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Abstract

COYOTE and similar combustion programs based on the multicomponent Navier-
Stokes equations require the mixture viscosity, thermal conductivity, and species trans-
port coefficients as input. This report documents a model of these molecular trans-
port coefficients that is simpler than the general theory, but which provides adequate
accuracy for many purposes. This model leads to a computationally convenient, self-
contained, and easy-to-use source of such data in a format suitable for use by such
programs. We present the data for various neutral species in two forms. The first
form is a simple functional fit to the transport coefficients. The second form is the
use of tabulated Lennard-Jones parameters in simple theoretical expressions for the
gas-phase transport coefficients. The model then is extended to the case of a two-
temperature plasma. Lennard-Jones parameters are given for a number of chemical
species of interest in combustion research.



1 Introduction

Viscosity, thermal conductivity, and species transport coefficients are an important part of

any effort to make realistic numerical simulations of reactive flows, especially in the laminar

regime. Inclusion of molecular transport effects in a computational fluid dynamics (CFD)

code requires resolution of three issues. The first is the level of approximation used in

computing the molecular diffusion fluxes of mass, momentum, and energy. The second is

the specification of the appropriate transport coefficients for each species. The third is the

development of numerical algorithms for implementation into CFD codes. We shall address

only the first two issues here.

The full theory of molecular transport in multicomponent fluids is extremely complex

([1], for example) and is computationally unsuited for use in a multidimensional CFD pro-

gram. It is necessary to simplify the problem by introducing some level of approximation.

Coffee and Heimerl [2] present a study comparing five such models. The most sophisticated

is described also by Dixon-Lewis [3], and it requires solution of two linear systems in order to

compute the mass and heat fluxes at a single point in space and time. This model has been

implemented in the widely used CHEMKIN program [4]-[7], but it is rather computation-

ally intensive for use in multidimensional CFD codes. A simpler approximation is adopted

that avoids solving numerous linear systems and is discussed by Coffee and Heimerl and by

Paul [8].
The second part of the problem is the specification of the species transport coefficients.

Unfortunately, the available data are scattered widely throughout the literature of chemistry,

physics, and engineering in a wide variety of formats and units. This information must be

collccted, assessed for accuracy, and put into an appropriate format before it can be used

in any particular CFD program. Due to the large number of species of potential interest

in combustion studies (potentially a thousand or more for a single problem), creating and

maintaining such a database can become a major task. The program system CHEMKIN [4]-

[7] is an excellent example of a computerizcd database designed to address this need. Use of

this package has two advantages: avoidance of the effort required to independently collect

the data in a usable form and the ability to use the same gas physics as a wide community



of researchers. For these reasons, selected parts of the CHEMKIN transport model were

adopted, most notably the use of the Lennard-Jones model for most neutral species.

The remainder of this report presents the molecular transport model used in the

COYOTE reactive-flow CFD program [9]. This includes both the constitutive relations

for the mass, momentum, and energy fluxes as well as expressions for the transport coef-

ficients. Section 2 presents this information for un-ionized gases, including two models for

computation of species viscosities and thermal conductivities. These two choices are a sim-

ple parametric fitting function (a slightly generalized Sutherland equation) and the use 

the Lennard-Jones parameters in simple analytical expressions for the transport coefficients.

Sample data for both approaches are given in the tables in this report. Binary diffusion

coefficients are computed from the Lennard-Jones model. Section 3 presents an extension of

this model to ionized gases. In all cases, simple mixture rules are used to get viscosity and

conductivity for a mixture with an arbitrary composition. The final section contains some

concluding comments.

2 Transport Coefficients for Un-Ionized Gases

Computing the transport coefficients for a multicomponent fluid in complete generality is

a complex, difficult task. We adopt approximations that are computationally tractable. In

particular, we want to avoid the linear sytems used in CHEMKIN while retaining as much

similarity as possible. In this section, we discuss momentum, energy, and mass transport

in separate subsections. Models for the transport coefficients and for the various fluxes are

presented in the next three subsections.

2.1 The Coefficient of Viscosity

Let T be the viscous stress tensor for a Newtonian fluid,

T = # [Vu + (Vu)T] + ~1 (V. U ) 

= [Vu+ + (v. u) (1)

Here u is the velocity of the fluid mixture, U is the unit tensor, # is the coeff~cient of viscosity,

#1 is the second coefficient of viscosity, and #b is the bulk viscosity.



What we require is a procedure for specifying the coefficient of viscosity for the

mixture of species composing the fluid. The first step in calculating the mixture viscosity is

to evaluate the viscosity for each species. At the pressures and temperatures found in typical

combustion systems, the species coefficients of viscosity are almost independent of density,

so we assume they are functions only of temperature. We allow two ways of specifying

the coefficient of viscosity. The first is a simple four-parameter analytic function that is

suitable for fitting tabulated viscosity data. The second form is based on the Lennard-Jones

parameters for each gas species.

Table 1. Coefficient of Viscosity
Species n~ A~ Ba Ca T Range Ref.

