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The spatiotemporal evolution of parametric instabilities such as stimulated Raman scat- 

tering is studied analytically in time and two spatial dimensions. Initial and boundary 

conditions are chosen to represent the entrance, propagation, and exit of a laser pulse of 

finite extent as it progresses through a homogeneous collisional plasma channel. For most 

scattering angles daughter wave growth is enhanced by lateral reflections within the chan- 
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the channel boundaries is equivalent to an overall damping of the Stokes amplitudes within 
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I. INTRODUCTION 

Early work on the spatiotemporal evolution of parametric instabilities was described by 

Bers [l]. Recently, there has been a resurgence of interest in the spatiotemporal evolution 

of stimulated Raman scattering (SRS) [2-121 an s imulated Brillouin scattering (SBS) [13- d t 

al], driven by the realization that the transient phase of these instabilities dominates many 

experiments. This current work serves to expand and unify our previous works [7, 8, lo-121 

by developing an analytic model of parametric instabilities within a plasma channel which 

includes the effects of two spatial dimensions, damping, finite pulse and plasma boundaries, 

and oblique reflections of the daughter waves induced by lateral density variations. 

Due to the multitude of parametric instabilities, it is impossible to include all of 

them in this work. Thus, with regard to current interest, we have chosen as an example 

to consider only that of Stokes generation as applicable to stimulated Raman scattering. 

The analyses of other parametric instabilities can follow quite easily in a similar fashion. 

Stimulated Raman Scattering (SRS) is the decay of an incident light wave (0) 

into a frequency-downshifted, or Stokes, light wave (1) and Langmuir wave (2) (Fig. 1). 

The conservation of energy and momentum is reflected in the frequency and wave-vector 

matching conditions 

wo = w1+ w2 ) k. = k; + k2 . (1) 

In the weak-coupling regime, the initial evolution of SRS in a homogeneous two-dimensional 

collisionless plasma is governed by the linearized equations 

where x and y are the two spatial dimensions, t = ct, positive signs refer to upgoing 

waves [Fig. l(a)], negative signs refer to downgoing waves [Fig. l(b)], Ao,k = eAo,+/lm,c2 

represents the quiver velocity of the Stokes waves, Nf = (w2/w1)1/2w2n/c Ik21 no represents 

the plasma density fluctuations of the Langmuir waves, y. = w2 ]k2] Ao/4[wz (wg - wz)]li2 

is the temporal growth rate of SRS in an infinite plasma, and the group velocities of 
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the daughter waves are given by u1 = c2 Jkrl /wr and 212 = 321: lk2) /2w2 where ut is the 

thermal velocity of the electrons 1221. In consideration of the large velocity of the Stokes 

wave within the plasma (~1~ = c cos 19, uly = c sin 0 for scattering angle 0 < 13 < K) and the 

comparably small velocity of the Langmuir wave, we have neglected terms such as vz,& 

and 212~8~ in the second of Eqs. (2) so that the Langmuir wave does not convect relative 

to the plasma. Although the governing equations neglect additive stochastic source terms, 

the closed form analytic solutions for the daughter wave amplitudes that these equations 

produce have the same gain factor and qualitative spatiotemporal evolution as models 

which include the stochastic terms [13-151. Finally, a system such as Eqs. (2) can also be 

generalized to include both the stabilizing effect of the anti-Stokes (frequency-upshifted) 

wave [2, 5, 91 and the effects of strong coupling [9, 16, 18, 191. 

II. TWO-DIMENSIONAL FORWARD SRS 

The governing equations and boundary and initial conditions for two-dimensional forward 

SRS in a collisionless plasma channel are given by Eqs. (2) with 

A+ (O,y,t) = 0, A+ (xC,O,t) = T-A- (x,W>, 

A- (0, Y, t> = 0, A- (x, I,, t> = rA+ (xc, I,, t> > 
(3) 

N+ (O,y,t) = 1, N- t%U) = 1, 

& (xG, Y, 0) = 0, N* (x, Y, 0) = 1. 

This system is representative of a rectangular constant amplitude laser pulse of semi- 

infinite extent in the negative x direction, propagating to the right at speed v. where at 

t = x = 0 its leading edge enters a plasma channel which is bounded by 0 5 x 5 I, and 

0 5 1~ < 1, and has a uniform Langmuir seed for the initiation of the instability. Within 

the channel the laser pulse decays into both an upgoing and downgoing electron plasma 

(Langmuir) wave and scattered light (Stokes) wave which propagates obliquely to the right 

(0 5 0 5 7r/2) and reflects off of the channel walls at y = 0 and y = I, with a reflectivity 

coefficient 0 < r(0) < 1. Note that at x = 0 it is only necessary to define either the Stokes 
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or Langmuir amplitude and the other condition becomes a consequence of the interaction. 

