EPICS
Input / Output Controller (10C)
Application Developer’s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
June 1998

EPICS Release 3.13.0betal2

EPICS Release: R3.13.0.betal2 EPICS IOC Application Developer's Guide

EPICS IOC Application Developer’'s Guide

Table of Contents

Table of Contents. 1
Preface. e 1
OVBIVIBW . o oo e 1
ACKNOWIEAgMENTS 2
Chapter L EPICS OVEIVIEW . . . oot e 5
What IS EPICS 2 . . oo 5
Basic Attributes 6
Hardware - Software Platforms (Vendor Supplied). 6
IOC Software COmMpPOoNENtSot e e e 7
Channel ACCESS . . .ot 9
OPI TO0IS . . . 10
EPICS Core Software. e 11
Getting Started e 12
Chapter 2: Database Locking, Scanning, And Processing 13
e OV W . oo 13
Record LiNKS 13
Database Links. e 14
Database LocKing.o 15
Database Scanning.t 15
ReCOrd ProCeSSING . . . oottt 16
Guidelines for Creating Database Links 16
Guidelines for Synchronous Records. i 19
Guidelines for Asynchronous Records i, 20
Cached PULS e 21
Channel Access LinKS i e 22
Chapter 3: Database Definition. 25
OVBIVIBW . . oo e 25
Definitions 25
Breakpoint Tables 38
Menu and Record Type Include File Generation. 39
Utility Programs. 42
Chapter 4:10C Initialization a7
OVEBIVIBW . o o ottt e e e e a7
OCINIE . o 48
ChangingiocCore fixed limits. e 49
TSCONfIgUIE . . .o e 49
INIEHOOKS . . . oo e e 50
Environment Variables e 51

EPICS Release: R3.13.0.betal2 EPICS IOC Application Developer's Guide

Table of Contents

Initialize Loggingo oo e 51
Get Resource Definitions 52
Chapter 5 ACCESS SECUNMLY . . vttt e 53
OV BIVIBW . . ettt 53
QUICK Start. e 53
USEr'S GUILEt 54
DESIgN SUMMAIY .« . .ttt ettt e e e e 59
Access Security Application Programmer’s Interface 61
Database ACCESS SECUNMLY oo e e e et 65
Channel ACCESS SECUIY.t i it e e e e e e 67
Access Control: Implementation Overview, 68
SHUCIUNES. . . . e e e 70
Chapter 6:10C Test Facilities. 71
OV W . . o 71
Database List, Get, Put e 71
Breakpoints 73
Error LOQOing . . .o oot 74
Hardware ReportSo 74
SCaAN REPOIS . . . e 75
Time Server RePOrt.t 75
Access Security Commands 76
Channel ACCESS REPOITSot e 77
INterruUpt VECIOrS e 78
EPICS . 78
Database System TeSt ROULINES e 78
Record LINK ROULINES oo e 79
Old Database ACCeSS TeSHINGo oot e 80
Routines to dump database information o L. 80
Chapter 7 I0CErmorLoggingo 83
OVBIVIBW . 83
Error Message ROULINES i i e e 84
errlog Task. 85
Status Codeso 86
IOCLOg . o it e 87
Chapter 8:Record SUPPOrto 89
OV BIVIBW . . ettt 89
Overview of Record ProCessingot 89
Record Support and Device Support Entry Tables 90
Example Record Support Module. e 91
Record SUpport ROULINESt e e e e 97
Global Record Support Routines.ttt 100
Chapter 9: DeviCe SUPPOIT. . . .o 103
OV W . o e 103
Example Synchronous Device Support Module 104
Example Asynchronous Device Support Module. 105
Device Support ROULINES.o 107
Chapter 10: Driver SUPPOIt. . . .o oottt e e 109
OVBIVIBW . . 109

