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ABSTRACT

One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an

indirect drive target.  Such beams will lose electrons while passing through background gas in the

target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident

beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high

energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve

high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40

Mev/amu with charge state 1 currently do not exist.  Hence, the stripping cross-sections used to model

the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical

calculations.  We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in

N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He

1+ in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe.  The results of these

measurements are compared with the theoretical calculations to assess their applicability over a wide

range of parameters.

1.  INTRODUCTON

Use of energetic heavy ion beams as a driver for inertial confinement fusion is a technique that is under

development.  The heavy ion beam focused on an indirect drive target would produce x-rays, which

then compress the deuterium-tritium target. (Bangerter, 1996)  The target chamber gas in one reference

design, HYLIFE-II, would probably be comprised of vapor from FLIBE, a salt of fluorine, lithium and
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beryllium.  The gas density of beryllium difluoride in this design is expected to be 5 x 1013 cm-3.

(Callahan 1996) As the heavy ion beam propagates through this background gas, it would undergo

electron stripping reactions that would raise the space-charge density of the beam.  This can cause the

beam spot to expand, reducing the power density on the target.  Ionization of the background gas

would supply space-charge-neutralizing electrons, which could compensate for the space-charge

defocusing force on the positive ion beam.  It is important to have accurate cross sections for electron

stripping cross sections of the heavy ion beams in order to estimate these effects on the transport of the

beam through the chamber to the target.  In a previous experiment using Kr 7+ and Xe +11 beams at 3.4

MeV/amu, the first experimental demonstration that such energetic ions undergo multiple electron

stripping events in a background gas of N2 was made.( Mueller et al. 2001) As a result, the charge state

of the ion beam increases more rapidly than would be the case if only a single electron were lost in

each encounter.  This effect must be included in the transport calculations of heavy ion beams.

Unfortunately, there are currently no accelerators capable of accelerating heavy ions (A ~ 200) with

charge state 1 to the energy range envisioned (20 to 40 MeV/amu) so the electron stripping cross

sections cannot be measured directly by experiment and must be obtained from theoretical

calculations.  We have performed additional measurements, which along with those made by Olson, et

al. (2002), provide experimental data for comparison with theory over a range of beam energy, beam

species, and gas target species.  Agreement of calculations with the measurements would provide a

measure of confidence that the theory might be applicable in a regime that is not yet experimentally

available.

2. EXPERIMENT

Beams of and 10.2 MeV/amu Ar +6, 19 MeV/amu Ar +8, 30 Mev/amu He +1 and 38 MeV/amu N

+6 were extracted from the Texas A&M K500 superconducting cyclotron.  The beams were directed
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through a 22 degree deflection magnet located 10 m in front of the target chamber.  The beam was

collimated by three 1-mm diameter apertures followed by a 2-mm diameter collimator before entering

a differentially-pumped gas cell.   The number of collimators was reduced for the most energetic

beams because the range of the beams was greater than the collimator’s thickness, and the extra

collimators resulted in a large low energy tail on the beam distribution.  The gas cell of effective length

0.0208 m was filled with gas (He, N2, Ar or Xe) to pressures from 1 to 250 mTorr, as measured by a

capacitance manometer, and maintained by an automatic fill valve to about ±0.3 mTorr accuracy.  The

background pressure in the beam line and target chamber were monitored with ion gauges and ranged

between 1.5 and 5.0 ×  10-6 Torr, depending on target cell pressure and vacuum history.  After exiting

the gas cell, the beam passed between the poles of another magnet to disperse the charge states and on

to a position-sensitive microchannel plate detector (PSD).  Data was also taken with no flow in the gas

cell to assess the stripping of the beam in the background gas and scattering from beam collimators.

In order to avoid rate-dependent gain changes and extraneous peaks due to pulse pile-up, the counting

rate was kept below 1500 counts/s.  The charge distributions were measured until the statistical

uncertainties of the number of counts in the peaks representing less than 4-electron loss were better

than 2%.

3. RESULTS

Tables 1 through 3 list the cross sections for electron stripping of the incident beams in the various

target gases.  The statistical uncertainty is listed in the tables for each case.  There is also an estimated

error of about 20% for cross sections below 10-18 cm2 and 10% for cross sections above that, due to

differences in assessing the background for each of the peaks in the measured beam charge distribution

and in the effective length of the target cell.  It is clear that the average number of electrons lost per

encounter increases with increasing target atomic number. This effect is most pronounced for 19 MeV



4

Ar +8 where the average charge change per encounter rises from 1.16 for He to 2.01 for Xe. The

weighted cross sections shown in Table 3 are the cross sections weighted by the number of electrons

lost in the encounter. Figures 1 and 2 show the cross section versus number of electrons lost in the

various gases by 10.2 MeV/amu Ar +6 and 19 MeV/amu Ar +8, respectively.  The weighted cross

sections for all of the beams we have used so far are summarized in Figure 3 as a function of target

atomic number.  The cross sections increase with increasing target Z and decrease with increasing

beam energy in a broad energy and beam species range.