Additionally, it is the boundary conditions and not the governing equations that couple 

the upgoing and downgoing waves so that in the zero reflectivity limit we recover the 

interaction studied in Ref. 12. 

Using the characteristic variables [ = vryx/ (ZYvrx), 7 = y/Z, and r = 

vrY (vat - x) / [I, (us - VI,)], and defining I?% = [(vo - vrx) /vO]~‘~ A* and y = 

ysl, [(us - ~1~) /~s]l’~ /vQ,, Eqs. (2) and (3) become 

and 

B- to, 77 7) = 0, B- (I, 174 = rB+ (6 174 7 
(5) 

N+ K~w-) = 1, N- (OJV) = 1, 

h (I, v, 0) = 0, Kc 65, rl, 0) = 1, 

within the plasma channel. If we first take the Laplace transform of Eqs. (4) and (5) with 

respect to T (Laplace transform variable s) and then with respect to < (Laplace transform 

variable 4) we get 

(&a, + s + q) E* = -yz*, SF* - l/q = YE*, 

and 

(6) 

E+(O,r),s)=O, B+(~,o,s)=r~_(q,o,s), 
E- (0, q, s) = 0, E- (q,l, s) = T+ (&I, s) ) 

iu+ (O,q, s) = 1, TV- (0, q, s) = 1, 
(7) 

E* (47 rl,o> = 0, i‘l* (4, rl, 0) = 1/ (w) , 

where the double overbar denotes that a double Laplace transform has been taken. The- 
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solutions to Eqs. (6) and (7) are 

E+ I= l-r e--47) 
-gv - l y 7 

1 - j--eta-q) q (Q - q) S q(-!I) 2 

B- = l-r e-q(1--17) 7 a(l-~) _ ’ y 
1 - reCa-q) Q (O! - 4) se q(a-q) 2 

F+ = l-r e--417 
1 - reCa-q) Q (a - 4) 0 

Y 2eal’- l y 2+L 
i q(cx-q) i sq’ ( > 

z- = l-r e-q(l--7)) 

0 
r2 1 

1 - reCQ-q) Q (a - 4) 
e”(l--7)) - 

0 
r 2+L 

s q(a-q) s sq’ 

(8) 

where CY = y2/s - s. Close inspection of the amplitudes in Eqs. (8) shows that the lateral 

symmetry in the governing equations and initial and boundary conditions is manifested in 

such a way that the downgoing amplitudes are simply the mirror images of the upgoing am- 

plitudes: I?- (I, q, Q-) = I?+ (I, 1 - 7, ) r and N- ([, q, 7) = N+ (6, 1 - q, 7). Furthermore, 

reflections are solely introduced in the solutions as (1 - r) / [l - re(a-q)] coefficients in 

the first terms of the daughter wave amplitudes so that for the zero reflectivity case we 

recover the zero damping limit (hr = h2 = 0) of Eqs. (8) of Ref. 12. These coefficients can 

be cast in a more useful form by applying l/ (1 - p) = ET=, ,P to each coefficient. (The 

validity of employing this identity for our purposes is contingent on Ireca-q) ( being less 

than unity and is discussed in detail in Refs. 13 and 24.) For inverse Laplace transforms 

with respect to q we use 

L-1 1 [ 1 = 1 - eaE 

4 (a - d Q ’ 

Lc-’ r(q) eeqv 1 = T;’ ([ - 7) H ([ - v) , 
(9) 
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so that the inverse Laplace transform of Eqs. (8) can be cast in the form 

+~rn[-~eoiH(~-1/-n)+~e~EH(F-7/-n+l) 
n=l 

-k Ye”(v+“)H (6 - 7 - n) - Ye”(q+‘“-l)H ([ _ v _ n + I)], 
CXS as 

+ f + $ea(H (q - c) + y2 -eaqH (c - q) 
CLT2 

f Frn [-seaFH (F - q - n) + zeatH (I - q -n + 1) 
n=l 

+ y2 -e”tv+“)H (c$ - rl - n) - $ea(q+npl)H ([ - rl _ n + I)], 
CM2 

(10) 

where H is the Heaviside step function. The remaining nontrivial inverse Laplace trans- 

forms are all of the form re”@/(as) for the Stokes wave and y2e”$/(as2) for the Langmuir 

wave. These inverse transforms have been solved previously in Eqs. (7)-(15) of Ref. 8 and 

are the fundamental solutions of the governing equations [7, 8, 10-121. Explicitly they are 

w/v) = [ 2 
m=O 

wvw= 5 

[ m=O 

12m+l 
c. 