2 EPICS I0OC Application Developer's Guide

Table of Contents

DeVICE DIiVEIS 109
Chapter 11: Static Database ACCESS i 113
OV IV W . . ottt e e e e 113
DEfiNitiONS . . . e 113
Allocating and Freeing DBBASE e 114
DBENTRY ROULINESo e e e e e 115
Read and Write Database. i e 116
Manipulating Record TypesS.o e e 117
Manipulating Field Descriptions i e 118
Manipulating Record Attributes. 118
Manipulating Record Instances i e 119
Manipulating Menu Fields. 120
Manipulating Link Fields. e 121
Manipulating MenuForm Fields i 122
Find Breakpoint Table e 123
DUMP ROULINES e e e e 123
EXamples 124
Chapter 12: Runtime Database ACCESS. it 127
OV IV BW & . ettt 127
Database Include Files. e 127
Runtime Database ACCESS OVEIVIEW ittt e 130
Database ACCESS ROULINESot e 132
Runtime Link Modification 139
Channel AcCess MONItOrSt 139
LOCK Set ROULINES e 140
Channel Access Database LinkS 141
Chapter 13: Device Support Library 145
OV IV W & v ettt 145
Registering VME Addresses 145
Interrupt Connect ROULINES e 146
Macros and Routines for Normalized Analog Values. 146
Chapter 14: EPICS General Purpose Tasks 149
OV IV W . . ottt e e e e 149
General Purpose Callback Tasks i i i 149
Task Watchdog 152
Chapter 15: Database Scanning 155
OV VI BW & v ettt 155
Scan Related Database Fields i 155
Software Components That Interact With The Scanning System 156
Implementation OVEIVIEWt e 159
Chapter 16: Database Structures 163
OV IV W & v ettt 163
Include Files. 163
SHTUCIUIES . . o o e e 165

EPICS Release: R3.13.0betal2
EPICS I0C Application Developer's Guide 3

Table of Contents

4 EPICS I0OC Application Developer's Guide

Preface

Overview

This document describes the core software that resides in an Input/Output Controller (I0C),
one of the major components of EPICS. It is intended for anyone developing EPICS IOC
databases and/or new record/device/driver support.

The plan of the book is:

EPICS Overview An overview of EPICS is presented, showing how the 10C software fits
into EPICS. This is the only chapter that discusses OPI software and
Channel Access rather than just 10C related topics.

Database Locking, Scanning, and Processing
Overview of three closely related I0C concepts. These concepts are at
the heart of what constitutes an EPICS 10C.

Database Definition This chapter gives a complete description of the format of the files that
describe I0C databases. This is the format used by Database
Configuration Tools and is also the format used to load databases into an
IOC.

IOC Initialization A great deal happens at I0C initialization. This chapter removes some
of the mystery about initialization.

Access Security Channel Access Security is implemented in IOCs. This chapter explains
how it is configured and also how it is implemented.

IOC Test Facilities Epics supplied test routines that can be executed via the vxWorks shell.

IOC Error Logging |IOC code can call routines that send messages to a system wide error
logger.

Record Support The concept of record support is discussed. This information is
necessary for anyone who wishes to provide customized record and
device support.

Device Support The concept of device support is discussed. Device support takes care of
the hardware specific details of record support, i.e. it is the interface
between hardware and a record support module. Device support can
directly access hardware or may interface to driver support.

Driver Support The concepts of driver support is discussed. Drivers, which are not
always needed, have no knowledge of records but just take care of
interacting with hardware. Guidelines are given about when driver
support, instead of just device support, should be provided.

Static Database Access
This is a library that works on Unix and vxWorks and on initialized or
uninitialized EPICS databases.

Runtime Database Access
The heart of the IOC software is the memory resident database. This

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer’s Guide 1

Preface
Acknowledgments

chapter describes the interface to this database.

Device Support Library
A set of routines are provided for device support modules that use
shared resources such as VME address space.

EPICS General Purpose Tasks
General purpose callback tasks and task watchdog.

Database Scanning Database scan tasks, i.e. the tasks that request records to process.
Database Structures A description of the internal database structures.

Other than the first chapter this document describes only core 10C software. Thus it does not
describe other EPICS tools which run in an IOC such as the sequencer. It also does not
describe Channel Access which is, of course, one of the major IOC components.

