
EMERGE: ESnet/MREN Regional Grid Experimental NGI Testbed 
NCSA subaward 

DOE DEFC02-99ER25406 (1-5-28106) 

Eric Blau, Michael Bletzinger, Randy Butler 

1. Abstract 

As part of the EMERGE Gird Testbed activities NCSA proposed to develop a standard 
grid service package, and lead the effort to deploy grid technologies to the Emerge 
testbed sites. Funding for this project was limited to only the first year of what was to be 
a three-year project. As a result NCSA concentrated on the development of the Grid 
Services Package. 

NCSA successfully developed the Grid Packaging Toolkit (GPT), which was designed to 
simplifL deployment and installation of Grid software at the five Emerge testbed sites. 
GPT fulfills the grid deployment requirements for such things as heterogeneous platform 
support, service perquisites, installation procedures, documentation and training, site- 
specific integration concerns, and providing for standard deployment of grid software. 
Within the scope of the Emerge project NCSA was able to develop the core GPT 
capabilities and to begin to apply GPT towards the packaging of the Globus Toolkit, 
meeting the goal of an easy to deploy Grid Service Package. 

Since the conclusion of the Emerge grant, NCSA has been able to successfully apply 
GPT to the Globus Toolkit and indeed the most current version of Globus, version 2.0, is 
packaged via GPT. Previous Globus Toolkit versions were a monolithic distribution of 
many interrelated components. The use of GPT has made it possible for organizations to 
construct both source and binary distributions of the Globus Toolkit components in which 
they are most interested. GPT makes it possible to release upgrades for individual Globus 
Toolkit components without having to release the entire Toolkit. 

NCSA has continued to advance GPT through NSF and NASA IPG funding, and 
extended its capabilities further. GPT is the chosen software packaging solution for 
NSF's recently announced NSF Middleware Initiative (NMI). 



lhis report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof. nor any of their cmploytes, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, ptoccss, or eMce  by trade name. trademark, manufac- 
turer, Or otherwise docs not necessarily constitute or imply its endorsement, ream- 
mendation. or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 

. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 

document. 



There are many organizations trying to deploy Grid software in a uniform way across 
heterogeneous landscape of different operating systems, site configurations, and 
administrative boundaries. These developing Grids are largely configured with the 
Globus Toolkit software. The goal of the packaging effort was to construct a fiamework 
and a set of Globus Toolkit packages, which could be used to create tailored distributions 
that fit the specific organizational needs. Another goal of the packaging effort was to 
apply this new packaging technology to the Globus Toolkit and thereby allowing 
individual pieces of what was previously a monolithic distribution to be released as 
separate components. 

Previously the Globus Toolkit consisted of many components was inflexible in that it did 
not support the deployment of subsets of Globus. To alleviate this problem the Globus 
components were divided into packages. Using the new packaging fiamework, 
organizations are able to construct source and binary, organization specific distributions 
of the selected packages they are interested in. Under the new packaging fiamework, it is 
possible to release updates to an individual component without releasing updates to all 
other components. Additionally, an individual component can be built and tested without 
configuring and building unrelated components. Thus the packaging fiamework 
substantially increases the efficiency of the development and release process. 

GPT is a collection of packaging tools built around an XML based packaging data 
format. This format provides a straightforward way to define complex dependency and 
compatibility relationships between packages. The tools provide a means for developers 
to easily define the packaging data and include it as part of their source code distribution. 
Binary packages can be automatically generated fiom this data. The packages defined by 
GPT are compatible with other packages and can easily be converted. 

Developer Tools 
GPT provides a build system in conjunction with the globus-core package fiom 
the Globus Toolkit. GPT has tools to convert a source distribution into a GPT 
based package. It also provides patch-n-build capability similar to RPM spec files 
for those sources distributions that need to retain their own build system. 

GPT provides tools that enable collections of packages to be built andor installed. 
It also provides a package manager for those systems that don't have one. 