Air 1.5 1.457 x 10.5 110.0 0.0 Unknown
Air 1.51 1.387 x 10.5 105.1 0.0 79-1407 [13]
N2 1.52 1.186 x 10.5 86.54 0.0 251-1098 [13]
02 1.46 2.294 x 10.5 164.4 0.0 273-1102 [13l
02 1.5 1.16 x 10.5 0.0 0.0 - [14]
C3H8 1.72 1.802 x 10-6 101.0 0.0 290-472 [13]
SF6 1.7 3.526 × 10-6 73.1 0.0 223-573 [15]
H2 1.67 1.963 x 10-6 2.187 0.0 89-1098 [13]
H 1.5 3.95 x 10-6 0.0 0.0 [14]
O 1.5 1.15 x 10-5 0.0 0.0 [14]
OH 1.5 1.10 x 10-5 0.0 0.0 [14]
H20 1.5 1.60 x 10.5 0.0 0.0 [14]
He2 1.5 1.16 x 10.5 0.0 0.0 [14]
H202 1.5 1.16 x 10-5 0.0 0.0 - [14]
He 1.695 3.614 x 10-6 -9.549 0.0 81-1090 [13]

The first approach is based on a fitting function that takes advantage of the fact that

simple kinetic theory predicts that the viscosity of a gas is proportional to T1/2, where T is

the absolute temperature. \¥e adopt a slightly more complex parameterization, a generalized

Sutherland formula, as our fitting flmction:

A~Tn~
= + G, (2)

B~ +T

where a denotes the particular species, and A~, B~, Ca, and n~ are constants. Values of the

constants are given in Table 1 for a limited selection of species. The units are all cgs, that
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is poise (g/cm-s) for the viscosity and kelvins (K)for T. To convert to SI units, multiply

the cgs viscosity by 0.1. The constants in Table 1 were evaluated by setting Ca = 0.0 and

fitting the viscosity data in the references at three temperatures (usually at the extremes

and middle of the temperature range provided). The constant Ca is provided in the code

mostly as a convenience in setting the viscosity to a constant value in the CFD code for

certain numerical experiments, although it could also have been used to fit a fourth data

point.

The accuracy of the fits varies somewhat. Most of the fits in Table 1 have errors of

at most a few percent in the temperature range given in the table, and they are often better

than one percent over wide temperature ranges. Extrapolation beyond the given temperature

range is always risky, although much less so on the high temperature end. Strong non-ideal

gas effects can occur at low temperature that are not accounted for in the fits. For example,

the He fit is approximately a factor of two in error around 20 K, and it gets worse rapidly

as the singularity at 9.549 K is approached.

The second approach uses the Lennard-Jones parameters to estimate the viscosity (in

cgs units),

5 (_~) 1/2 (M~T)1/2 (MAT)1/2

#~ = 1-6 a~f~(2,2),(T2) - 2.6693 x 10-~a~f~(2,2),(Tg),
(3)

where M~ is the molecular weight, mH is the mass of one atomic mass unit in grams, ks

is the Boltzmann constant, era is the collision diameter in ,~t, and f~(2,2). (21"*) is the collision

integral approximated by

where T~ = T/T~ = Tk~/e~ is the reduced temperature and e~ is the Lennard-Jones

potential well depth [10, 11]. Kee, et al. [5] recommend interpolation in Table V of Monchick

and Mason [12], which includes dependence of the collision integral on the reduced dipole

moment of the molecule, ~, as well as dependence on T~. Equation 4 is accurate to a few

percent for Monchick and Mason’s ~ < 0.5 at low temperatures, and it becomes valid for

larger values of d at higher temperatures. Table 3 gives values of cr~ and e~/KB for selected

species.



Once the species viscosities have been calculated, they must be combined to provide

the viscosity of the fluid mixture. We adopt Wilke’s law [13] (see also Bird et al. [14]). For

N species,
N Xc,#a

#=E N
a=l E~=I Xfl(I)afl

where X~ is the mole fraction of species a and where

(1~o~8 : 8-1/2 (1 l~/Ia~-l/2 [ _i_ (/-toe,l/2 (2~/i8~1/412+M,/ 1 VT/

In almost all studies, the bulk viscosity is set to zero, which is correct, strictly speak-

ing, only for perfect monatomic gases. Thompson [16] gives a short table of bulk viscosities

at a pressure of one atmosphere and a temperature of 300 K. The ration #b//* is 3.2 for H2,

0.8 for N2, 0.4 for 02, 1000 for CO2, and 0.6 for air. Unpublished COYOTE simulations

of a steady, one-dimensional stoichiometric laminar ethylene-air flame with a reduced (17

species, 32 reactions) kinetics mechanism showed no significant effect of #b on either the

flame speed or structure, even though CO~ was several percent of the reaction products.

This is not surprising even though the velocity divergence is quite large in the flame front.

The velocity field is sufficiently smooth even in the flame front that the viscous terms have

very little effect on the dynamics compared to the heat release.

2.2 Thermal Conductivities

The heat flux is a complicated function, and COYOTE uses

q = -t(VT + Eha(T)J~ -- ~ RT-- D~ d~, (7)

where/~ is the gas constant, K is the multicomponent thermal conductivity, h~, is the specific

enthalpy of species c~, D~’ is the multicornponent thermal diffusion coefficient, and

d~ = VX~ + (X~ - Y~) ~B p~F~ - Y~ pzF~ , (8)

where Y~ is the species mass fraction p~/p and F~ is the body force per unit mass (accelera-

tion) acting on species a [1, 5]. Calculation of the species mass fluxes and thermal diffusion

coefficients will be considered in the next section.