The reader of this manual should also have the following documents:

» EPICS Record Reference Manu@hilip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.

* EPICS 10C Applications: Building and Source Release Control ,Marty Kraimer and
Janet Anderson,
See ANL Web site for latest version.

» vxWorks Programmer’s Guid&/ind River Systems
» vxWorks Reference Manyalind River Systems

Acknowledgments

The basic model of what an IOC should do and how to do it was developed by Bob Dalesio at
LANL/GTA. The principle ideas for Channel Access were developed by Jeff Hill of LANL/
GTA. Bob and Jeff also were the principle implementers of the original IOC software. They
developed this software (called GTACS) over a period of several years with feedback from
LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the I0C software with the
major goal being to provide easily extendible record and device support. Marty Kraimer (ANL/
APS) was primarily responsible for designing the data structures needed to support extendible
record and device support and for making the changes needed to the 10C resident software.
Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modules
necessary to support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to
the Database Configuration Tool (DCT) necessary to support the new facilities. Janet Anderson
developed methods to systematically test various features of the 10C software and is the
principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of
fast database links and the database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also developed
the ASCII database instance format now used as the standard format. At that time he also
createddbLoadRecords anddbLoadTemplate

Thebuild utility method resulted in the generation of binary files of UNIX that were loaded
into 10Cs. As new IOC architectures started being supported this caused problems. During
1995, after learning from an abandoned effort now referred picssRX , the build utilities

EPICS IOC Application Developer’'s Guide

Preface
Acknowledgments

and binary file (calledlefault .dctsdr) were replaced by all ASCII files. The new method
provides architecture independence and a more flexible environment for configuring the
record/device/driver support. This principle implementer was Marty Kraimer with many ideas
contributed by John Winans and Jeff Hill. Bob Dalesio made sure that we did not go to far, i.e.
1) make it difficult to upgrade existing applications and 2) lose performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This
turned into a cooperative development effort between Bob and Marty Kraimer. The effort
included new code for database to Channel Access links, a new library for lock sets, and a
cleaner interface for accessing database links.

Many other people have been involved with EPICS development, including new record,
device, and driver support modules.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 3

Preface
Acknowledgments

4 EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview

What is EPICS?

EPICS consists of a set of software components and tools that Application Developers use to
create a control system. The basic components are:

» OPI: Operator Interface. This is a UNIX based workstation which can run various
EPICS tools.

 |OC: Input/Output Controller. This is a VME/VXI based chassis containing a processor,
various 1/0 modules and VME modules that provide access to other I/O buses such as
GPIB.

* LAN: Local Area Network. This is the communication network which allows the 10Cs
and OPIs to communicate. EPICS provides a software component, Channel Access,
which provides network transparent communication between a Channel Access client
and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

OPI ce OoPI <+ - | OPI

LAN

10C - I0C

The rest of this chapter gives a brief description of EPICS:

» Basic Attributes: A few basic attributes of EPICS.
 Platforms: The vendor supplied Hardware and Software platforms EPICS supports.
» |I0C Software: EPICS supplied IOC software components.

» Channel Access EPICS software that supports network independent access to I0C
databases.

» OPI Tools: EPICS supplied OPI based tools.

» EPICS Core: A list of the EPICS core software, i.e. the software components without
which EPICS will not work.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer’s Guide 5

Chapter 1: EPICS Overview
Basic Attributes

Basic Attributes

The basic attributes of EPICS are:

» Tool Based EPICS provides a number of tools for creating a control system. This
minimizes the need for custom coding and helps ensure uniform operator interfaces.

* Distributed: An arbitrary number of IOCs and OPIs can be supported. As long as the
network is not saturated, no single bottle neck is present. A distributed system scales
nicely. If a single IOC becomes saturated, its functions can be spread over several IOCs.
Rather than running all applications on a single host, the applications can be spread over
many OPIs.

» Event Driven: The EPICS software components are all designed to be event driven to
the maximum extent possible. For example, rather than having to poll IOCs for changes,
a Channel Access client can request that it be notified when a change occurs. This
design leads to efficient use of resources, as well as, quick response times.

