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ABSTRACT

Recent advances in sensor technology and engineering have made it possible to assemble

many related sensors in a common array, often of small physical size. Sensor arrays may

report an entire vector of measured values in each data collection cycle, typically one value per

sensor per sampling time. The larger quantities of data provided by larger arrays certainly

contain more information, however in some cases experience suggests that dramatic increases

in array size do not always lead to corresponding improvements in the practical value of the

data.

The work leading to this report was motivated by the need to develop computational planning

tools to approximate the relative effectiveness of arrays of different size (or “scale”) in a

wide variety of contexts. The basis of the work is a statistical model of a generic sensor

array. It includes features representing measurement error, both common to all sensors and

independent from sensor to sensor, and the stochastic relationships between the quantities to

be measured by the sensors. The model can be used to assess the effectiveness of hypothetical

arrays in classifying objects or events from two classes. A computer program is presented

for evaluating the misclassification rates which can be expected when arrays are calibrated

using a given number of training samples, or the number of training samples required to

attain a given level of classification accuracy. The program is also available via email from

the first author (mmorris@iastate.edu) for a limited time.
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1. INTRODUCTION

Recent advances in sensor technology have led to the development of devices which have

dramatically improved sensitivity, and are small enough to permit the construction of com-

pact multi-sensor arrays. An example of broad interest is the development of coated surface

acoustic wave (SAW) chemical sensors. Arrays comprised of a few carefully selected sensors

can offer substantially improved detection and classification power relative to single sensors,

e.g. Osbourn et al (1997). However, as the technology advances further and it becomes

possible to build arrays containing even larger numbers of individual sensors, the question

of optimal array size, or scaling, becomes critical. Realized classification performance can

actually be degraded as arrays are enlarged to include additional sensors unless the effort

invested in array calibration is substantially increased. In many applications, more intensive

calibration is not practically possible or even physically achievable.

This report is focused on the development of a model and analysis of the functional details

and operation of a generic sensor array for the purpose of optimal array scaling. Such is-

sues as measurement error (including both components associated with individual sensors

independently, and common to the entire array), the design of calibration experiments and

analysis of the resulting data, and the variable and confounded signals due to environmental

intensity and contamination are considered. While the specific characteristics of particular

sensor systems and classification problems vary greatly, the research aims are toward devel-

oping a general methodology/tool which takes its fundamental structure from the properties

of real sensors, but is applicable well beyond the context of particular present-day systems.

The focus here is on the setting in which a sensor array is used to classify a measured item

or condition as being associated with one of two distinct kinds, e.g. an organic or inorganic

substance, or a ‘normal’ or ’unusual’ activity within a monitored work area. The model

is developed within the context of statistical discriminant analysis, used to identify items

from two classes of objects or events which can be adequately modeled as multivariate nor-

mal (or “Gaussian”) distributions. This context is a useful compromise between reality and

simplicity. Linear discriminant analysis, in particular, is probably the most often used cali-

bration technique for multivariate measurement systems, and the normal model provides a
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reasonably rich collection of class structures relative to the number of parameters needed for

specification. It allows the assessment of trade-offs between the gain information associated

with the addition of new sensors to the system, and the loss of predictive precision associated

with the required expansion of the associated model. Calculations lead to guidelines which

are useful in assessing the joint impact of the factors noted above on the performance of

class predictions.

The trade-offs between array size and calibration effort exist to some degree for any noisy

classification problem incorporating any analytical method. However, the optimal solutions

differ with the specific characteristics of the classification problem and the approach used in

calibration. When underlying population parameters are known, the classification rule based

on linear discriminant analysis is well-known to be optimal when the underlying distributions

are normal and variance structures of the two classes are equal. Known-parameter quadratic

discriminant analysis is an optimal classification procedure for normal populations with

unequal variance structures. In this study, we focus on the performance of these two methods,

along with a nonparametric nearest-neighbor rule, in the more practical setting where model

parameters must be estimated from calibration data, rather than being “known” as assumed

in the small-sample optimality proofs.

In some settings, the feature profiles of classes to be discriminated are too complex to be

expressed with the framework of normal distributions. In such cases, more flexible discrim-

inant models such as artificial neural networks can result in superior performance if large

quantities of calibration data are available. Examples of other flexible calibration rules which

can be useful under these conditions are kernel-based approximations to Bayes rules. The

present research does not extend to such non-normal classes and non-linear classification

rules, but such extensions would be reasonable next steps in continuing this work.
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2. GENERAL MODELS

2.1. Physical Model

The idealized situation we shall address is a simple but widely applicable one. We suppose

that a sensor array is used to characterize an object. In this sense, an object may be a

physical sample, a radiation field, an environmental condition, or any other item, substance,

assembly, or event of interest in the context of the application. We assume that when

“exposed” to this object, the sensor array responds by producing a set of measurements

or data with one numerical value associated with each sensor in the array. The sensors

are envisioned as being physically similar in nature, but not identical, and are intended to

produce separate physically meaningful bits of information about the object, rather than

simple replicate measurements of the same physical characteristic.

We let y(i) denote the (scalar) numerical value recorded by the ith element of a sensor array

under a given situation, i.e. the measurement supplied by that sensor. This measurement

is conceptually a noisy version of some underlying true quantity x(i), and so is actually a

function of x(i) and some measurement error e(i), which in this sense represents any difference

between the value sought and the value obtained:

y(i) = f(x(i), e(i)).

The error may likewise be separated into components. Here we consider the specific possi-

bility that it is comprised of two components, one of which is specific to the ith sensor and

one of which is common to all sensors in the array at the time of this measurement:

y(i) = f(x(i), e(i), e).

For example, e might reflect error arising from variability in a power supply common to all

sensors in the system, while e(i) would include error resulting from any physical contamina-

tion of just the ith sensor.

We let y represent the s-element vector of measurements simultaneously collected from a

s-sensor array, in which the ith element is y(i), as defined above. The vector y, then, is the

information we have available to us about the object of interest.
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2.2. General Classification Problem

Our view of a sensor array is that the measurement vector produced somehow characterizes

the unit being examined. The specific form of characterization we shall consider is that

of classification. In our context, a classification problem arises when every possible unit is

a member of exactly one class. For example, samples of homogeneous material might be

categorized as one of “organic”, “inorganic”, or “mixed”. A discriminant rule is a rule for

using the information available about a specific unit, in our case the vector y, to classify the

unit into one of these categories. For two classes labeled “1” and “2”, this may be expressed

as a rule or function d(y) for which the value is either “1” or “2” for any possible y. In this

study, we shall focus on two-category systems.

If the system of interest is simple and the “physics” perfectly understood, it may be possible

to specify a discriminant rule d from first principled. However, this is generally not the case

with complex systems of practical interest. In these cases, a calibration experiment is needed

to gather data from which a discriminant rule may be empirically constructed. In such

cases, the experiment consists of collecting data (values of y) from a collection of objects in

each class, and deriving a discriminant rule via some method. A key difference between use

of the array in a calibration experiment and in the intended application is that, the class

identities of the objects examined in the experiment are known, whereas the goal when using

the calibrated array is the correct identification of class membership of objects for which

this is not known. Clearly, the effectiveness of the calibration exercise depends heavily upon

how the “known” objects are selected, and the data analytic method used to construct the

discriminant rule, among other considerations.

2.3. Probabilistic Model

In order to develop classification methods which can reasonably be expected to effectively

classify objects/data associated with future measurements, based only on the data acquired

during calibration, a common probability model is generally assumed to characterize the ori-

gin of both calibration and field measurements. This can be interpreted as an assumption

that, over hypothetical infinite selection and measurement of objects, a distribution of rel-
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ative frequencies of possible values of y exists. In the two-class problem, denote the two

probability density functions as p1(y) and p2(y); that is, p1(y) is the probability density

of measurement vectors associated with objects from class 1, and p2(y) is the probability

density of measurement vectors associated with objects from class 2. Suppose also that, the

relative frequency of the appearance of objects from class 1, in actual field use, is π1, and

the similar relative frequency for class 2 is π2, π1 , π2 > 0, π1 + π2 = 1. In the somewhat

unusual situation in which π1, π2, p1, and p2 are precisely known, the Bayes classification

rule associated with equal costs for the two possible misclassification errors is of form:

d(y) = 1 if p1(y)π2 > p2(y)π1

d(y) = 2 if p1(y)π2 < p2(y)π1

(We ignore precise equality of p1(y)π2 and p2(y)π1 here since the probability of such an

outcome under the models we shall examine is zero.) This rule minimizes the expected (e.g.

long-run average) proportion of misclassifications under these circumstances. The logic of

the Bayes rule is apparent in the structure of the above equations, which simply says that

an object is more likely to be from class 1 if the odds of this event based on the data are

greater than the corresponding odds based on no data. The proof is simple, and is presented

in most books on discriminant and classification procedures, e.g. Devroye et al (1996).

However, in most practical problems, the premise on which this result is based, i.e. full

knowledge of all probabilities in the problem, is not satisfied. In particular, densities p1 and

p2 must generally be estimated from calibration data, and classification rules of form:

d(y) = 1 if p̂1(y)π2 > p̂2(y)π1

d(y) = 2 if p̂1(y)π2 < p̂2(y)π1

where p̂1 and p̂2, statistical estimates of p1 and p2, respectively, are used in place of the

unknown density functions.

Generally, “empirical” Bayes rules of this form are not necessarily optimal except asymp-

totically, i.e. as the sample sizes in the calibration study become large, if this results in
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appropriate convergence of p̂1 and p̂2 to p1 and p2, respectively. So, for example, for small-to-

moderate calibration sample sizes, empirical linear discriminant analysis often outperforms

empirical quadratic discriminant analysis even in settings where the latter would be optimal

if p1 and p2 were known.

A second practical issue, and one that is not often addressed in the evaluation of classification

rules, is the possibility that the sample measurements used in calibration are not entirely

representative of those which will be seen in field work. One way to express this is to say

that the distributions from which measurement vectors are drawn in calibration, pc
1 and pc

2,

are different than those encountered in the field, pf
1 and pf

2 . Hence p̂1 and p̂2 used in the

empirical Bayes rule are, in effect, estimates of the wrong distributions. The degree to which

this affects performance of the classification rule is largely determined by the nature and

degree of the differences between pc
1 and pf

1 , and between pc
2 and pf

2 .
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3. A SPECIFIC PROBABILITY MODEL

3.1. The Normal Model

In this study, we shall limit attention to probability models which specify multivariate nor-

mal, or “Gaussian”, distributions (MV N) for the vector of measurements produced by an

array:

p(y) = (2π)−s/2|Σ|−s/2exp{−1
2
(y − µ)′Σ−1(y − µ)}

where

s = the dimension of y, i.e. the number of sensors,

µ = the s-element vector for which the ith element is the expectation of y(i),

Σ = the s-by-s element positive semi-definite matrix for which the (i, j) element is the

covariance of y(i) and y(j),

|Σ| = the matrix determinant of Σ,

Σ−1 = the matrix inverse of Σ.

