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1. Introduction. The ability of a device to provide adiabatic motion of charged
particles is crucial for magnetic confinement. As the magnetic field in the present-day
spherical tori, e.g., MAST and NSTX, is much lower than in the conventional toka-
maks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of im-
portance in these devices, affecting the stochasticity threshold for the interaction of the
ions with electromagnetic perturbations. In addition, FLR by itself may result in non-
conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a
Lagrangian approach to description of the resonant collisionless motion of charged par-
ticles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1],
where only time-independent perturbations were considered. The approach is used to
find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2]
and the cyclotron-resonance-induced (CRI) diffusion (for the case of the first cyclotron
resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the
magnetic moment variation caused by FLR is found.

2. Perturbative approach. We present the exact Lagrangian of the particle motion,
L, as the sum of a Lagrangian of an integrable system and the residual considered as
a perturbation. As the integrable system, we take the lowest-order Lagrangian of the
guiding-center motion [5] in the axisymmetric magnetic field B,

where X is the guiding center position; e, M, p = Mv? /[2B(X)], and £ are the charge,
mass, magnetic moment, and energy of the particle; ® is the gyrophase; A is the vector
potential; vy = {2[€ — uB(X)]/M}/2. The guiding center position, X, and the particle
position, x, are connected to the considered order by the relation x = X + p, 4, where
pL = vi/wp, wp = eB/(Mc), & = cos(®)é(X) — sin(P)éy(X), —&, and é, are the
binormal and the normal to the magnetic field line, respectively. The Lagrangian given
by Eq. (1) indeed describes an integrable system, possessing three constants of motion:
£, the canonical angular momemtum (J3), and p. Then we present £ as follows:

L= Lo+ (Las — Lyge) + (L = Lag) = Ly + L1 + 0L, (2)
5L 5L,

where



L(x,v,%x) = [A(x)—i—A(x)] X4+ Mv-x— %02—6&, (3)

oOl®

M
Los(x,v) = EA(X) K Mv % - o, (4)

is the Lagrangian of the particle motion in the axisymmetric field; v is the particle veloc-
ity; ¢ is the scalar potential of the electromagnetic field; tildes refer to the electromagnetic
perturbation. We will consider both §£; and 0L, as perturbations, the former being re-
sponsible for all nonadiabatic effects in the axisymmetric field, and the latter describing
the effect of the electromagnetic perturbation.

3. Nonconservation of the magnetic moment. To derive an equation for £ in

the axisymmetric field, we set L, = 0 and obtain from the Euler-Lagrange equations [1]:

e [&Sﬁl d (35@)} vifvL
1= — — (=) =M
Mec oP BR,

— cos P, 5)
0P dt (%)
where R, is the curvature radius of the magnetic field line, and we have omitted terms
o exp(2i®). To compare Eq. (5) with previous results, one should have in mind that here
1 is defined in terms of the magnetic field at the guiding center. Taking the magnetic
field at the particle position, as in most previous works, we find:

3

d M’U2 . v 27.‘.,03 . X .
% <2B(;)> = U + M2—BJ__F6 cos® — M B3J_ [(e2 . Vp) cos @ —+ (el . Vp) sin @] . (6)

The first two terms of Eq. (6) yield the equation for du of Refs. [6,7]. Thus, Eq. (5)
differs from the mentioned previous formulae by allowing for effects of plasma pressure.
Introducing a curvature-like parameter 8w B~2Vp, we could obtain a formula for ;i similar
to that derived in Ref. [8]. However, the equation for ;1 given by Eq. (5) is much simpler,
while correctly describing the mentioned effects.

4. Lagrangian description of resonant motion. In the action-angle variables
the Lagrangian L, takes the form

Lo = JiS1 + JaGo + J353 — €, (7)

where J; = pMc/e; J3 is the canonical angular momentum;

Jo(Jy, J, &) = %?{dx- [EA(X) + @B(X) : (8)

G, t = 1,2,3, are the angle variables canonically conjugate to J; and characterizing the

gyrophase, the bounce phase, and the toroidal angle, respectively; the integral in Eq. (8)

is taken along a poloidal contour that lies on an invariant torus of the system.
Considering the motion near the resonance lw; — swys — Nwz + 2 = 0, where w; = ¢;,