User Tools 

The GPT software is currently in beta release and available for download fiom 
ftp ://Rp.ncsa.uiuc.edu/aces/@t/. 

The rest of this report lays out the design of a packaging fiamework that can be used to 
enable the packaging of complex Grid software and use the requirements of the Globus 
Toolkit to highlight an example use of GPT. We will introduce packaging concepts, and 
discuss our chosen strategies and policies for dividing large pieces of software into 
logical packages. We will describe the different types of binary packages, as well as the 
distinctions between source packages and binary packages. We will also describe the 
mechanism by which the packaging system manages complex build environments, and 
what it means to have a Globus installation in the context of the packaging system. 



Finally, we will describe the metadata needed by the packaging system, for each package 
type, to allow the system to effectively manage the packages. 

3. Grid Packaging Technology 

Overview 

There are many different people and organizations trying to use Globus (and 
succeeding). The Globus project strives to satisfy the needs of its users, but the reality is 
that different communities have different needs. Ideally, a tailored distribution could be 
constructed to meet the specific needs of an individual community. Right now, Globus' 
ability to be easily customized is minimal, and difficult to work with, at best. The goal of 
the packaging effort within the EMERGE project was to construct a framework and a set 
of Globus packages, which could be used to create, tailored Globus distributions that fit 
the specific needs of the organizations using Globus. Another goal of the packaging 
effort is to assist the process of developing the Globus toolkit, by allowing individual 
pieces of what is now a monolithic Globus distribution to be released on separate 
schedules. 

The current monolithic Globus toolkit, which consists of many components, is inflexible 
in that it is difficult to distribute subsets of Globus. To alleviate this problem the Globus 
components will be divided into packages. Using the new packaging fiamework, it will 
be possible for organizations to construct both source and binary distributions of the 
selected packages they are interested in. No longer will users be forced to build and 
configure components, which are of no interest to them. 

Under the new packaging framework it is possible to release updates to an individual 
component without necessarily releasing updates to all other components. Additionally, 
an individual component can be built and tested without configuring and building 
unrelated components. Thus the packaging framework substantially increases the 
efficiency of the development and release process. 

This paper documents the design of the packaging fiamework, GPT, we developed and 
the specific application of GPT on the Globus Toolkit components. 



Packaging Concepts 

GPT provides a simple portable fiamework for creating and managing complex software 
packages. Here is a list of the features that are supported. 

Install / UninstalI/ Upgrade 
The installation management of binary packages is the responsibility of a tool (or tools, 
collectively) known as the Package Manger. The Package Manager is the interface 
through which the person installing a package will install, uninstall, or upgrade it. An 
example of a package manager that is probably known to many of our readers is RPM, 
the RedHat Package Manager. On a RedHat Linux system, one typically uses RPM to 
install, uninstall, or upgrade any binary package. 

Dependency tracking 
There are three types of inter-package dependencies: 

Compile dependencies A compile (or compile-time) dependency exists when a 
package requires another package in order to compile. This usually means that the 
dependent package is including a header fiom the package on which it depends. 

0 Link dependencies A link (or link-time) dependency exists when a program or 
library in a package requires a library fiom another package in order to link. In the 
case of programs linked with shared libraries, the packaging system has to verify 
that the link dependencies have been fulfilled in a given installation, as otherwise 
the programs will not run. 
Runtime dependencies A runtime dependency exists when a program, script, or 
library requires some resource from another package at runtime. 

0 

Versioning 
Whenever more than one separately released pieces of software need to interact, a need 
arises to ensure that the software, as installed, is interoperable. The time-tested way of 
doing this is to assign a version number to each release of each piece of software, so that 
any given version is readily identifiable. This allows the encoding of version numbers 
into package dependencies, as you may know that your package foo 2.1 1 requires 
package bar 2.0 or greater. 

Flavored binaries 
Certain compile time options used when creating a library, must also be used when a 
program is linked that uses that library. Otherwise, linking errors will occur. For 
example, it can be important that the same compiler be used, or that the same threads 
package be used. Additionally, it is very important whether qr not we are compiling 32 
bit or 64 bit. We refer to such sets of compile time options as flavors. 