Hence, the MVN distribution is entirely specified by its probability moments of order 1 and

2. In calibration experiments, these moment parameters are estimated as µ̂ and Σ̂, and

substituting these estimates into the above expression yields the estimated density p̂ used

in the empirical Bayes rule. Depending on the explicit or tacit assumptions made in the

analysis of the calibration data, some or all of the elements of µ̂ and Σ̂ will be different for

the two class models, leading to different p̂1 and p̂2.

While not always entirely physically realistic, MVN models have a number of convenient

properties in analyses of the sort undertaken here:

1. They are the basis of the theory establishing optimality of the known-parameter linear

and quadratic discriminant rules.
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2. They reduce characterization of p to moments of order 1 and 2.

3. They have a convenient reproductive property; sums of vectors which have independent

MVN distributions are also MVN random vectors.

The third property is convenient in our context, as it allows us to think about MVN mea-

surement vectors (y) as being comprised of MVN “truth” vectors (x) and additive MVN

“error” vectors (e),

y = x + e

where some or all of the characteristics of these random variables are different for different

classes. More precisely, with reference to the ideas and notation used in Section 2, we suppose

that for the objects in class 1, the associated true values are drawn from a distribution

characterized by MV N(m1,V1), that measurement errors are characterized by MV N(b,P),

and that x and e are stochastically independent.

Here the symbols b and P are selected because of their relationship to bias and precision in

the measurement system. Hence, for systems of physically similar sensors (e.g. SAWs), it

may be very reasonable to conclude that all elements of b are equal; i.e. that any structural

bias affecting the measurements made by one sensor is likely present in the measurements

made by all sensors. Similarly, it may be reasonable to consider variance matrices P for which

all diagonal elements are equal (reflecting a common precision for measurements taken from

each sensor), and equal but somewhat smaller positive off-diagonal values. These off-diagonal

elements are covariances between the errors in associated with different sensors in the array.

A relatively large common off-diagonal value reflects a situation in which the errors are

highly correlated, as would be the case when instability of a common power supply, or a

contaminating agent is the sample to which all sensors are exposed, tends to produce similar

distortion in all elements of y. In contrast, a relatively small common off-diagonal value

reflects a situation in which the errors are not highly correlated, as would be the case when

sensors are more self-contained, and/or are exposed to different subsamples of the object of

interest.
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The distribution of y is then also MV N , as suggested by the third property above, and

specifically, for the measurement vectors associated with objects from class 1:

y ∼ MV N(µ1 = m1 + b,Σ1 = V1 + P)

Likewise for measurements associated with class 2:

y ∼ MV N(µ2 = m2 + b,Σ2 = V2 + P)

if measurement error characteristics are the same for both classes.

While it seems reasonable that, at least in many situations, b and P should not be affected

by the class identity of the objects being examined, these quantities may well be affected by

the conditions under which the measurements are made. Hence, for example, the variability

of repeated measurements of the same object may well be expected to be more variable un-

der field conditions than under the relatively more tightly controlled conditions of laboratory

calibration, suggesting that a matrix P containing larger elements may be more appropri-

ate when modeling field conditions. Following this idea, our general probability model for

measurement vectors is:

y ∼ MV N(µc
1 = m1 + bc,Σc

1 = V1 + Pc) for class 1 objects in a calibration environment,

y ∼ MV N(µc
2 = m2 + bc,Σc

2 = V2 + Pc) for class 2 objects in a calibration environment,

y ∼ MV N(µf
1 = m1 + bf ,Σf

1 = V1 + Pf) for class 1 objects in a field environment, and

y ∼ MV N(µf
2 = m2 + bf ,Σf

2 = V2 + Pf) for class 2 objects in a fleld environment.

3.2. Reduction of Problem Size

While we have already invoked a number of restrictive assumptions (exclusive use of the

MVN distribution, and additive and independent error structures), the number of “free”

parameters remaining in our probability model is still quite large, especially given the relative

lack of information which may generally be available at the initial planning phase of sensor
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array design. Hence, we shall adopt further restrictions at this point so as to focus attention

on a relative few quantities which still allow considerable variety in the kinds of situations

which can be modeled.

1.) Assume that measurement bias properties are the same under calibration and field con-

ditions. This implies that bc = bf . We effectively say here that any systematic sources of

error are present in both operating conditions. This assumption is most questionable when

instruments may be subject to drift which cannot be corrected over time.

2.) Assume that calibration(field) precision variances are equal for all sensors, that calibra-

tion(field) precision covariances are equal for every pair of sensors, and that each precision

variance(covariance) differs by the same proportion between calibration and field conditions.

This implies that the precision matrices can be written as:

Pc = δ2[(1 − η)I + ηJ]

Pf = φ2Pc

Here, δ2 is the variance associated with error for each sensor under calibration conditions, η

is the (unitless) correlation between errors associated with any two sensors under calibration

conditions, and φ (generally one or greater) is the proportional inflation in standard devi-

ations associated with field operation (relative to calibration conditions). Hence, φ = 1.2

represents an increase of 20% in all precision-associated standard deviations under field con-

ditions, and φ = 1.0 represents the situation in which precision is not degraded in the field.

This assumption is most questionable when field conditions influence sensor-specific error

sources more or oless than sensor-common error sources.

3.) Assume that the difference between the class-specific means of true values associated with

any given sensor has the same absolute value for all sensors. This implies that m1 − m2 =

∆u, where ∆ is nonnegative and u is a s-element vector consisting only of +1’s and -1’s.

This restriction is admittedly somewhat arbitrary, since class “separation” is apt to be larger

in some sensor dimensions than in others. However, these differences may not be large (or at

least known to be large) for groups of sensors being considered together in array construction.
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4.) Assume that within each class, the variances of true values associated with each sensor

are equal, and that the covariances of true values associated with each pair of sensors are

equal. This implies that we may write:

V1 = σ2
1 [(1 − ρ1)I + ρ1J]

V2 = σ2
2 [(1 − ρ2)I + ρ2J]

While this proposes exchangeable variance properties for sets of true values within a class,

it does not imply a relationship between the two classes.

As a postscript to the third assumption listed above, it should be noted that even when the

differences between the class-specific means associated with each sensor are equal, the inter-

action between the number of positive and negative differences and the correlation structure

can have a major affect on the difficulty of the classification problem. As an illustration

of this, Figure 1 depicts two simple situations in which arrays contain two sensors and for

which the measurements associated with these two sensors are positively correlated within

each class. The ellipses can be thought of as the regions within which the bivariate mea-

surements for most objects within a class would be located. Figure 1a depicts two classes

for which the mean difference is of the same sign for each of the two sensors, i.e. the “shift”

from one ellipse to the other is along a line of slope +1. Figure 1b displays two classes

which have the same internal structure, but for which the intra-class difference in means is

of opposite sign for the two sensors. Even though the two-dimensional “shift” from one class

to the other has the same magnitude in each figure, the classification problem is much more

difficult in Figure 1a because of the greater degree of “overlap” between classes.

Taken together, these assumptions/restrictions lead to

y ∼ MV N(µ1 = m1 + b,Σc
1 = σ2

1 [(1 − ρ1)I + ρ1J] + δ2[(1 − η)I + ηJ]) for class 1 objects

in a calibration environment,

y ∼ MV N(µ2 = m2 + b,Σc
2 = σ2

2 [(1 − ρ2)I + ρ2J] + δ2[(1 − η)I + ηJ]) for class 2 objects

in a calibration environment,
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y ∼ MV N(µ1 = m1 + b,Σf
1 = σ2

1 [(1− ρ1)I + ρ1J] + φ2δ2[(1− η)I + ηJ]) for class 1 objects

in a field environment,

y ∼ MV N(µ2 = m2 + b,Σf
2 = σ2

2 [(1− ρ1)I + ρ2J] + φ2δ2[(1− η)I + ηJ]) for class 2 objects

in a environment environment.

As a result, a final reduction in the dimension of this model is possible by effectively shifting

the first class mean to a vector of zeros, and rescaling all measurements so that shifts between

the population means are +1 or -1 in each direction. Hence the model above is equivalent

to:

y ∼ MV N(µ1 = 0,Σc
1 = (σ2

1/∆2)[(1 − ρ1)I + ρ1J] + (δ2/∆2)[(1 − η)I + ηJ]) for class 1

objects in a calibration environment,

y ∼ MV N(µ2 = u,Σc
2 = (σ2

2/∆2)[(1 − ρ2)I + ρ2J] + (δ2/∆2)[(1 − η)I + ηJ]) for class 2

objects in a calibration environment,

y ∼ MV N(µ1 = 0,Σf
1 = (σ2

1/∆2)[(1 − ρ1)I + ρ1J] + φ(δ2/∆2)[(1 − η)I + ηJ]) for class 1

objects in a field environment,

y ∼ MV N(µ2 = u,Σf
2 = (σ2

2/∆2)[(1 − ρ1)I + ρ2J] + φ(δ2/∆2)[(1 − η)I + ηJ]) for class 2

objects in a environment environment.

Hence nine free parameter values must be specified to characterize the probability model for

a system of s sensors:

1. s+: number of +1 elements in u (integer, {0,s})

2. σ1/∆: standard deviation of true values in class 1, relative to the common absolute

difference between class means (positive)

3. ρ1: correlation between each pair of true values in class 1 (0,1),

4. σ2/∆: standard deviation of true values in class 2, relative to the common absolute

difference between class means (positive)
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5. ρ2: correlation between each pair of true values in class 2 (0,1),

6. δ/∆: standard deviation of measurement errors in the calibration environment, relative

to the common absolute difference between class means (positive),

7. φ: inflation in measurement error standard deviations in the field environment (posi-

tive, no less than 1),

8. η: correlation between measurement errors for any pair of sensors (0,1),

9. π1: probability that any given future observation presented for classification is actually

a member of class 1.
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4. EMPIRICAL DISCRIMINANT RULES

As noted earlier, in most practical classification problems the characteristics of the underlying

probability models are not known from first principles, and a calibration experiment is

required to allow construction of an empirical discriminant rule. In this study, we shall

focus on three popular discriminant rules: linear discriminant (LD), quadratic discriminant

(QD) and k-nearest neighbor discriminant (NND). (These methods are discussed in more

detail in popular textbooks on classification, e.g. Devroye et al, 1996.) These can each be

interpreted as an estimate of the known-parameter Bayes rule, based on varying degrees of

assumptions about the underlying probability model. Roughly speaking, LD is based on the

strongest assumptions and requires estimation of the fewest underlying parameters, NND is

based on the weakest assumptions and requires estimation of the largest (effective) number of

underlying parameters, and QD is intermediate on each scale. Note: None of the procedures

investigated here takes advantage of the specific model developed in Section 3. That model is

intended to be a sensible test-bed for the representation of physical sensors and classification

problems. Here we shall use it only to generate scenarios under which the performance of

each of these general analysis methods can be evaluated and compared.

