size of the REV must be sufficiently large compared t o  the 
scale of significant spatial variations in physical and chemical properties and, 
therefore, is much larger than the size of the pores. A useful assumption, 
when valid, is local thermodynamic equilibrium at the macroscopic level. 
This means that the root-mean-square integral of the spatial variations in 
the microscopic thermodynamic potentials (temperature and the mass com- 
ponent chemical potentials) over each REV is small compared t o  the spatial 
variations of the macroscopic potentials within the REV. If this assumption 
is true, the thermodynamic state a t  the macroscopic level is representable 
by the macroscopic temperature and the macroscopic chemical potentials of 
each mass component (Nitao and Bear, 1996). 

At the microscopic level each point lies lies within a single phase. How- 
ever, at the macroscopic level, each point “contains)) all fluid and solid phases 
and their properties. Hence, there is obviously a fundamental difference be- 
tween the balance equations at the macroscopic and microscopic levels, which 
justifies the need to  derive the balance equations at both scales. 

1991). 

2.3. Agenda 

In th i s  document, we first show how the microscopic thermal energy bal- 
ance equation is derived and which terms are neglected in the NUFT code. 
We then show that the magnitude of the neglected terms are sufficiently 
small in describing the processes at Yucca Mountain. We, then, derive the 
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macroscopic equation by volume-averaging the microscopic equations. 
(Quantities such as temperature and internal energy, are defined in ther- 

modynamics under the assumption of thermodynamic equilibrium. How- 
ever, systems where mass and heat transfer occurs, clearly, do not satisfy 
this criteria. Therefore a question arises as to  how we can define these ther- 
modynamic quantities under dynamic conditions. Moreover, how does the 
microscopic balance equation arise from the molecular level? Appendix A 
gives a brief treatment of these issues.) 

3. Notational Convention 

Throughout this document we subscribe to  the following conventions for 
mathematical symbols. 

1. We always denote quantities that  are related to  a particular fluid or 
solid phase by the use of subscripts. For example, 0, is the volumetric 
fraction of the a-phase; and, @ e ,  O,, and Os are the volumetric fractions 
of liquid, gas, and solid phases, respectively. 

2. In most cases, where it is understood that a particular fluid or solid 
phase is being discussed, the subscript denoting the phase will be 
dropped. This convention will be used, in particular, when we dis- 
cuss microscopic equations. 

3. We will always denote quantities that  are related to  a particular mass 
component by the use of superscripts. For example, wY is the mass 
fraction of the y-component within the phase under investigation; and, 
wa and w" stand for the mass fractions of air and water components, 
respectively. 

4. Bold symbols denote vectors or tensors. Bold non-serif Latin symbols 
(such as T) are always tensors. 

5. Usually, but not always, upper-case symbols denote extensive quan- 
tities, and lower-case symbols denote intensive quantities. There are 
exceptions. Some upper-case symbols that do not represent extensive 
quantities are material velocity V, absolute temperature T ,  intrinsic 
permeability K ,  phase saturation S,, molecular mass M Y ,  tortuosity 
tensor T*, and diffusivity DY. Lower case symbols that do not rep- 
resent intensive quantities are mass of a component my, coordinate 
vector x' of a microscopic point, coordinate vector x of a macroscopic 
point, and Cartesian coordinate x;, 
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4. Thermal Energy Balance Equation at the Microscopic Level 

NUFT consists of several modules, each one solving the appropriate balance 
equations under a particular set of assumptions. The thermal-hydrological 
calculations for the Yucca Mountain system are modeled using the USNT 
module (Nitao, 1998). This module solves the general macroscopic mass 
and thermal energy balance equations for a multiple fluid phase system with 
multiple components. For the Yucca Mountain system the fluid phases are 
the aqueous phase and the gaseous phase. The two components modeled are 
air (considered as a single pseudo-component) and water. Both components 
may exist within either of the two phases. 

The macroscopic balance equations solved by N U F T  are obtained from 
volume-averaging the appropriate microscopic balance equations. For illus- 
trative purposes and for its relative simplicity, we will in the first subsec- 
tion consider the microscopic energy balance equation of a pure fluid phase. 
This phase can, for example, be a pure liquid consisting only of water or 
a pure gas consisting only of air. In the second subsection we consider the 
more complex multiple-component system appropriate to Yucca Mountain 
thermal-hydrologic calculations. After that ,  we show that  a particular term, 
the term arising from diffusive mass transport against gravity, is zero. Lastly, 
we derive the thermal energy balance equation for a solid using the specific 
heat capacity, and show that under constant stress conditions the specific 
heat at constant pressure is the correct one to use, and not one at constant 
volume. 

4.1. Balance Equation for a Pure Fluid 

The thermal energy balance equation for a single, pure fluid phase (Bird et  
al., 1960, Eqt. Q, p. 323) is 

P pressure, 
q non-advective thermal energy flux, 
u 
V mass-weighted fluid velocity, 
V V  second rank tensor, dK/dxj, 
p mass density, 
T deviatoric stress tensor. 

specific internal energy of the fluid (internal energy per mass), 

For a fluid phase the deviatoric tensor, T ,  is the viscous stress tensor. 
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The above equation is obtained from subtracting the kinetic energy bal- 
ance equation from the total energy balance equation (Bird et al., 1960, p, 
314). The kinetic energy balance equation is the direct result of the momen- 
tum balance equation (just as the mechanical energy equation, mechanical 
energy = kinetic energy + potential energy, is a corollary to  Newton's second 
law). Hence, there are no kinetic. energy and potential terms in the above 
equation. 

For a pure fluid the non-advective thermal energy flux q is due to thermal 
conduction alone and is usually treated using the Fourier law, 

q = -kVT, (4.2) 

where k is the thermal conductivity of the fluid, and T is temperature. 

as 
The third term -p(B.V) on the right-hand side of (4.1) can be written 

-p(V.V) = - v * p v  + v . v p .  (4.3) 
We combine this term with the second term, -(V.puV), on the right-hand 
side of the same equation t o  obtain 

-(V.puV) - p(V.V) = -V.phV + v . vp, (4.4) 

where h = u + p /p  is the specific enthalpy. Substituting these terms into 
(4.1), we have 

* at = (V.kVT) - (V-phV) + (V Vp) - (T : V V ) .  (4.5) 

For many applications the last two terms (V - Vp) and -(T : V V )  are 
negligible compared to  the other terms. Later, we will demonstrate this 
fact for the Yucca Mountain system. Then, the following simplified thermal 
energy balance equation results, 

* = (VakVT) - (V.phV). 
at 

Equation (4.6) can also be obtained under a set of assumptions that are, 
perhaps, different than those used above. The total energy balance equation 
is given by (Bird et al., 1960, Eqt. N,  p. 323) 

If the viscous heating term -(V.[T VI) is neglected, and if the magnitude 
of the kinetic energy term, ;If2, and potential energy term, 9, is small 
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compared to the internal energy u, with their time and spatial derivatives 
being small, as well, compared to  the derivatives of u,  we may drop those 
terms to  obtain, 

- dPU = -V.(phV) - v-q, 
at 

which is identical t o  (4.6) if the conduction flux, q = -kVT, is used. 