2Y [G C7 - 

1 
2-Y I$ (7 - N1”2 

W”} - sinh (yr) 1 H (T - $) 
1 

1 
(11) > - cash (yr) H (7 - y5) 

for the Stokes and Langmuir amplitudes respectively. 

The upgoing daughter wave amplitudes for forward SRS in a two-dimensional - 
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collisionless plasma channel are now evident given Eqs. (10) and (11): 

B+ 6 rl, 7) = sinh (YT) + CT (t, 7) H (v - [) + FS (q, T) H (e - q) 

+~r0[-FS(E17)H(~-~--)+FS(~,~)H(t---71+1) 
n=l 

+ Fs (V + n, 7) H (t - rl - n) - FS (q + n - 1, r) H (6 - q - n + I)], 

N+ tt, rl, 7) = cash (~7) + FL (t, T) H (7 - [) + FL (7, r) H ([ - T,I) 

+~~“[-FL(E,I)H(E-~)--~L)+FL(E,~)H(~-~-~+~) 
n=l 

+ FL (T + n, T> H (C - 7 - n) - FL (v + n - 1, r) H (I - q - n + I)], 
(12) 

and the downgoing wave amplitudes are given by B- ([, q, r) = B+ ([, 1 - q, 7) and 

N- (0~ d = N+ (t, 1 - rl, > r w h ere there is also the restriction that the amplitudes are 

zero outside of the plasma (x < 0) and have their initial values ahead of the laser pulse 

(x > vat). Amplitudes outside of the channel and laser pulse but within the surrounding 

plasma (y < 0, y > ZY) are discussed in section IV of Ref. 12. 

We have purposefully written the amplitudes in Eqs. (12) as sums in rn to 

highlight the physical implication of reflections. In fact, all of the r” terms are equivalent 

to the undamped solutions studied in Ref. 12 (h ere they are merely expressed in terms of 

the fundamental solutions FS,L and the characteristic variables <, q, and T). Furthermore, 

each of the terms in the sum for n greater than zero can be thought of as being the result of 

image sources outside of the plasma channel. Thus, the inclusion of reflections is equivalent 

to the addition of an infinite series of image sources. The effect of these image sources on 

the spatiotemporal evolution of the daughter waves within the channel is best shown by .- 
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rewriting Eqs. (12) as 

B+ (5, rl, 7) = sinh (7~) H(J - ~)ff(q - T) 

+ [FY 65, r> + sinh (YT)] H (7 - t> H (t - q) 
+IE rn sinh (77) H(J - T)H (T - 7 + 1 - n) H (n - T + q) 

n=l 

+~r’“[Wb)+ sinh (y-)] H (T - [) H (I - q + 1 - n) H (n - C + q) 
n=l 

+ (1 - r) 2 rn [Fs (q + n, 7) + sinh (rr)] H(T - T,I - n) H ([ - q - n) , 
n=O 

N+ (6, rl, T> = cash (v) H(t - W(q - T> 

+ [FL tt, T> + co& (v)] H (7 - t> H (t - q) 

+lE rn cash (77) H(J - -r)H (T - ?,I + 1 - n) H (n - T + q) 
n=l 

+gr”[FL(F1T)+ cash (y-)] H (T - 6) H ([ - q + 1 - n) H (n - < + q) 
n=l 

+ (1 - r) 2 rn [FL (q + n, T) + cash (rr)] H(T - 7 - n) H (I - q - n) . 
n=O 

(13) 

In the nonreflective theory of Ref. 12 we had three distinct regions of spatiotemporal 

growth. In the reflective theory, we will now have three distinct regions of growth for 

each n in Eqs. (13) (Fig. 2). For n = 0 we will have the same three regions as in 

the nonreflective theory with the two-dimensional amplitudes multiplied by a factor of 

(1 - r). In terms of the space and time variables x, 3, and t, the first region for n >_ 1 

is U[Y + (n - l)~,]/vl,w,(y + nl,)/vly < x 2 vl,(y + nZy)/vly 5 and x < vlzt and 

will contribute a one-dimensional sum of Bessel functions multiplied by P; the second 

region is vr,(y + nZy)/ viy < x < vat - (us - vrz) (y + nZ,)/vr, and will contribute a two- 

dimensional sum of Bessel functions multiplied by (l-r)rn; the third region is x 2 vlzt and 

vat - (vo - v12) (Y + n&J)/ vrY 5 x < vat - (vo - VI,) [y+ (n - l)ZY]/vrY and will contribute a 

one-dimensional hyperbolic function multiplied by rn. The representation of these regions- 
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in Fig. 2 shows that the spatiotemporal character of each reflection is manifested in such a 

way that the total spatiotemporal character of the amplitudes is unchanged in that for any 

finite number of reflections there are only three regions of general spatiotemporal growth 

for the total amplitude (distinguished by the solid lines in Fig. 2). Region I is characterized 

by one-dimensional Bessel growth, region II is characterized by one and two-dimensional 

Bessel growth and one-dimensional exponential (hyperbolic) growth, and region III is char- 

acterized purely by exponential (hyperbolic) growth. Comparing these regions with that of 

Ref. 12 shows that the inclusion of a finite number of reflections does not alter the general 

spatiotemporal character between the reflective and nonreflective theories, but it does sig- 

nificantly change the daughter wave amplitudes within each corresponding nth subregion 

of region II. 