For each empirical rule, an experiment is required to collect data from which relevant pop-

ulation characteristics acn be estimated. We assume that the experiment consists of one

(vector) measurement of each of n objects randomly drawn from class 1, and n objects

randomly drawn from class 2. We let:

y1,1,y1,2,y1,3, ...,y1,n

represent the n vectors associated with the objects from class 1, and

y2,1,y2,2,y2,3, ...,y2,n

represent the n vectors associated with the objects from class 2.
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4.1 Linear Discriminant

Linear discriminant (LD) analysis is an empirical version of the Bayes known-parameter rule,

under the assumption that p1 and p2 are MVN distributions with Σ1 = Σ2. Let

ȳi =
∑n

j=1 yi,j i = 1, 2

S2
i = n

n−1
[ 1
n

∑n
j=1 yi,jy

′
i,j − ȳiȳ

′
i]

S2 = 1
2
[S2

1 + S2
2]

Then, given a new measurement vector y, the LD rule is:

d(y) = 1 if (ȳ1 − ȳ2)
′[S2]−1y + 2log π1

π2

+ ȳ2
′[S2]−1ȳ2 − ȳ1

′[S2]−1ȳ1 > 0,

d(y) = 2 otherwise.

4.2 Quadratic Discriminant

Quadratic discriminant (QD) analysis is an empirical version of the Bayes known-parameter

rule, under the assumption that p1 and p2 are MVN distributions, but without the assumption

of equal covariance matrices. Using the notation defined in Section 4.1 along with

r2
i = (y − ȳi)

′[S2]−1(y − ȳi), i = 1, 2

and given a new measurement vector y, the QD rule is:

d(y) = 1 if r2
2 − r2

1 + 2log π1

π2

− log
|S2

1
|

|S2

2
|
> 0,

d(y) = 2 otherwise.

4.3 k-Nearest Neighbor Discriminant

Nearest Neighbor (NND) analysis does not reduce the data collected during calibration, but

uses the distinct data values collected in the discriminant rule. An integer-valued parameter

k, generally chosen to be odd and small relative to 2n is selected, and a distance measure
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||...|| is chosen. Given a new measurement vector y, the kNND rule is as follows: Identify

the k vectors from the pooled set of 2n calibration vectors yi,j which are closest to y in the

sense of minimizing ||y − yi,j||. Let the number of these nearest calibration vectors from

class 1 be k1 and the number from class 2 be k2, k1 + k2 = k. Then

d(y) = 1 if k1 > k2,

d(y) = 2 if otherwise.
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5. EFFECTIVENESS OF DISCRIMINANT RULES

The practical effectiveness of any discriminant rule is its reliability in practice. A more

specific measure of effectiveness is the frequency (or probability) with which it results in

erroneous classifications when used in the field. As in statistical hypothesis testing, two

kinds of errors are possible when a selection must be made between two possible classes.

The probability of incorrectly classifying an object as a member of class 2, given that it is

in fact a member of class 1, may be written as:

α1 = Prob{d(y) = 2| object is in class 1 }.

The symmetric probability of incorrectly classifying an object as a member of class 1, given

that it is in fact a member of class 2, may be written as:

α2 = Prob{d(y) = 1| object is in class 2 }.

An overall error rate or probability can be calculated as:

α = α1π1 + α2π2

where π1 and π2 are the relative frequencies with which objects of class 1 and 2, respectively,

will be classified. In many important cases, this overall error probability is not the most

meaningful measure of performance because the two kinds of errors have different degrees of

impact. For example, if the two classes to be discriminated are groups of chemicals which are

poison and harmless to exposed humans, respectively, the potential consequences of making

one kind of error may be much greater than those of the other. In such cases, cost factors can

be introduced which effectively weight one error more heavily than than the other, combining

the two probabilities into an overall expected cost. The unweighted overall error α treats the

two specific kinds of error symmetrically, and so is strictly appropriate only when they are

of equal significance. In this study, we shall restrict attention to the performance measure α,
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primarily as an expedient. Modification of both the arguments and programs to be presented

in the next section is simple for the case of unequal known costs for each error.

For known-parameter rules, such as the general Bayes rule based on known class distributions,

αi, i = 1, 2 are integrals of the probability function indicated by the subscript, over the region

for which the decision function yields the incorrect classification, e.g.

α1 =
∫
d(y)=2 pf

1(y)dy.

α2 can be similarly defined, and the overall error rate α determined as indicated. However,

when the decision rule is formulated based on data from a calibration experiment, d becomes

a random variable itself, with distribution determined by pc
1 and pc

2, the distributions corre-

sponding to the two classes as observed in the calibration experiment. In order to distinguish

calibration data from data to be observed in the field, let:

y1,1,y1,2,y1,3, ...,y1,n

represent the n vectors associated with the objects from class 1,

y2,1,y2,2,y2,3, ...,y2,n

represent the n vectors associated with the objects from class 2, and let Y represent the

collection of all these data from the calibration experiment. Note that the decision rule, d,

is actually defined by these data, so that it might be written as dY(y) for an arbitrary field

observation y. For such empirical discriminant rules, the expected (over the distribution of

the calibration data set) error rate for objects in class 1 can at least in principle be calculated,

e.g.:

α1 =
∫
Y[

∫
d(y)=2 pf

1(y)dy]
∏

i p
c
1(y1,i)

∏
j pc

2(y2,j)dY
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Again, α2 can be symmetrically defined, and if π1 and π2 are known, the expected error rate

α calculated as:

α = α1π1 + α2π2.

Discriminant rules for which α is relatively small for class distributions of interest are pre-

ferred to rules for which this error rate is larger.

For empirical decision rules, α is generally not easy to calculate. If calibration and field class

distributions are the same for each class (i.e. pc
1 = pf

1 and pc
2 = pf

2), the misclassification

probability for most sensible rules decreases as the calibration sample size increases. This is

because the rule implicitly depends on the samples Y to provide estimates of the unknown

distributions pc
1 and pc

2, and so will be a more effective classifier when these estimates are

more precise. Performance can also improve with increased sample sizes in some cases where

the calibration and field class distributions are different, but this situation is much more

complex. Even for fairly simple cases of interest, explicit expressions which allow simple

evaluate of α are usually unavailable. The following section describes software (included in

the appendix of this report) which can be used to evaluate the expected misclassification

rates for the models discussed in this report.

By way of a historical perspective, one earlier paper which reported numerical results com-

paring the effectiveness of classification procedures is Van Ness and Simpson (1976). The

authors consider a more limited model than that discussed here, and are not motivated so

specifically by considerations arising from sensor arrays. However they do deal with the fun-

damental question of how the dimensionality of the problem (here, number of sensors) affects

the misclassification rates that can be expected from empirical rules based on calibration

studies.
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6. PROGRAM ARRAYSIZE.sas

The appendix contains SAS (Statistical Analysis System, 2001) routines which can be used

to calculate error rates for the three discriminant rules discussed in Section 4, for the model

described in Section 3. Both “forward” calculations (e.g. the error rate for a given calibration

sample size) and “inverse” calculations (e.g. estimates of the calibration sample size required

to obtain a given error rate) are included.

The SAS code is contained in 3 files, entitled ARRAYSIZE.sas, mainproc.sas, and mod-

ules.sas. The first of these, ARRAYSIZE.sas, is essentially a specifications file in which the

user defines the quantities which set up the problem. The variable names used in this file

correspond, at least loosely, to the notation in this report. The other two files, mainproc.sas

and modules.sas, contain the programming and subroutines used to execute the calculations,

and would typically not need to be modified unless the user wishes to change characteristics

of the problem not discussed in this report. The files are set up to be run as batch SAS jobs,

rather than interactively, because the calculations – particularly the inverse calculations, and

calculations involving the nearest-neighbor rule – can be fairly time-consuming.

Table 1 contains a listing of the variables for which values are set in ARRAYSIZE.sas, along

with definitions of these quantities. (Brief definitions are also included as comments in the

file.)

Upon execution, the program performs three sets of calculations. The first is a set of “the-

oretical” error rates for the linear and quadratic discriminant rules. These are the error

rates which would apply if the underlying parameters defining the class distributions in the

calibration environment were actually known, instead of estimated. They represent a “best

case” or lower bound that can be achieved with an empirical rule. These error rates are

calculated based on the model parameter values specified in ARRAYSIZE.sas, for values of

s (number of sensors) and s+ from 1 through half the maximum number specified. (It is not

necessary to compute performance results for s+ greater than s because they are identical

for s+ = s
2
+ t and s+ = s

2
− t for any t resulting in non-negative integer values of s+. Hence,

for example, results for s = 10 and s+ = 8 are the same as for s = 10 and s+ = 2, as are
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results for s = 7 and s+ = 2 or 5.)

The second set of calculations performed produces expected error rates for the empirical

versions of linear, quadratic, and nearest-neighbor classification, for the maximum calibration

sample size specified in ARRAYSIZE.sas. These calculations are carried out via stochastic

simulation; simulated calibration data are generated, the discriminant rule calculated based

on these calibration data, additional simulated field data are generated, and the error rates

estimated as the averages of the proportion of errors that would be made in classifying these

field data. The number of simulation cycles, and number of simulated field classifications

made in each cycle, are set in ARRAYSIZE.sas.

The inverse calculation is made at the end of the run. This is also accomplished via a

stochastic simulation using a sequential “up-and-down” rule which varies the calibration

sample size used in an effort to match the target error rate specified in ARRAYSIZE.sas.

Estimates of the required sample sizes are printed in the final set of output tables.
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Table 1. Input Parameters Specified in ARRAYSIZE.sas, and

Values Used in the Demonstration Example

parameter example description

value

s max 9 maximum number of sensors considered

n max 100 maximum training sample size considered

err 0.05 targeted error rate for inverse calculation

u bigdelta 2.0 common absolute difference between class means

u sigma1 1.0 common standard deviation of true values in class 1

u rho1 0.5 common correlation between each pair of true values in class 1

u sigma2 1.0 common standard deviation of true values in class 2

u rho2 0.5 common correlation between each pair of true values in class 2

u delta 1.0 common standard deviation of measurement errors in calibration environment

u eta 0.5 common correlation between measurement errors for any pair of sensors

u phi 1.1 inflation in measurement error std. dev. for field environment

u pi1 0.5 probability that any given field measurement is for an object from class 1

linear 1 indicator variable for the linear rule (1=include in calculation)

quad 1 indicator variable for the quadratic rule (1=include in calculation)

nearest 1 indicator variable for the k-nearest-neighbor rule (1=include in calculation)

k 1 number of nearest neighbors used in the k-nearest-neighbor rule

n updown 500 number of simulated experiments used in sample size calculation

nvalid1 50 validation sample size for class 1 used in each simulated experiment

nvalid2 50 validation sample size for class 2 used in each simulated experiment

nrep sim 50 number of simulated experiments used in empirical error rate calculations

nrep th 10000 validation sample size used to calculate “theoretical” error rate for quadratic rule

6.1 Example

Display 1 shows output generated by the SAS program as a result of a calculation made using

the parameter values given in Table 1. The first part of the output repeats parameter values

(and functions of them) that have been supplied as input. The first line gives the difference

in mean between classes (in each dimension), and standard deviations and correlations for
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measurements made for each sensor. Note that standard deviation values are given as
√

2 for

each class, reflecting the fact that the standard deviations of both true values and measure-

ment errors are specified as 1 in the input file. The second line gives similar values of mean

differences, standard deviations, and correlations for field measurements. These standard

deviations are slightly larger than in the previous line, due to the specification of φ = 1,

or a 10% increase in standard deviations in the field relative to calibration conditions. All

correlations between measurements are 0.5 because all correlations set between true values

and measurement errors were also set to this value. The remaining values printed in the

first lines of the output contain other parameter and control values specified by the user in

ARRAYSIZE.sas.