4.2. Balance Equation for a Fluid Phase Consisting of Multiple 
Components 

Because the thermal-hydrological calculation of the Yucca Mountain system 
consists of the transport of two components, air and water, (for Yucca Moun- 
tain thermal-hydrological calculations, air is treated as a single “pseudo- 
component”), we require the energy balance for a single fluid phase contain- 
ing several components. The thermal energy balance equation for a given 
phase is (Bird et al., 1960, Eqt. D, p. ,562) 

Du 
Dt 

p- = - ( V q ) -  (a:vv)+C(jy y). 
(Y) 

(4-9) 

Recall that  the subscript, y ,  is over all mass components within the fluid 
phase. Also, all quantities refer to  the particular phase under consideration. 
That is, instead of denoting quantities such as the density of a phase by p a ,  
we drop the subscript and simply use p. The term Du/Dt on the left-hand- 
side is the total time derivative defined by 

Du - du 
Dt - d t  
_ _ _ -  + (V V u ) .  (4.10) 

The symbol f’ denotes the external force acting on per unit mass of the 
y-component. The mass diffusion flux jy of the y-component is defined as 
(Bird et al., 1960, Eqt. 16.1-9, p. 501), 

(4.11) 

where p y  is the mass of the y-component per mass of fluid, and Vy is the 
diffusion velocity (velocity relative to  mass-weighted average velocity) , 

(4.12) 

(Bird et al., 1960, Eqt. 16.1-3, p. 497) which is the mass-weighted velocity 
of the y-component relative to  the mass-weighted velocity V of the fluid. It 
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is clear that  (Bird et al., 1960, Eqt. 16.1-1, p. 497), 

(4.13) 

The stress tensor o is given by 

0 = 7- +PI, (4.14) 

where 7- is the deviatoric tensor which, for a fluid, includes viscous shear, p 
is pressure, and I is the unit tensor. (There are various different sign conven- 
tions for 7 and 0, used in the literature. We use the same sign convention 
as Bird et a1.(1960).) 

The mass balance equation for a fluid phase is given by 

ap - + V.(pV) = 0. 
at 

(4.15) 

We multiply both sides of this equation by u and add it t o  the left-hand side 
of (4.9). Then, using (4.10) gives 

dPU - + V.(puV) = -(V.q) - (a : V V )  
at 

+ (P . f’) . 
(Y) 

From (4.14) and the identity, 

pl : vv = p v - v ,  

equation (4.16) becomes 

* + V.(puV) = -(V*q) - (7 : V V )  - (pV.V) at 
+ (jY * f’) ’ 

(Y) 

(4.16) 

(4.17) 

(4.18) 

We subtract the term V.(puV) on both sides of the equation resulting in 
the term -V.puV appearing on the right-hand side. The term -pV.V in 
the left-hand side of the equation is rewritten as 

-pv*v = -V.(pV) + v v p .  (4.19) 
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Using this identity, we combine -pV V with -V.(puV) to  obtain 

-V.(puV) - pV.V = -V.(phV) + v . vp, (4.20) 

where h = u + p / p  is the specific enthalpy. The thermal energy balance 
equation, (4.18), becomes 

dpu -(v-q) - v . (phV)  - (7 : vv) + (v - vp) 
at 

+ P I .  (4.21) 
(7) 

The thermal energy flux, q ,  in (4.21) is composed of three terms (Bird 
et  al., 1960, Eqt.18.4-2, p. 566), 

q = q(") + q(4 + (4.22) 

(We may also add the radiative flux q(r) t o  the above equation.) 
The flux q(') is due to  thermal conduction, 

q(") = -kVT. (4.23) 

The flux q(d) is due to  species diffusion (Bird et  al., 1960, Eqt.18.4-3, p. 

(4.24) 

where MY is the molecular mass of the y-component. The symbol h7 denotes 
the partial molar enthalpy of the y-component and is defined by, 

(4.25) 

where H = H ( p ,  T ,  N 6 )  is the total fluid enthalpy, N Y  is the number of moles 
of the y-component, and N6fr denotes the moles of all components except 
the y component. 

The partial mass enthalpy, h7, may be defined by 

(4.26) 

where my is the mass of the y-component. It is related to  the partial molar 
enthalpy, h7, by 

hY = hy/My. (4.27) 
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Therefore, 
Q ( ~ )  = h’ j Y  . 

(7) 

Substituting the various fluxes into (4.22) and (4.21), we obtain 

(4.28) 

The diffusive mass fluxes j 7  for a binary (two-component) system is 
usually represented by Fick’s law, 

j .  = -pDYVwY, (4.30) 

where wY is the mass fraction and DY is the binary diffusion coefficient of 
the y-species. 

4.3. Diffusion Work Term for Gravitational Forces is Zero 

The term (C(,)jy . f’) represents the work done by diffusion against an 
external force (The term corresponding to the work done by the bulk fluid 
was removed from the balance equation when we subtracted the mechanical 
energy balance from the total energy balance equation. The only remaining 
term for work against external forces is that relative to  the motion of the 
bulk fluid, which, by definition, is the work done by diffusive mass fluxes.) 

For Yucca Mountain simulations, the only external force is gravity. The 
term, fY, is force per unit mass of the component. Therefore, 

f’ = -gvz, (4.31) 

where g is the local gravitational acceleration and z denotes the vertical 
coordinate (increasing upwards). We now show that the diffusion work term 
is zero if the only external force is gravity. Conceptually, this result follows 
from the fact that  gravity acts on only the mass of each component while 
the net mass flux due to  diffusion is zero. Therefore, no net work is done by 
mass diffusion. 

First we show, formally, that the sum of the diffusion fluxes is zero, 

j’ = 0. (4.32) 
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From the definition of diffusive flux, we have from (4.11) and (4.12) that  

where we used the definition of mass-weighted velocity V, 

and the identity, 
P = c P y  

(4.33) 

(4.34) 

(4.35) 
(7) 

Therefore, from (4.31) and (4.32), the gravitational work by diffusion is 
zero, 

Cj' f' = -(Cj',. ( g 0 z )  = 0, (4.36) 

which is the desired result. 