Plots of Eqs. (12) and (13) can be found in Fig. 3. In each plot a snapshot of 

the upgoing Langmuir amplitude is shown for a given time and forward scattering angle 

where the scattering angle of the Stokes wave is indicated in the top center, the solid lines 

distinguish the three distinct general regions of spatiotemporal growth, and each plot is 

normalized so that the largest amplitude is white and smallest amplitude is dark gray. 

The chosen time is t = 1 so that the leading edge of the laser pulse is at x = vat = 1 and 

the plasma is bounded by 0 5 x < 1 and 0 5 y < 0.5 with reflective boundaries at y = 0 

and y = 0.5 with a reflection coefficient of r = 0.5. All of the other plasma parameters 

are the same as in Fig. 3 of Ref. 12 so that direct comparisons can be made between 

the reflective and nonreflective theories. It is immediately obvious from Fig. 3 that the 

inclusion of a finite number of reflections does not alter the dividing lines between the three 

general regions of growth. It is also immediately obvious that the amplitudes in region I 

and III are exactly the same as in the nonreflective theory and there is a vast difference in 

the spatiotemporal evolution of region II in the reflective and nonreflective theories. The 

reflective theory predicts amplitudes in region II that are greater than the nonreflective 

theory and depend less on the lateral spatial variable y. This can be attributed to the- 
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manner in which each of the n reflections in Eqs. (13) contribute to the total amplitude. 

From Fig. 2 we see that each nth reflection has its own three regions of growth, and each 

n-plus-first reflection adds in such a way that its regions I and III overlap the nth region II. 

Since regions I and III are both one dimensional in nature and region II is two-dimensional 

we see that for a finitely large number of reflections the total amplitude in the general 

two-dimensional region can become dominated by one-dimensional growth. 

If we now consider damping within the plasma channel then the governing equa- 

tions become 

along with the boundary and initial conditions of Eqs. (3). It is not difficult to show that 

the solutions for these governing equations are given by Eqs. (12) and (13) and all of the 

above arguments and discussions are valid if we simply replace the fundamental solutions 

[Eqs. (ll)] with their damped counterparts [la]: 
r 

Fs ($, 7) = H (7 - $) -ypemhsT sinh (r/p) + ype-h27e-2hd’@ 

co 
X 

c 

(h@ + 1)” - (hdp - 1)” 

m=l 2 (7Plrn 

FL ($, 7) = H (7 - $J) -hdpe-hs’sinh (7/p) + eehsT cash (r/p) + ype-h2Te-2hdti 

X 
m (&P + 1)” - (ho - 1)” c 

m=l 2 (7Pjrn 
(m-1)‘2 ImpI { 27 [$ (T - +p2} 

where hl = v~Z~/~V~~, h2 = ~24, (vo - ~12) / ( w’ly), hs = (h + h2) /a, hd = (hl - h2) /a, 

and p = (hi + y2)-1’2. 

III. TWO-DIMENSIONAL BACKWARD SRS 

The governing equations and boundary and initial conditions for two-dimensional backward 

SRS in a plasma channel are given by 
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A+ (Cc, Y, t> = 0, A+ (x:, 0, t> = T-A- (x,0, t> , 

A- (LY,~) = 0, A- (x&t) = rA+ (xJy,t>, 
(17) 

N+ (k-c, Y, t> = 1, iv- (Cm Y, t) = 1, 

where zliz = lvrzj so that the Stokes wave is now propagating obliquely to the left (7r/2 < 

6’ 2 x). The geometry of the interaction is the same as in the two-dimensional forward 

case with the laser pulse being of semi-infinite extent in the negative x direction and the 

plasma channel being bounded by 0 5 x 5 I, and 0 5 y 5 1,. Note that at x = 0 it is 

only necessary to define either the Stokes or Langmuir amplitude and the other condition 

becomes a consequence of the interaction. Additionally, it is the boundary conditions and 

not the governing equations that couple the upgoing and downgoing waves so that in the 

zero reflectivity limit we recover the backward interaction studied in Ref. 12. 