» High Performance: A SPARC based workstation can handle several thousand screen
updates a second with each update resulting from a Channel Access event. A 68040 10C
can process more than 6,000 records per second, including generation of Channel
Access events.

Hardware - Software Platforms (Vendor Supplied)

OPI Hardware

» Unix based Workstations: Well supported platforms include SUNOS, SOLARIS, and
HP-UX

» Other UNIX platforms have some support, including LINUX

* Limited support is provided for Windows NT and for VMS

Software

* UNIX
o X Windows
* Motif Toolkit

LAN Hardware

» Ethernet and FDDI
e ATM in the future

Software

e TCP/IP protocols via sockets

I0OC Hardware

* VME/VXI bus and crates
» Motorola 68020, 68030, 68040, 68060
» Some support for other processors: Intel, Mips, PowerPC, Sparc, etc.

6 EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview
I0C Software Components

 Various VME modules (ADCs, DAC, Binary 1I/O, etc.)

» GPIB devices

» BITBUS devices
« CAMAC

« CANBUS

Software

» vxXWorks operating system

* Real time kernel

» Extensive “Unix like” libraries

Allen Bradley Scanner (Most AB I/O modules)

|OC Software Components

An IOC contains the following EPICS supplied software components.

Ethernet

Scanners

Driver or
Device

Interrupt

Routines

Channel Sequencer
Access
Monitors
Database
Access

10C Database

Record Support

Device Support

VME

Device
Drivers

» |OC Database The memory resident database plus associated data structures.

» Database Access Database access routines. With the exception of record and device

support, all access to the database is via the database access routines.
e Scanners The mechanism for deciding when records should be processed.

» Record Support Each record type has an associated set of record support routines.
» Device Support Each record type can have one or more sets of device support routines.

» Device Drivers Device drivers access external devices. A driver may have an
associated driver interrupt routine.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview

I0C Software Components

|IOC Database

Database Access

Database Scanning

Record Support,
Device Support and
Device Drivers

» Channel Access The interface between the external world and the 10C. It provides a
network independent interface to database access.

» Monitors: Database monitors are invoked when database field values change.
» Sequencer A finite state machine.

Let's briefly describe the major components of the IOC and how they interact.

The heart of each 10C is a memory resident database together with various memory resident
structures describing the contents of the database. EPICS supports a large and extensible set of
record types, e.@i (Analog Input),ao (Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and
others are specific to particular record types. Every record has a record name and every field
has a field name. The first field of every database record holds the record name, which must be
unique across all IOCs that are attached to the same TCP/IP subnet.

A number of data structures are provided so that the database can be accessed efficiently. Most
software components, because they access the database via database access routines, do not
need to be aware of these structures.

With the exception of record and device support, all access to the database is via the channel or
database access routines. See Chapter 12, “Runtime Database Access” on page 127 for details.

Database scanning is the mechanism for deciding when to process a record. Five types of
scanning are possible: Periodic, Event, I/O Event, Passive and Scan Once.

 Periodic: A request can be made to process a record periodically. A number of time
intervals are supported.

» Event: Event scanning is based on the posting of an event by any I0C software
component. The actual subroutine call is:
post_event(event_num)

* I/O Event: The I/O event scanning system processes records based on external
interrupts. An 10C device driver interrupt routine must be available to accept the
external interrupts.

» Passive Passive records are processed as a result of linked records being processed or
as a result of external changes such as Channel Access puts.

* Scan Once In order to provide for caching puts, The scanning system provides a
routinescanOnce which arranges for a record to be processed one time.

Database access needs no record-type specific knowledge, because each record-type has its
associated record support module. Therefore, database access can support any number and
type of records. Similarly, record support contains no device specific knowledge, giving each
record type the ability to have any number of independent device support modules. If the
method of accessing the piece of hardware is more complicated than what can be handled by
device support, then a device driver can be developed.

Record typesot associated with hardware do not have device support or device drivers.

