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Abstract

COYOTE and similar combustion programs based on the multicomponent Navier-
Stokes equations require the mixture viscosity, thermal conductivity, and species trans-
port coefficients as input. This report documents a model of these molecular trans-
port coefficients that is simpler than the general theory, but which provides adequate
accuracy for many purposes. This model leads to a computationally convenient, self-
contained, and easy-to-use source of such data in a format suitable for use by such
programs. We present the data for various neutral species in two forms. The first
form is a simple functional fit to the transport coefficients. The second form is the
use of tabulated Lennard-Jones parameters in simple theoretical expressions for the
gas-phase transport coefficients. The model then is extended to the case of a two-
temperature plasma. Lennard-Jones parameters are given for a number of chemical
species of interest in combustion research.



1 Introduction

Viscosity, thermal conductivity, and species transport coefficients are an important part of
any cffort to make realistic numerical simulations of reactive flows, especially in the laminar
regime. Inclusion of molecular transport effects in a computational fluid dynamics (CFD)
code requires resolution of three issucs. The first is the level of approximation used in
computing the molecular diffusion fluxes of mass, momentum, and cnergy. The second is
the specification of the appropriate transport coefficients for each species. The third is the
development of numerical algorithms for implementation into CFD codes. We shall address
only the first two issucs here.

The full theory of molecular transport in multicomponent fluids is extremely complex
(1], for example) and is computationally unsuited for use in a multidimensional CFD pro-
gram. It is necessary to simplify the problem by introducing some level of approximation.
Coffce and Heimerl [2] present a study comparing five such models. The most sophisticated
is described also by Dixon-Lewis [3], and it requires solution of two lincar systems in order to
compute the mass and heat fluxes at a single point in space and time. This model has been
implemented in the widely used CHEMKIN program [4]-[7], but it is rather computation-
ally intensive for use in multidimensional CFD codes. A simpler approximation is adopted
that avoids solving numerous linear systems and is discussed by Coffee and Heimerl and by
Paul [8].

The second part of the problem is the specification of the species transport coeficients.
Unfortunately, the available data arc scattered widely throughout the literature of chemistry,
physics, and cngincering in a wide variety of formats and units. This information must be
collected, assessed for accuracy, and put into an appropriate format before it can be used
in any particular CFD program. Due to the large number of specics of potential interest
in combustion studics (potentially a thousand or more for a single problem), creating and
maintaining such a database can become a major task. The program system CHEMKIN [4]-
[7] is an excellent example of a computerized database designed to address this need. Use of
this package has two advantages: avoidance of the effort required to independently collect

the data in a usable form and the ability to use the same gas physics as a wide community



of researchers. For thesc reasons, sclected parts of the CHEMKIN transport model were
adopted, most notably the use of the Lennard-Jones model for most neutral specics.

The remainder of this report presents the molecular transport model used in the
COYOTE reactive-flow CFD program [9]. This includes both the constitutive relations
for the mass, momentum, and cnergy fluxes as well as expressions for the transporf coef-
ficients. Section 2 presents this information for un-ionized gases, including two models for
computation of specics viscositics and thermal conductivities. These two choices are a sim-
ple parametric fitting function (a slightly gencralized Sutherland cquation) and the use of
the Lennard-Jones parameters in simple analytical expressions for the transport cocflicients.
Sample data for both approaches are given in the tables in this report. Binary diffusion
coefficients are computed from the Lennard-Jones model. Section 3 presents an extension of
this model to lonized gases. In all cases, simple mixture rules are used to get viscosity and
conductivity for a mixture with an arbitrary composition. The final section contains some

concluding comments.

2 Transport Coefficients for Un-Ionized Gases

Computing the transport cocflicients for a multicomponent fluid in complete generality is
a complex, difficult task. We adopt approximations that arc computationally tractable. In
particular, we want to avoid the lincar sytems used in CHEMKIN while retaining as much
similarity as possible. In this section, we discuss momentum, energy, and mass transport
in separate subsections. Models for the transport cocfficients and for the various fluxes are

presented in the next three subsections.

2.1 The Coefficient of Viscosity

Let T be the viscous stress tensor for a Newtonian fluid,
T=p[Vu+ (Vo)) + m(V-u)U

= [V (V)] + (s %“) (V-u)U. (1)

Here u is the velocity of the fluid mixture, U is the unit tensor, u is the coefficient of viscosity,

11 is the second coefficient of viscosity, and g is the bulk viscosity.
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What we require is a procedure for specifying the coefficient of viscosity for the
mixture of species composing the fluid. The first step in calculating the mixture viscosity is
to evaluate the viscosity for cach specics. At the pressures and temperatures found in typical
combustion systems, the species cocfficients of viscosity are almost independent of density,
so we assume they are functions only of tempcerature. We allow two ways of specifying
the cocflicient of viscosity. The first is a simple four-parameter analytic function that is
suitable for fitting tabulated viscosity data. The sccond form is based on the Lennard-Jones

parameters for each gas species.