4.4. Balance Equation for a Solid Phase 

The thermal energy balance, given by (4.9), for the fluid also applies to  a 
solid. The demonstration that the mass-diffusion body force term is zero 
also applies to  a solid. Moreover, energy transport by mass diffusion fluxes 
are sufficiently small in comparison to  thermal conduction that they can be 
neglected. We have, therefore, 

Du 
Dt 

p- = - (V .q )  - p(V.V) - (T : VV),  (4.37) 

with the heat flux given by the Fourier law of conduction, 

q -kVT. (4.38) 

Because a computer code without mechanical coupling has no informa- 
tion regarding the velocity, V ,  of the solid phase, these terms aae usually 
neglected in thermal flow and transport codes. We could stop here, except 
tha t  laboratory measurements of internal energy are not usually available. 
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Instead, the heat capacity of a solid is the relevant quantity that is measured. 
A solid sample is heated by the application of some heat flux, SQ, and the 
resulting change in temperature, ST, is measured. If the experiment is per- 
formed while the sample is constrained to  a fixed volume (or, more precisely, 
a fixed strain) then the heat capacity, Cv, at constant volume is measured. 
If the sample is kept under a constant pressure (or, more precisely, fixed 
stress load), the heat capacity, C,, at constant pressure is measured. We 
may represent these two definitions of heat capacity by the equations 

(4.40) 

(4.41) 

(4.42) 

where E is strain, and u is stress. The specific heat capacity cp and c, are 
the respective heat capacities, C, and C,, respectively, defined per unit mass 
of substance. 

Because heating of the rock a t  the Yucca Mountain site occurs under 
approximately constant loading conditions from the weight of the overburden 
above the repository, one can argue that the constant pressure (or loading) 
specific heat is closer to reality than constant volume. Also, laboratory 
measurements under constant loading conditions is much easier to  perform 
than those at constant volume. 

In any case, for most substances, the values of c, and c, are only within 
a few percent of each other, and c, is probably more commonly used than 
c,. The work by Carslaw and Jaeger (1959), which is probably the most 
highly respected text in the field of heat conduction, uses cp exclusively. 

We now derive the thermal energy balance equation in term of c, for 
heating under the constant stress conditions. 

Consider an infinitesimal volume of rock in the field under a constant 
stress. Let q be the heat in the solid per unit mass of solid. Heating or 
cooling of the rock is assumed to  take place as a reversible thermodynamic 
process. The rate of change, Dq/Dt,  of heat in the volume is equal t o  to the 
net heat flux applied t o  the volume which, in this case, is due t o  thermal 
conduction. Since the net thermal conduction flux for an infinitesimal system 
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per unit mass is LV-kVT, we have 
P 

(4.43) 
1 
P 

Dq/Dt = - V * k V T .  

This equation is a thermal energy balance equation and should, therefore, 
be the same as the balance equation, (4.37), derived earlier. In Appendix B 
we show that  this is, indeed, the case. 

Since the heating is assumed to occur under constant stress conditions, 
from the definition of e,  we have that  

Dq/Dt = c,DT/Dt. (4.44) 

Substituting into (4.43) we have the thermal energy balance equation in 
terms of e, as 

pc,DT/Dt = V-kVT.  (4.45) 

Expanding the total derivative on the left-hand side we have 

(4.46) 

If the magnitude of 
than the magnitude 

the second term on the left-hand side is much smaller 
of the first term, i.e., 

then we have the familiar heat conduction equation given by 

(4.47) 

(4.48) 

For an isotropic infinitesimal rock mass under an isotropic stress field with 
no shear cu is the same as c p ,  and, we have 

(4.49) 

which is the desired thermal conduction equation in terms of cp under con- 
stant solid pressure conditions. 

Erroneous Argument for the Use of c, Instead of c p .  

Some have argued that  the use of e, instead of cp is more correct in the 
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equation for thermal conduction in a solid, even under constant stress con- 
ditions. In fact, many textbooks are somewhat cavalier in their treatment of 
this issue, perhaps, because the difference between e, and cp for many solids 
is only a few percent. 

Before proceeding, we first rewrite equation (4.37) by using the mass bal- 
ance equation and expanding the total time derivative to  give the following 
form of the thermal balance equation, 

(4.50) 

The erroneous argument begins by neglecting all terms in the equation con- 
taining the solid velocity, V, in order to  obtain the equation, 

* = (V.kVT).  at (4.51) 

From the well-known thermodynamic identity for the heat capacity at con- 
stant volume, ..=(E) V , 

we have that the specific heat capacity at constant volume is 

PCV = (g) U 

so that (4.51) becomes 
dT 
d t  

c,- = (V-kVT) .  

(4.52) 

(4.53) 

(4.54) 

Because th i s  equation is different from (4.49), it is, then, concluded that 
(4.49) is incorrect and that c, should be the factor multiplying the time 
derivative term, not cp. 

The error in the above argument is that ab initio the solid velocity terms 
are assumed to  be negligible. This assumption is inconsistent with the as- 
sumed constant stress conditions since the solid will move during heating as 
it performs work against the applied stress. The derivation of (4.49) given 
above shows that the solid velocity terms are essential to  deriving the baI- 
ance equation under constant stress conditions, and when they are included 
the correct specific heat is seen to be cP, and not e,. 
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5. Simplifications to the Thermal Energy Balance Equation at 
the Microscopic Level 

The macroscopic thermal energy equation solved by NUFT is derived from 
following simplified microscopic energy balance equation, 

* = (V-kVT) - V . ( C  h y )  - V.(phVj, 
(7) 

at 

which is obtained from (4.29) by neglecting the last three terms on the 
right-hand-side. The purpose of ma.king these simplifications is t o  avoid 
unnecessary numerical computation by eliminating terms that are negligible 
compared to other terms in the equation. 

The last term of (4.29) was shown t o  be zero when gravitation is the only 
external force. In this  section the other two terms (4.29) that  are neglected 
will be considered in detail in the context of Yucca Mountain. In particular, 
we will estimate upper bounds to  the magnitude of these two terms and 
show that they have a negligible effect on model predictions. 

5.1. Estimation of the Effect of Viscous Heating Term 

5.1.1. Viscous Heating during Infiltration 

In this subsection we consider the term -T : VV, which represents irre- 
versible thermal energy dissipation from viscous shear during fluid flow. For 
Newtonian fluids, this term is always non-negative because it can be writ- 
ten as the sum of squares (Bird et al., 1960, p. 82). For relatively simple 
systems (such as flow and heat transfer between parallel plates) the dimen- 
sionless group, called the Brinkman number (Bird et al., 1960, p. 278), 

can be used t o  estimate the relative effect of viscous dissipation over thermal 
conduction. Here, p is dynamic viscosity of the fluid, k is thermal conduc- 
tivity of the fluid, (To - T l ) / D  is the characteristic temperature gradient, 
and D is a characteristic length. Small values of Br indicates that  any heat 
generated by viscous dissipation will be carried off by thermal conduction, 
and, hence, has  little effect. However, for more complicated problems, a 
more detailed analysis is needed. 