The 10C software is designed so that the database access layer knows nothing about the record
support layer other than how to call it. The record support layer in turn knows nothing about its
device support layer other than how to call it. Similarly the only thing a device support layer
knows about its associated driver is how to call it. This design allows a particular installation
and even a particular IOC within an installation to choose a unique set of record types, device
types, and drivers. The remainder of the IOC system software is unaffected.

EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview
Channel Access

Because an Application Developer can develop record support, device support, and device
drivers, these topics are discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the
database scanners. Record processing consists of some combination of the following functions
(particular records types may not need all functions):

 Input: Read inputs. Inputs can be obtained, via device support routines, from hardware,
from other database records via database links, or from other IOCs via Channel Access
links.

» Conversion Conversion of raw input to engineering units or engineering units to raw
output values.

» Output: Write outputs. Output can be directed, via device support routines, to
hardware, to other database records via database links, or to other IOCs via Channel
Access links.

» Raise Alarms Check for and raise alarms.

* Monitor : Trigger monitors related to Channel Access callbacks.

 Link: Trigger processing of linked records.

Channel Access Channel Access is discussed in the next section.

Database Monitors Database monitors provide a callback mechanism for database value changes. This allows the
caller to be notified when database values change without constantly polling the database. A
mask can be set to specify value changes, alarm changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use
the database monitors. The monitor routines will not be described because they are of interest
only to Channel Access.

Channel Access

Channel Access provides network transparent access to IOC databases. It is based on a client/
server model. Each 10C provides a Channel Access server which is willing to establish
communication with an arbitrary number of clients. Channel Access client services are
available on both OPIs and I0Cs. A client can communicate with an arbitrary number of
servers.

Client Services The basic Channel Access client services are:

» Search Locate the I0Cs containing selected process variables and establish
communication with each one.

e Get: Get value plus additional optional information for a selected set of process
variables.

» Put: Change the values of selected process variables.

* Add Event: Add a change of state callback. This is a request to have the server send
information only when the associated process variable changes state. Any combination
of the following state changes can be requested: change of value, change of alarm status
and/or severity, and change of archival value. Many record types provide hysteresis
factors for value changes.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 9

Chapter 1: EPICS Overview

OPI Tools

Search Server

In addition to requesting process variable values, any combination of the following additional
information may be requested:

» Status Alarm status and severity.

» Units: Engineering units for this process variable.

» Precision Precision with which to display floating point numbers.

» Time: Time when the record was last processed.

* Enumerated: A set of ASCII strings defining the meaning of enumerated values.
» Graphics: High and low limits for producing graphs.

» Control: High and low control limits.

* Alarm: The alarmHIHI , HIGH, LOWandLOLOvalues for the process variable.

It should be noted that Channel Access doetsprovide access to database records as records.
This is a deliberate design decision. This allows new record types to be added without
impacting any software that accesses the database via Channel Access, and it allows a Channel
Access client to communicate with multiple I0Cs having differing sets of record types.

Channel Access provides an IOC resident server which waits for Channel Access search
messages. These are generated when a Channel Access client (for example when an Operator
Interface task starts) searches for the IOCs containing process variables the client uses. This
server accepts all search messages, checks to see if any of the process variables are located in
this I0C, and, if any are found, replies to the sender with and “I have it” message.

Connection RequestOnce the process variables have been located, the Channel Access client issues connection

Server

Connection
Management

Channel Access
Tools

requests for each I0C containing process variables the client uses. The connection request
server, in the IOC, accepts the request and establishes a connection to the client. Each
connection is managed by two separate tasles:get and ca put . The ca_get and

ca_put requests map tadbGetField and dbPutField database access requests.
ca_add_event requests result in database monitors being established. Database access and/
or record support routines trigger the monitors via a calbtgost_event

Each I0OC provides a connection management service. When a Channel Access server fails
(e.g. its IOC crashes) the client is notified and when a client fails (e.qg. its task crashes) the
server is notified. When a client fails, the server breaks the connection. When a server crashes,
the client automatically re-establishes communication when the server restarts.

OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on
whether or not they use Channel Access. Channel Access tools are real time tools, i.e. they are
used to monitor and control I10Cs.