Table 1. Coefficient of Viscosity
Species  ng Aq B, C, T Range Ref
Air 1.5 1457x 107 110.0 0.0 Unknown

Air 1.51  1.387x107% 105.1 0.0  79-1407 [13]
N, 1.52 1186 x 107> 86.54 0.0 251-1098 [13]
0, 146 2294 x 107° 1644 0.0 273-1102 [13]
o 1.5 1.16x 1073 0.0 0.0 - [14)
C3Hg 172 1.802x107% 101.0 0.0  290-472 [13]
SFs 1.7 3526x10°% 731 0.0 223-573 [15]
H, 1.67  1.963x 1075 2.187 0.0  89-1098 [13]
H 15 3.95x 1078 0.0 0.0 - [14]
O 1.5 1.15x 1073 0.0 0.0 - [14]
OH 1.5 1.10x 1073 0.0 0.0 - [14]
H,0 1.5 1.60x 1073 0.0 0.0 - 14
HO, 1.5 1.16 x 107° 0.0 0.0 - [14]
H,0, 15  1.16x107° 0.0 0.0 - 14
He 1.695 3.614x 107 -9.549 0.0  81-1090 ([13]

The first approach is based on a fitting function that takes advantage of the fact that
simple kinetic theory predicts that the viscosity of a gas is proportional to T2 where T is
the absolute temperature. We adopt a slightly more complex parameterization, a gencralized
Sutherland formula, as our fitting function:

A TN

Ha = BQ+T+

Clas (2)

where « denotes the particular species, and Ag, Ba, Cq, and n, are constants. Values of the

constants are given in Table 1 for a limited selection of species. The units are all cgs, that
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is poise (g/cm-s) for the viscosity and kelvins (K)for 7. To convert to SI units, multiply
the cgs viscosity by 0.1. The constants in Table 1 were evaluated by sctting C, = 0.0 and
fitting the viscosity data in the references at three temperatures (usually at the extremes
and middle of the temperature range provided). The constant C, is provided in the code
mostly as a convenience in sctting the viscosity to a constant value in the CFD code for
certain numerical experiments, although it could also have been used to fit a fourth data
point.

The accuracy of the fits varies somewhat. Most of the fits in Table 1 have errors of
at most a few percent in the temperature range given in the table, and they are often better
than one percent over wide temperature ranges. Extrapolation beyond the given temperature
range is always risky, although much less so on the high temperature end. Strong non-ideal
gas effects can occur at low temperature that are not accounted for in the fits. For example,
the He fit is approximately a factor of two in error around 20 K, and it gets worse rapidly
as the singularity at 9.549 K is approached.

The second approach uses the Lennard-Jones parameters to estimate the viscosity (in

cgs units),

= 2.6693 x 107° (M.T)"*

f = 2007 (T3) zoen@y

5 (muks\"  (M.T)V
16 T

where M, is the molecular weight, my is the mass of one atomic mass unit in grams, kg
is the Boltzmann constant, o, is the collision diameter in A, and Q®32*(T%) is the collision

integral approximated hy
Q@D (T = 1.47(T5) %M 4 (T2 + 0.5)72, (4)

where T} = T/T.o, = T kg/e, is the reduced temperature and ¢, is the Lennard-Jones
potential well depth [10, 11]. Kee, et al. [5] recommend interpolation in Table V of Monchick
and Mason [12], which includes dependence of the collision integral on the reduced dipole
moment of the molecule, d, as well as dependence on T,,. Equation 4 is accurate to a few
percent for Monchick and Mason’s § < 0.5 at low temperatures, and it becomes valid for
larger values of § at higher temperatures. Table 3 gives values of 0, and €,/ Kp for selected

species.



Once the species viscositics have been caleulated, they must be combined to provide

the viscosity of the fluid mixture. We adopt Wilke’s law [13] (see also Bird et al. [14]). For

N species,
& Xaba
pey ot )
a=1 Zﬂ:l X,H(I)aﬂ
where X, is the mole fraction of species o and where
2
M -1/2 7 1/2 -Z\/-[H 1/4
Bos = 8721452 e <_—) . 6
0 Mg s M, ©)

In almost all studies, the bulk viscosity is sct to zero, which is correct, strictly speak-
ing, only for perfect monatomic gases. Thompson [16] gives a short table of bulk viscosities
at a pressure of one atmosphere and a temperature of 300 K. The ration p/p is 3.2 for Hy,
0.8 for Ny, 0.4 for Oy, 1000 for COs, and 0.6 for air. Unpublished COYOTE simulations
of a steady, one-dimensional stoichiometric laminar ethylenc-air lame with a reduced (17
species, 32 reactions) kinetics mechanism showed no significant effect of 1, on cither the
flame speed or structure, even though CO, was several percent of the reaction products.
This is not surprising even though the velocity divergence is quite large in the flame front.
The velocity field is sufficiently smooth even in the flame front that the viscous terms have

very little effect on the dynamics compared to the heat release.

2.2 Thermal Conductivities

The heat flux is a complicated function, and COYOTE uses

RT
7
MaXa Da da» ( )

q=-KVT+Y ho(T)I0—~ >

where R is the gas constant, K is the multicomponent thermal conductivity, h, is the specific
enthalpy of species o, D! is the multicomponent thermal diffusion cocfficient, and
VP 1

dQZVXa_*—(Xa_Ya)?—‘F

paFa - Y, ZpﬂFﬂ:] ) (8)
8

where Y, is the specics mass fraction p,/p and F,, is the body force per unit mass (accelera-
tion) acting on species « [1, 5]. Calculation of the species mass fluxes and thermal diffusion

cocflicients will be considered in the next section.



In the original COYOTE program, K was calculated from the mixture viscosity u and
a constant mixture Prandtl number. This capability has been expanded to allow calculation
of the conductivity based on the local composition and temperature, just as was done for
the viscosity. One option is to fit species conductivity data using the same functional form

as for the viscosity (that is, equation 2). Results of a few fits are given in Table 2.