Using the characteristic variables e = z’ry (I, - x) / (ZYuis), r~ = y/Z,, and 

7- = wy (vat - 4 my (210 + w7J], and defining B* = [(we + vi,) /~e]r’~ A% and y = 

“lazy [bo + Qz)/?Jo]1’2 /Qy, Eqs. (16) and (17) for the region within the plasma chan- 

nel (0 5 x I: 1, and 0 5 y 5 Zy) will have the same form as Eqs. (4) and (5). Hence, the 

daughter wave amplitudes for backward SRS in a two-dimensional plasma channel have 

the same form as those given by Eqs. (11) and (12) with the proper characteristic variables 

and definitions ([, r~, r, and 7) associated with the backward interaction. 

Due to the symmetry between the forward and backward interactions, the dis- 

cussion of image sources and the spatiotemporal evolution of the daughter amplitudes 

in the previous section is still valid for backward scattering. However, in terms of the 

space and time variables 5, y, and t the relevant space-time regions (Fig. 4) for n > 1 

are region I in which x < vet - (00 + zlis) (y + nZ,)/vr, and x < 1, - vi,(y + nZ,)/ui, 

which will contribute a two-dimensional sum of Bessel functions multiplied by (1 - r)P, 

region II in which x < (~0 + ~1%) Z5/ ~0 - V& and vat - (VO + w) (y + nZ,)/vly 5 

x < v0t - (~0 + h) [Y + (n - l)z,]/ ~1~ which will contribute a one-dimensional hyper- .- 
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bolic function multiplied by P, region III in which x > (vo + ~1~) Z2/ue - .u& and 

L - %,(!I + ~~,)lwJ 5 x < L - %[Y + (n - l&/l/ Q which will contribute a one- 

dimensional sum of Bessel functions multiplied by P, and there is also the restriction that 

the amplitudes are zero outside of the plasma (x < 0) and have their initial values ahead 

of the laser pulse (x > vat). Amplitudes outside of the channel and laser pulse but within 

the surrounding plasma (my < 0, 9 > ZY) are discussed in section IV of Ref. 12. 

Plots of Eqs. (12) and (13) for backward scattering can be found in Fig. 5. In 

each plot a snapshot of the upgoing Langmuir amplitude is shown for a given time and 

backward scattering angle where the scattering angle of the Stokes wave is indicated in the 

top center, the solid lines distinguish the three distinct general regions of spatiotemporal 

growth, and each plot is normalized so that the largest amplitude is white and smallest 

amplitude is dark gray. The chosen time is t = 1.25 so that the leading edge of the laser 

pulse is at x = vet = 1.25 (outside of the plasma) and the plasma is bounded by 0 < x < 1 

and 0 5 y 5 0.5 with reflective boundaries at y = 0 and y = 0.5 with a reflection coefficient 

of T = 0.5. All of the other plasma parameters are the same as in Fig. 6 of Ref. 12 so that 

direct comparisons can be made between the reflective and nonreflective theories. As in 

the forward scattering case it is obvious from Fig. 5 that the inclusion of a finite number 

of reflections does not alter the dividing lines between the three general regions of growth. 

It is also obvious that the amplitudes in region II are greater than that predicted by the 

nonreflective theory and depend less on the lateral spatial variable y. As in the forward 

case, this structure is due to the overlapping of the nth two-dimensional region by the 

n-plus-first one dimensional regions (Fig. 4). 

If we now consider damping within the plasma channel then the governing equa- 

tions for the backward interaction become 

(& f .ul&& - uZ!z + ~1) & = 70% (at + ~2) h = ~04, (18) 

along with the boundary and initial conditions of Eqs. (17). It is not difficult 

to show that the solutions for these governing equations are given by Eqs. (12). 
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and (13) with the damped fundamental solutions given by Eqs. (15) where hr = 

~d,/~uly, hz = m(, (~0 + wz) / (‘uowy), hs = (hl + ha) /a, hd = (hl - h2) /a, y = 

YOU, [(uo + u) /~a]~‘~ /my, p = (hi + r2) -1’2 and the variables c, 7, and r are those 

associated with the backward interaction. 

IV. DISCUSSION OF THE ZERO TRANSMISSION CASE 

To determine the daughter wave amplitudes when there is total reflectivity (T = 1) we can 

simply substitute T = 1 into Eqs. (13) and we are left with 

B+ (6 rl, 7) = sinh (7~) H(t - 7) + [J’S (I, T) + sinh (y-)1 H (7 - [) , 

N+ (C, rl, T> = cash (~7) H(I - T) + [FL (t, 7) + cash (ye)] H (T - r) , 
(19) 

which has no dependence on the lateral spatial coordinate (7) so that the upgoing ampli- 

tudes are identical to the downgoing amplitudes. Equations (19) are identical to Eqs. (A26) 

of Ref. 10 implying that the daughter wave amplitudes for two-dimensional oblique scat- 

tering within a zero transmission (totally reflecting) plasma channel are equivalent to the 

one-dimensional amplitudes derived for the case of laterally transmitting plasma channel. 