The next section of the output is a listing of lines summarizing calculations performed to

construct the tables at the end of the output. The values from left to right are the observation

(or line) number in the SAS data set, values of s and s+ for the line, the number of calibration

samples required to attain the target error rate, and “theoretical” (known parameter) and

simulated (estimated parameter) error rates. The column labeled “err std” is a standard

deviation representing the precision with which the simulated error rate is calculated, and

the final column gives a code of the discriminant rule used (L for linear, Q for quadratic, and

N for nearest-neighbor). This section of the output is primarily of use for post-processing;

most of this information is summarized in more convenient form in the tables which make

up the remainder of the output.

The first two tables report “theoretical” error rates for linear and quadratic discriminant

classification, for values of s and s+ specified. These can be though of as best-case values,

i.e. the error rates which could be expected if there were no uncertainty in the calibration

process. The next three tables report “empirical” error rates calculated via simulation, when

calibration sample sizes are as specified by the value “n max” in the input; in this example,

100 training samples from each of the two classes are assumed. In this case, it can be seen

that more sensors (larger s) leads to more accurate discrimination, and that more balanced

values of s+ and s− = s − s+ are also relatively superior. The upper-right triangle of these

tables is omitted since, as explained above, these would be identical to their counterparts
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in the lower-left triangle. The final three tables report calibration sample sizes which would

be required to attain the target error rate (0.05 in this example) for each combination of s

and s+. Again, the upper right triangle of each table is omitted. In these tables, other cells

are also omitted (i.e. contain a period rather than a number) if the target rate cannot be

attained using calibration samples smaller than the maximum specified (100 in this case).

By comparing the entries of these tables, the user can get a general idea of the degree of

classification accuracy which can be expected in a given situation (as expressed by parameters

in the model) for arrays of different sizes, or the size of calibration experiments that would

be required to attain a set level of accuracy.
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Display 1: SAS Output for the Example Problem

The SAS System

M SIGMA1C RHO1C SIGMA2C RHO2C
2 1.4142136 0.5 1.4142136 0.5

M SIGMA1F RHO1F SIGMA2F RHO2F
2 1.4866069 0.5 1.4866069 0.5

PI1 PI2
0.5 0.5

ERR S_MAX N_MAX NSIM NVALID1 NVALID2
0.05 9 100 500 50 50

NREP_SIM NREP_TH
50 10000

The SAS System

Obs svec splus n_size err_th err_simu err_std method
1 1 0 . 0.25058 0.2464 0.040545 L
2 2 0 . 0.21866 0.2286 0.044995 L
3 2 1 . 0.08926 0.0898 0.031975 L
4 3 0 . 0.20501 0.2170 0.042630 L
5 3 1 . 0.05733 0.0578 0.026748 L
6 4 0 . 0.19742 0.1948 0.035984 L
7 4 1 . 0.04440 0.0506 0.023854 L
8 4 2 11 0.02855 0.0300 0.017728 L
9 5 0 . 0.19258 0.1976 0.043357 L

10 5 1 24 0.03756 0.0420 0.021571 L
11 5 2 8 0.01825 0.0166 0.014086 L
12 6 0 . 0.18923 0.1916 0.048838 L
13 6 1 19 0.03337 0.0364 0.017468 L
14 6 2 9 0.01333 0.0178 0.012664 L
15 6 3 9 0.00990 0.0094 0.009775 L
16 7 0 . 0.18677 0.2008 0.035848 L
17 7 1 19 0.03056 0.0288 0.016738 L
18 7 2 9 0.01056 0.0104 0.010294 L
19 7 3 8 0.00631 0.0062 0.006966 L
20 8 0 . 0.18489 0.1940 0.042185 L
21 8 1 22 0.02855 0.0328 0.017733 L
22 8 2 9 0.00882 0.0110 0.010926 L
23 8 3 8 0.00446 0.0054 0.007343 L
24 8 4 8 0.00357 0.0036 0.004849 L
25 9 0 . 0.18340 0.1830 0.038611 L
26 9 1 25 0.02704 0.0372 0.017733 L
27 9 2 10 0.00765 0.0074 0.008283 L
28 9 3 9 0.00339 0.0038 0.006667 L
29 9 4 8 0.00227 0.0024 0.004314 L
30 1 0 . 0.24700 0.2452 0.047905 Q
31 2 0 . 0.21685 0.2232 0.045823 Q
32 2 1 . 0.08700 0.0922 0.025974 Q
33 3 0 . 0.20295 0.2040 0.034582 Q
34 3 1 . 0.05680 0.0608 0.022663 Q
35 4 0 . 0.19265 0.2172 0.041504 Q
36 4 1 67 0.04545 0.0496 0.023816 Q
37 4 2 18 0.02950 0.0364 0.018926 Q
38 5 0 . 0.19415 0.2120 0.039383 Q
39 5 1 60 0.03965 0.0390 0.019717 Q
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Display 1, continued:

40 5 2 16 0.01700 0.0226 0.016011 Q
41 6 0 . 0.18835 0.2060 0.039898 Q
42 6 1 31 0.03505 0.0414 0.020801 Q
43 6 2 16 0.01305 0.0178 0.013596 Q
44 6 3 15 0.00995 0.0128 0.008816 Q
45 7 0 . 0.18325 0.2068 0.051802 Q
46 7 1 38 0.03050 0.0302 0.014356 Q
47 7 2 17 0.01060 0.0118 0.011373 Q
48 7 3 15 0.00580 0.0076 0.008935 Q
49 8 0 . 0.18340 0.2286 0.043237 Q
50 8 1 43 0.02870 0.0352 0.016567 Q
51 8 2 19 0.00950 0.0106 0.009348 Q
52 8 3 16 0.00365 0.0056 0.007602 Q
53 8 4 16 0.00395 0.0050 0.006776 Q
54 9 0 . 0.18040 0.2260 0.042137 Q
55 9 1 45 0.02530 0.0356 0.019604 Q
56 9 2 21 0.00755 0.0124 0.009596 Q
57 9 3 18 0.00295 0.0044 0.006749 Q
58 9 4 16 0.00240 0.0016 0.003703 Q
59 1 0 . . 0.3230 0.054220 N
60 2 0 . . 0.2886 0.047639 N
61 2 1 . . 0.1240 0.036027 N
62 3 0 . . 0.2704 0.054882 N
63 3 1 . . 0.0874 0.030560 N
64 4 0 . . 0.2832 0.045014 N
65 4 1 . . 0.0796 0.032385 N
66 4 2 72 . 0.0482 0.019345 N
67 5 0 . . 0.2722 0.042248 N
68 5 1 . . 0.0624 0.025759 N
69 5 2 13 . 0.0352 0.016066 N
70 6 0 . . 0.2592 0.041983 N
71 6 1 . . 0.0624 0.026385 N
72 6 2 8 . 0.0282 0.019451 N
73 6 3 6 . 0.0212 0.013192 N
74 7 0 . . 0.2596 0.043045 N
75 7 1 . . 0.0600 0.026419 N
76 7 2 10 . 0.0248 0.016689 N
77 7 3 4 . 0.0168 0.013161 N
78 8 0 . . 0.2520 0.047337 N
79 8 1 . . 0.0582 0.024964 N
80 8 2 8 . 0.0230 0.016444 N
81 8 3 4 . 0.0158 0.010897 N
82 8 4 4 . 0.0072 0.009267 N
83 9 0 . . 0.2590 0.044869 N
84 9 1 . . 0.0630 0.023669 N
85 9 2 8 . 0.0164 0.012081 N
86 9 3 4 . 0.0088 0.010428 N
87 9 4 3 . 0.0048 0.006465 N
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Display 1, continued:

THEORETICAL (KNOWN-PARAMETER) ERROR RATE
method linear
--------------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|-----------------------+----+----+----+----+----|
|S | | | | | |
|-----------------------| | | | | |
|1 |.251| .| .| .| .|
|-----------------------+----+----+----+----+----|
|2 |.219|.089| .| .| .|
|-----------------------+----+----+----+----+----|
|3 |.205|.057| .| .| .|
|-----------------------+----+----+----+----+----|
|4 |.197|.044|.029| .| .|
|-----------------------+----+----+----+----+----|
|5 |.193|.038|.018| .| .|
|-----------------------+----+----+----+----+----|
|6 |.189|.033|.013|.010| .|
|-----------------------+----+----+----+----+----|
|7 |.187|.031|.011|.006| .|
|-----------------------+----+----+----+----+----|
|8 |.185|.029|.009|.004|.004|
|-----------------------+----+----+----+----+----|
|9 |.183|.027|.008|.003|.002|
--------------------------------------------------

THEORETICAL (KNOWN-PARAMETER) ERROR RATE
method quadratic
--------------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|-----------------------+----+----+----+----+----|
|S | | | | | |
|-----------------------| | | | | |
|1 |.247| .| .| .| .|
|-----------------------+----+----+----+----+----|
|2 |.217|.087| .| .| .|
|-----------------------+----+----+----+----+----|
|3 |.203|.057| .| .| .|
|-----------------------+----+----+----+----+----|
|4 |.193|.045|.030| .| .|
|-----------------------+----+----+----+----+----|
|5 |.194|.040|.017| .| .|
|-----------------------+----+----+----+----+----|
|6 |.188|.035|.013|.010| .|
|-----------------------+----+----+----+----+----|
|7 |.183|.031|.011|.006| .|
|-----------------------+----+----+----+----+----|
|8 |.183|.029|.010|.004|.004|
|-----------------------+----+----+----+----+----|
|9 |.180|.025|.008|.003|.002|
--------------------------------------------------
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Display 1, continued:

EMPIRICAL (ESTIMATED-PARAMETER) ERROR RATE FOR N = 100
method linear
---------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|------------------+----+----+----+----+----|
|S | | | | | |
|------------------| | | | | |
|1 |.246| .| .| .| .|
|------------------+----+----+----+----+----|
|2 |.229|.090| .| .| .|
|------------------+----+----+----+----+----|
|3 |.217|.058| .| .| .|
|------------------+----+----+----+----+----|
|4 |.195|.051|.030| .| .|
|------------------+----+----+----+----+----|
|5 |.198|.042|.017| .| .|
|------------------+----+----+----+----+----|
|6 |.192|.036|.018|.009| .|
|------------------+----+----+----+----+----|
|7 |.201|.029|.010|.006| .|
|------------------+----+----+----+----+----|
|8 |.194|.033|.011|.005|.004|
|------------------+----+----+----+----+----|
|9 |.183|.037|.007|.004|.002|
---------------------------------------------