Table 2. Species Thermal Conductivities

Species n,  Aa B, C, T Range Ref.
Air 1.5 2255 x 102 150.0 0.0 233-322 [17]
He 1.63 4.167x 102 2635 0.0 33-322  [L7]
N, 1.51 1.935x10° 1104 0.0 88322  [17]
O 1.86 2126 x 10" 22.26 0.0 88-366  [17]
C3Hg  2.69 1.167x.1071 2409 0.0 233-366 [17]
SFg 1.8 2296 x 101  140.5 0.0 300-4000 [15]
H, 1.5 1522x10% 1244 0.0 88322  [17]
H 1.5 1173 x10° 0.0 0.0 - [18]
0 15 2134 x 102 0.0 0.0 - [18]
OH 1.5 269x10%2 0.0 0.0 - [18]
H,0 1.5 4596 x 102 1036.2 0.0 255-367 [17]

The sccond option is based on the Lennard-Jones parameters. Following the proce-
dure of Hayashi and Hishida [10], we calculate the conductivity from the viscosity using the
Eucken correction, which is discussed also by Ferziger and Kaper [19] and by Hirschfelder,
Curtis, and Bird [1]:

Ko = 0.25 (97, — 5)pta Cuas (9)

where Cy, is the specific heat at constant volume and 7, is the ratio of specific heats. Kee, et
al. [5] describe a more complex approximation that we have not implemented. Their model
accounts more accurately for the internal quantum states of the molecules.

There are two possible mixture rules for the conductivity. The first is to use equa-
tions 5 and 6 with u, replaced by K, but with the same values of ®,45 as used for the
mixture viscosity [14]. The second rule is due to Mathur et al. [20] and is recommended by

Kee, et al. [5]:

=1

K = % [i X Ko+ (a}: Xa/Ka>“ } . (10)

7



We presently use the former rule in COYOTE. Paul [8] recommends against the latter rule
and recommends instead a slightly modified version of equations 5 and 6. Mixture rules are

discussed also by Brokaw [21].

2.3 Binary Diffusion Coefficients

Calculation of the exact diffusional mass fluxes is an extremely complicated task (for exam-

ple, [1], [14], and [22]). Many combustion studies simply usc Fick’s law,

Jo = —pDoV(pa/p), (11)

where p is the total density, and D, is the species diffusivity. The original version of COY-
OTE used this approximation with the same value of D, for all species, and this value
was given as the kinematic viscosity of the mixture divided by a constant mixture Schmidt
number. This simple model has the advantages that it is casy to program, computation-
ally inexpensive, and the species mass fluxes properly add up to zero when summed over
species. Experience suggests that this approximation is adequate for turbulent flows (where
molecular transport is overwhelmed by the turbulent eddy diffusion) and in some laminar
cases using global chemical kinctics (where the detailed chemical composition is not being
modeled all that accurately in any case). In cases where the flow is laminar or nearly so and
a detailed chemical reaction network is included, a more accurate model is required.

Onc such model assumes that multicomponent diffusion in gases is described by the
Stefan-Maxwell equations

> (XaX5/Dag) (Ug — ug) = Gg =dog + XaVInT (a=1,...N), (12)
B

where u,, is the velocity of species o and Dy is the binary diffusivity for the pair of species
(o, #). The diffusive mass fluxes are given by

Jo = palu, — u), : (13)

where u is the mass-weighted mixture velocity (calculated by COYOTE’s hdyrodynamics
package),

pu = Zpaua' (14)
a
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The diffusional fluxes could be found by solving the coupled system 12 through 14 for
each cell on ecach time step, a procedure often considered too complex and expensive when
more than two specics are present. Another approach is to decouple the fluxes from one
another with what is called the “effective binary diffusion approximation,” which exists in a
variety of forms.

Ramshaw [23] has developed an effective binary diffusion approximation that we have
implemented in COYOTE as one option. This model simultaneously accounts for all four

types of diffusion, and for which the fluxes correctly sum to zero. The resulting fluxes are
Jo=-CM,D,G, +Y,C Z MgDgGyg, (15)
B

where M, is the molecular weight of species a,

C =3 pa/Ms | (16)

is the total molar concentration of the mixture, and

D, =(1-X,) (Z Xﬂ/Daﬁ) . (17)

B#a

In practice, we have found direct solution of the Stefan-Maxwell equations to be
practical. This is the preferred method of treating mass diffusion in most cases, and it is
another option implemented in COYOTE. In this case, the diffusional fluxes are found by
solving the coupled linear system 12 through 14 for cach cell face on each time step. We use a
reference frame moving at velocity u. The basic lincar system is equation 12. The coefficient
matrix is singular, so two actions must be taken. First, eliminate all rows of the matrix
XoXg/Dyp that are all zeroes. These correspond to species with zero concentration, and the
bookkecping can be done with a simple link list algorithm. Second, the resulting matrix is
still singular, so it is nccessary to replace one row of the matrix with equation 14. We usually
sclect the row for the least abundant species. Sometimes there still can be problems with
the matrix being ill-conditioned, so in practice it occasionally is necessary also to eliminate
rows for species with densities less than some tiny cutoff value, which we normally take to
be zero. With very low abundances, it is usually safe to assume the diffusional velocity is

zero. In addition, it seems to help the conditioning to solve for X,u, rather than for ug,, so

9



the Gth row of the cocfficient matrix is X3/D,g. Once the linear system is solved for the
U,, the fluxes are computed from equation 13.
The remaining issue is the specification of the binary diffusion coefficients and thermal

diffusion coefficients. We follow Hayashi and Hishida [10] in evaluation of the binary diffusion

cocflicients:
Ma+Mg\11/2 Mo +Mg\]1/2
D, = 3 (24" [ (o) fo = 1.8829 x 10° [7° (i) (18)
716 \mmy ) PoZ,QUDs(T) 0 T P02 Q00 (T

where P is the total pressure of the mixture and fi is a correction factor in the range
1.0 < fiy £ 1.1. We take fp = 1.0, and the numerical factor in the right cquality assumes

cgs units except for oqg, which is in Angstroms. We also use

Oap = 0.5 (Oa + 0'[3), (19)
QUVNTRg) = (T/Tuap) ™™™ + (T/Tuag +05)77, (20)
and
RNTE
Tea@ = (TeaTeﬁ)1/2 = (_a_2_> . (21)
! kB