A large number of Channel Access tools have been developed. The following are some
representative examples.

 MEDM : Motif version of combined display manager and display editor.

» DM: Display Manager. Reads one or more display list files created by EDD, establishes
communication with all necessary 10Cs, establishes monitors on process variables,
accepts operator control requests, and updates the display to reflect all changes.

10

EPICS IOC Application Developer’'s Guide

Chapter 1: EPICS Overview
EPICS Core Software

* ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration
file.

* AR: Archiver. General purpose tool to acquire and save data from IOCs.
» Sequencer Runs in an IOC and emulates a finite state machine.

* BURT: Backup and Restore Tool. General purpose tool to save and restore Channel
Access channels. The tool can be run via Unix commands or via a Graphical User
Interface.

» KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

» PROBE: Allows the user to monitor and/or change a single process variable specified at
run time.

* CAMATH : Channel Access interface for Mathematica.

* CAWINGZ : Channel Access interface for Wingz.

» IDL/PVWAVE Channel Access Interfaces exist for these products.
» TCL/TK Channel Access Interface for these products.

» CDEV - A library designed to provide a standard API to one or more underlying
packages, typically control system interfaces. CDEV provides a Channel Access
service.

Other OPI Tools » GDCT: Graphical Database Configuration Tool. Used to create a run time database for

an 10C.

« EDD: Display Editor. This tool is used to create a display list file for the Display
Manager. A display list file contains a list of static, monitor, and control elements. Each
monitor and control element has an associated process variable.

* SNC: State Notation Compiler. It generates a C program that represents the states for
the I0OC Sequencer tool.

» ASCII Tools - Tools are provided which generate C include files from menu and record
type ASCII definition files.

» Source/Release EPICS provides a Source/Release mechanism for managing EPICS.

EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software,
i.e. the components of EPICS without which EPICS would not function, are:

» Channel Access - Client and Server software
» |OC Database

e Scanners

* Monitors

ASCII tools

» Source/Release

All other software components are optional. Of course, any application developer would be
crazy to ignore tools such as MEDM (or EDD/DM). Likewise an application developer would
not start from scratch developing record and device support. Most OPI tools do not, however,
have to be used. Likewise any given record support module, device support module, or driver
could be deleted from a particular IOC and EPICS will still function.

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 11

Chapter 1: EPICS Overview
Getting Started

Getting Started

The Document “EPICS IOC Applications: Building and Source Release Control” available via
the WWW at www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManuals/
iocAppBuildSRcontrol.html gives instructions for building 10C applications. In particular
follow the instructions in the section “Quick Start”.

12 EPICS I0C Application Developer's Guide

Chapter 2. Database Locking, Scanning, And
Processing

Overview

Before describing particular components of the IOC software, it is helpful to give an overview
of three closely related topics: Database locking, scanning, and processing. Locking is done to
prevent two different tasks from simultaneously modifying related database records. Database
scanning is the mechanism for deciding when records should be processed. The basics of
record processing involves obtaining the current value of input fields and outputting the
current value of output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This
feature also causes considerable complication. Thus, before discussing locking, scanning, and
processing, record links are described.

Record Links

A database record may contain links to other records. Each link is one of the following types:

* INLINK
OUTLINK
INLINKs and OUTLINKs can be one of the following:
 constant link
Not discussed in this chapter
* database link
A link to another record in the same IOC.
 channel access link
A link to a record in another I0OC. Itis accessed via a special IOC client task. It is
also possible to force a link to be a channel access link even it references a record
in the same 10C.
 hardware link
Not discussed in this chapter
* FWDLINK
A forward link refers to a record that should be processed whenever the record
containing the forward link is processed. The following types are supported:
* constant link
Ignored.
 database link
A link to another record in the same IOC.

* channel access link

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 13

Chapter 2: Database Locking, Scanning, And Processing

Database Links

Process Passive

Maximize Severity

A link to a record in another IOC or a link forced to be a channel access link.
Unless the link references the PROC field it is ignored. If it does reference the
PROC field a channel access put with a value of 1 is issued.