The standard Brinkman number is for a single fluid system. Also, it 
presumes that the characteristic length D for viscous dissipation is the same 
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at that for thermal conduction. For Yucca Mountain the system is not 
single phase system, but involves heat transfer through a fractured porous 
medium consisting of solid and fluid phases. At Yucca Mountain the largest 
fluid velocity gradients (which are the source of viscous dissipation) are in 
the fractures where the velocities are the highest. The characteristic length 
for viscous dissipation should be the fracture aperture. Thermal conduction 
occurs from the fractures to  the matrix block and then over the scale of the 
distance from the repository to  the ground surface. We, therefore, cannot 
use an analysis based on the standard Brinkman number. 

In order to estimate the relevant importance of viscous heating for liquid 
flow down a system of fractures, we consider a two-dimensional system of 
idealized vertical fractures that are of the same aperture b and spaced a 
distance a apart from each other. We assume that b is much smaller t h a n  a ,  
i.e., b << a.  The fractures extend from the ground surface to the water table, 
which is at depth, dwt,  from the surface. The amount of viscous heating 
released per unit volume (W/m3) inside the fraction is approximately given 
by (Bird et  al., 1960, eq 9.4-3, p. 278), 

2 .;=.(?) 1 (5 .3)  

where b is the aperture of the fracture and V is the velocity of the fluid inside 
the fracture. 

We will estimate the rise in temperature due t o  viscous heating. Note 
that the vertical temperature profile approximately satisfies the steady-state 
heat conduction equation with the source term due to  viscous heating, 

d dAT,(z) 
-ak = bqu. 
d z  dz (5.4) 

where A T ( z )  denotes the rise in the vertical temperature profile above the 
ambient conditions due t o  viscous heating. Solving this equation we have 

where z is the depth below the ground surface. Setting z = d W t ,  the increase 
in temperature at the water table is therefore, 
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To be conservative with regards to  flow velocity, we assume tha,t the 
fractures are filled with fluid. The velocity for flow between parallel plates 
under a gravity pressure gradient is well known and is given by 

b2 
1% 

Vf = -pg. (5.7) 

Let qinf stand for the assumed constant specific volumetric infiltration 
flux (m3/m2-s = m/s) over the repository. All of this flux is assumed t o  
occur in the fractures. Thus, we must have 

This constraint on spacing, a, between flowing or "active" fractures arises as 
follows - the larger the flux into each fracture the fractures that have flow 
must be spaced farther apart in order for the total infiltration flux to be 
satisfied. 

Substituting into the expression for a into (5.5), we obtain the following 
expression for the temperature rise at the water table, 

Substituting for Vf from (5.7), we have 

(5.10) 

(5.11) 

We use the following parameter values for the flow of liquid water, 

4inf 100 "m/Y 
b 100 pm 
p lx103 kg/m3 
p 8 . 7 ~ 1 0 - ~  Nt-s/m2 
k 1.2 (W-m/OK) 
drep 350m 
dWt 600m 

The resulting increase in temperature at the water table is estimated to  

AT,, M 0.8"C. (5.12) 
be 
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Using a similar formula as for the water table, the temperature rise at the 
repository is given by 

AT, M 0.3"C. (5.13) 

The above values are conservative because we have only included conductive 
heat transfer to  the ground surface and have neglected heat transfer to the 
water table. The rise in temperature is relatively small compared to  reposi- 
tory temperatures and, therefore, viscous heating due to  infiltration may be 
neglected. 

5.1.2. Viscous Heating during Buoyant Gas Convection 

Buoyant gas convection is another possible source of gas flow which could 
potentially lead t o  viscous dissipation. In order to  estimate gas velocities, 
we consider the approximately cylindrical column of heated region of rock 
created by the repository. To be conservative we consider the column to 
extend 50 m above and below the repository and treat the column as being 
uniformly heated to a temperature of 130" C. The flow of gas is driven by 
the difference between the pneumatic head of the column of height H in the 
repository to the pneumatic head Ap of the same column height away from 
the repository at a distance R approximately 1 km away from the central 
vertical repository axis. Thus, the pneumatic gradient due t o  the density 
difference is 

(5.14) 

The bulk intrinsic permeability K b  is estimated by the formula for flow 

K f  = 4fb2/12, (5.15) 

where b is fracture aperture and 4f is fracture porosity (volume of fractures 
/ bulk volume). 

( A P / A 4  = [Psl,,,c - Pgll3ooc 1 g* 

between parallel plates, 

The Darcy flux, $ ~ V J ,  flowing through the repository is 

where Vi is fracture gas, and we have assumed that  all of the flow occurs in 
the fractures. The factor [ H ) / ( R  + H ) ]  accounts for the resistance encoun- 
tered by gas flowing horizontally from the outer boundary to the center of 
the  repository. 
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Note that the fracture porosity in (5.16) cancels and the resulting equa- 
tion gives the fracture gas velocity, 

(5.17) 

Using an analysis similar to  the case of infiltration, we solve for the 
temperature rise to obtain 

(5.18) 

Substituting the following values into (5.17), 

100 p m  
100 m 
0.01 
350 m 
1.2 W-m/"K 
1.8 x Nt-s/m2 
1.18 kg/m3 
0.88 kg/m3 

we have VJ = 1.2 x 10-5m/s = 390m/y. Substituting this value into (5.18) 
we have the following estimate for the upper bound to  the temperature rise 
from viscous heating, 

4T, M 4 x "C. (5.19) 

5.1.3. Viscous Heating during Vapor Generation 

Yet another source of gas flow is the release of steam generated inside matrix 
blocks. Viscous heating from steam flow can occur both inside the matrix 
and the fractures. 

We consider an idealized system of parallel fractures spaced distance 
a apart. For steam to be generated the gas pressure in the matrix must 
be equal to or less than the saturation pressure psat(T,) where T, is the 
temperature of the matrix. From Darcy's law the velocity V, of steam flowing 
out  of the matrix is approximately given by 

(5.20) 
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where drn is matrix porosity, K ,  is matrix permeability, and A p  = psat(Trn)- 
P a m b  is the increase in gas pressure, and P a m b  is the ambient pressure at the 
repository. 