It is common practice to ignore the thermal diffusion terms and set xo = DY = 0.
Not only are thermal diffusion effects usually small, there are practical difficulties associated
with obtaining the required values of x,. There is a shortage of experimental data, and the
traditional theory is so complex as to hinder its application by the nonspecialist. However,
Ramshaw has developed an approximate simplified theory [24] that has been incorporated
into COYOTE. The first step is to cstimate the collision cross section between molecules of
types « and 3 as
0 = 0.25m (0, + 0p)*. (22)
We define
_ my MyMp
2kpT M, + Mg

With these two parameters we estimate the collision time

Yap




where Ny is the number density of species 8. Next we calculate

RTPX,XzM,
Bag =~ we ot s (25)
2DqpMg(M, + Mp)
which are in turn used to calculate the y, using the left equality of
N N T s
_ XoXs (D D
Xa:PIZ(Bﬂa_Baﬂ):z ﬂ<_0i_——ﬁ—>‘ (26)
ot 5=t Dag \pPa  ps

The x, are used in the Stefan-Maxwell equations 12 and 14, which in turn are used with
cquation 13 to calculate the diffusion fluxes. The sccond equality in equation 26 is a lincar
system that can be solved for the DI for use in evaluating the Dufour term in the encrgy

flux. This system is singular, and one equation must be replaced by the constraingt
Y. DI =o. (27)
[¢7

3 Transport Coefficients for Plasmas

The theoretical description discussed above requires a bit of gencralization for the casc of
plasmas. Evaluation of transport coefficients for a general multicomponent plasma is even
more complex and challenging than in the case of neutral molecules. We shall specialize the
presentation of Ramshaw and Chang [25, 26] and present a model for an electrically neutral,
multicomponent, one-temperature plasma with a zero magnetic field. In a fully or partially
ionized plasma, there are nonzero body forces due to an induced clectric field E that are not
present in the un-ionized fluids usually considered in combustion modeling. The clectric field
is implicitly determined by the current density J ¢» Which is a linear combination of the dif-
fusional mass fluxes J,. We arc concerned with the case J ¢ = 0, which is commonly referred
to as ambipolar diffusion. We shall present a simplified model within the aforementioned
constraints that should be adequate as a starting point. Although the current version of
COYOTE assumes all species are at the same temperature, we shall retain the distinction
between ion temperature T; (which we assume is the same for all ions and neutrals) and

clectron temperature 7T, in this section.
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3.1 The Coefficient of Viscosity

The calculation of the viscosity of a mixture of arbitrarily ionized atoms is not a simple
matter. The standard references, such as Mitchner and Kruger [27], p. 413, treat a fully
ionized plasma whose atomic charge is Z,, in units of the clectron charge e. For a single

species of ion, this gives a viscosity of

0.406 m/2 (kT;)%/2 71/2 75/2
= ma_(RT) — 291 x 10~ Mo T

Ha Ztet InA Z4InA

g/cm — s, (28)

where m; is the ion mass. The cocfficient 2.21 x 1075 is somewhat uncertain. Note that the
electron viscosity will normally be much less than a typical ion viscosity. If N, = p,/m, is

the electron number density, then the electron-ion Coulomb logarithm is [27], pp. 56-58,

3 k3T3 1/2 . TeS/:Z 9 T3/2
== (mvi) 124 10" £ =118 x 10 Z;U?. (29)
o aive afe
Somov [28] modifies this somewhat to
3 (KT T3/
A= ~1.24 x 10* —¢ for T, < 5.8 x 10° K
7.0 <7rNe x 10 ZaNel/Q or 7, <58 x
3 (KT (5.8 x 1%\ o T 5
= 7o <7rNe> T ~ 9.44 x 10 7N for T, > 5.8 x 10° K (30)
This expression is valid only if
4
Np = -émf)Ne > 1, (31)
where the electron Debye length is
kT, \ 2
Ap = <47jv' e2> =6.9(T,/N,)'/? cm. (32)
[

Lee and More [29] suggest setting a minimum value of 2.0 on the Coulomb logarithm when
calculating conductivitics with their model (to be described in the next subsection), and we
adopt that suggestion here as well.

For other conditions, it will be necessary to use other approximations for the Coulomb
logarithm, or perhaps a different formalism altogether. For example, the case of dense,
degenerate plasmas found in the interiors of white dwarf stars is treated by Itoh, Kohyama,

and Takeuchi [30]. These extreme conditions arc beyond the scope of this report.
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Of course, prediction of the mixture viscosity for the partially ionized casc is an
even more difficult problem than for a single ionic species. Mitchner and Kruger provide a
theoretical discussion that fails to provide a computationally convenient formalism. So, we
use a very approximate, somewhat ad hoc model. First, we assume the species viscositics
for the neutrals are all given by cquation 2 or 3. Then we calculate a species viscosity for
each charged species using equations 28 and 30, assuming 7; = T, = T. The same value of A
will be used for all transport coefficients in a given cell, using a number-weighted averaged
charge Z* in place of Z,. If ¢ represents the set of species indices for all charged species

except electrons, then we define

o Zal Nal 1
- ZZI /Nl/ = N_ Z|Za’]Na'- (33)

T oo

Z*

Then the mixture rule given by equations 5 and 6 is used to compute the mixture viscosity.