Relocatable binaries 
It is important for ease of installation that the binaries not be tied to specific directories. 
(i.e. a program should not insist on being installed in /usr/local/bin). However, given 
large sets of inter-package dependencies, especially with scripts calling programs, it is a 
relatively hard problem to enable the easy installation of packages into totally arbitrary 



locations. A reasonable compromise, which we make for Globus Toolkit packaging, is to 
insist that all packages comprising a given installation be installed into a single 
installation tree, but that tree can be rooted anywhere it is desired. 

External programs and libraries 
When distributing any software onto systems where the underlying operating system is 
not packaged using the same packaging system (i.e. every system onto which Globus is 
installed, unless someone makes a Linux or BSD distribution using our packaging system 
sometime in the fbture), there will be programs and libraries that do not have packaging 
system metadata associated with them. There are, in general, two ways of dealing with 
such external programs and libraries. One is to make special exceptions for them in the 
tools that check dependencies. The other, which is by no means mutually exclusive with 
the first, is to create "virtual packages" which consist of appropriate metadata for the 
external "package", and, if necessary, links fkom the install tree to the actual location of 
the external programs andor libraries. 

Compatible with existing package managers 
The packaging system described in this document will have its own accompanying 
package manager, but the system has been designed with compatibility in mind. That is, 
it should be relatively simple to take a set of binary packages created for this system, and 
convert them into binary RPMS, for example. We are providing our own package 
manager so that we can ensure that a package manager is available on all platforms that 
we support, but organizations that will be creating distributions of Globus packages may 
wish to use their own package manager, for ease of installation management. 

(A distribution of Globus packages is a set of Globus packages, along with the runtime 
configuration files (or tools to generate the runtime configuration files) needed for a 
particular set of users. RedHat linux is a good example of the distinction between 
packages and a distribution; each piece of software is a package, in an RPM, but the 
RedHat Linux Distribution includes tools (such as their install toolhootdisk) that sets up 
the system for a particular configuration.) 

Runtime Configuration files (vs. static data files) and who manages them (RPM vs. 
Linuxconf) 
Programs, scripts, and possibly libraries, may require some information provided to them 
at runtime, per machine or per user, in order to function as desired. We will refer to files 
containing such information as runtime configuration files (we will always use this term 
instead of simply using "configuration files" to avoid confbsing runtime configuration 
files with files used by configure when building a package). In this packaging system, 
binary packages may require that some runtime configuration files exist in order to 
function, but the package itself shall not install the actual files. This allows organizations 
that wish to create personalized distributions to create runtime configuration packages 
that can be installed and managed separately fkom the packages they relate to. This makes 
the process of upgrading a package without changing its runtime configuration files 
extremely easy--it is the default. 



We can look to the Linux world for an example of this division. Linuxconf is a wizard 
that allows the user to relatively easily manipulate the runtime configuration files for 
various different packages that might be installed on a linux system. However, since 
RPM allows packages to install and manipulate their own runtime configuration files, 
there is no consistent method for ensuring that you retain your old runtime configuration 
when upgrading a package. 

To illustrate this say that you have a globus package foo which has a runtime 
configuration file "foo.conf' that is modified by the user using the Linuxconf like GUI 
wizard "gui-fee". For this illustration the concept ownership is defined in such a way that 
when a package is responsible for installing, uninstalling, or updating a file it "owns" the 
file. 

If foo.conf is owned by package foo then several problems arise. First any modifications 
by the user for gui-fee are lost whenever package foo is uninstalled, reinstalled, or 
updated. Second, foo.conf will be re-installed every time a new version of package foo is 
released even though the format of foo.conf most likely did not change. Some packagers 
have tried to resolve these problems by introducing pre and post instalVuninstal1 scripts 
that are run during an action on package foo but this introduces an unacceptable amount 
of complexity to our packaging framework design. 