In the original COYOTE program, K was calculated from the mixture viscosity # and

a constant mixture Prandtl number. This capability has been expanded to allow calculation

of the conductivity based on the local composition and temperature, just as was done for

the viscosity. One option is to fit species conductivity data using the same functional form

as for the viscosity (that is, equation 2). Results of a few fits are given in Table 

Table 2. Species Thermal Conductivities
Species n~ As B~ Ca T Range Ref.
Air 1.5 2.255 x 102 150.0 0.0 233-322 [17]

He 1.63 4.167 x 102 2.635 0.0 33-322 [17]
N2 1.51 1.935 x 102 110.4 0.0 88-322 [17]
02 1.86 2.126x101 22.26 0.0 88-366 [17]
Calls 2.69 1.167 X.10-1 2.409 0.0 233-366 [17]
SF~ 1.8 2.296 x 101 140.5 0.0 300-4000 [15]
H2 1.5 1.522 x 103 124.4 0.0 88-322 [17]
H 1.5 1.173 x 103 0.0 0.0 - [18]
O 1.5 2.134 x 102 0.0 0.0 [18]
OH 1.5 2.69 x 102 0.0 0.0 [18]
H20 1.5 4.596 x 102 1036.2 0.0 255-367 [17]

The second option is based on the Lennard-Jones parameters. Following the proce-

dure of Hayashi and Hishida [10], we calculate the conductivity from the viscosity using the

Eucken correction, which is discussed also by Fcrziger and Kaper [19] and by Hirschfelder,

Curtis, and Bird [1]:

= 0.25 (9% - Cv , (9)

where Cv~ is the specific heat at constant volume and % is the ratio of specific heats. Kee, et

al. [5] describe a more complex approximation that we have not implemented. Their model

accounts more accurately for the internal quantum states of the molecules.

There are two possible mixture rules for the conductivity. The first is to use equa-

tions 5 and 6 with #~ replaced by I(~, but with the same values of ~ as used for the

mixture viscosity [14]. The second rule is due to Mathur et al. [20] and is recommended by

Kec, et al. [5]:

K = -21 xj( + . (lO)
(~----i



We presently use the former rule in COYOTE. Paul [8] recommends against the latter rule

and recommends instead a slightly modified version of equations 5 and 6. Mixture rules are

discussed also by Brokaw [21].

2.3 Binary Diffusion Coefficients

Calculation of the exact diffusional mass fluxes is an extremely complicated task (for exam-

ple, [1], [14], and [22]). Many combustion studies simply use Fick’s law,

(11)

where p is the total density, and D~ is the species diffusivity. The original version of COY-

OTE used this approximation with the same value of D~ for all species, and this value

was given as the kinematic viscosity of the mixture divided by a constant mixture Schmidt

number. This simple model has the advantages that it is easy to program, computation-

ally inexpensive, and the species mass fluxes properly add up to zero when summed over

species. Experience suggests that this approximation is adequate for turbulent flows (where

molecular transport is overwhelmed by the turbulent eddy diffusion) and in some laminar

cases using global chemical kinetics (where the detailed chemical composition is not being

modeled all that accurately in any case). In cases where the flow is laminar or nearly so and

a detailed chemical reaction network is included, a more accurate model is required.

One such model assumes that multicomponent diffusion in gases is described by the

Stefan-Maxwell equations

where us is the velocity of species a and D~Z is the binary diffusivity for the pair of species

(ct, ~). The diffusive mass fluxes are given 

J~ = p~(u~ - u), (13)

where u is the mass-weighted mixture velocity (calculated by COYOTE’s hdyrodynamics

package),

pu = E (14)
ct



The diffusional fluxes could be found by solving the coupled system 12 through 14 for

each cell on each time step, a procedure often considered too complex and expensive when

more than two species are present. Another approach is to decouple the fluxes from one

another with what is called the "effective binary diffusion approximation," which exists in a

variety of forms.

Ramshaw [23] has developed an effective binary diffusion approximation that we have

implemented in COYOTE as one option. This model simultaneously accounts for all four

types of diffusion, and for which the fluxes correctly sum to zero. The resulting fluxes are

a~ = -CM~D~G~ + ]%C ~ M~D~G~, (15)

where 5/ia is the molecular weight of species c~,

C = ~_, p~/Ma (16)

is the total molar concentration of the mixture, and

De, = (1 - Xa) Xa/D~ (17)

In practice, we have found direct solution of the Stcfan-Maxwell equations to be

practical. This is the preferred method of treating mass diffusion in most cases, and it is

another option implemented in COYOTE. In this case, the diffusional fluxes are found by

solving the coupled linear system 12 through 14 for each cell face on each time step. We use a

reference frame moving at velocity u. The basic linear system is equation 12. The coefficient

matrix is singular, so two actions must be taken. First, eliminate all rows of the matrix

X~Xz/D~z that are all zeroes. These correspond to species with zero concentration, and the

bookkeeping can be done with a simple link list algorithm. Second, the resulting matrix is

still singular, so it is necessary to replace one row of the matrix with equation 14. We usually

select the row for the least abundant species. Sometimes there still can be problems with

the matrix being ill-conditioned, so in practice it occasionally is necessary also to eliminate

rows for species with densities less than some tiny cutoff value, which we normally take to

be zero. With very low abundances, it is usually safe to assume the diffusional velocity is

zero. In addition, it seems to help the conditioning to solve for X~u~ rather than for us, so



tile ~th row of the coefficient matrix is X~/D~.~. Once the linear system is solved for the

us, the fluxes are computed from equation 13.