In order t o  calculate viscous heating due to flow of steam within the 
matrix, the flow is idealized as passing through a set of parallel tubes of 
diameter d equal t o  the meaa pore diameter of the matrix. Porosimetry 
measurements indicate that d is on the order of 80 nanometer ( 8 0 ~ 1 O - ~ m )  
for welded tuff a t  Yucca Mountain. The magnitude of viscous heating per 
unit volume inside a tube is given approximately by 

(5.21) 

The magnitude of heat being transported in the tube by advection per 
unit length of the tube is 

IV*phVl PsVshJa, (5.22) 

where ps is steam density. From (5.21) and (5.22), the ratio of the viscous 
heating to the heat transported by advection is, therefore, 

Substituting for Vs from (5.201, we obtain 

(5.23) 

(5.24) 

Numerical simulations of the Yucca Mountain repository show that the 
temperature of the two phase boiling zone does not exceed 130 "C. Therefore, 
we use the following typical values with thermophysical properties at 13OoC, 

1 x 1 0 - l ~  m2 
0.10 
80x10-' m 
0.3m 
2 . 7 ~ 1 0 ~  J/kg 
1.50 kg/m3 
1.8 x Nt-s/m2 
2 . 7 ~ 1 0 ~  Pa 
0 . 8 9 ~ 1 0 ~  Pa 
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The upper bound to  the ratio of viscous heating to advective transport is 
estimated from (5.24) t o  be 

17 : VVI 
IV.phV, M 3.5 x 10-~  (5.25) 

Therefore, viscous heating in the steam generation zone is negligible com- 
pared t o  advective transport of energy so it can be ignored in the balance 
equation. 

5.2. Estimation of the Effect of the Pressure Gradient Term 

The pressure gradient term, V . Vp, arose from combining of the energy 
transport term, -V.puV, with the volumetric work term, -pV-V, in order 
to obtain an enthalpy transport term, -V.phV. The term, V * Vp, is signif- 
icant if the magnitude of the pressure gradient in the direction of flow times 
the magnitude of the flow velocity is sufficiently large. 

The largest pressure gradients and flow velocities occur when steam gen- 
erated by water boiling in the matrix causes pressurization of the pores 
within matrix blocks. 

We consider the same two-dimensional system of fractures considered in 
the previous subsection on viscous heating. The magnitude of the pressure 
gradient term for steam flowing out of the matrix is estimated as 

The magnitude of the advective term is estimated as 

The ratio of these two terms is 

(5.26) 

(5.27) 

(5.28) 

We use the same following parameter values as in the subsection in vis- 
cous heating. 
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We, then, obtain the following estimated upper bound to  the ratio of the 
pressure gradient term to the advective term 

I V .  ”‘ < 0.04, 
IV.phVI - 

(5.29) 

demonstrating that the pressure gradient term may be neglected in the bal- 
ance equation. 

6. Flux Boundary Conditions and Source Terms 

In this section we derive the appropriate boundary conditions and source 
terms corresponding to the thermal balance equa.tion. We first derive the 
boundary conditions. 

Equation (5.1) can be written in the form 

where we define the thermal flux, 

qe = -kVT + hyjY + phV. (6.2) 
(4 

From the definition, j7 = py(Vy - V), the flux q, can be written as 

q, = -kVT + x p Y h Y V Y .  
(Y) 

We first determine the flux passing through a surface S of infinitesimal 
area, that ,  possibly, defines a discontinuity in fluid properties. Consider two 
surfaces S, and S-, on both sides of the surface that are a distance E from 
the surface in question, S .  Integrating (6.1) over the volume enclosed by the 
two surfaces, applying the divergence theorem, and letting e approach zero, 
we have 

q e  * v )  1 q e  * vI2, (6.4) 

where the subscripts 1 and 2 denote the different properties a t  the two sides of 
the surface and v is the normal vector on the surface. This relationship states 
that  the flux q, is conserved across surfaces (subject to  the approximations 
made in deriving (6.1).  From the definition of q,, this  equation is, 

(- kDT . v + pYhYVY . v) 1 = (- kVT . v + 
(7) (Y) 

pYhYVY + v) I (6.5) 1 2’  
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The relationship can also be rewritten as 

where q h  is heat flux and q Y  = pyVY is the mass flux of the y-component 
across the surface. Thus, the mass flux of a y-component gives rise to  the 
thermal energy flux equal to hYq7. 

Therefore, the proper boundary condition at  a surface S is 

where YhlS is the specified heat flux at  the boundary surface S, y Y l s  are the 
specified mass fluxes, and h’ls are the specified partial enthalpies. 

We now derive source terms to the thermal energy balance equation. 
Suppose there is a point source of heat yoh and point sources of component 
mass fluxes, q?, located at a microscopic point t’. Consider a sphere S, of 
radius t centered at  [‘. From arguments similar to above, the thermal energy 
flux, y e l ~ ,  coming out of this sphere is given by 

As t approaches zero, we have 

Therefore, the thermal energy source term for a point source is given by 

qe(x’) = (Yoh + h;q,Y) .6(x’ - < I ) ,  (6.10) 
(Y 1 

where S ( x ’  - t’) is the Dirac delta function. From this expression, the term 
for a general distribution of sources is 

where the following functions in space are specified: heat flux qho(X’), com- 
ponent mass fluxes q,’(x’), and partial mass enthalpies h;j(x’). 
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7. Thermal Energy Balance Equation at the Macroscopic Level 

In this section we derive the macroscopic thermal balance equation by volume- 
averaging the microscopic balance equation derived earlier. 

7.1. Volume- Averaging the Microscopic Equation 

We can rewrite the thermal energy balance equation, (5.1), in the following 
form 

dpU 
- = -v*q,, 
dt 

(7.1) 

where we define the total thermal flux 

q, E -kVT + hYjY + phV. ( 7 4  
(7) 

The macroscopic thermal energy balance equation is obtained by volume- 
averaging this equation. In particular, we will need t o  average over each of 
the fluid and solid phases, separately. The actual formula for the volumetric 
phase average of some microscopic quantity e(x’,t)  defined over some a- 
phase is (Bear and Bachmat 1991, Eqt. 1.3.5, p 32) 

Here Uo(x) denotes the volume of the REV centered a t  the macroscopic point 
x and Uo,(x,t) is the region occupied by the a-phase that inside the REV. 
We also need to  define the intrinsic phase average by (Bear and Bachmat, 
1991, Est. 1.3.3) 

It follows (Bear and Bachmat, 1991, Est.  1.3.6) that  

(7.5) 

(7-6) 

- e = 8ai?, 

where 8, is the volumetric fraction of the a-phase, Le., 

@CY 3 Uo&, t)/Uo(x, t ) ,  

the volume of the a-phase divided by bulk volume. The following relation- 
ship regarding the volumetric fractions are true, 

0, = 1, ea = sa#), os = 1 - #), (7.7) 
(e) 
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where 4 is porosity, S, is saturation, and the subscript s in 6, denotes the 
solid phase. 