The same problems occur when foo.conf is owned by the package gui-fee. In addition, 
gui-fee probably manages the runtime configurations of several packages not all of 
which have to be installed. Finally not all globus installations will be able to run a GUI 
wizard but will still need to have foo.conf. 

The only acceptable solution is to have foo.conf in its own package freeing it from the 
actions needed for the other packages. 

Package Types 

Source Package 
This package consists of source code, scripts, and documents, which are configured and 
built to produce binary packages. One source package will produce one or more binary 
packages each of which is a different package type. Source packages have two sources of 
dependencies to consider. The first source are the compile and link dependencies that are 
present when the source code is being built. The second source is the run-time 
dependencies that need to be stored in the binary packages when they are generated. 

Source packages are different from all of the other package types, in that the package 
manager does not manage them. Source packages are not installed into the installation 
tree, so they do not need to include metadata for the purpose of their own removal. 
Rather, the metadata included in a source package is necessary for ensuring that the 
compile and link dependencies are satisfied when building the binary packages, and for 
generating the metadata necessary for each binary package being produced. A 
convenience tool which builds/installs/ generates binary packages from multiple source 
package ordered by their dependencies can also use the metadata. 

Source packages shall have the following metadata: 



Name of the source package. 
Aging version of the source package. 
Types of binary packages produced. 
A flag indicating whether the package is built with flavors or not. 
A version specification of a configuration specification package if the package 
requires run-time configuration files. 
Compile Dependencies: Packages needed for compilation (headers etc.). Each 
dependency comes with a list of version specifications 
Linking Dependencies: Packages containing the libraries needed for linking. Note 
that this dependency ties to two different binary package types dev and rtl because 
the user will have a choice on whether to link against the shared or static binary of 
a package's library. Each dependency comes with a list of version specifications 
Build Env. CFLAGS line containing defines needed to use the header files. LIBS 
line containing external libraries need to link with the libraries in this package. 
And various other build flags. 
Runtime Dependencies: Packages containing programs, scripts, and data files 
needed to run programs or scripts in this package. These dependencies will be 
transfmed to the binary packages that are built from this source packages. Each 
dependency comes with a list of version specifications 

Dynamically Linked Program Binary Package @gm) 
This package contains dynamically linked executables and scripts. It will always be 
generated from a source package and will share the source package's name and version. If 
the package contains executables it shall also have a flavor as part of its identity. If the 
package contains only scripts then it can be designated as "noflavor". 

Program packages can have run-time dependencies if their executables and scripts call 
executables and scripts in other program packages. They could also have runtime 
dependencies on data files and documents. 

A program package can also have runtime linking dependencies if its executables are 
linked with libraries from rtl packages. For example, say that an executable links with 
libfoo in package h. If the executable is linked to the shared library 1ibfoo.so then the 
linking dependency translates to the h - r t l  package, which will have to be installed 
before the program package. 

Dynamically linked program binary package metadata: 

Name of the package. 
0 Aging version of the package. 

Packagetype 
0 Flavor the package was built with (or noflavor). All of the libraries listed in the 

link dependency list will have the same flavor. 
0 A version specification of a configuration specification package if the package 

requires run-time configuration files. 
0 Runtime dependencies (including a version specification for each dependency) 

with other pgm, data, and doc packages. 



Runtime linking dependencies (including a version specification for each 
dependency) to rtl packages if the executables were linked with shared libraries. 

Statically Linked Program Binary Package (pgm-static) 
This package contains statically linked executables. It will always be generated fiom a 
source package and will share the source package's name and version. The package shall 
also have a flavor as part of its identity. 

Static program packages can have run-time dependencies if their executables call 
executables and scripts in other program packages. They could also have runtime 
dependencies on data files and documents. In addition these packages absorb the runtime 
dependencies of the static libraries they are linked with. For example, consider a program 
foo that statically links with a library 1ibfee.a that has a system call to still another 
program h. The library libfee has a runtime dependency to the program h. The 
program foo will have to absorb this dependency so that program fim is installed before 
program foo is installed. 