EMPIRICAL (ESTIMATED-PARAMETER) ERROR RATE FOR N = 100
method nearest neighbors
---------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|------------------+----+----+----+----+----|
|S | | | | | |
|------------------| | | | | |
|1 |.323| .| .| .| .|
|------------------+----+----+----+----+----|
|2 |.289|.124| .| .| .|
|------------------+----+----+----+----+----|
|3 |.270|.087| .| .| .|
|------------------+----+----+----+----+----|
|4 |.283|.080|.048| .| .|
|------------------+----+----+----+----+----|
|5 |.272|.062|.035| .| .|
|------------------+----+----+----+----+----|
|6 |.259|.062|.028|.021| .|
|------------------+----+----+----+----+----|
|7 |.260|.060|.025|.017| .|
|------------------+----+----+----+----+----|
|8 |.252|.058|.023|.016|.007|
|------------------+----+----+----+----+----|
|9 |.259|.063|.016|.009|.005|
---------------------------------------------
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Display 1, continued:

EMPIRICAL (ESTIMATED-PARAMETER) ERROR RATE FOR N = 100
method quadratic
---------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|------------------+----+----+----+----+----|
|S | | | | | |
|------------------| | | | | |
|1 |.245| .| .| .| .|
|------------------+----+----+----+----+----|
|2 |.223|.092| .| .| .|
|------------------+----+----+----+----+----|
|3 |.204|.061| .| .| .|
|------------------+----+----+----+----+----|
|4 |.217|.050|.036| .| .|
|------------------+----+----+----+----+----|
|5 |.212|.039|.023| .| .|
|------------------+----+----+----+----+----|
|6 |.206|.041|.018|.013| .|
|------------------+----+----+----+----+----|
|7 |.207|.030|.012|.008| .|
|------------------+----+----+----+----+----|
|8 |.229|.035|.011|.006|.005|
|------------------+----+----+----+----+----|
|9 |.226|.036|.012|.004|.002|
---------------------------------------------

CALIBRATION SAMPLE SIZE REQUIRED FOR ERROR RATE < 0.05
method linear
---------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|------------------+----+----+----+----+----|
|S | | | | | |
|------------------| | | | | |
|1 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|2 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|3 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|4 | .| .| 11| .| .|
|------------------+----+----+----+----+----|
|5 | .| 24| 8| .| .|
|------------------+----+----+----+----+----|
|6 | .| 19| 9| 9| .|
|------------------+----+----+----+----+----|
|7 | .| 19| 9| 8| .|
|------------------+----+----+----+----+----|
|8 | .| 22| 9| 8| 8|
|------------------+----+----+----+----+----|
|9 | .| 25| 10| 9| 8|
---------------------------------------------
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Display 1, continued:

CALIBRATION SAMPLE SIZE REQUIRED FOR ERROR RATE < 0.05
method nearest neighbors
---------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|------------------+----+----+----+----+----|
|S | | | | | |
|------------------| | | | | |
|1 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|2 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|3 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|4 | .| .| 72| .| .|
|------------------+----+----+----+----+----|
|5 | .| .| 13| .| .|
|------------------+----+----+----+----+----|
|6 | .| .| 8| 6| .|
|------------------+----+----+----+----+----|
|7 | .| .| 10| 4| .|
|------------------+----+----+----+----+----|
|8 | .| .| 8| 4| 4|
|------------------+----+----+----+----+----|
|9 | .| .| 8| 4| 3|
---------------------------------------------

CALIBRATION SAMPLE SIZE REQUIRED FOR ERROR RATE < 0.05
method quadratic
---------------------------------------------
| | S+ |
| |------------------------|
| | 0 | 1 | 2 | 3 | 4 |
|------------------+----+----+----+----+----|
|S | | | | | |
|------------------| | | | | |
|1 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|2 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|3 | .| .| .| .| .|
|------------------+----+----+----+----+----|
|4 | .| 67| 18| .| .|
|------------------+----+----+----+----+----|
|5 | .| 60| 16| .| .|
|------------------+----+----+----+----+----|
|6 | .| 31| 16| 15| .|
|------------------+----+----+----+----+----|
|7 | .| 38| 17| 15| .|
|------------------+----+----+----+----+----|
|8 | .| 43| 19| 16| 16|
|------------------+----+----+----+----+----|
|9 | .| 45| 21| 18| 16|
---------------------------------------------
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7. SUMMARY

Before actual construction and testing of a sensor array, it is difficult to assess how effective

it may be in classifying objects of interest. While larger arrays obviously produce more data

than smaller arrays, much of the additional information is redundant in many cases. Further,

larger arrays depend on calibration models which contain more parameters for larger arrays,

and so may be estimated with less precision unless the effort spent in calibration is also

increased. The effects of these factors also depend on the nature of the classes of objects to

be classified in field operation.

The goal of the work leading to this report has been the development of a statistical model

and computer program to aid in planning the design of sensor arrays. The model is not

intended to reflect the specific details of any one type of physical sensor system, but is

motivated by general characteristics shared by many such systems. This report contains

a description of the model, three popular discriminant rules used in classification, and a

description and listing of a SAS program which can be used to calculate expected misclas-

sification rates for array configurations specified by the user. The program will also be

available via email from the first author (mmorris@iastate.edu) for a limited time.
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APPENDIX

The three files containing the SAS program described in this report are listed below. These

files will also be available via email from the first author (mmorris@iastate.edu) for a limited

time.

ARRAYSIZE.sas

*file name: "ARRAYSIZE.sas";

/*
This file sets the parameters for the simulation study. To
execute a simulation, this file, "main.sas" and "modules.sas"
must be placed in the same directory, along with a subdirectory
named "LIU".

*/

libname mylib ’SCRATCH’;
options center LS = 100;

* ARRAY AND EXPERIMENT SIZE PARAMETERS;
* maximum number of sensors;
%let s_max = 5;
* maximum training sample size;
%let n_max=50;
* targeted errpr rate;
%let err = 0.05;

* USER PARAMETERS DEFINING THE TWO CLASS DISTRIBUTIONS;
* common absolute difference between class means;
%let u_bigdelta = 2.5;
* common standard deviation of true values in class 1;
%let u_sigma1 = 1;
* common correlation between each pair of true values in class 1;
%let u_rho1 = .5;
* common standard deviation of true values in class 2;
%let u_sigma2 = 1;
* common correlation between each pair of true values in class 2;
%let u_rho2 = .5;
* common standard deviation of measurement errors in calibration environment;
%let u_delta =1;
* common correlation between measurement errors for any pair of sensors;
%let u_eta = .5;
* inflation in measurement error std. dev. for field environment;
%let u_phi = 1;
* probability that any given field measurement is for an object from class 1;
%let u_pi1 = .5;

* CHOICE OF DISCRIMINATION RULES;
* indicator variable to include (1) the linear rule;
%let linear=1;
* indicator variable to include (1) the quadratic rule;
%let quad=1;
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* indicator variable to include (1) the k-nearest-neighbor rule;
%let nearest=1;
* number of nearest neighbors used in the k-n-n rule;
%let k=1;

* SIMULATION PARAMETERS;
* number of up-and-down searches;
%let n_updown=500;
* validation sample size for class 1;
%let nvalid1 = 50;
* validation sample size for class 2;
%let nvalid2 = 50;
* repetitions to calculate plug-in rule’s error rate;
%let nrep_sim=50;
* sample size used to calculate theoretical error rate for quadratic rule;
%let nrep_th=10000;

*Include the main program;
%include "mainproc.sas";

mainproc.sas

*file name: "mainproc.sas";

proc sql;
create table mylib.result

(svec num, splus num, n_size num, err_th num, err_simu num,
err_std num, method char(8));

quit;

proc iml;

%include "modules.sas";

* Set parameters defining the two classes;
* means;
m = &u_bigdelta;
* sd’s and correlations for calibration;
sigma1c = sqrt(&u_sigma1**2+&u_delta**2);
sigma2c = sqrt(&u_sigma2**2+&u_delta**2);
rho1c = (&u_sigma1**2*&u_rho1+&u_delta**2*&u_eta)/sigma1c**2;
rho2c = (&u_sigma2**2*&u_rho2+&u_delta**2*&u_eta)/sigma2c**2;
* sd’s and correlations for field;
sigma1f = sqrt(&u_sigma1**2+&u_phi**2*&u_delta**2);
sigma2f = sqrt(&u_sigma2**2+&u_phi**2*&u_delta**2);
rho1f = (&u_sigma1**2*&u_rho1+&u_phi**2*&u_delta**2*&u_eta)/sigma1f**2;
rho2f = (&u_sigma2**2*&u_rho2+&u_phi**2*&u_delta**2*&u_eta)/sigma2f**2;
* probabilities for each class;
pi1 = &u_pi1;
pi2 = 1-&u_pi1;

print m sigma1c rho1c sigma2c rho2c;
print m sigma1f rho1f sigma2f rho2f;
print pi1 pi2;

err = &err;
s_max = &s_max;
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n_max=&n_max;
nsim=&n_updown;
nvalid1 = &nvalid1;
nvalid2 = &nvalid2;
nrep_sim=&nrep_sim;
seed=0;
nrep_th=&nrep_th;
k=&k;
linear=&linear;
quad=&quad;
nearest=&nearest;

print err s_max n_max nsim nvalid1 nvalid2;
print nrep_sim nrep_th;

* Permanent codes begin here;

nvalid = nvalid1+nvalid2;
ptemp=int(s_max/2);
if mod(s_max, 2)=0 then nrow=ptemp*(ptemp+2);
else nrow=ptemp*(ptemp+3)+1;

* LINEAR RULE;
if (linear = 1) then do;
svec = J(nrow, 1, .);
splus = J(nrow, 1, .);
err_th = J(nrow, 1, .);
err_simu = J(nrow, 1, .);
err_std = J(nrow, 1, .);
n_size = J(nrow, 1, .);
method = J(nrow, 1, ’L’);

* Calculate theoretic error rate and the sample_plug_in error rate
for given n_max;
irow=1;
do p = 1 to s_max;

do p_plus = 0 to int(p/2);
p_minus = p-p_plus;
svec[irow]=p;
splus[irow]=p_plus;
run muV(mu1,mu2,V1c,V1f,V2c,V2f,V1chalf,V1fhalf,V2chalf,V2fhalf,

p_plus,p_minus,m,sigma1c,sigma1f,sigma2c,sigma2f,rho1c,
rho1f,rho2c,rho2f);

run Lerr_th(pmis,pi1,pi2,mu1,mu2,V1c,V1f,V2c,V2f);
err_th[irow] = pmis;
run Le_rsim(pmis,std,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,

V2fhalf,p,n_max,nvalid1,nvalid2,nrep_sim);
err_simu[irow] = pmis;
err_std[irow] = std;
irow=irow+1;

end;
end;