Links are defined in filénk.h

NOTE: This chapter discusses mainly database links.

Database Links

Database links are referenced by calling one of the following routines:

» dbGetLink: The value of the field referenced by the input link retrieved.
» dbPutLink : The value of the field referenced by the output link is changed.
» dbScanPassiveThe record referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that the should be processed
when the record containing the link is processed. For input and output links, however, two
other attributes can be specified by the application developer, process passive and maximize
severity.

Process passivePP or NPB), is eitherTRUEor FALSE It determines if the linked record
should be processed before getting a value from an input link or after writing a value to an
output link. The linked record will be processed, via a callib®rocess , only if the record is

a passive record and process passif&RISE

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the
link to be handled like a Channel Access Link. See last section of this chapter for details.

Maximize severity S or NM$, is TRUEor FALSE It determines if alarm severity is
propagated across links. For input links the alarm severity of the record referred to by the link
is propagated to the record containing the link. For output links the alarm severity of the record
containing the link is propagated to the record referred to by the link. In either case, if the
severity is changed, the alarm status is seiNé_ALARM

The method of determining if the alarm status and severity should be changed is called
"maximize severity”. In addition to its actual status and severity, each record also has a new
status and severity. The new status and severity are initially 0, which M&an&L ARNMEvery

time a software component wants to modify the status and severity, it first checks the new
severity and only makes a change if the severity it wants to set is greater than the current new
severity. If it does make a change, it changes the new status and new severity, not the current
status and severity. When database monitors are checked, which is normally done by a record
processing routine, the current status and severity are set equal to the new values and the new
values reset to zero. The end result is that the current alarm status and severity reflect the
highest severity outstanding alarm. If multiple alarms of the same severity are present the
status reflects the first one detected.

14

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Database Locking

Database Locking

The purpose of database locking is to prevent a record from being processed simultaneously by
two different tasks. In addition, it prevents "outside” tasks from changing any field while the
record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);
dbScanUnlock(precord);

The basic idea is to caldbScanLock before accessing database records and calling
dbScanUnlock afterwords. Because of database links (Input, Output, and Forward) a
modification to one record can cause modification to other records. Records linked together are
placed in the same lock setbScanLock locks the entire lock set not just the record
requesteddbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/0O event, and event tasks lock before and unlock after processing:

2. dbPutField locks before modifying a record and unlocks afterwards.

3. dbGetField locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a
record and unlock afterwards.

All records linked viaOUTLINKs and FWDLINKs are placed in the same lock set. Records
linked via INLINK s with process_passive or maximize_severity TRUE are also
forced to be in the same lock set.

Database Scanning

Database scanning refers to requests that database records be processed. Four types of
scanning are possible:

5. Periodic - Records are scanned at regular intervals.

6. 1/0 event - A record is scanned as the result of an 1/O interrupt.

7. Event - A record is scanned as the result of any task issybogtaevent request.
8

. Passive - A record is scanned as a result of a call thScanPassive
dbScanPassive will issue a record processing request if and only if the record is
passive and is not already being processed.

A dbScanPassive request results from a task calling one of the following routines:

» dbScanPassive Only record processing routinedpGetLink , dbPutLink , and
dbPutField call dbScanPassive . Record processing routines call it for each
forward link in the record.

» dbPutField: This routine changes the specified field and then, if the field has been
declaredprocess_passive , callsdbScanPassive . Each field of each record type
has the attributgrocess_passive declaredTRUEor FALSE in the definition file.

This attribute is a global property, i.e. the application developer has no control of it. This
use ofprocess_passive is used only bydbPutField . If dbPutField finds the

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 15

Chapter 2: Database Locking, Scanning, And Processing

Record Processing

record already active (this can happen to asynchronous records) and it is supposed to
cause it to process, it arranges for it to be processed again, when the current processing
completes.

» dbGetLink: If the link specifies process passive, this routine cdiiScanPassive
Whether or notlbScanPassive is called, it then obtains the specified value.