Q) is the perturbation frequency, we divide the phase-space variables in the vicinity of



the resonance into “slow” variables (J;, Jo, J3, and g1 — s — N¢3 + Qt) and “fast” ones
(two other independent angular coordinates) and average the Lagrangian over the fast
variables. Hence, we introduce the new action-angle variables (I, Iz, I3; o, ag, ai3) with
o1 = 1§ — s60 — Ng3 + L, ap = 6, az = ;. Applying the averaging procedure similar to
that described in Ref. [1] to the exact Lagrangian, we obtain

£:I_1C._¥1+I(C_¥1,I_1,I_3,8)C._¥2+I_3C._¥3—H, (9)
where bars refer to the new variables modified by the averaging;
I, I, I, E) = L(I, I, ) + 1(an, I, I5, ), (10)

is the adiabatic invariant of the resonant motion; Iy = Jy — (s/N)J3; H =& — J3/N;

aN/Q e ~ ~
d§10/ dto/ [dx- —A(x) —dt eqﬁ] ; (11)
87T3N3 /_71-”3 WN/Q (10,t0,a1,P,M,£) ¢

L(s10, tocu1, J3, i1, €) is the curve in the phase space determined by the equations —7 N <
@ S 7N, t =1ty + @/wz, 1 = Gi1o + (W1/wa)se, 63 = (It — 562 + Q% — 1)/N, J3 = const,
u = const, & = const. The adiabatic invariant I can be used to determine the width of
resonance islands and evaluate the threshold amplitude of the perturbation at which the
transition to global stochasticity takes place due to the overlap of the islands.

5. Stochasticity threshold for the motion in a rippled magnetic field. When
the perturbation in Eq. (11) is the magnetic field ripple, the integrand is typically a
rapidly oscillating function. It is known that the main contribution to such integrals
comes from the vicinities of the points of stationary phase, which at the exact global
resonance coincide with the points of “local” resonance, lwp = N¢, where N is the
number of the toroidal field coils, ¢ is the toroidal angle (one should distinguish the local
resonance from the “global” one, lw; — sws — Nwz + Q = 0). Typically, there are two
points of the local resonance for a given [ on a particle orbit. Then, in the simplest case
of up-down symmetry, we obtain [1]:

N 1 N
I= o gop‘h n (L —L,)* + ;6[1(11,13,8) cos [Egob(ll,ly,,g)] oS ¢, (12)

where “r”

refers to the value at the global resonance, prime denotes 9/0I;, = —N3/dJs +
(le/Mc)0/0u, 61, characterizes the jump of I; for one local resonance event, ¢, and ¢,
the unidirectional and alternate parts of the perturbation phase variation between the
events. We observe that the mathematical description of the resonant motion for different
[ is rather similar. The transition to chaos for the GWB diffusion (I=0) was studied
in Ref. [9]. The transition occurs in two different ways, depending on the parameter
Q = ¢,(NSI,/$,)/2. When @Q is small, the level contours of I describe a conventional
Chirikov island with the width o 6[11 /2. When () exceeds ~ 2, the contours show chains

of islands near the resonance, the width of the chain being o< §1;.



Using the mentioned similarity, we generalize the known results for [ = 0 to arbitrary
[ and obtain the following stochasticity criterion for the field ripple of the form 4,4, =
do exp(R/Lyip), where R is the distance to the axis of symmetry, dy is a constant:
(212])"/%¢
(mN)Y2eBvy Lripar(pL/Lrip) (|| + [4}])°
where all quantities are taken at the local resonance point, bars refer to the guiding

S”'p > 607‘it = (13)

center, a;(z) = [lg—1))(x) + lyi31)(2)]/2, 1;(z) are modified Bessel functions,
2 2 p2
z_ Y 0lnB 1 R lopdIn R (14)
2qR?> 06 N2p? N dt

0 is the poloidal angle. This criterion agrees with previously obtained criteria for the
GWB diffusion (I = 0) for p <« L, but allows for the effect of FLR. For instance,
this effect results in a decrease of d..+ by a factor of 1.5 for p, /L, = 2, as is the case
for 80-keV deuterons in NSTX. Equation (13) may not agree with previously obtained
stochasticity thresholds for the CRI diffusion, especially for large magnitudes of Np/R,
because the previous results were obtained without taking account of jumps in J3.

6. Summary. A Lagrangian formalism for the description of the nonadiabatic effects
on the particle motion is developed. Based on this formalism, a general expression for
the critical ripple amplitude is obtained, which for the GWB diffusion of particles with
p <K L.y agrees with previous results. In addition, a formula for the variation of the
magnetic moment due to FLR is derived. The formula agrees with that obtained by a
different procedure in Refs. [6,7] but takes into account effects of the plasma pressure
and has a simpler form.
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