When the radiation energy density is large, as it is in stellar interiors, there are
additional considerations. In the gray one-temperature approximation, the viscous stresses
must include a contribution from the radiation [31, 32]. This model requires the radiative
viscosity

pr = 4aT* /15¢kp, (34)

where « is the Rosseland mean opacity, a = 7.563 x 1071 crgs/(cm® K*) is the Stefan-
Boltzmann constant, and ¢ = 2.998 x 10%® cm/s is the speed of light. Numerous opacity
tables arc found in the astrophysics literature, for example [33, 34, 35]. It is beyond the
scope of this report to attempt to provide any kind of critical summary of this literature.

Also, we shall make no attempt to discuss more detailed models of radiation effects.

3.2 Thermal Conductivities

Mitchner and Kruger [27] and Chapman and Cowling [22] (p. 179) give the thermal conduc-
tivity as
3

Ko = 31aCua. (35)

This is the same as the Eucken correction, equation 9, with v, = 5/3. We usc this approxi-

mation for the ions.

13



In general, when energy is transported via conduction in a plasma with 7' > 2x 101 K|
electron conduction plays a greater role than that of the ions due to their greater mobility.
To calculate the conduction cocflicients, a perturbation solution to a Boltzmann transport
equation with a linearized collision operator is found [36, 37]. For the clectron conductivity,
electron-electron collisions are generally not explicitly included in this operator since electron-
ion collisions are usually more efficient in spatially transporting clectron energy because of
a higher average momentum transfer. An expression for the electron conductivity derived
in this fashion incorporating degeneracy as well as partial ionization cffects is given by Lee
and More [29] as

. 3ky(ksT.)*2N,
° 23/2m2/27rZ*2N¢e4 InA

AP(ufkpT) [ + exp(—p/kuTo)|Fip(p/ksTe),  (36)

where In A > 2. The coefficients involving the chemical potential x4 may be fit in terms of
the degeneracy parameter y = Infl + exp(p/kp1e)] by

13.581 + 0.976y + 0.437y?

AP (u/kpT.) =
(/bsTe) = 50510y + 01962

(37)

There are two ways of computing the degeneracy paramcter and the Fermi-Dirac integral.
First, the Fermi-Dirac integral may be approximated in terms of y by

712 s 2y3/2
[+ exp(—u/ksTo) Fipa(p/kpTe) = == +0.2y 2 0.16y + T (38)

The constant term on the right hand side makes the fit exact as y approaches zero (nonde-
generate), and the last term makes the fit exact at y goes to infinity (complete nonrelativistic
degeneracy). Comparing with accurate results for partial degeneracy [38], we find this fit has
a maximum error of approximately 3 percent around u/kpT, = 0. The degencracy factor is

fit by
m3(0.753 4 0.168z + 0.310z%)

1.0 -+ 0.270z + 0.228z2 + 0.31023
where z = (Ef/kgT,)/?, and
h?
By = o~ (372N,)*/? (40)

is the electron Fermi cnergy.
I prefer a different procedure for handling the degeneracy parameter and Fermi-Dirac

integrals that avoids the marginally adequate fits given by equations 38-40. The CFD code

14



inputs to the transport cocfficient routine the electron temperature T, and the electron
number density N,. The nonrelativistic degencrate clectron equation of state [39] then gives
Fiyo(n), where i = p/kyT,, from

4
Ne = 75 (2mekpT.)* > Fyyo(n). (41)

Then we can use highly accurate tables [38] or functional fits [40] to invert Fy /2(n) to find 7.
The latter arc especially convenient. Then we trivially compute y and A?(n) from equation 37
and finally the conductivity from equation 36.

Hubbard and Lampe [41] is the standard reference for clectron thermal conduction
opacities in stellar interiors. For extreme conditions, such as found in the interiors of white
dwarf stars, this is the recommended thermal conductivity. Canuto [42] extends this work
to include relativistic effects.

In situations with high radiation encrgy density, the radiative heat flux must be
included [31, 32]. In the gray one-temperature approximation, the radiative flux is

dacT®
Q= —K.VT = —22¢
3Kp

vT. (42)
Once again, further consideration of radiative effects is beyond the scope of this report.
3.3 Binary Diffusion Coefficients

For mass diffusion in plasmas, the Stefan-Maxwell equations must be gencralized to include
a body force term representing the electric field set up by ambipolar diffusion:

VP 1

R of 43
pPad (43)

do = VXo + (X — Yo)
where g, = Z,eA/M, is the charge per unit mass of species . Here A = 6.022 x 102 is Avo-
gadro’s number. Here we have made use of the charge neutrality condition 33, page = 0.1
The Stefan-Maxwell equations 12 remain unchanged except for the new d, defined by equa-
tion 43. The cocflicient matrix, however, picks up one new column for the coefficients of the
unknown electric field E. The assumption of zero magnetic field implies that the current

Jy = ¥4 Palatla = 0 by Ampere’s Law. The lincar system now must include the zero-current

'In some problems (for example, [43]), it may be necessary to include an additional radiative force as
part of F,, but we shall not consider that possibility any further in this report.
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constraint as the additional equation which allows us to solve for the electric field E along
with the diffusion velocities.

To complete the mass transport model, we need binary diffusion coeflicients and
thermal diffusion coefficients. For pairs of neutral molecules, we continue using equations 18
through 27. For a charged-ncutral pair, we also use the neutral-species formalism for the
binary diffusion cocfficient. In all other cases, we use the model of Ramshaw [44, 45], which
has been modified to accomodate the Coulomb potential.