A program package can also have regeneration dependencies if its executables are linked 
with libraries fiom other packages. For example, say that an executable links with libfoo 
in package h. If the library was linked statically to 1ibfoo.a then the dependency is 
translated to the fum-dev package. In this case the program package will have to be 
regenerated any time fbm-dev is updated. A build number will be updated to reflect the 
regeneration. 

None of the executables in a program package shall ever be built with a mixture of static 
and shared package libraries because this complicates the compatibility checks needed at 
runtime to make sure that all of the libraries are compatible. 

Statically linked program binary package metadata: 

Name of the package. 
Aging version of the package. 
Package type 
Flavor the package was built with. All of the libraries listed in the package 
regeneration dependency list will have the same flavor. 
A version specification of a configuration specification package if the package 
requires m-time configuration files. 
Package regeneration dependencies (including a version specification for each 
dependency) to dev packages if the executables were linked with static libraries. 
This list is the same as the runtime linking dependencies list of the pgm packages 
except for the package type. 
Runtime dependencies (including a version specification for each dependency) 
with other pgm, data, and doc packages. In addition to the runtime dependencies 
of the executables and scripts, this list also contains the runtime dependencies of 
the static libraries for the entire regeneration dependency tree. 

Development Binary Package (dev) 



This package contains flavored header files, static libraries, and libtool library files. It 
will always be generated fiom a source package and will share the source package's name 
and version. The package shall always have a flavor as part of its identity. 

Development packages can have run-time dependencies if their libraries call executables 
and scripts in other program packages. They could also have runtime dependencies on 
data files and documents. 

Even though development packages are not installed for run-time they can still have run- 
time dependencies with other pgm, data, and doc packages if the libraries access files or 
programs in these packages. The run-time dependencies of a static library will have to be 
absorbed by a pgm-static package if it contains an executable that was linked with the 
library. 

A development package can have a compile dependency to another dev package if it 
contains a header file that includes headers fiom the other package. 

A development package can also have linking dependencies if its libraries use symbols 
fiom libraries contained in other packages. These dependencies are contained here so that 
the dependency tree for an executable (from a pgm-static) can be recursively extracted 
when the executable is built. 

Development binary package metadata: 

a 

Name of the package. 
Aging Version of the package. 
Package type 
Flavor the package was built with. All of the libraries listed in the link 
dependency list will have the same flavor. 
A version specification of a configuration specification package if the package 
requires run-time configuration files. 
Compile dependencies if files fiom the package include headers fiom other 
packages. In most cases this list is the same as the linking dependencies. 
Linking dependencies (including a version specification for each dependency) to 
other dev packages if its libraries use symbols fiom other libraries. 
Build Env. CFLAGS line containing defines needed to use the header files. LIBS 
line containing the libraries provided by this package, the external libraries 
needed to link with the libraries in this package, and various other build flags. 
Runtime dependencies (including a version specification for each dependency) 
with other pgm, data, and doc packages. 

Non-Flavored Headers Package (hdr) 
This package contains header files. It will always be generated from a source package 
and will share the source package's name and version. The package contains only header 
files, which are not configured for a flavor and so is assumed to be "noflavor", 

A non-flavored headers package can have a compile dependency to another dev package 
if it contains a header file that includes headers fiom the other package. 



- a  . 
. 

Non-Flavored Headers binary package metadata: 

0 Name of the package. 
Aging version of the package. 
Packagetype 

0 Compile dependencies if header files fiom the package include headers fiom 
other packages. 

Runtime Library Binary Package (rtl) 
This package contains libraries used at run-time by programs and scripts. It will always 
be generated fiom a source package and will share the source package's name and 
version. If the package contains binaries it shall also have a flavor as part of its identity. 
Otherwise it is a noflavor. 

Runtime packages can have run-time dependencies if their libraries call executables and 
scripts in other program packages. They could also have runtime dependencies on data 
files and documents. 