For the Yucca Mountain thermal-hydrology problem there are two fluid 
phases gas (g),  liquid (e), and solid ( s ) .  We will use the subscript a t o  denote 
the appropriate phase. 

The average surface integral of a quantity e defined at  the interface be- 
tween two phases will be denoted by 

(7.8) 

where Sap is the surface between the phases a and p within the REV and 
Sap is its surface area. 

Let e, now, be a quantity defined over the a-phase which is zero outside 
of the a-phase. The average of its time derivative is given by (Bear and 
Bachmat, 1991, Eqt. 2.3.12) 

- 
dE AYp Sa0 

- - ---Cev,p.v - 
uo 

de  
dt  
- 

(0) 

where V,p is the velocity of the interface between the a and the p phases. 
The sum over /3 in the last term of the above equation is over all phases that 
are on contact with the a-phase. 

Let G be a vector quantity defined over the a-phase which is zero outside 
of the a-phase. The average of the divergence of G is (Bear and Bachmat, 
1991, Eqt. 2.3.29) 

(7.10) 

We now average this equation by integrating over an a-phase and dividing 
by the volume of the REV, Uo(x). The averaging theorem, (7.9), is applied 
to  the left-hand-side of balance equation and the theorem, (7.10), to  the 
right-hand-side, to  obtain the macroscopic thermal balance equation of a 
particular a-phase, 

ae,p,ff -%p - - 
C P U v , p - ~  - ___- 

uo (PI  
d t  

(7.11) 
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The second terms on both the left and right-hand sides of the equation 
are combined so that 

(7.12) 

where we define the following symbol, 

(7.13) 

To see the meaning of th i s  symbol, the integrand in the above integral, when 
expanded, is 

(9, - puV01p) v = 

- k V T .  Y + h'j' . v + pu(V - V,p) - v + pV v. (7.14) 
(Y) 

The first term is the conductive flux across the interface Sap between the a 
and ,f3 phases. The second term is the energy flux carried by mass diffusion. 
The third term is the energy carried by advection due to  the velocity of 
the fluid relative t o  the velocity of the interface. The last term is the work 
done on the surface by fluid pressure forces. Hence, fp'" is the thermal 
energy flux (per unit bulk volume) going from the &phase to  the a-phase. 
This term describes, for example, the energy transfer between phases when 
a phase change takes place such as during evaporation or condensation of 
components. 

Expanding the flux average v, in (7.12) we have 

(7.15) 
--cy- -a-u a -01 q, --k VT + ~ h r " ~ + p a h  V .  

(Y 1 

The higher order phase averages of the form 

0 0 1  -01 

,6h , phV , etc. (7.16) 

0 0  

have been neglected. In particular we will neglect, i h V  , which is the dis- 
persion of heat. Here, the deviation, Z, of a microscopic quantity e, is defined 
as the difference between the quantity e and its average. In this case, 

fqx',t;x) z e ( x ' ) - F ( x ) .  (7.17) 
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It can be shown that average of a product uv is given by 
- 

(7.18) 

In order to  re-express the diffusion fluxes y, NUFT and many other 
porous media flow and transport codes use the phenomenological, macro- 
scopic version of Fick's law, 

- uv" = P U "  + 66". 

(7.19) 

where T: is the tortuosity coefficient (Bear and Bachmat, 1991, p. 129). 
Similarly, for the thermal conduction flux, we use 

(7.20) 

Substituting into (7.15), the averaged thermal flux is 

g," =- -K"TLV'"+C~"~~CY++ir"~"~ff, (7.21) 
(Y) 

Upon substituting (7.15) in to  (7.12) we obtain the simplified macroscopic 
thermal energy balance equation for any a-phase within the REV, 

As mentioned before, the fluxes, fP- ta ,  represent internal energy fluxes 
coming from another /3-phase in contact with the n-phase. Since these fluxes 
are internal t o  the REV, the net sum of these fluxes is zero. Therefore, we 
may sum the energy balance equation, (7.22), over all phases and the fp'" 
will sum to zero and no longer be present. 

To illustrate this point, consider a two fluid phase (9, e ) ,  single solid 
phase (s) system. The thermal energy balance equations are 

(7.24) 

( 7. 2 5 )  
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where B represents all terms (time derivative and transport) in the balance 
equation except those for fluxes between phases. Adding these three equa- 
tions we obtain 

a, + a, + a, = 0. (7.26) 

Note that because we now have only a single balance equation, rather 
than the original three, we have more unknowns t h a n  equations. To reduce 
the number of unknowns, the assumption of local thermodynamic equilib- 
rium is necessary. In particular, without thermodynamic equilibrium one 
has the individual temperatures for each phase, T , T g ,  and T', which is 
fine if we have three energy balance equations. However, with a single en- 
ergy balance equation we need to  assume that the three temperatures are 
equal 

(7.27) T = Tg = T'. 
That is, we need to  assume thermal equilibrium between phases. For a 
porous medium this condition is satisfied except in extreme cases outside 
the physical regimes encountered at  Yucca Mountain. 

The single thermal energy balance equation is obtained by summing 
(7.22) over all phases to  give, 

-s - 

-S 

(7.28) 

Instead of the most general form of the balance equation for the solid, for 
the Yucca Mountain site, we wish, instead, to  use the form given by (4.49) for 
heating under constant stress conditions. By volume-averaging the equation 
using the techniques given above, we have the balance equation for the solid 

(7.29) 

Using this equation and specializing equation (7.28) t o  a gas-liquid-solid 
system, we have 

-s-s a0,T + - ( Q g p W  d + &pV) = cp at at 
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where y = a,  w represents the sum over the air ( a )  and water (w) compo- 
nents. From equation (7.19), the diffusive mass fluxes are given by 

- 
j Y a  == - p " 2 ) y a ~ w Y U ,  o! = g , l ;  y = a,  w. (7.31) 

Here, we assumed local thermodynamic equilibrium so that,  

-s -g -e - T = T  = T  = T .  (7.32) 

The effective "bulk" thermal conductivity, which we denote by ks, is 
defined as the tensor 

k B  = B,FT; + egIC -9 T, * + 0 ~ 2 ~ ; .  (7.33) 

The bulk thermal conductivity, k g ,  is a constitutive coefficient which 
must be measured experimentally as a function of the fluid phase volumetric 
fractions, Bo.  The same condition applies to the tortuosity coefficient in the 
mass diffusion laws given by (7.19). 

The Darcy fluxes for each fluid phase is equal to  OQVOI, and they are 
obtained from Darcy's law, 

-cy 0,v = -  .- (OF + pffgVz). 
i-i;" 

(7.34) 

The symbol I< is the intrinsic permeability of the porous medium, and IC,, 
is the relative permeability of the phase. 