Charged pairs are not described accurately by first-order Chapman-Enskog theory,
and a correction factor fog must be applied to obtain
_ 3f aﬂk%fTaTﬁ
- 16pﬂaﬂ98ﬂ71)(Ta )’

Dyg {44)

where fias = memg/(ma + mg) is the reduced mass. The factor fop = 1if a, 8 # ¢, and
fae = fea = F(Z4), where f(1) = 1.97, f(2) = 2.33, and f(3) = 2.53. The collision integral
is

1/2 9
”) (Z“Zﬂc In A. (45)

Q(Ll) T — —— _—
The thermal diffusion coefficient for charged pairs is defined in terms of the inverse

of the collision frequency,

—1
kBT 1z NgO’ag
Ta = 0.5 | 200eNeO e ‘ + — (46)
[ () S
where ,
2 ZQZﬂC2
g = — | ——— | InA, 47
o =5 (22) 1n )
Va = ma/QkBTay (48)

Yag i defined by equation 23, and de, is the Kronecker delta. Then

B, — 3fasPalsT8Vap
ob 4P2Das

which differs from the neutral-neutral case by a factor of —3fqs.
Ramshaw [45] argues that a charged-neutral pair has a 7*;5 potential cxcept at very
close range, so the thermal diffusion coefficients should be very small or zero. Therefore, we

set the thermal diffusion coefficient Bag = 0 if ¢, 8 are a charged-neutral pair.
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A necessary condition for this formalism to be valid is the ideal gas limit. For more
extreme conditions, a more complex formalism is necessary. A lot of work has been done for
the conditions found in stellar interiors. Aller and Chapman [46] present a simple example
including ambipolar diffusion in the sun. A rather arbitrary selection of more complex

formalisms, including radiative forces, is given in [43] and [47]-[52)].
4 Concluding Comments

This report presents a homogencous compilation of transport cocfficients from disparate
sources. The compilation originally was oriented mainly toward combustion applications, but
the present version extends the databasc to include plasmas under conditions appropriate
to plasma torches and certain astrophysical phenomena. However, the information should
be applicable to any collision-dominated fluid or plasma within the ideal gas regime. The
model has been implemented in COYOTE, and simuluations with up to 27 species have been
completed without difficulty or excessive computational expense.

A natural question is how well the collected formulas and tables represent reality.
Unfortunately, it is not casy to answer this question. For some gases, the problem is the
shear volume of data found in the literature. For some of these, there are publications
devoted to a critical evaluation of the literature and presentation of correlations and tables
of recommended values. Often these are accurate to within a few percent over a wide range of
conditions. Even in those cases, however, there can still be some discrepancies in the reported
Lennard-Jones parameters. This can be seen in Table 3 where there are several examples of
multiple entries for a given species, cach entry from a different source. For example, there
are two entries for Hy. Transport coefficients depend only weakly on ¢/kg, so both entries
produce comparable results. Although the Lennard-Jones model is reasonably accurate (the
viscosity is approximately 6 percent high at 320 K, depending on which experimental value
one chooses), the generalized Sutherland formula (Table 1) is slightly more accurate. Even
in the case of H, the two sets of Lennard-Jones parameters produce transport coefficients
that are not as different as one might expect. The first sct appears to be somewhat more
accurate for binary diffusion coefficients, but the second set is definitely superior for viscosity

and thermal conductivity. Caveat emptor.
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At the other extreme, there is a scarcity of experimental data for unstable or highly
reactive species such as OH. Fortunately, these species are not sufficiently abundant in most
combustion systems that they significantly impact the viscosity or thermal conductivity.
However, some of the binary diffusion cocfficients, such as those involving H, have impor-
tant effects on flame propagation speeds and structure. Appropriate experimental data for
plasmas appear to be very scarce, and the theoretical estimates presented here have received
minimal testing.

There is one final comment about the use of the Lennard-Jones model. CHEMKIN, a
widely used combustion code, has a large database of Lennard-Jones parameters. However,
the first step in running a problem is to have the code convert the Lennard-Jones transport
cocflicients into polynomial fits. We prefer the direct use of the model equations since this
procedure avoids the introduction of some unnccessary truncation errors. However, it may
be necessary to reconsider this choice if we ever need to simulate extreme conditions, such

as the interior of a white dwarf star, where a different formalism is appropriate.
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Species
" He
He
Ne
Ne
Ar
Ar
Ar
Kr
Kr

CHy
CH3;0H
CH,O
CH,OH
CyoH,
CyH,
C2H4
CoHy

CsHg
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Table 3. Lennard-Jones Parameters for Selected Species

Index e/kg (K) o (A)

10.200
10.400
35.60
42.00
136.500
119.8
143.200
176.000
197.800
229.800
274.000
71.400
97.530
80.000
144.000
144.000
144.000
141.400
161.400
481.800
498.000
417.000
209.000
265.300
280.800
238.400
252.300
266.800
75.000
98.100
98.400
244.000
245.300
156.500
145.000
5.420
38.000
23.960
569.000
498.000
572.400

2.576
2.610
2.749
2.755
3.330
3.405
3.350
3.679
3.571
3.937
3.885
3.298
3.621
2.750
3.800
3.800
3.800
3.746
3.721
3.626
3.590
3.690
4.100
3.721
3.971
3.496
4.302
4.982
3.856
3.650
3.652
3.763
3.769
4.579
2.050
3.288
2.920
3.063
3.630
3.590
2.605

# (Debye)

0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.700
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.1098
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.844
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a (A%)

0.000
0.200
0.000
0.400
0.000
0.000
1.642

2.490

4.040
0.000
1.760
0.000
0.000
0.000
0.000
2.600
2.600
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.950
1.950
2.650
2.650

0.000
0.667
0.790
0.803
0.000
0.000
0.000

Zeon (208 K)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
4.000
1.000
1.000
0.000
1.000
13.000

1.000
2.000
2.000
2.500
2.500
1.500
1.500
1.500
1.000
1.000
1.800

2.100

0.000

280.000

1.000
1.000
4.000

Ref.

RIS



Table 3. Continued.
Species  Index  €/ky (K) o (A) p(Debye) o (A%) Zioy(208K) Ref.