In this light the one-dimensional amplitudes derived in Ref. 10 can be interpreted 

as representing the solutions for direct forward SRS where the daughter Stokes wave prop- 

agates forward with a velocity ~1 = ‘~1~. Since for that case both the daughter wave and 

the pump wave are propagating in the direct forward direction no energy is lost in the 

transverse direction. For the current case (a two-dimensional interaction propagating in a 

plasma channel with reflectivity coefficient of one) we have the Stokes wave propagating 

obliquely but with a forward velocity of ulz. For T = 1 the channel walls are totally re- 

flecting so there is also no loss of energy in the transverse direction and the two scenarios 

are equivalent. (For further discussion on the role of these one-dimensional amplitudes 

in two-dimensional scattering processes see Ref. 12.) Furthermore, Eqs. (19) are also the 

solutions for direct forward scattering in the plasma channel for any reflectivity coefficient 

since direct forward scattering is not altered by the inclusion of lateral reflections. Thus-- 
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we have created a scenario analogous to that of traveling waves in a perfectly reflecting 

waveguide, that is, oblique reflections with a forward velocity of zlra: in a perfectly reflect- 

ing channel are equivalent to direct forward scattering with a velocity of ~1, (within or 

without a channel). Note that all of these arguments are also valid for the case of backward 

scattering and those amplitudes are given by Eqs. (29) of Ref. 10 with the replacement 

211 = tJ12. 

V. DISCUSSION OF THE REFLECTIVITY COEFFICIENT 

The daughter wave amplitudes in sections II and III are valid for any reflectivity coefficient 

(0 2 r(0) 2 1) that is a function of the scattering angle. The most simple model consists of 

a sharply bounded plasma channel of density nl/n, surrounded by plasma with a density of 

n2/n, where nL, is the critical density [Fig. 6(a)]. Using standard techniques the reflectivity 

coefficient for this model is given by: 

@s> = 
61 cos 01 - s2 cos 8T 
61 cos 81 + s2 cos OT (20) 

where the 1 and T subscripts indicate the incident and transmitted angles which are related 

by: 

cos&= l- [ (:sin*l)‘j 1’2 (21) 

where the indices of refraction are I& = (1 - ni/n,)li2. With Fig. 6(b) the reflectivity 

coefficient can be interpreted as a function of the Stokes scattering angle and is plotted 

in Fig. 7 for a plasma channel of density nl = O.Oln, with walls of density n2 = O.ln, 

and 0.3n,. More complicated channel density profiles such as those described in Refs. 25 

and 26 can easily be incorporated into the model described herein by simply inserting the 

desired reflectivity coefficient into the expressions discussed in sections II and III. 

VI. ASYMPTOTIC SOLUTIONS 

Detailed discussion of this section can be found in Refs. 23 and 24. Only a summary of 

the mathematics is included here. 
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Time asymptotic amplitudes can be derived by using the inversion formula, 

c+ioo 
F (x> = &J eq2.f (d 4 (22) 

C-i00 

on the expressions in Eqs. (8). The integrands have singularities at q = CK, 0, and qn = 

Q - u + 2rrin where v = - In T. The singularities at q = Q will yield no net contribution 

to the total amplitude and the singularities at q = 0 have been discussed in Ref. (11). For 

the remaining singularities the contributions to the daughter wave amplitudes are all on 

the order of eaAV. Therefore 

B+ N (l - ‘> ev’ 
0 

1 e(Q-v)’ + Res [q = 01, 
s (a-v) 

(1 --V,,evq r 2 eCapv)E (23) 

N+ N 
V 0 s (a-u) 

+ Res [q = 0] , 

and the downgoing wave amplitudes are given by B- ([, 77, s) = B+ (c, 1 - q, s) and 

?i- ([, q, s) = N+ (I‘, 1 - q, s). The first term of each of these expressions is merely 

the the temporal Laplace transform of the fundamental damped solutions of the one- 

dimensional governing equations [Eqs. (15) with hl = u and ha = 0] multiplied by a factor 

of (1 - r) e”v/y. Each of these fundamental solutions consists of a hyperbolic function sub- 

tracted from a sum of Bessel functions in the region [ < r and is zero for r 5 I. Reference 