The remaining issue is the specification of the binary diffusion coefficients and thermal

diffusion coefficients. We follow Hayashi and Hishida [10] in evaluation of the binary diffusion

coefficients:

1/2 IT3 (~hll/2L \ Mc~M~ ]J

Per2 r.f~(m)* (T*o]

( M~a+_+_+_+_+_+_+~A ] 1/2
f~ : 1.ss29× i03 [T3~ "°~ jj (is)

where P is the total pressure of the mixture and fD is a correction factor in the range

1.0 _< fD < 1.1. We take fD = 1.0, and the numerical factor in the right equality assumes

cgs units except for ~, which is in .~ngstroms. We also use

~(1,1)*(~2fl) = (T/Tea~)-°’145 -t- (T/rea~ + 0.5)-2, (20)

and
/ \ 1/2

T~,~ = (T~aT~)’/2 [%eo/ (21).
It is common practice to ignore the thermal diffusion terms and set X~ = DT = 0.

Not only are thermal diffusion effects usually small, there are practical difficulties associated

with obtaining the required values of ~. There is a shortage of experimental data, and the

traditional theory is so complex as to hinder its application by the nonspecialist, ttowevcr,

Ramshaw has developed an approximate simplified theory [24] that has been incorporated

into COYOTE. The first step is to estimate the collision cross section between molecules of

types a and ~ as

We define

cr~/3 = 0.257r(cr~ + cry)2. (22)

%~ - 2kBT Ms + M~"

With these two parameters we estimate the collision time

-1

~ = ~ (~%z)l/~~=1

(24)

I0



where N/3 is the number density of species/2. Next we calculate

RT P X~X/3M~ T/3
B~,/3 = -2D~/3M/3(M~ + M/3)’ (25)

which are in turn used to calculate tile ~ using the left equality of

N N Xo~X/3 (DT: D~’I
(26)X<~ = P-’ ~_, (B/3~, - U<~/3) = ~_, D~/3 p~ p/3 j"

/3=1 /3=1

The X~ are used in the Stefan-Maxwell equations 12 and 14, which in turn are used with

equation 13 to calculate the diffusion fluxes. The second equality in equation 26 is a linear

system that can be solved for the D~’~ for use in evaluating the Dufour term in the energy

flux. This system is singular, and one equation must be replaced by the constraint

3

E 02 = o. (27)

Transport Coefficients for Plasmas

The theoretical description discussed above requircs a bit of generalization for the case of

plasmas. Evaluation of transport coefficients for a general muRicomponent plasma is even

more complex and challenging than in the case of neutral molecules. We shall specialize the

presentation of Ramshaw and Chang [25, 26] and present a model for an electrically neutral,

multicomponent, one-temperature plasma with a zero magnetic field. In a fully or partially

ionized plasma, there are nonzero body forces due to an induced electric field E that are not

present in the un-ionized fluids usually considered in combustion modeling. The electric field

is implicitly determined by the current density Jq, which is a linear combination of the dif-

fusional mass fluxes J~. We are concerned with the case Jq = 0, which is commonly referred

to as ambipolar diffusion. We shall present a simplified model within the aforementioned

constraints that should be adequate as a starting point. Although the current version of

COYOTE assumes all species are at the same temperature, we shall retain the distinction

between ion temperature Ti (which we assume is the same for all ions and neutrals) and

electron temperature Te in this section.

11



3.1 The Coefficient of Viscosity

The calculation of the viscosity of a mixture of arbitrarily ionized atoms is not a simple

matter. The standard references, such as Mitchner and Kruger [27], p. 413, treat a fully

ionized plasma whose atomic charge is Z~ in units of the electron charge c. For a single

species of ion, this gives a viscosity of

0"406~1/2(kTi)5/2
10 -15 ~I1/2Ti5/2 g/cm s,= = 2.21 × - (28)P~ Z4 e4 in A Z4 In A

where mi is the ion mass. The coefficient 2.21 x 10-15 is somewhat uncertain. Note that the

electron viscosity will normally be much less than a typical ion viscosity. If Ne = pe/m~ is

the electron number density, then the deetron-ion Coulomb logarithm is [27], pp. 56-58,

3 (k3r: ~ 1/2 T:/2 T:/2 (29)A - 2Z~e~ \ rrN~ ] ~ 1.24 x 104 ZaN1/2 - 1.18 x 10.9 7 J/~"
~Cg/)e

Somov [28] modifies this somewhat to

A- 3 ( kaTa 1/2 T a/2
1.24 x 104 7 IV1/j for T~ < 5.8 x 105 K

×
-- 2Zae~ \~e ] \ J

~ 9.44 x 106 T~

This expression is valid only if
4 aN ~ = -jr ~ v N~ >> 1,

for Te > 5.8 x 105 K (30)

where the electron Debye length is

(31)

.~ (kBZ e ~1/2

AD \4r~Xee2] = 6.9(Te/Ne) 1/2 cm. (32)

Lee and More [29] suggest setting a minimum value of 2.0 on the Coulomb logarithm when

calculating conductivities with their model (to be described in the next subsection), and 

adopt that suggestion here as well.

For other conditions, it will be necessary to use other approximations for the Coulomb

logarithm, or perhaps a different formalism altogether. For example, the case of dense,

degenerate plasmas found in the interiors of white dwarf stars is treated by Itoh, Kohyama,

and Takeuchi [30]. These extreme conditions are beyond the scope of this report.

12



Of course, prediction of the mixture viscosity for the partially ionized case is an

even more difficult problem than for a single ionic species. Mitchner and Kruger provide a

theoretical discussion that fails to provide a computationally convenient formalism. So, we

use a very approximate, somewhat ad hoc model. First, we assume the species viscosities

for the neutrals are all given by equation 2 or 3. Then we calculate a species viscosity for

each charged species using equations 28 and 30, assuming Ti = Te = T. The same value of A

will be used for all transport coefficients in a given cell, using a number-weighted averaged

charge Z* in place of Z~. If c~r represents the set of species indices for all charged species

except electrons, then we define

_ _ 1- E Iz ,lN ,. (33)

Then the mixture rule given by equations 5 and 6 is used to compute the mixture viscosity.