* Calculate n for targeted error rate err;
* Note: This calculation is by-passed if err cannot be attained for n_max;
irow=1;
do p = 1 to s_max;

do p_plus = 0 to int(p/2);
p_minus = p-p_plus;
run muV(mu1,mu2,V1c,V1f,V2c,V2f,V1chalf,V1fhalf,V2chalf,V2fhalf,

p_plus,p_minus,m,sigma1c,sigma1f,sigma2c,sigma2f,rho1c,
rho1f,rho2c,rho2f);

if (err_simu[irow] < err) then do;
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run Lup_down(n,pmis,pi1,pi2,mu1,mu2,V1chalf,V1fhalf,V2chalf,
V2fhalf,nvalid,nsim,err);
run summary(nstar, mean, weight, n, pmis);
run p_adj_v(n0, mean_hat, nstar, mean, weight, err);
n_size[irow] = n0;

end;
irow=irow+1;

end;
end;

edit mylib.result var{svec splus n_size err_th err_simu err_std method};
append;
close mylib.result;

end;

* QUADRATIC RULE;
if (quad = 1) then do;
svec = J(nrow, 1, .);
splus = J(nrow, 1, .);
err_th = J(nrow, 1, .);
err_simu = J(nrow, 1, .);
err_std = J(nrow, 1, .);
n_size = J(nrow, 1, .);
method = J(nrow, 1, ’Q’);

* Calculate theoretic error rate and the sample_plug_in error rate
for given n_max;
irow=1;
do p = 1 to s_max;

do p_plus = 0 to int(p/2);
p_minus = p-p_plus;
svec[irow]=p;
splus[irow]=p_plus;
run muV(mu1,mu2,V1c,V1f,V2c,V2f,V1chalf,V1fhalf,V2chalf,V2fhalf,

p_plus,p_minus,m,sigma1c,sigma1f,sigma2c,sigma2f,rho1c,
rho1f,rho2c,rho2f);

run Qerr_th(pmis,pi1,pi2,mu1,mu2,V1c,V1f,V1chalf,V1fhalf,V2c,V2f,
V2chalf,V2fhalf,seed,nrep_th);

err_th[irow] = pmis;
run Qe_rsim(pmis,std,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,

V2fhalf,p,n_max,nvalid1,nvalid2,nrep_sim);
err_simu[irow] = pmis;
err_std[irow] = std;
irow=irow+1;

end;
end;

* Calculate n for targeted error rate err;
* Note: This calculation is by-passed if err cannot be attained for n_max;
irow=1;
do p = 1 to s_max;

do p_plus = 0 to int(p/2);
p_minus = p-p_plus;
run muV(mu1,mu2,V1c,V1f,V2c,V2h,V1chalf,V1fhalf,V2chalf,V2fhalf,

p_plus,p_minus,m,sigma1c,sigma1f,sigma2c,sigma2f,rho1c,
rho1f,rho2c,rho2f);

if (err_simu[irow] < err) then do;
run Qup_down(n,pmis,pi1,pi2,mu1,mu2,V1chalf,V1fhalf,V2chalf,

V2fhalf,nvalid,nsim,err);
run summary(nstar, mean, weight, n, pmis);
run p_adj_v(n0, mean_hat, nstar, mean, weight, err);
n_size[irow] = n0;

end;
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irow=irow+1;
end;

end;

edit mylib.result var{svec splus n_size err_th err_simu err_std method};
append;
close mylib.result;

end;

* K-NEAREST-NEIGHBOR RULE;
if (nearest = 1) then do;
svec = J(nrow, 1, .);
splus = J(nrow, 1, .);
err_th = J(nrow, 1, .);
err_simu = J(nrow, 1, .);
err_std = J(nrow, 1, .);
n_size = J(nrow, 1, .);
method = J(nrow, 1, ’N’);

* Calculate theoretic error rate and the sample_plug_in error rate
for given n_max;
irow=1;
do p = 1 to s_max;

do p_plus = 0 to int(p/2);
p_minus = p-p_plus;
svec[irow]=p;
splus[irow]=p_plus;
run muV(mu1,mu2,V1c,V1f,V2c,V2f,V1chalf,V1fhalf,V2chalf,V2fhalf,

p_plus,p_minus,m,sigma1c,sigma1f,sigma2c,sigma2f,rho1c,
rho1f,rho2c,rho2f);

run KNe_rsim(pmis,std,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,
V2fhalf,p,n_max,nvalid1,nvalid2,k,nrep_sim);

err_simu[irow] = pmis;
err_std[irow] = std;
irow=irow+1;

end;
end;

* Calculate n for targeted error rate err;
* Note: This calculation is by-passed if err cannot be attained for n_max;
irow=1;
do p = 1 to s_max;

do p_plus = 0 to int(p/2);
p_minus = p-p_plus;
run muV(mu1,mu2,V1c,V1f,V2c,V2f,V1chalf,V1fhalf,V2chalf,V2fhalf,

p_plus,p_minus,m,sigma1c,sigma1f,sigma2c,sigma2f,rho1c,
rho1f,rho2c,rho2f);

if (err_simu[irow] < err) then do;
run Nup_down(n,pmis,pi1,pi2,mu1,mu2,V1chalf,V1fhalf,V2chalf,

V2fhalf,nvalid,nsim,n_max,err,k);
run summary(nstar, mean, weight, n, pmis);
run p_adj_v(n0, mean_hat, nstar, mean, weight, err);
n_size[irow] = n0;

end;
irow=irow+1;

end;
end;

edit mylib.result var{svec splus n_size err_th err_simu err_std method};
append;
close mylib.result;

end;
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quit;

proc print data = mylib.result;
run;

proc format;
value $method L = ’linear’

Q = ’quadratic’
N = ’nearest neighbors’;

proc tabulate data=mylib.result(where = (method NE ’N’));
class svec splus method;
var err_th;
format method $method.;
table method,

svec,
err_th = ’ ’* SUM =’ ’*splus*F = 4.3 /
condense RTS = 25;

label svec = ’S’
splus = ’S+’;

title "THEORETICAL (KNOWN-PARAMETER) ERROR RATE ";
run;

proc tabulate data=mylib.result missing;
class svec splus method;
var err_simu;
format method $method.;
table method,

svec,
err_simu = ’ ’* SUM =’ ’*splus*F = 4.3 /
condense RTS = 20;

label svec = ’S’
splus = ’S+’;

title "EMPIRICAL (ESTIMATED-PARAMETER) ERROR RATE FOR N = &n_max ";
run;

proc tabulate data=mylib.result missing;
class svec splus method;
var n_size;
format method $method.;
table method,

svec,
n_size = ’ ’* SUM =’ ’*splus*F = 4.0 /
condense RTS = 20;

label svec = ’S’
splus = ’S+’;

title "CALIBRATION SAMPLE SIZE REQUIRED FOR ERROR RATE < &err ";
run;

modules.sas

*file name: "modules.sas";

/*------------------------------------------------------------------------#
Modules to support discriminant analysis calculations:

Two classes are N(mu1, V1), N(mu2, V2).
Probabilities of the classes, pi1, pi2, are known.
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The training samples of the two classes have equal size n.
The validation sample size is ’nvalid’.

#------------------------------------------------------------------------*/

START myhalf(X, sigma, rho, p);
/*------------------------------------------------------------------------#
For V=sigma*sigma*[(1-rho)*Ip+rho*1*1’], find X such that V=X*X.
NOTE: rho>-1/(p-1) must hold such that V is positive definite.

#------------------------------------------------------------------------*/
alpha=sqrt(1-rho);
beta=(-alpha+sqrt(alpha*alpha+p*rho))/p;
X=sigma*(alpha*I(p)+beta*J(p,p,1));

FINISH;

START muV(mu1,mu2,V1c,V1f,V2c,V2f,V1chalf,V1fhalf,V2chalf,V2fhalf,p_plus,
p_minus,m,sigma1c,sigma1f,sigma2c,sigma2f,rho1c,rho1f,rho2c,
rho2f);

/*------------------------------------------------------------------------#
INPUT: p_plus, p_minus, m, sigma1, sigma2, rho1, and rho2,
OUTPUT: mu1, mu2, V1, V2 V1half, V2half.

V1=sigma1*sigma1*[(1-rho1)*Ip+rho1*1*1’];
V2=sigma2*sigma2*[(1-rho2)*Ip+rho2*1*1’];
V1half**2=V1;
V2half**2=V2;
mu1=J(p,1,0);
mu2={m,...,m, -m, ..., -m};

------- -----------
p_plus p_minus
terms terms

#------------------------------------------------------------------------*/
p = p_plus+p_minus;
mu1 = J(p, 1, 0);
if (p_plus=0) then mu2=J(p_minus,1,-m);
else if (p_minus=0) then mu2=J(p_plus,1,m);
else mu2=J(p_plus,1,m)//J(p_minus,1,-m);
V1c = sigma1c**2*((1-rho1c)*I(p)+rho1c*J(p,p,1));
V1f = sigma1f**2*((1-rho1f)*I(p)+rho1f*J(p,p,1));
V2c = sigma2c**2*((1-rho2c)*I(p)+rho2c*J(p,p,1));
V2f = sigma2f**2*((1-rho2f)*I(p)+rho2f*J(p,p,1));
run myhalf(V1chalf, sigma1c, rho1c, p);
run myhalf(V1fhalf, sigma1f, rho1f, p);
run myhalf(V2chalf, sigma2c, rho2c, p);
run myhalf(V2fhalf, sigma2f, rho2f, p);

FINISH;

START smv1(xbar, S, n, p);
/*------------------------------------------------------------------------#

Given a sample of size n from N(0, I(pxp)), calculate the sample mean
vector xbar and the sample covariance matrix S.
*INPUT: n, p.
*OUTPUT: xbar, S.

#------------------------------------------------------------------------*/
temp=J(p, 1, 0);
mtemp=J(p, 1, 0);
Stemp=J(p, p, 0);
do i=1 to n;
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x=normal(temp);
mtemp=mtemp+x;
Stemp=Stemp+x*x‘;

end;
xbar=mtemp/n;
S=(Stemp-n*xbar*xbar‘)/(n-1);

FINISH;

START smv2(xbar, S, n, mu, Vhalf);
/*------------------------------------------------------------------------#

Given a sample of size n from N(mu, V), where V=Vhalf*Vhalf, calculate
the sample mean vector xbar and the sample covariance matrix S
(assuming we don’t know the structure of V).
INPUT: n, mu, Vhalf.
OUTPUT: xbar, S.

#------------------------------------------------------------------------*/
p=nrow(mu);
run smv1(xbar0, S0, n, p);
xbar=mu+Vhalf*xbar0;
S=Vhalf*S0*Vhalf;

FINISH;

START Lrule(b, k, pi1, pi2, mu1, mu2, V1, V2);
/*------------------------------------------------------------------------#
Given two classes: N(mu1, V1)---class 1, N(mu2, V2)--class 2,

and the priors: pi1, pi2,
find the LINEAR rule: if b’x<=k then class 1.
*INPUT: pi1, pi2, mu1, mu2, V1, V2;
*OUTPUT: b, k.