11 shows that for large times the contribution from the residue at q = 0 is precisely the 

same as that for the hyperbolic part of the contribution from q = a! - v but with opposite 

sign and its contribution is valid for both c < r and r 5 I. Summing the dominant 

contributions from all of the singularities we find that the time asymptotic solutions for 

oblique scattering in a plasma channel of reflectivity T are equivalent to the zero reflectivity 

solutions of the one-dimensional damped equations with hl = u and h2 = 0 and multi- 

plied by a factor of (1 - r) evq/u. (F or more on the one-dimensional damped solutions see 

Ref. 12.) Thus, for large times (many reflections), one-dimensional amplitudes dominate 

the plasma (see the discussion of Figs. 2 and 4) and the dissipative loss created by the 

transmission of the Stokes wave through the channel boundaries is equivalent to an overall- 
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damping of the Stokes amplitude (Fig. 8). Note that if we are considering damping within 

the plasma channel [ur # 0 in Eqs. (14) and (18)] then the above still holds true and time 

asymptotically the overall damping is u1 + u’uiY/Z, for the Stokes wave. 

VII. DISCUSSION OF THE TWO-DIMENSIONAL EVOLUTION 

Figure 9 shows comparisons between the one-dimensional nonreflective theory of Ref. 10 

(lines with small dashes), the two-dimensional nonreflective theory of Ref. 12 (lines with 

large dashes) and the two-dimensional reflective theory developed herein (solid lines). Fig- 

ure 9 is constructed with the same plasma parameters as in Figs. 3 and 5. Figure (a) is at 

time t = 1 with a reflectivity coefficient of T = 0.5, figure (b) is also at time t = 1 but with 

a reflectivity coefficient given by Eq. (20) with nl = O.Oln, and n2 = O.ln,, and figure (c) 

is at time t = 5 and has the same reflectivity coefficient as in figure (b). It is evident from 

these figures that the two-dimensional reflective theory always predicts equal or larger gain 

than the two-dimensional nonreflective theory [a factor of 10 more in Fig. 9 (c)] and smaller 

or equivalent gain than the one-dimensional nonreflective theory [a factor of 10,000 less 

in Fig. 9 (c)l. When the reflection coefficient is zero [or close to zero as in Fig. 9 (b)] the 

two-dimensional reflective theory herein is equivalent to the nonreflective two-dimensional 

theory of Ref. 12 and the solid lines in Fig. 9 will be collinear with the lines with large 

dashes. When the reflection coefficient is one the two-dimensional reflective theory herein 

is equivalent to the nonreflective one-dimensional theory of Ref. 10 and the solid lines in 

Fig. 9 will be collinear with the lines with small dashes. For intermediate reflectivity coef- 

ficients the growth of the daughter waves is reliant on competition between the reflectivity 

coefficient and the aspect ratio of the laser pulse in such a way that for late times (many 

reflections) the complicated two-dimensional model of growth within the channel is equiva- 

lent to a much less complex one-dimensional damped model with zero channel reflectivity. 

VIII. SUMMARY 

In this paper we have developed an analytic model of laser driven parametric instabilities-- 
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within a plasma channel. Included are the effects of two spatial dimensions, damping, 

finite pulse and plasma boundaries, and oblique reflections of the daughter waves induced 

by lateral density variations. We have found that parametric instability growth within a 

channel is analogous to the propagation of electromagnetic waves in a leaky waveguide. 

Exact analytic solutions of the governing equations were found to be representative of an 

infinite series of image sources outside of the plasma channel which trap Stokes radiation 

and enhance instability growth within the channel through a transition from subdominant 

two-dimensional modes to dominant faster growing one-dimensional modes. In addition 

late time analysis showed that the partial transmission of Stokes radiation was in essence 

equivalent to an overall damping of the Stokes amplitude within the channel. 
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FIGURE CAPTIONS 

Fig. 1 The geometry of SRS is shown in the laboratory frame for (a) the upgoing inter- 

action and (b) the downgoing interaction. The range of scattering angles con- 

sidered for the Stokes wave is 0 < 8 5 K/Z for forward angles and n/2 < 19 5 x 

for backward angles. 

Fig. 2 The three distinct forward scattering regions of growth for each n in Eqs. (13) 

are divided by the dashed lines. The three distinct general regions of forward 

scattering growth are divided by the solid lines (which are collinear with the 

n = 0 dashed lines). The finite size of the channel is explicitly included in (b). 

Fig. 3 Linearly shaded contour plots of the Langmuir amplitude [Eqs. (12) and (13)] 

are shown at time t = 1 for three forward scattering angles. The solid lines 

distinguish the three general regions of growth. Each plot is normalized so that 

the largest amplitude is white and smallest amplitude is dark gray. 