7.2. Thermal Radiation 

The thermal balance equation in NUFT includes fluxes due to thermal radi- 
ation on surface faces of computational cells, such as on waste packages and 
drift walls. Radiation fluxes between two surface faces, 1 and 2, are given 
by 

&e) = A ~ c [ ( T ~ > ~  - ( ~ ~ 1 ,  (7 .35)  

where A1 is the surface area of face 1 and C' is a user-specified coefficient 
whose value is usually set t o  ( F a ) ,  where F is the so-called view factor and 
a is the Stefan-Boltzmann constant. The value of the view factor F depend 
on the geometry of the system and, also, includes the emissivities of the 
surfaces. The absolute temperatures, TI and Tz, are those of the respective 
surfaces. The above equation is valid for wide variety of black and non-black 
body systems (Bird et al., 1960, pp. 438-447). 
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7.3. Final Macroscopic Thermal Balance Equation used in the NUFT 
Code 

The NUFT code solves the balance equation (7.30) with the following sim- 
plifications, 

1. The solid density, ps, is a constant, ps. 

2. The  bulk thermal conductivity kB is a scalar, k g .  

3. The tortuosity coefficient T; for mass diffusion is a saturation and 
porosity-dependent scalar. 

Then, the macroscopic thermal energy balance equation used in the 
NUFT code is 

- dd,T d - e 4  psep(T)- + -(dgPgVg + dep 21 ) = dt dt 

When the equation in the documentation of the NUFT USNT module 
(Nitao, 1998) was written, only a constant specific heat, cp,  option was 
available; in which case, the first term on the left hand side can be rewritten 
as dp,cPds (T-  To)/dt  where To is an arbitrary reference temperature, which 
is the form given in the manual. More recent versions of NUFT have a 
temperature-dependent specific heat option which is implemented into the 
balance equation in the manner given by (7.36). 

Also, NUFT solves for saturations instead of volumetric fractions. Sub- 
stitution of the following relationships between volumetric fraction and sat- 
uration, 

ds = 1 - 4, Ba z= Sa$, (7.37) 

into (7.36) gives the actual equation given in the NlJFT USNT manual 
(Nitao, 1998). 

8. List of Mathematical Symbols 

Latin Symbols 

b fracture aperture (m), 
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Br 
a, 

f 
f P+a 

Brinkman dimensionless group, 
terms in the thermal energy balance equation of &-phase, 
not including fluxes between phases (J/m3), 
specific heat capacity at constant pressure (J/kg-OK), 
specific heat capacity at constant volume (J/kg-OK), 
specific heat capacity at constant stress (J/kg-OK), 
specific heat capacity at constant strain (J/kg-OK), 
heat capacity at constant pressure, (J/"K), 
heat capacity a t  constant volume (J/"K), 
heat capacity at constant stress (J/"K), 
heat capacity at constant strain (J/"K), 
free diffusion coefficient of the y-component (m2/s), 
internal energy (J), 
subscript for fracture property, 
heat flux from @-phase to  a-phase in an REV divided by 
the REV volume (W/m3), 
external force per mass of the y-component (Nt/kg), 
subscript for gas phase, 
gravitational acceleration (m/s2),  
Gibbs free energy (J) ,  
ar bi t rasy vector quantity, 
specific enthalpy, u + p / p  (J/kg), 
partial mass enthalpy of the y-component (J/kg), 
partial molar enthalpy (J/mol), 
enthalpy, E + p U  (J), 
unit, or identity, tensor, 
diffusive mass flux of the y-component (kg/s-m'), 
thermal conductivity (W-m/OK) , 
bulk thermal conductivity (W-m/OK), 
relative permeability of the n-phase, 
intrinsic permeability (m2),  
fracture intrinsic permeability (m'), 
matrix intrinsic permeability (m2), 
subscript for liquid phase, 
subscript for matrix property, 
mass of the y-component (kg), 
molecular mass of the y-component (kg/mol), 
number density of the y-component, no. of molecules of the 
component per volume (molecules/m3), 
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NY 

P 
4 
4H 
q 
Q 
R 
S 

S 

V 

V 
V 
v a  

V a P  

moles of the y-component (mol), 
pressure (Nt/m2),  
specific heat flux (W/m2), 
repository specific heat flux (W/m2), 
thermal specific energy flux vector ( W/m2), 
heat flux (W), 
gas constant (J/OK-mol), 
subscript for solid phase, 
vector coefficient depending on the spatial distribution of 
phases in an REV ( l /m) ,  
partial molar entropy of the y-component (J/mol-OK), 
entropy (J/"K), 
phase saturation, equal to volume of a-phase / total void 
volume (m3/m3), 
surface area of the surface S,p(x) (m2), 
interface between a a-phase and a P-phase within an REV 
centered at x, 
time ( s ) ,  
temperature, units of "K, unless stated otherwise, 
specific internal energy (J/kg), 
volume (m3), 
volume of the REV centered at x (m3), 
REV centered at point x, 
the volume of the region Uoa(x) (m3), 
the region occupied by the a-phase in an REV centered a t  
point x, 
specific volume ( m3/kg), 
partial molar volume of the y-component (m3/m01), 
magnitude of velocity (m/s), 
velocity vector (m/s), 
velocity vector of the a-phase (m/s), 
velocity vector of the interface between the a and P phases 

the i-th Cartesian coordinate (m),  
coordinate vector of macroscopic point (m),  
coordinate vector of microscopic point (m), 
mole fraction of the y-component (mol/mol), 
vertical coordinate that increases upwards (m). 

(m/s) ! 
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Greek Symbols 

6(x’ - <’) Dirac delta function centered at t‘, 
strain tensor (m/m), 
gradient of a scalar quantity, e ,  defined as the vector with 
components, de/dx; ,  
gradient of a vector quantity, G, defined as the second-rank 
tensor with components, dG;/dx, ,  
divergence of a vector quantity, defined as E; aGk/dzi ,  
dynamic viscosity of a fluid phase (Nt-s/m2), 
chemical potential of the y-component (J/mol), 
unit normal vector at a surface, 
unit outward normal vector of surface of the a-phase, 
mass fraction of the y-component, equal to mass of compo- 
nent divided by mass of phase (kg/kg), 
porosity (m3/m3), 
fracture porosity (m3/m3), 
matrix porosity (m3/n13), 
mass density ( kg/m3), 
molar density (mol/m3), 
volumetric fraction of the a-phase, equal to  volume of phase 
divided by bulk volume (m3/m3), 
stress tensor (Nt/m2), 
deviatoric stress tensor (Nt/m2). 
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A. Appendix: Origin of the Thermal Energy Balance Equa- 
tion from Statistical Mechanics 

This exposition follows the discussion in Chp. 9 of Hirschfelder et al. (1954). 
The derivation of the energy balance begins with a system of N molecules 
defined over the 6N-dimensional phase space given by the positions of the 
molecules 

f = ( f l ,  f 2 , .  . . , f r v ) ,  ( A 4  

The molecules are considered as point particles with no internal degrees of 
freedom. Only two-body forces between molecules is considered so that the 
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potential energy @(r)  of the system is of the form 

L .  z = 1  j=1 

Although the discussion in Hirschfelder et al. (1954) is for a system of iden- 
tical molecules, Irving and Kirkwood (1950) have extended the derivation t o  
a system with multiple molecular species. 