The cross sections, labeled “Born” and “classical” in Table 3, are the results of calculations

described by Kaganovich, et al. (2001). The Born approximation, which results in overestimate of the

cross sections, should be valid for   

€ 

Z e VT
2 << h , where 

€ 

ZT  is the target atomic number and V is the

velocity of the beam ion relative to the target atom. The classical trajectory calculations do not account

for tunneling transitions allowed by quantum mechanics. Neither approach is expected to perform well

across a wide spectrum of beams and targets.  Aspects of one must be included in the other in order to

address shortcomings in the underlying assumptions. In the calculations for argon, we used simplistic

assumptions based on one-electron ion scaling and ionization potential for the electron distribution

function. Therefore, as expected, agreement with experiment is not as good for Ar as it is for N+6,

where these functions are exact. More accurate calculations that account for the exact orbital electron

distribution functions and ionization probabilities will be performed in the near future.

The approximation used neglects the larger ionization potential for removal of multiple

electrons. This leads to an overestimate in the calculation, especially for the case of Xe, where multiple

electron events are more important. Table 3, which includes the total weighted cross sections for each

gas and the three beam ion species used in this experiment, shows that both approximations give good

estimates, except for the Xe case. The good agreement with experiment for the classical calculation

suggests that tunneling transitions do not provide a major contribution to the cross section.  This is not
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expected to be the case for ionized targets and/or low ionization potentials of the projectile, (see, for

example, He data in Table 3), where classical calculations would strongly underestimate the cross

section. (Kaganovich et al. 2002) New experiments are needed to further check these theoretical

predictions.

4.  CONCLUSIONS

We have measured the electron stripping cross sections for a variety ion beam energies and

species using different target gases. Together with the Xe data data of Olson et al. (2002), this provides

a broad range over which to test the theoretical calculations of the electron stripping of proposed heavy

ion drivers for inertial confinement fusion by background gas in the target chamber.
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Table 1.  The measured cross-sections per atom for electron stripping of 10.2 MeV/amu Ar +6 in

various gases in units of 10—18 cm2.

Target gas 1e 2e 3e 4e 5e

He 2.18±0.09 1.65±0.05 0.044±0.02

N2 10.77±0.05 8.96±0.03 1.10±0.01 0.221±0.006 0.047±0.003

Ar 27.4±0.2 19.5±0.1 6.17±0.08 2.64±0.04 1.02±0.03

Xe 50.1±0.5 33.1±0.3 13.4±0.2 7.8±0.1 5.6±0.1
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Table 2.  The measured cross-sections per atom for electron stripping of 19 MeV/amu Ar +8 in various

gases in units of 10—18 cm2.

Target gas 1e 2e 3e 4e 5e

He 1.2±0.1 0.12±0.01 0.05±0.01

N2 6.33±0.04 0.57±0.01 0.10±0.01 0.030±0.003 0.02±0.01

Ar 16.3±0.1 4.29±0.05 1.50±0.03 0.59±0.02 0.27±0.02

Xe 22.8±0.2 9.86±0.07 5.53±0.04 3.12±0.03 1.82±0.02
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Table 3.  The total electron-loss weighted cross-sections per atom compared with the calculated cross

sections  in units of 10—18 cm2.

10.2 MeV/amu Ar +6 19 MeV/amu Ar +8

Target gas Experiment Born Classical Experiment Born Classical

He 5.61±0.23 3.13 4.23 1.59±0.14 1.00 1.13

N2 33.4±0.2 23.8 30.7 8.04±0.09 7.73 9.55

Ar 100.5±0.4 104 106 34.4±0.4 36.4 40.3

Xe 215±3 633 358 89.4±0.8 234 157

30 MeV/amu He +1 38 MeV/amu N +6

Target gas Experiment Born Classical Experiment Born Classical

He 0.49±0.07 0.30 0.69 0.06±0.01 0.044 0.046

N2 1.92±0.10 2.4 4.1 0.34±0.04 0.34 0.36

Ar 7.3±0.4 9.0 11.5 1.64±0.03 1.58 1.58

Xe 23.±1. 47 36 6.29±0.04 10.30 6.50
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FIGURE CAPTIONS

Figure 1. Cross section per atom versus number of electrons lost in He, N2, Ar and Xe  by a 10.2

MeV/amu Ar +6 beam.

Figure 2. Cross section per atom versus number of electrons lost in He, N2, Ar and Xe  by a 19

MeV/amu Ar +8 beam.

Figure 3.  Weighted cross section per atom versus atomic number of the target gas for the various

beams used.
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