Runtime packages have linking dependencies, which are needed at runtime. For example 
when a program using shared library foo starts execution, it needs to load 1ibfoo.so as 
well as all of the shared libraries that libfoo depends on for symbols. Runtime library 
binary package metadata: 

0 Name of the package. 
0 Aging version of the package. 
0 Packagetype 
0 Flavor the package was built with. All of the libraries listed in the link 

dependency list will have the same flavor. 
0 A version specification of a configuration specification package if the package 

requires run-time configuration files. 
0 Linking dependencies (including a version specification for each dependency) to 

other rtl packages if its libraries use symbols fiom other libraries. 
0 Runtime dependencies (including a version specification for each dependency) 

with other pgm, data, and doc packages. 

Data Binary Package (data) 
This package contains data files, which cannot be modified by users. It will always be 
generated fiom a source package and will share the source package's name and version. If 
the package shall also have a flavor as part of its identity if any data files are configured 
for flavored. Otherwise it will be noflavored. 

Data packages have run-time dependencies if data files include files fiom other data 
packages. 

Data binary package metadata: 

0 Name of the package. 
0 Aging version of the package. 



c . 
. 

Packagetype 
0 

0 

Flavor the package was built with or noflavor. 
Runtime dependencies (including a version specification for each dependency) to 
other data packages if its data files include files fkom other dev packages. 

Document Binary Package (doc) 
This package contains documents. It will always be generated fiom a source package and 
will share the source package's name and version. It will always be noflavored. 

Document packages have run-time dependencies if document files include files fiom 
other doc packages. 

Document binary package metadata: 

0 Name of the package 
0 Version of the package 

Packagetype 
0 

0 

Flavor the package was built with or noflavor 
Runtime dependencies (including a version specification for each dependency) to 
other document packages if its document files include files fiom other dev 
packages 

4. Conclusions 

Under the shortened project scope NCSA made two valuable contributions that 
significantly lower the barrier of Grid s o h a r e  deployment. Those achievements include 
the: 

0 Development of the Grid Packaging Toolkit (GPT) and 
0 The application of GPT to the Globus Toolkit. 

The Grid Packaging Toolkit provides packaging capabilities that meet the needs of cross 
platform, organization specific configuration and includes support for version control, 
flavored binary releases, relocatable binaries, dependency checking, run time 
configuration, and packaging of external programs and libraries. Under the GPT 
packaging framework it is possible to release updates to an individual component of a 
complex software package without necessarily releasing updates to all other components. 
Individual components can be built and tested without configuring and building unrelated 
components. Thus the packaging framework substantially increases the efficiency of the 
development and release process. GPT allows virtual organizations to build and 
configure customized grid software packages, giving them the ability to more tightly 
coordinate the deployment of these complex packages. GPT supports the packaging of 
both binary and source releases. GPT is compatible with platform specific package 
managers such as RPM. 



Finally GPT was successfully applied to the Globus Toolkit Version 2.0, which is 
available now. This application of GPT to Globus dramatically demonstrates GPTs 
ability package complex real world software. 

Since the conclusion of this project we have continued to advance GPT. A recent 
packaging workshop was held among Grid developers and both the GPT framework and 
GPT were chosen as the preferred packaging tool. In addition to the Globus Toolkit GPT 
is being actively used to package the middleware software release for the NSF 
Middleware Initiative, and the Alliance Grid in the Box effort. 

5. Publications & Presentations 

GPT software can be found at ftp://ftr>.ncsa.uiuc.edu/aces/,gpt/ 

Comparison of GPT to RPM white paper 
http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/compare rpm.htm1 

Location of GPT packaged Globus Toolkit 
http://www.nlobus.or~/gt2/install/beta-download. html 

Presentation on GPT given January 3,2002 
http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/Wisconsin GPT Takppt 

ftp://ftr>.ncsa.uiuc.edu/aces/,gpt
http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/compare
http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/Wisconsin