#------------------------------------------------------------------------*/
V = 0.5#V1+0.5#V2; *BECAUSE OF EQUAL TRAINING SAMPLE SIZE for 2 CLASSES;
Vinv = inv(V);
b1 = Vinv*mu1;
b2 = Vinv*mu2;
b = b2-b1;
k = 0.5*sum(mu2#b2-mu1#b1)+log(pi1/pi2);

FINISH;

START Qrule(A, b, k, pi1, pi2, mu1, mu2, V1, V2);
/*------------------------------------------------------------------------#
Given two classes: N(mu1, V1)---class 1, N(mu2, V2)--class 2,

and the priors: pi1, pi2,
find the QUADRATIC rule: if x’Ax+b’x<=k then class 1.
*INPUT: pi1, pi2, mu1, mu2, V1, V2;
*OUTPUT: A, b, k.

#------------------------------------------------------------------------*/
Vinv1 = inv(V1);
Vinv2 = inv(V2);
b1 = Vinv1*mu1;
b2 = Vinv2*mu2;
A = Vinv1-Vinv2;
b = -2*(b1-b2);
k = 2*log(pi1/pi2)-log(det(V1)/det(V2))+sum(b2#mu2-b1#mu1);

FINISH;
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START Lerr_th(pmis,pi1,pi2,mu1,mu2,V1c,V1f,V2c,V2f);
/*------------------------------------------------------------------------#
Given two classes: N(mu1, V1)---class 1, N(mu2, V2)--class 2,

and the priors: pi1, pi2,
find the THEORETIC misclassification probability of LINEAR rule: "pmis".
*INPUT: pi1, pi2, mu1, mu2, V1, V2;
*OUTPUT: pmis.

#------------------------------------------------------------------------*/
run Lrule(b, k, pi1, pi2, mu1, mu2, V1c, V2c);
d1 = sqrt(sum(b#(V1f*b)));
d2 = sqrt(sum(b#(V2f*b)));
pmis = pi1*(1-PROBNORM((k-sum(b#mu1))/d1))+

pi2*PROBNORM((k-sum(b#mu2))/d2);
FINISH;

START Qerr_th(pmis,pi1,pi2,mu1,mu2,V1c,V1f,V1chalf,V1fhalf,V2c,V2f,
V2chalf,V2fhalf,seed,nrep);

/*------------------------------------------------------------------------#
Given two classes: N(mu1, V1)---class 1, N(mu2, V2)--class 2,

and the priors: pi1, pi2,
find the THEORETIC misclassification probability of QUADRATIC rule:
"pmis".

METHOD: We generate a random sample of size "nrep" from each class.
Then calculate the error rates "pmis1" and "pmis2". The error rate
is pi1*pmis1+pi2*pmis2.

*INPUT: pi1, pi2, mu1, mu2, V1, V2;
seed -- random seed;
nrep -- the number of simulations;

*OUTPUT: pmis.
#------------------------------------------------------------------------*/
run Qrule(A, b, k, pi1, pi2, mu1, mu2, V1c, V2c);
p = nrow(mu1);
count = 0;
do i = 1 to nrep;

x = mu1+V1fhalf*normal(J(p, 1, seed));
if sum(x#(A*x))+sum(b#x) >= k then count = count+1;

end;
pmis1 = count/nrep;
count = 0;
do i = 1 to nrep;

x = mu2+V2fhalf*normal(J(p, 1, seed));
if sum(x#(A*x))+sum(b#x) < k then count = count+1;

end;
pmis2 = count/nrep;
pmis = pi1*pmis1+pi2*pmis2;

FINISH;

START Lerr_sim(pmis,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,p,n,
nvalid1,nvalid2);

/*------------------------------------------------------------------------#
Given two classes: N(mu1, V1)---class 1, N(mu2, V2)--class 2,
and the priors: pi1, pi2,
find LINEAR rule’s real misclassification probability "pmis" by
simulation.

*INPUT: pi1 and pi2 are priors,
mu1, mu2, V1half, V2half,
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p -- the number of sensors;
n -- training sample size for each class;
nvalid1/nvailid2 -- validation sample size for class 1/2;

*OUTPUT: pmis.
#------------------------------------------------------------------------*/

*Calculate sample mean vectors mu1_h and mu2_h, and sample
covariance matrices S1 and S2;
DO until(det(0.5*S1+0.5*S2)^=0);
RUN smv2(mu1_h, S1, n, mu1, V1chalf);
RUN smv2(mu2_h, S2, n, mu2, V2chalf);

END;
*generate Validation sample;
Xvalid1 = normal(J(nvalid1, p, 0))*V1fhalf + J(nvalid1,1,1)*mu1‘;
Xvalid2 = normal(J(nvalid2, p, 0))*V2fhalf + J(nvalid2,1,1)*mu2‘;
RUN Lrule(b, k, pi1, pi2, mu1_h, mu2_h, S1, S2);
nmis = sum(Xvalid1*b > k)+sum(Xvalid2*b <= k);
pmis = nmis/(nvalid1+nvalid2);

FINISH;

START Qerr_sim(pmis,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,
p,n,nvalid1,nvalid2);

/*------------------------------------------------------------------------#
Given two classes: N(mu1, V1)---class 1, N(mu2, V2)--class 2,

and the priors: pi1, pi2,
find Quadratic rule’s real misclassification probability "pmis" by
simulation.

*INPUT: pi1 and pi2 are priors,
mu1, mu2, V1half, V2half,
p -- the number of sensors;
n -- training sample size for each class;
nvalid1/nvailid2 -- validation sample size for class 1/2;

*OUTPUT: pmis.
#------------------------------------------------------------------------*/

*Calculate sample mean vectors mu1_h and mu2_h, and sample covariance
matrices S1 and S2;
DO until(det(S1)*det(S2)^=0);
RUN smv2(mu1_h, S1, n, mu1, V1chalf);
RUN smv2(mu2_h, S2, n, mu2, V2chalf);

END;
*generate Validation sample;
Xvalid1 = normal(J(nvalid1, p, 0))*V1fhalf + J(nvalid1,1,1)*mu1‘;
Xvalid2 = normal(J(nvalid2, p, 0))*V2fhalf + J(nvalid2,1,1)*mu2‘;
RUN Qrule(A, b, k, pi1, pi2, mu1_h, mu2_h, S1, S2);
nmis = sum(((Xvalid1*A)#Xvalid1)[,+]+Xvalid1*b > k)+

sum(((Xvalid2*A)#Xvalid2)[,+]+Xvalid2*b <= k);
pmis = nmis/(nvalid1+nvalid2);

FINISH;

START kmin(i_out, x, n, k);
/*------------------------------------------------------------------------#
Given a (n by 1) vector x, find the indices(positions) of its k
smallest elements

#------------------------------------------------------------------------*/
i_in = 1: n;
i_out = J(1,k,0);
do i = 1 to k;

temp = x[>:<];
i_out[i] = i_in[temp];
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x = remove(x, temp);
i_in = remove(i_in, temp);

end;
FINISH;

START KNearest(pmis,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,p,n,
nvalid1,nvalid2,k);

/*------------------------------------------------------------------------#
Given two classes: N(mu1, V1)---class 1, N(mu2, V2)--class 2,

and the priors: pi1, pi2,
find K-NEAREST NEIGHBORS rule’s misclassification probability "pmis" by

simulation.

*INPUT: k -- the number of neighbors considered,
pi1 and pi2 are priors,
mu1, mu2, V1half, V2half,
p -- the number of sensors;
n -- training sample size for each class;
nvalid1/nvailid2 -- validation sample size for class 1/2;

*OUTPUT: pmis.
#------------------------------------------------------------------------*/

*generate training and Validation samples;
nvalid=nvalid1+nvalid2;

X1c = normal(J(n,p,0))*V1chalf+J(n,1,1)*mu1‘;
X2c = normal(J(n,p,0))*V2chalf+J(n,1,1)*mu2‘;
X1f = normal(J(nvalid1,p,0))*V1fhalf+J(nvalid1,1,1)*mu1‘;
X2f = normal(J(nvalid2,p,0))*V2fhalf+J(nvalid2,1,1)*mu2‘;
Xtrain=X1c//X2c;
Xvalid=X1f//X2f;
Ipred = J(nvalid, 1, 0);
do i=1 to nvalid;

dtemp = (Xtrain-J(2*n,1,1)*Xvalid[i,])##2;
dsqr = (dtemp[, +])‘;
run kmin(temp, dsqr, 2*n, k);
Ipred[i] = (sum(temp <= n)/k >= 0.5);

end;
pmis = pi1*(1-sum(Ipred[1:nvalid1])/nvalid1)+

pi2*sum(Ipred[(1+nvalid1):nvalid])/nvalid2;
FINISH;

START Le_rsim(pmis,std,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,
p,n,nvalid1,nvalid2,nrep);

/*------------------------------------------------------------------------#
Use a number of simulations to estimate LINEAR rule’s misclassification
error probability.
*INPUT: pi1 and pi2 are priors,

mu1, mu2, V1half, V2half,
p -- the number of sensors;
n -- training sample size for each class;
nvalid1/nvailid2 -- validation sample size for class 1/2;
nrep -- the number of simulations.

*OUTPUT: pmis -- the estimate of the misclassification probability;
std -- the standard error of the above estimator.

#------------------------------------------------------------------------*/
pmis_vec=J(nrep,1,0);
do i=1 to nrep;
run Lerr_sim(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,n,nvalid1,nvalid2);
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pmis_vec[i]=pmis_t;
end;
pmis=pmis_vec[+]/nrep;
v=(sum(pmis_vec#pmis_vec)-nrep*pmis**2)/(nrep-1);
std=sqrt(v);

FINISH;

START Qe_rsim(pmis,std,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,
p,n,nvalid1,nvalid2,nrep);

/*------------------------------------------------------------------------#
Use a number of simulations to estimate QUADRATIC rule’s misclassification
error probability.
*INPUT: pi1 and pi2 are priors,

mu1, mu2, V1half, V2half,
p -- the number of sensors;
n -- training sample size for each class;
nvalid1/nvailid2 -- validation sample size for class 1/2;
nrep -- the number of simulations.

*OUTPUT: pmis -- the estimate of the misclassification probability;
std -- the standard error of the above estimator.

#------------------------------------------------------------------------*/
pmis_vec=J(nrep,1,0);
do i=1 to nrep;
run Qerr_sim(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,n,nvalid1,nvalid2);
pmis_vec[i]=pmis_t;

end;
pmis=pmis_vec[+]/nrep;
v=(sum(pmis_vec#pmis_vec)-nrep*pmis**2)/(nrep-1);
std=sqrt(v);

FINISH;

START KNe_rsim(pmis,std,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,
p,n,nvalid1,nvalid2,k,nrep);

/*------------------------------------------------------------------------#
Use a number of simulations to estimate K-NN rule’s misclassification
error probability.
*INPUT: k--the number of neighbors considered,

pi1 and pi2 are priors,
mu1, mu2, V1half, V2half,
p -- the number of sensors;
n -- training sample size for each class;
nvalid1/nvailid2 -- validation sample size for class 1/2;
nrep -- the number of simulations.

*OUTPUT: pmis -- the estimate of the misclassification probability;
std -- the standard error of the above estimator.