H,0 2 535.210  2.673  1.847 1.450 - 8]
H50, 2 107.400  3.458  0.000 0.000  3.800

H,0, 2 368.110  3.499  1.573 2230 - 8]
HO, 2 107.400  3.458  0.000 0.000  1.000

HO, 2 365.560  3.433  2.090 1.950 - 8]
N 0 71.400 3.298  0.000 0.000  0.000

N 0 74.500 3.360  0.000 1110 = 8]
N, 1 97.530 3.621  0.000 1.760  4.000

N, 1 98.400 3.652  0.000 1.750 - 8]
NCO 1 232.400  3.828  0.000 0.000  1.000

NH 1 80.000 2.650  0.000 0.000  4.000

NH, 2 80.000 2.650  0.000 2.260  4.000

NH; 2 481.000  2.920 1.470 0.000  10.000

N,O 1 232.400  3.828  0.000 0.000  1.000

N,O 1 266.800  3.703  0.1687 3.000 - 8]
NO 1 97.530 3.621  0.000 1.760  4.000

NO 1 125.000  3.474  0.1578 1.740 - 8]
NO, 2 200.000  3.500  0.000 0.000  1.000

NO, 2 204.880  3.922  0.320 3.000 - 8]
) 0 80.000 2.750  0.000 0.000  0.000

O 0 57.910 3.064  0.000 0.802 - 8]
O, 1 107.400  3.458  0.000 1.600  3.800

O, 1 121.100  3.470  0.000 1.600 - 8]
OH 1 80.000 2.750  0.000 0.000 . 0.000

oH 1 281.270  3.111  1.655 0.980 - 8]
C,0 1 232.400  3.828  0.000 0.000  1.000

CNy 1 232.400  3.828  0.000 0.000  1.000

C.H 1 209.000  4.100  0.000 0.000  2.500

CoH,OH 2 224700  4.162  0.000 0.000  1.000

CoHj 2 209.000  4.100  0.000 0.000  1.000

CoHy 2 280.800  3.971  0.000 0.000  1.500

CoH; 2 252.300  4.302  0.000 0.000  1.500

CaN 1 232.400  3.828  0.000 0.000  1.000

CaNy 1 349.000  4.361  0.000 0.000  1.000

CsH, 2 209.000  4.100  0.000 0.000  1.000

CsHy 1 252.000  4.760  0.000 0.000  1.000

p-CsHy 1 252.000 4.760  0.000 0.000  1.000

CsHs 2 266.800  4.982  0.000 0.000  1.000

CsHy 2 266.800  4.982  0.000 0.000  1.000

CyHe 2 357.000  5.180  0.000 0.000  1.000

+CsH5 2 266.800  4.982  0.000 0.000  1.000
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Table 3. Continued.

Species Index ¢/kp (K) o (A) p(Debye) o (A3) Zo(298K) Ref.
n-C3Hy 2 266.800  4.982  0.000 0.000  1.000
Cq4H 1 357.000  5.180  0.000 0.000  1.000
CqH,q 1 357.000  5.180  0.000 0.000  1.000
C,H,OH 2 224700 4.162  0.000 0.000  1.000
CyHg 2 357.000  5.176  0.000 0.000  1.000
C4Hyg 2 357.000  5.176  0.000 0.000  1.000
s-C4Hg 2 357.000  5.176  0.000 0.000  1.000
~CyHg 2 357.000  5.176  0.000 0.000  1.000
CsH, 1 357.000  5.180  0.000 0.000  1.000
CsH; 1 357.000  5.180  0.000 0.000  1.000
CgH, 1 357.000  5.180  0.000 0.000  1.000
CeHs 2 412.300  5.349  0.000 0.000  1.000
CeHs (L) 2 412.300  5.349  0.000 0.000  1.000
CgHsO 2 450.000  5.500  0.000 0.000  1.000
CsHsOH 2 450.000  5.500  0.000 0.000  1.000
CgHg 2 412.300  5.349  0.000 0.000  1.000
CsHg 2 464.800  5.290  0.000 10.30  1.000
CgH7 2 412,300  5.349  0.000 0.000  1.000
CH,CO 2 436.000  3.970  0.000 0.000  2.000
CH,;CC 2 252.000  4.760  0.000 0.000  1.000
CH;CO 2 436.000  3.970  0.000 0.000  2.000
CH;0 2 417.000  3.690 1.700 0.000  2.000
CH430H 2 481.800  3.626  0.000 0.000  1.000
CH,O 2 417.000  3.690  1.700 0.000  2.000
CNC 1 232,400  3.828  0.000 0.000  1.0600
CNN 1 232.400  3.828  0.000 0.000  1.000
CH,CHCCH 2 357.000  5.180  0.000 0.000  1.000
CH,CHCCH, 2 357.000  5.180  0.000 0.000  1.000
CH,CHCH, 2 260.000  4.850  0.000 0.000  1.000
CH,CHCHCH 2 357.000  5.180  0.000 0.000  1.000
CH,;CHCHCH, 2 357.000 5180  0.000 0.000  1.000
CH3CCCH,4 2 357.000  5.180  0.000 0.000  1.000
CH;CCCHj 2 357.000  5.180  0.000 (0.000  1.000
CH3CCH, 2 260.000  4.850  0.000 0.000  1.000
CH;CHCH 2 260.000  4.850  0.000 0.000  1.000
CH;CH,CCH 2 357.000  5.180  0.000 0.000  1.000
CH;CHO 2 436.000  3.970  0.000 0.000  2.000
H,C40O 2 357.000  5.180  0.000 0.000  1.000
H,CCCCH 2 357.000  5.180  0.000 0.000  1.000
H,CCCCH, 2 357.000  5.180  0.000 0.000  1.000
H,CCCH 2 252.000  4.760  0.000 0.000  1.000
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Table 3. Continued.