The statistical distribution of the motion the molecules in phase space is 
described by the probability distribution function, f(N)(r, p ,  t ) ,  which satis- 
fies the Liouville equation (Eqt. 9.4-1 of Hirschfelder et al., 1954). The usual 
microscopic quantities can be defined in terms of this function as follows. 

The probability per unit volume that the k-th molecule is at point r is 
given by the following integral over phase space, ( r ,  P), 

S ( r k  - f )  = - S ( f k  - v)f(N)(r,p,t) drdp.  N !  .IJ 
The total number density at the point r is defined as 

N 

n ( r ,  t )  = S ( Q  - r ) .  P . 5 )  
IC= 1 

It is the average number of molecules per volume. The mass density of the 
y-species of the system is defined as 

N 

k = l  

where m k  is the mass of the k-th molecule. The momentum density is 

N 

k = l  

where p k  is the momentum of the k-th molecule and V is the mass-weighted 
average velocity of the molecules. The kinetic energy density associated with 
the molecules is given by 

In order to obtain the kinetic energy associated only with the random motion 
of the molecules, we need t o  subtract the kinetic energy ipV2 due to  bulk 
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motion of the molecules. Therefore, the kinetic energy density associated 
with only the random motion of molecules is given by 

The potential energy, unlike the previous quantities, is not localized t o  
an individual molecule, but depends on the forces acting between them. The 
approximation is made that one-half the potential energy p ( r ; j )  is localized 
at each molecule. The definition of the potential energy density is, then, 
given by 

N N  

4 r ,  t ) U @ ( T ,  t )  = 9 i j q r k  - 4. (A. 10) 

The total internal energy per molecule is the sum of the kinetic energy due 
to random motion and the potential energy. That is, 

i=l J = 1  

'1L(f,t) = uI i ( r , t )  + u a ( r , t ) .  ( A . l l )  

To go further we must define the lower order distribution f ( l ) ( r , p , t )  
as the integral of j(r,p,t) over all position and momentum coordinates of 
all molecules except for one. Similarly, f ( 2 ) ( r , p ,  t )  is the integral over all 
position and momentum coordinates except for two molecules. It can be 
shown, under certain assumptions, that the mass density of each species 
of molecules, mean (mass-weighted) velocity, kinetic energy, and potential 
energy a.t a point can be defined by expectation values using the probability 
distributions f ( ' )  and f('). 

The Liouville equation can be used t o  obtain the rate of change of the 
expectation value of the internal energy, u(r ,  t ) .  The resulting expression 
(Est. 9.4-34 of Hirschfelder et al., 1954), is the desired balance equation for 
thermal energy, 

(A.12) 
d 
at 
-(nu) + V*(nuV)  + v.q - (a : VV)  = 0. 

The heat flux vector q is given by 

9 = QK + 9@7 (A.13) 

where qK is the kinetic energy contribution and qa is the potential energy 
contribution. The symbol a denotes the  stress tensor and is the negative of 
the pressure tensor P used by Hirschfelder et a1 (1954). 
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The operator ‘:’ 

where A and B are 

used in the balance equation is defined by 

A : B 5 AijBj;, (A.14) 
i j  

any rank-two tensors. Hence, the term u : BV in the 
above energy balance equation is defined by 

(A.15) 

B. Appendix: Derivation of the Solid Thermal Energy Bal- 
ance Equation using the First Law of Thermodynamics 

We consider the heating of the solid sample of fixed mass, m, and initial vol- 
ume, U,, heated by a heat flux, SQ. The sample is assumed to be sufficiently 
small that  the temperature and tensorial stress field within the sample is ap- 
proximately uniform. The heating is assumed to take place as a reversible 
thermodynamic process. 

From the first law of thermodynamics we have 

6Q = dE + SW, P.1) 

where dE is the change in internal energy. The term 614’ is the work done by 
heating. It does not include body forces such as gravitation because heating 
does no direct work against gravity. I t  only includes the work done against 
the stress field. (Note: The gravitational force can affect loading on the 
“sample” volume through the momentum balance equation; and, therefore, 
indirectly affects the magnitude of the stress acting upon it. But, again, the 
work is done against the resulting stress field and not, against the gravita- 
tional force itself. To duplicate field conditions in the laboratory the loading 
must replicate stress conditions in the field, including those induced by grav- 
ity. Moreover, the sample must be sufficiently small such that gravitational 
forces will not create non-uniform stresses within the sample.) 

The work term SW is given by (Landau and Lifshitz, 1970) 

(B.2) 

where a;j and ~ i j  are the components of the stress and strain tensors of the 
solid, respectively. From (B.l) ,  the rate of change of heat in the sample is 
given by 

D&/Dt = D E / D t  + DW/Dt .  (B.3)  
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We will now use the identity (Bea,r and Bachmat, 1991, Eqt. 2.1.12), 

Taking the total derivative of (B.2), we have 

Substituting the expression for Dc;j/Dt from (B.4) into this equation, simple 
algebra shows that the result is 

D W / D t  = U 0 a  : VV. 

DQlDt  = D E / D t  + DW/Dt .  

DQlDt  = D E / D t  + U 0 o  : VV. 

(B.6) 

P . 7 )  

(B.8) 

From (B.3), the rate of change of heat is given by 

Substituting D W l D t  from (B.6) into this equation, we have 

Dividing by the fixed mass, m, of the solid volume, we have 

(B.9) 
1 
P 

DqlDt = Du/Dt  + -U VV, 
where q is the heat flux per unit mass. 

From (4.37) we have 

1 1 
P P 

DulDt + -U VV = -V.kVT 

Therefore, this equation and (B.9) implies that 

(B.lO) 

(B. l l )  
1 
P 

Dq/Dt = -V*kVT. 

This equation is the same as (4.43), which is what we wished to  derive. 
(It is important to  emphasize that the above derivation applies only to  

a reversible process. Otherwise, the heat, Q ,  would not be unique function 
of time, and it’s total time derivative would be meaningless. To make this 
point clear, some authors use the following result from the second law of 
thermodynamics, 

T DSIDt = DQ/Dt ,  (B.12) 

t o  rephrase the equations in terms of entropy instead of heat.) 
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