When the radiation energy density is large, as it is in stellar interiors, there are

additional considerations. In the gray one-temperature approximation, the viscous stresses

must include a contribution from the radiation [31, 32]. This model requires the radiative

viscosity

#,. = 4aT4/15c~p, (34)

where ~ is the Rosseland mean opacity, a = 7.563 x 10-1~ ergs/(cm3 K4) is the Stefan-

Boltzmann constant, and c = 2.998 x 101° cm/s is the speed of light. Numerous opacity

tables are found in the astrophysics literature, for example [33, 34, 351. It is beyond the

scope of this report to attempt to provide any kind of critical summary of this literature.

Also, we shall make no attempt to discuss more detailed models of radiation effects.

3.2 Thermal Conductivities

Mitchner and Kruger [27] and Chapman and Cowling [22] (p. 179) give the thermal conduc-

tivity as
5= (33)

This is the same as the Eucken correction, equation 9, with 7~ = 5/3. Wc use this approxi-

mation for the ions.

13



In general, when energy is transported via conduction in a plasma with T > 2 x 104 K,

electron conduction plays a greater role than that of the ions due to their greater mobility.

To calculate the conduction coefficients, a perturbation solution to a Boltzmann transport

equation with a linearized collision operator is found [36, 37]. For the electron conductivity,

electron-electron collisions are generally not explicitly included in this operator since electron-

ion collisions are usually more efficient in spatially transporting electron energy because of

a higher average momentum transfer. An expression for the electron conductivity derived

in this fashion incorporating degeneracy as well as partial ionization effects is given by Lee

and More [29] as

3k~(kBT¢)5/2Ne AZ(p/kBTe) [1 + exp(-a/k~T¢)]F1/2(p/kBT¢), (36)
K~ - 2a/~m~/2,z Z,2 N~e4 In A

where in A ___ 2. Tile coefficients involving tile chemical potential # may be fit in terms of

the degeneracy parameter y = ln[1 + exp(p/kBT~)] by

A~(#/kBTe) = 13.581 + 0.976y + 0.437y2 (37)
1.0 + 0.510y + 0.126y2

There are two ways of computing the degeneracy parameter and the Fermi-Dirac integral.

First, the Fermi-Dirac integral may be approximated in terms of y by

~rl/2 2ya/2
+ 0.2y1/2 - 0.10y + -- (38)[1 + = 2 3

The constant term on the right hand side makes the fit exact as y approaches zero (nonde-

generate), and the last term makes the fit exact at y goes to infinity (complete nonrelativistic

degeneracy). Comparing with accurate results for partial degeneracy [38], we find this fit has

a maximum error of approximately 3 percent around I*/k~T~ = 0. The degeneracy factor is

fit by

y =

where x = (EI/kuT~)1/2, and

is the electron Fermi energy.

za(0.753 + 0.168x + 0.310z2)

1.0 + 0.270x + 0.228x2 + 0.310xa’ (39)

h2

Ef- 2m (3rc2N~)2/a (40)

I prefer a different procedure for handling the degeneracy parameter and Fermi-Dirac

integrals that avoids the marginally adequate fits given by equations 38-40. The CFD code

14



inputs to the transport coefficient routine the electron temperature Te and the electron

number density Are. The nonrelativistic degenerate electron equation of state [39] then gives

F1/2 (r/), where r/= #/k~Te, from

Ne = ~a (2m¢kBT¢)3/2F1/2 (r/). (41)

Then we can use highly accurate tables [38] or functional fits [40] to invert F1/2(rl) to find r/.

The latter are especially convenient. Then we trivially compute y and A~ (~/) from equation 

and finally the conductivity from equation 36.

Hubbard and Lampe [41] is the standard reference for electron thermal conduction

opacities in stellar interiors. For extreme conditions, such as found in the interiors of white

dwarf stars, this is the recommended thermal conductivity. Canuto [42] extends this work

to include relativistic effects.

In situations with high radiation energy density, the radiative heat flux must be

included [31, 32]. In the gray one-temperature approximation, the radiative flux is

4acTa
qr = -I(rVT -- -- VT. (42)

3~p

Once again, further consideration of radiative effects is beyond the scope of this report.

3.3 Binary Diffusion Coefficients

For mass diffusion in plasmas, the Stefan-Maxwell equations must be generalized to include

a body force term representing the electric field set up by ambipolar diffusion:

y, VP 1
d~ = VX~ + (X~ - ~) --fi pp~q~E, (43)

where q~ = Z~eA/M~ is the charge per unit mass of species a. Here A = 6.022 × 1023 is Avo-

gadro’s number. Here wc have made use of the charge neutrality condition ~ p~q~ = O. 1

The Stefan-Maxwell equations 12 remain unchanged except for the new d~ defined by equa-

tion 43. The coefficient matrix, however, picks up one new column for the coefficients of the

unknown electric field E. The assumption of zero magnetic field implies that the current

Jq = ~ p~q~u~ = 0 by Ampere’s Law. The linear system now must include the zero-current

1In some problems (for example, [43]), it may be necessary to include an additional radiative force 
part of F~, but we shall not consider that possibility any further in this report.
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constraint as the additional equation which allows us to solve for the electric field E along

with the diffusion velocities.