Species Index ¢/ks (K) o (&) p(Debye) « (A%)  Zuot(2908 K) Ref.
HoCN 1 569.000 3.630  0.000 0.000  1.000
H,yNO 2 116.700  3.492  0.000 0.000  1.000
HyS 2 301.000  3.600  0.000 0.000  1.000
HC;Ny 1 349.000 4.361  0.000 0.000  1.000
HCCHCCH 2 357.000  5.180  0.000 0.000  1.000
HCCO 2 150.000  2.500  0.000 0.000  1.000
HCCOH 2 436.000 3.970  0.000 0.000  2.000
HCO™* 1 498.000  3.590  0.000 0.000  0.000
HCNO 2 232.400 3.828  0.000 0.000  1.000
HCNN 2 150.000  2.500  0.000 0.000  1.000
HOCN 2 232.400  3.828  0.000 0.000  1.000
HNCO 2 232.400  3.828  0.000 0.000  1.000
HNNO 2 232.400  3.828  0.000 0.000  1.000
HNO 2 116.700  3.492  0.000 0.000  1.000
HNOH 2 116.700  3.492  0.000 0.000  1.000
HF 1 330.000 3.148  1.920 2.460  1.000
HF(v=0) 1 352.000 2.490 1.730 0.000  5.000
HF(v=1) 1 352.000 2.490 1.730 0.000  5.000
HF(v =2) 1 352.000 2.490 1.730 0.000  5.000
HF (v =3) 1 352.000 2.490 1.730 0.000  5.000
HF(v=4) 1 352.000 2.490  1.730 0.000  5.000
HF(v=5) 1 352.000 2.490 1.730 0.000  5.000
HF (v =6) 1 352.000 2490 1.730 0.000  5.000
HF(rv=17) 1 352.000 2.490 1.730 0.000  5.000
HF (v =8) 1 352.000 2490 1.730 0.000  5.000
HSO, 2 252.000  4.290  0.000 0.000  1.000
NoHy 2 71.400 3.798  0.000 0.000-  1.000
NoHj 2 200.000  3.900  0.000 0.000  1.000
NoHy 2 205.000 4.230  0.000 4.260  1.500
NCN 1 232.400 3.828  0.000 0.000  1.000
NH 1 30.000 2.650  0.000 0.000  4.000
NH,, 2 80.000 2.650  0.000 2.260  4.000
NNH 2 71.400 3.798  0.000 0.000  1.000
NO 1 97.530 3.621  0.000 1.760  4.600
NCNO 2 232.400 3.828  0.000 0.000  1.000
O3 2 180.000  4.100  0.000 0.000  2.000
S 0 847.000 3.839  0.000 0.000  0.000
52 1 847.000  3.900  0.000 0.000  1.000
SH 1 847.000  3.900  0.000 0.000  1.000
SO 1 301.000  3.993  0.000 0.000  1.000
SO, 2 252.000  4.290  0.000 0.000  1.000
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Table 3. Continued.
Species  Index e/kp (K) o (A) p (Debye)  « (A%)  Zy (298 K)  Ref.

SO 2 378400  4.175  0.000 0.000  1.000
SiH, 2 207.600  4.084  0.000 0.000  1.000
SiH, 2 170.300  3.943  0.000 0.000  1.000
SiH, 2 133.100  3.803  0.000 0.000  1.000
SiH 1 95.800  3.662  0.000 0.000  1.000
Si 0 3036.00  2.910  0.000 0.000  0.000
SipHg 2 301.300  4.828  0.000 0.000  1.000
SipHs 2 306.900  4.717  0.000 0.000  1.000
SipH, 2 312,600 4.601  0.000 0.000  1.000
SipHs 2 318.200 4.494  0.000 0.000  1.000
SisH, 2 323.800  4.383  0.000 0.000  1.000
Siy 1 3036.00  3.280  0.000 0.000  1.000
Sis 2 3036.00 3550  0.000 0.000  1.000
SiFy 2 171.900  4.880  0.000 0.000  1.000
H,SiSiH, 2 312.600  4.601  0.000 0.000  1.000
HsSiSiH 2 312.600 4.601  0.000 0.000  1.000
SisHg 2 331.200 5562  0.000 0.000  1.000
e 0 850.000  425.0  0.000 0.000  1.000
AsH, 2 259.800  4.145  0.000 0.000  1.000
Asy 1 104550 5510  0.000 0.000  1.000
GaMe; 2 378.200 5520  0.000 0.000  1.000
GaMe, 2 675.800  5.220  0.000 0.000  1.000
GaMe 2 972.700  4.920  0.000 0.000  1.000
Ga 0 2061.80  4.620  0.000 0.000  0.000
Br, 1 520.000  4.268 - - [56]
SFq 2 207.700  5.252 - - [54]
cl 0 130.800  3.613  0.000 0.000  1.000
Cl- 0 130.800  3.613  0.000 0.000  1.000
HCI 1 344700  3.339  1.084 0.000  1.000
F 0 80.000 2750  0.000 0.000  0.000
Fy 1 125.700  3.301  0.000 1.600  3.800
K 0 850.000 4.250  0.000 0.000  1.000
KO 1 383.000 3.812  0.000 0.000  1.000
KOH 2 1213.00  4.520  0.000 0.000 - 1.000
KO, 2 1213.00  4.690  0.000 0.000  1.000
KH 1 03.300  3.542  0.000 0.000  1.000
K+ 0 850.000  4.250  0.000 0.000  1.000
KCl 1 1989.00  4.186  0.000 0.000  1.000
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