#------------------------------------------------------------------------*/
pmis_vec=J(nrep,1,0);
do i=1 to nrep;
run KNearest(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,n,nvalid1,nvalid2,k);
pmis_vec[i]=pmis_t;

end;
pmis=pmis_vec[+]/nrep;
v=(sum(pmis_vec#pmis_vec)-nrep*pmis**2)/(nrep-1);
std=sqrt(v);

FINISH;
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START Lup_down(n,pmis,pi1,pi2,mu1,mu2,V1chalf,V1fhalf,V2chalf,V2fhalf,
nvalid,nsim,err);

/*------------------------------------------------------------------------#
For LINEAR rule, suppose err is the targeted error rate, which is
achievable theoretically.
We do a random walk ("up and down" search) to figure out the needed
training sample size.

*INPUT: pi1, pi2 -- priors;
mu1/mu2 -- mean vector of class 1/2;
V1half,V2half -- square root of the cov matrix of class 1/2;
nsim -- the number of times of "up and down" search,
nvalid -- validation sample size,
err -- targeted error rate,

*OUTPUT:
n -- nsim-dimensional vector, each element representing a

training sample size;
pmis -- the error rate from validation sample.

#------------------------------------------------------------------------*/
pmis=J(nsim, 1, 0);
n=J(nsim, 1, 0);
p = nrow(mu1);
nvalid1=pi1*nvalid;
nvalid2=nvalid-nvalid1;
ntemp=int(p/2)+1;
do until(pmis_t < err);

ntemp = ntemp+20;
run Lerr_sim(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,ntemp,nvalid1,nvalid2);
end;
pmis[1]=pmis_t;
n[1]=ntemp;
ntemp=ntemp-1;
do i=2 to nsim;

n[i]=ntemp;
run Lerr_sim(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,ntemp,nvalid1,nvalid2);
pmis[i]=pmis_t;
if pmis_t<err then ntemp=max(ntemp-1,int(p/2)+1,2);
else ntemp=ntemp+1;

end;
FINISH;

START Qup_down(n,pmis,pi1,pi2,mu1,mu2,V1chalf,V1fhalf,V2chalf,V2fhalf,
nvalid,nsim,err);

/*------------------------------------------------------------------------#
For QUADRATIC rule, suppose err is the targeted error rate,
which is achievable theoretically.
We do a random walk ("up and down" search) to determine the needed
training sample size.

*INPUT: pi1, pi2 -- priors;
mu1/mu2 -- mean vector of class 1/2;
V1half,V2half -- square root of the cov matrix of class 1/2;
nsim -- the number of times of "up and down" search,
nvalid -- validation sample size,
err -- targeted error rate,

*OUTPUT:
n -- nsim-dimensional vector, each element representing a

training sample size;
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pmis -- the error rate from validation sample.
#------------------------------------------------------------------------*/
pmis=J(nsim, 1, 0);
n=J(nsim, 1, 0);
p = nrow(mu1);
nvalid1=pi1*nvalid;
nvalid2=nvalid-nvalid1;
ntemp=int(p/2)+1;
do until(pmis_t < err);

ntemp = ntemp+20;
run Qerr_sim(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,ntemp,nvalid1,nvalid2);
end;
pmis[1]=pmis_t;
n[1]=ntemp;
ntemp=ntemp-1;
do i=2 to nsim;

n[i]=ntemp;
run Qerr_sim(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,ntemp,nvalid1,nvalid2);
pmis[i]=pmis_t;
if pmis_t<err then ntemp=max(ntemp-1,p+1);
else ntemp=ntemp+1;

end;
FINISH;

START Nup_down(n,pmis,pi1,pi2,mu1,mu2,V1chalf,V1fhalf,V2chalf,V2fhalf,
nvalid,nsim,n_max,err,k);

/*------------------------------------------------------------------------#
For k-NN rule, suppose err is the targeted error rate, which is
achievable as n=nmax.
We do a random walk ("up and down" search) to determine the needed
training sample size.

*INPUT: pi1, pi2 -- priors;
mu1/mu2 -- mean vector of class 1/2;
V1half,V2half -- square root of the cov matrix of class 1/2;
nsim -- the number of times of "up and down" search,
nvalid -- validation sample size,
n_max -- the maximum training sample size that is practical,
err -- targeted error rate,
k -- the number of neighbors considered.

*OUTPUT:
n -- nsim-dimensional vector, each element representing a

training sample size;
pmis -- the error rate from validation sample.

#------------------------------------------------------------------------*/
pmis=J(nsim, 1, 0);
n=J(nsim, 1, 0);
p = nrow(mu1);
nvalid1=pi1*nvalid;
nvalid2=nvalid-nvalid1;
ntemp=2*k;
do until(pmis_t < err);

ntemp = ntemp+5;
run KNearest(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,ntemp,nvalid1,nvalid2,k);
end;
pmis[1]=pmis_t;
n[1]=ntemp;
ntemp=ntemp-1;
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do i=2 to nsim;
n[i]=ntemp;
run KNearest(pmis_t,pi1,pi2,mu1,V1chalf,V1fhalf,mu2,V2chalf,V2fhalf,

p,ntemp,nvalid1,nvalid2,k);
pmis[i]=pmis_t;
if pmis_t<err then ntemp=max(ntemp-1, k+1);
else ntemp=min(ntemp+1, n_max+5);

end;
FINISH;

START summary(nstar, mean, weight, n, pmis);
/*------------------------------------------------------------------------#
INPUT: n -- vector, training sample size;

pmis -- vector, error rate;
OUTPUT:

nstar -- vector with distinct elements, containing all possible
values in the input vector "n";

mean -- the mean of pmis corresponding to each possible value
in input vector "n";

weight -- the frequency of each possible value in input vector "n";

#------------------------------------------------------------------------*/
nstar = n;
pmisstar = pmis;
create mydata var{nstar pmisstar}; append; close mydata;
use mydata;
summary var {pmisstar} class {nstar} stat{mean N} opt{noprint save};
call delete(work, mydata);
mean = pmisstar[,1];
weight =pmisstar[,2];

FINISH;

START p_adj_v(x0, y_hat, x, y, weight, y0);
/*------------------------------------------------------------------------#
"pool_adjacent_violators" algorithm

*INPUT: x, value, weight, value0;
*OUTPUT: x0, v_hat;
#------------------------------------------------------------------------*/
* data structure: linked list;
n=nrow(y);
id=do(1, n, 1)‘;
last=do(1, n, 1)‘;
prev=do(0, n-1, 1)‘;
W=weight;
yy=y;
Ivec=J(n,1,0);
L=J(n,1,0);
V=J(n,1,0);
y_hat=J(n,1,0);
ptr=1;
stop_y=0;
do until(stop_y=1);
if (ptr=1) then

do;
if last[ptr]=n then do; stop_y=1; goto jump; end;
else ptr=last[ptr]+1;

end;
if (yy[ptr]< yy[prev[ptr]]) then
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do;
if last[ptr]=n then stop_y=1;
else ptr=last[ptr]+1;

end;
else

do;
ptr_new=prev[ptr];
wgt=W[ptr_new]+W[ptr];
val=(W[ptr_new]*yy[ptr_new]+W[ptr]*yy[ptr])/wgt;
last[ptr_new]=last[ptr];
W[ptr_new]=wgt;
yy[ptr_new]=val;
if (last[ptr]^=n) then prev[last[ptr]+1]=id[ptr_new];
ptr=ptr_new;

end;
jump:

*********;
end;
ii = 1;
pt = 1;
stop2_y = 0;
do until(stop2_y = 1);

Ivec[ii]=pt;
L[ii]=last[pt];
V[ii]=yy[pt];
if (last[pt]=n) then do; stop2_y = 1; goto jump2; end;
pt= L[ii]+1;
ii=ii+1;
jump2: ******;

end;
Vmin=min(V[1:ii]);
if (y0<Vmin) then x0=.;

*************;
else

do;
ii0=min(loc(V[1:ii]<=y0));
ind0=Ivec[ii0];
x0=x[ind0];

end;
k = 0;
do i = 1 to ii;

do j = Ivec[i] to L[i];
k = k+1;
y_hat[k] = V[i];

end;
end;

FINISH;

48



ORIGINAL DISTRIBUTION

Dr. David Baldwin
Environmental and Protection Sciences Program
Ames Laboratory
9 Spedding Hall
Ames, IA 50011

Dr. Vivian Baylor
Manager, Nonproliferation R&D
National Security Program Office
1099 Commerce Park, Rm. E-11, MS-8260
Oak Ridge, TN 37830

Dr. Richard Cernosek
Microsensor R&D Dept.
Sandia National Laboratories
P.O. Box 5800, M/S 1425
Albuquerque, NM 87185-1425

Dr. Panos Datskos
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831-8039

Dr. Terry Donaldson
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831-6044

Dr. Gordon Dudder
Pacific Northwest National Laboratory
PO Box 999, MS K9-55
Richland, WA 99352

Ms. Alison Easter
Ames Laboratory
125 Spedding Hall
Ames, IA 50011

Prof. Sherwood Ebey
Department of Mathematics and Computer Science
The University of the South
735 University Avenue
Sewanee, Tennessee 37383-1000

Dr. Bill Flounders
Biosystems Research Department
Sandia National Laboratories
PO Box 969, MS9951
Livermore, CA 94551-0969

Dr. Carl Friesen
Idaho National Engineering and Environmental Laboratory
P.O. Box 1625, Mail Stop 1222
Idaho Falls, ID 83415

49



Dr. Barbara Hoffheins
Department of Energy NN-20
Forrestal Building
1000 Independence Avenue S.W.
Washington, DC 20585-0420

Dr. Bob Hughes
P.O. Box 5800, Mail Stop 1425
Sandia National Laboratories
Albuquerque, NM 87185-1425

Prof. Karen Kafadar
Department of Mathematics
University of Colorado at Denver
P.O. Box 173364, Campus Box 170
Denver, CO 80217-3364

Dr. Sallie Keller-McNulty
Los Alamos National Laboratory
Mail Stop F600
Los Alamos, NM 87545

Dr. Fred Milanovich
Lawrence Livermore National Laboratory
P.O. Box 808, MS L-524
Livermore, CA 94550

Dr. Michael O’Connell
Department of Energy NN-20
Forrestal Building
1000 Independence Avenue S.W.
Washington, DC 20585-0420

Prof. Michael Pishko
Department of Chemical Engineering
Texas A&M University
3122 TAMU
College Station, TX 77843-3122

Dr. Richard Pollina
Nevada Test Site
P.O. Box 98521
Las Vegas, NV 89193-8521

Dr. Steve Schubert
Department of Energy NN-20
Forrestal Building
1000 Independence Avenue S.W.
Washington, DC 20585-0420

Dr. Robert Waldron
Department of Energy NN-20
Forrestal Building
1000 Independence Avenue S.W.
Washington, DC 20585-0420

50



Prof. Denise Wilson
Department of Electrical Engineering
M222 EE/CSE Bldg.
Box 352500
University of Washington
Seattle, WA 98195

Dr. Brian Worley
Oak Ridge National Laboratory
Building 6012
P.O. Box 2008
Oak Ridge, TN 37831

Dr. Robert Young
946 Torrey Pine Drive
Winter Springs, FL 32708-4346

51