To complete the mass transport model, we need binary diffusion coefficients and

thermal diffusion coefficients. For pairs of neutral molecules, we continue using equations 18

through 27. For a charged-neutral pair, we also use the neutral-species formalism for the

binary diffusion coefficient. In all other cases, we use the model of Ramshaw [44, 45], which

has been modified to accomodate the Coulomb potential.

Charged pairs are not described accurately by first-order Chapman-Enskog theory,

and a correction factor f~5 must be applied to obtain

3 f~k~T~Ts (44)Dc~fl ~- (1,1) ’

where #~ = mjn~/(m~ + m~) is the reduced mass. The factor f~0 = 1 if ee,/3 =fi e, and

f~¢ = f¢~ = f(Z~), where f(1) = 1.97, /(2) = 2.33, and/(3) = 2.53. The collision 

is
Z~Z~e2

\P~fl/ (2k.T~m)a/2 lnA.
(45)

The thermal diffusion coefficient for charged pairs is defined in terms of the inverse

of the collision frequency,

7~ = 0.5

where

-1

(46)

( z zed 2= T k,,T f, / lna, (47)

% = m~/2k.T~, (48)

%~ is defined by equation 23, and ~ is the Kronecker delta. Then

3 f~.~P~P/3rO%O (49)B~ =
4PT~D~ ’

which differs from the neutral-neutral case by a factor of -3f~0.

Ramshaw [45] argues that a charged-neutral pair has a r/~ potential except at very

close range, so the thermal diffusion coefficients should be very small or zero. Therefore, we

set the thermal diffusion coefficient B~5 = 0 if el, f3 are a charged-neugral pair.
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A necessary condition for this formalism to be valid is the ideal gas limit. For more

extreme conditions, a more complex formalism is necessary. A lot of work has been done for

the conditions found in stellar interiors. Aller and Chapman [46] present a simple example

including ambipolar diffusion in the sun. A rather arbitrary selection of more complex

formalisms, including radiative forces, is given in [43] and [47]-[52].

4 Concluding Comments

This report presents a homogeneous compilation of transport coefficients from disparate

sources. The compilation originally was oriented mainly toward combustion applications, but

the present version extends the database to include plasmas under conditions appropriate

to plasma torches and certain astrophysical phenomena. However, the information should

be applicable to any collision-dominated fluid or plasma within the ideal gas regime. The

model has been implemented in COYOTE, and simuluations with up to 27 species have been

completed without difficulty or excessive computational expense.

A natural question is how well the collected formulas and tables represent reality.

Unfortunately, it is not easy to answer this question. For some gases, the problem is the

shear volume of data found in the literature. For some of these, there are publications

devoted to a critical evaluation of the literature and presentation of correlations and tables

of recommended values. Often these are accurate to within a few percent over a wide range of

conditions. Even in those cases, however, there can still be some discrepancies in the reported

Lennard-Jones parameters. This can be seen in Table 3 where there are several examples of

multiple entries for a given species, each entry from a different source. For example, there

are two entries for H2. Transport coefficients depend only weakly on e/km so both entries

produce comparable results. Although the Lennard-Jones model is reasonably accurate (the

viscosity is approximately 6 percent high at 320 K, depending on which experimental value

one chooses), the generalized Sutherland formula (Table 1) is slightly more accurate. Even

in the case of H, the two sets of Lennard-Jones parameters produce transport coefficients

that are not as different as one might expect. The first set appears to be somewhat more

accurate for binary diffusion coefficients, but the second set is definitely superior for viscosity

and thermal conductivity. Caveat emptor.
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At the other extreme, there is a scarcity of experimental data for unstable or highly

reactive species such as OH. Fortunately, these species are not sufficiently abundant in most

combustion systems that they significantly impact the viscosity or thermal conductivity.

However, some of the binary diffusion coefficients, such as those involving H, have impor-

tant effects on flame propagation speeds and structure. Appropriate experimental data for

plasmas appear to be very scarce, and the theoretical estimates presented here have received

minimal testing.

There is one final comment about the use of the Lennard-aones model. CHEMKIN, a

widely used combustion code, has a large database of Lennard-Jones parameters. However,

the first step in running a problem is to have the code convert the Lennard-aones transport

coefficients into polynomial fits. ~\re prefer the direct use of the model equations since this

procedure avoids the introduction of some unnecessary truncation errors. However, it may

be necessary to reconsider this choice if we ever need to simulate extreme conditions, such

as the interior of a white dwarf star, where a different formalism is appropriate.
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Species
He
He
Ne
Ne
Ar
Ar
Ar
Kr
Kr
Xe
xe
C
C2
CH
CH2
1CH2
CH3
CH4
CH4
CH3OH
CH20
CH2OH
C2H2
C2H2
C2H4
C2H4
C2H6
Calls
CN
CO
CO
CO2
CO2
CF4
H
H
H2
H2
HCN
HCO
H20