Fig. 4 The three distinct backward scattering regions of growth for each n in Eqs. (13) 

are divided by the dashed lines. The three distinct general regions of backward 

scattering growth are divided by the solid lines (which are collinear with the 

n = 0 dashed lines). The finite size of the channel is explicitly included in (b). 

Fig. 5 Linearly shaded contour plots of the Langmuir amplitude [Eqs. (12) and (13)] 

are shown at time t = 1.25 for two backward scattering angles. The solid lines 

distinguish the three general regions of growth. Each plot is normalized so that 

the largest amplitude is white and smallest amplitude is dark gray. 

Fig. 6 (a) A basic model for the plasma channel density profile. (b) The scattering 

geometry at the plasma channel density gradient. 

Fig. 7 The reflectivity coefficient [Eq. (20)] is plotted as a function of the Stokes scat- 

tering angle for a channel density of O.Oln, and surrounding plasma density of 

O.ln, and 0.3n,. 

Fig. 8 The exact solution (solid lines) from Eqs. (12) and (13) is compared with the- 
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time asymptotic solution (dashed lines) from the one-dimensional damped theory 

of Ref. 12 for (a) t = 1, (b) t = 3, and (c) t = 5. The plasma parameters are the 

same as in Figs. 3 and 5. 

Fig. 9 Comparison of the one-dimensional nonreflective theory of Ref. 10 (lines with 

small dashes), the two-dimensional nonreflective theory of Ref. 12 (lines with 

large dashes), and the two-dimensional reflective theory developed herein (solid 

lines). The temporal length of the interaction and reflectivity coefficients are 

given by: (a) t = 1, r=0.5, (b) t = 1, T given by Eq. (20) with nr = O.Oln, and 

n2 = O.l,and (c) t = 5 with the same reflectivity coefficient as (b). 
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(b) 

P1790 

Fig. 1 The geometry of SRS is shown in the laboratory frame for (a) 
the upgoing interaction and (b) the downgoing interaction. The range 
of scattering angles considered for the Stokes wave is 0 5 0 5 7r/2 for 
forward angles and 7r/2 5 8 5 r for backward angles. 
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Fig. 2 The three distinct forward scattering regions of growth for 
each n in Eqs. (13) are divided by the dashed lines. The three distinct 
general regions of forward scattering growth are divided by the solid 
lines (which are collinear with the n = 0 dashed lines). The finite size 
of the channel is explicitly included in (b). 
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Fig. 3 Linearly shaded contour plots of the Langmuir amplitude 
[Eqs. (12) and (13)] are shown at time t = 1 for three forward scat- 
tering angles. The solid lines distinguish the three general regions of 
growth. Each plot is normalized so that the largest amplitude is white 
and smallest amplitude is dark gray. 
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Fig. 4 The three distinct backward scattering regions of growth for 
each n in Eqs. (13) are divided by the dashed lines. The three distinct 
general regions of backward scattering growth are divided by the solid 
lines (which are collinear with the n = 0 dashed lines). The finite size 
of the channel is explicitly included in (b). 
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Fig. 5 Linearly shaded contour plots of the Langmuir amplitude 
[Eqs. (12) and (13)] are shown at time t = 1.25 for two backward 
scattering angles. The solid lines distinguish the three general regions 
of growth. Each plot is normalized so that the largest amplitude is 
white and smallest amplitude is dark gray. 
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6 (a) A basic model for the plasma channel density profile. 
scattering geometry at the plasma channel density gradient. 
6 (a) A basic model for the plasma channel density profile. 
scattering geometry at the plasma channel density gradient. 
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Fig. 7 The reflectivity coefficient [Eq. (20)] is plotted as a function 
of the Stokes scattering angle for a channel density of O.Oln, and 
surrounding plasma density of O.ln, and 0.3n,. 
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Fig. 8 The exact solution (solid lines) from Eqs. (12) and (13) is 
compared with the time asymptotic solution (dashed lines) from the 
one-dimensional damped theory of Ref. 12 for (a) t = 1, (b) t = 3, 
and (c) t = 5. The plasma parameters are the same as in Figs. 3 and 
5. 
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Fig. 9 Comparison of the one-dimensional nonreflective theory of 
Ref. 10 (lines with small dashes), the two-dimensional nonreflective 
theory of Ref. 12 (lines with large dashes), and the two-dimensional 
reflective theory developed herein (solid lines). The temporal length 
of the interaction and reflectivity coefficients are given by: (a) t = 1, 
r=0.5, (b) t = 1, T given by Eq. (20) with n1 = O.Oln, and n2 = 
O.l,and (c) t = 5 with the same reflectivity coefficient as (b). 
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