Table 3. Lennard-Jones Parameters for Selected Spccies

Index 6/kB (K) ~ (~) ~ (Debye) a)Zrot( 298/~)
0 10.2002.576 0.000 0.0000.000
0 10.400 2.610 0.000 0.200
0 35.60 2.749 0.000 0.000 0.000
0 42.00 2.755 0.000 0.400
0 136.500 3.330 0.000 0.000 0.000
0 119.8 3.405 0.000 0.000 0.000
0 143.200 3.350 0.000 1.642 -
0 176.000 3.679 0.000
0 197.800 3.571 0.000 2.490 -
0 229.800 3.937 0.000
0 274.000 3.885 0.000 4.040 -
0 71.400 3.298 0.000 0.000 0.000
1 97.530 3.621 0.000 1.760 4.000
1 80.000 2.750 0.000 0.000 1.000
1 144.000 3.800 0.000 0.000 1.000
1 144.000 3.800 0.000 0.000 0.000
1 144.000 3.800 0.000 0.000 1.000
2 141.400 3.746 0.000 2.600 13.000
2 161.400 3.721 0.000 2.600 -
2 481.800 3.626 0.000 0.000 1.000
2 498.000 3.590 0.000 0.000 2.000
2 417.000 3.690 1.700 0.000 2.000
1 209.000 4.100 0.000 0.000 2.500
1 265.300 3.721 0.000 0.000 2.500
2 280.800 3.971 0.000 0.000 1.500
2 238.400 3.496 0.000 0.000 1.500
2 252.300 4.302 0.000 0.000 1.500
2 266.800 4.982 0.000 0.000 1.000
1 75.000 3.856 0.000 0.000 1.000
1 98.100 3.650 0.000 1.950 1.800
1 98.400 3.652 0.1098 1.950 -
1 244.000 3.763 0.000 2.650 2.100
1 245.300 3.769 0.000 2.650 -
2 156.500 4.579 -
0 145.000 2.050 0.000 0.000 0.000
0 5.420 3.288 0.000 0.667 -
1 38.000 2.920 0.000 0.790 280.000
1 23.960 3.063 0.000 0.803 -
1 569.000 3.630 0.000 0.000 1.000
2 498.000 3.590 0.000 0.000 1.000
2 572.400 2.605 1.844 0.000 4.000

Ilef.

[8]
[20]
[8]
[55]
[53]
[81
[20]
[8]
[20]
[8]

[5]
[5]

[5]
[5]
[8]

[8]

[8]

[8]

[8]

[5]
[5]

24



Species
H20
H202
H202
HO2
HO2
N
N
N2
N2
NCO
NH
NH2
NHa
N20
N20
NO
NO
NO2
NO2
O
O
02
02
OH
OH
C20
CN2
C2H
C2H2OH
C2H3
C2H4
C2H~
C2N
C2N2
C8H2
C3H4
p-C3H4

Call6
Call7
C4H6

i-Call7

Index
2
2
2
2
2
0
0
1
1
1
1
2
2
1
1
1
1
2
2
0
0
1
1
1
1
1
1
1
2
2
2
2
1
1
2
1
1
2
2
2
2

 /kB (K)
535.210
107.400
368.110
107.400
365.560
71.400
74.500
97.530
98.400
232.400
80.000
80.000
481.000
232.400
266.800
97.530
125.000
200.000
204.880
80.000
57.910
107.400
121.100
80.000
281.270
232.400
232.400
209.000
224.700
209.000
280.800
252.300
232.400
349.000
209.000
252.000
252.000
266.800
266.800
357.000
266.800

Table 3.

2.673
3.458
3.499
3.458
3.433
3.298
3.360
3.621
3.652
3.828
2.650
2.650
2.920
3.828
3.703
3.621
3.474
3.500
3.922
2.750
3.064
3.458
3.470
2.750
3.111
3.828
3.828
4.100
4.162
4.100
3.971
4.302
3.828
4.361
4.100
4.760
4.760
4.982
4.982
5.180
4.982

Continued.

# (Debye)
1.847
0.000
1.573
0.000
2.090
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.470
0.000
0.1687
0.000
0.1578
0.000
0.320
0.000
0.000
0.000
0.000
0.000
1.655
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

(A3)
1.450
0.000
2.230
0.000
1.950
0.000
1.110
1.760
1.750
0.000
0.000
2.260
0.000
0.000
3.000
1.760
1.740
0.000
3.000
0.000
0.802
1.600
1.600
0.000
0.980
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Zrot(298,’c)

3.800

1.000

0.000
z

4.000

1.000
4.000
4.000
10.000
1.000

4.000

1.000

0.000

3.800

0.000

1.000
1.000
2.500
1.000
1.000
1.500
1.500
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

Ref.
[8]

[8]

[8]

[8]

[8]

[8]

[8]

[81

[8]

[8]

[81
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Species Index
n-CaHr 2
C4H 1
C4H2 1
C4H2OH 2
C4H8 2
C4H9 2
8-C4H9 2
i-C4H9 2
C5H2 1
CsHa 1
C6H2 1
C6H5 2
C6Hs(L) 2
C6H50 2
CaH5OH 2
C6H6 2
C6H6 2

C6Hr 2
CH2CO 2
CHaCC 2
CHACO 2
CHaO 2
CHaOH 2
CH40 2
CNC 1
CNN 1
CH2CHCCH 2
CH2CHCCH2 2
CH2CHCH2 2
CH2CHCHCH 2
CH2CHCHCH2 2
CHaCCCH2 2
CHaCCCHa 2
CHaCCH2 2
CHaCHCH 2
CHaCH2CCH 2
CHaCHO 2
H2C40 2
H2CCCCH 2
H2CCCCH2 2
H2CCCH 2

Table 3. Continued.

e/kB (K) a (A) # (Debye) a)Zrot( 298K)
266.800 4.982 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
224.700 4.162 0.000 0.000 1.000
357.000 5.176 0.000 0.000 1.000
357.000 5.176 0.000 0.000 1.000
357.000 5.176 0.000 0.000 1.000
357.000 5.176 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
412.300 5.349 0.000 0.000 1.000
412.300 5.349 0.000 0.000 1.000
450.000 5.500 0.000 0.000 1.000
450.000 5.500 0.000 0.000 1.000
412.300 5.349 0.000 0.000 1.000
464.800 5.290 0.000 10.30 1.000
412.300 5.349 0.000 0.000 1.000
436.000 3.970 0.000 0.000 2.000
252.000 4.760 0.000 0.000 1.000
436.000 3.970 0.000 0.000 2.000
417.000 3.690 1.700 0.000 2.000
481.800 3.626 0.000 0.000 1.000
417.000 3.690 1.700 0.000 2.000
232.400 3.828 0.000 0.000 1.000
232.400 3.828 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
260.000 4.850 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
260.000 4.850 0.000 0.000 1.000
260.000 4.850 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
436.000 3.970 0.000 0.000 2.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
357.000 5.180 0.000 0.000 1.000
252.000 4.760 0.000 0.000 1.000

Ref.
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Species
H2CN
H2NO
H2S
HC2N2
HCCHCCH
HCCO
HCCOH
HCO+

HCNO
HCNN
HOCN
HNCO
HNNO
HNO
HNOH
HF
H~O, = o)
~F(~ = 1)
nF(~ = 2)
nF(~ = 3)
UF(~ = 4)
HF(~ = 5)
HF(u = 6)
HF(~ = 7)
nF0, = 8)
HSO2
N2H2
N2Ha
N2H4
NCN
NH
NH2
NNH
NO
NCNO
Oa
S
$2
SIC
SO
S02

Table 3. Continued.

I~d~x C/kB (K) ~ (A) ~ (Debye)
I 569.000 3.630 0.000

2 116.700 3.492 0.000

2 301.000 3.600 0.000

I 349.000 4.361 0.000

2 357.000 5.180 0.000

2 150.000 2.500 0.000

2 436.000 3.970 0.000

1 498.000 3.590 0.000

2 232.400 3.828 0.000

2 150.000 2.500 0.000

2 232.400 3.828 0.000

2 232.400 3.828 0.000

2 232.400 3.828 0.000

2 116.700 3.492 0.000

2 116.700 3.492 0.000

1 330.000 3.148 1.920
1 352.000 2.490 1.730

1 352.000 2.490 1.730

i 352.000 2.490 1.730

i 352.000 2.490 1.730

i 352.000 2.490 1.730

1 352.000 2.490 1.730

I 352.000 2.490 1.730

1 352.000 2.490 1.730

1 352.000 2.490 1,730

2 252.000 4.290 0.000

2 71.400 3.798 0.000

2 200.000 3.900 0.000

2 205.000 4.230 0.000

1 232.400 3.828 0.000

1 80.000 2.650 0.000

2 80.000 2.650 0.000

2 71.400 3.798 0.000

1 97.530 3.621 0.000

2 232.400 3.828 0.000

2 180.000 4.100 0.000

0 847.000 3.839 0.000

1 847.000 3.900 0.000

1 847.000 3.900 0.000

1 301.000 3.993 0.000

2 252.000 4.290 0.000

(A3) Zro~(298K)
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 2.000
0.000 0.000
0.000 1.000
0.000 1.000

0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 1.000
2.460 1.000
0.000 5.000
0,000 5.000
0.000 5.000
0.000 5.000
0.000 5.000
0.000 5.000
0.000 5.000
0.000 5.000
0.000 5.000
0.000 1.000
0.000 1.000
0.000 1.000
4.260 1.500
0.000 1.000
0.000 4.000
2.260 4.000
0.000 1.000
1.760 4.000
0.000 1.000
0.000 2.000
0.000 0.000
0.000 1,000
0.000 1.000
0.000 1.000
0.000 1.000

Ref.
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Species
SO3
Sill4
SiH3
Sill2
Sill
Si
Si2H6
Si2H5
Si2H4
Si2Ha
Si2H2
Si2
Sia
SiF4
H2SiSiIt2
HaSiSiH
SiaH8
e-

AsHa
As2
GaMea
GaM%
GaMe
Ga
Br2
SF6
CI
CI-
HC!
F
F2
K
KO
KOH
KO2
KH
K+

KCI

Index
2
2
2
2
1
0
2
2
2
2
2
1
2
2
2
2
2
0
2
1
2
2
2
0
1
2
0
0
1
0
1
0
1
2
2
1
0
1

(K)
378.400
207.600
170.300
133.100
95.800
3036.00
301.300
306.900
312.600
318.200
323.800
3036.00
3036.00
171.900
312.600
312.600
331.200
850.000
259.800
1045.50
378.200
675.800
972.700
2961.80
520.000
207.700
130.800
130.800
344.700
80.000
125.700
850.000
383.000
1213.00
1213.00
93.300
850.000
1989.00

Table 3.

(A)
4.175
4.084
3.943
3.803
3.662
2.910
4.828
4.717
4.601
4.494
4.383
3.280
3.550
4.880
4.601
4.601
5.562
425.0
4.145
5.510
5.520
5.220
4.920
4.620
4.268
5.252
3.613
3.613
3.339
2.750
3.301
4.250
3.812
4.52O
4.690
3.542
4.250
4.186

Continued.

# (Debye)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
1.084
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

(X
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
1.600
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Zrot (298 I()
1.000
1.000
1.000
1.000
1.000
0.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000

1.000
1.000
1.000
0.000
3.800
1.000
1.000
1.000
1.000
1.000
1.000
1.000

Ref.

[56]
[54]
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