» dbPutLink : This routine changes the specified field. Then, if the link specifies process
passive, it callglbScanPassive . dbPutLink is only called from record processing
routines. Note that this usage pfocess passive is under the control of the
application developer. IflbPutLink finds the record already active because of a
dbPutField directed to this record then it arranges for the record to be processed
again, when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call
dbGetField to obtain database valuathGetField just reads values without asking that a
record be processed.

Record Processing

A record is processed as a result of a caltlbd’rocess . Each record support module must
supply a routingorocess . This routine does most of the work related to record processing.
Since the details of record processing are record type specific this topic is discussed in greater
detail in Chapter "Record Support" for details.

Guidelines for Creating Database Links

The ability to link records together is an extremely powerful feature of the 10C software. In
order to use links properly it is important that the Application Developer understand how they
are processed. As an introduction consider the following example :

InLink PP

A FwdLink B FwdLink C

Assume that A, B, and C are all passive records. The notation states that A has a forward link
to B and Bto C. C has an input link obtaining a value from A. Assume, for some reason, A gets
processed. The following sequence of events occurs:
9. A begins processing. While processing a request is made to process B.
10. B starts processing. While processing a request is made to process C.
11. C starts processing. One of the first steps is to get a value from A via the input link.

12. At this point a question occurs. Note that the input link specifies process passive
(signified by thePP after InLink). But process passive states that A should be

16

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

processed before the value is retrieved. Are we in an infinite loop? The answer is no.
Every record contains a fiefghct (processing active), which is SERUEwhen record
processing begins and is not 4eALSE until all processing completes. When C is
processed A still hgzact TRUE and will not be processed again.

13. C obtains the value from A and completes its processing. Control returns to B.
14. B completes returning control to A
15. A completes processing.

This brief example demonstrates that database links needs more discussion.

Rules Relating to
Database Links

Processing Order The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example
the following records are processed in the oFIK1, FLNK2, FLNK3, FLNK4 .

FLNK1 FLNK2

fanout

FLNK3 FLNK4

2. If arecord has multiple input links (calculation and select records) the input is obtained
in the natural order. For example if the fields are namiA, INPB, ...,INPL, then the
links are read in the order A then B then C, etc. Thus if obtaining an input results in a
record being processed, the processing order is guaranteed.

3. All input and output links are processed before the forward link.

Lock Sets All records, except for the conditions listed in the next paragraph, linked together directly or
indirectly are placed in the same lock set. Whits$canLock is called the entire set, not just
the specified record, is locked. This prevents two different tasks from simultaneously
modifying records in the same lock set.

A linked record is not forced to be in the same lock set if all of the following conditions are
true.

e The link is an INLINK (It is an input link)

» The link is NPP (It is no process passive)

» The link is NMS (It is no maximize severity)

» The number of elements is <-1 (The link references a scalar field)

PACT - processing Each record contains a fiefghct . This field is seTRUEat the beginning of record processing

active and is not sefFALSE until the record is completely processed. In particular no links are
processed witlpact FALSE . This prevents infinite processing loops. The example given at
the beginning of this section gives an example. It will be seen in the next two sections that
pact has other uses.

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 17

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

Process Passive: Linkput and output links have an option called process passive. For each such link the application
developer can specify process pasIVJE(PP) or process passieALSE (NPP. Consider
the following example

option

InLink PP ¥
FwdLink
A fanout
FwdLink C
InLink PP 4

Assume that all records except fanout are passive. When the fanout record is processed the
following sequence of events occur:

1.
. B begins processing. It callbGetLink to obtain data from A.

. Because the input link has process passive true, a request is made to process A.

. A'is processed, the data value fetched, and control is returned to B

. B completes processing and control is returned to fanout. Fanout asks that C be

g b~ WON

© 00 N O

Fanout starts processing and asks that B be processed.

processed.

. C begins processing. It catlbGetLink to obtain data from A.

. Because the input link has process paseRIdE a request is made to process A.
. A'is processed, the data value fetched, and control is returned to C.

. C completes processing and returns to fanout

10.

The fanout completes

Note that A got processed twice. This is unnecessary. If the input link to C is declared no
process passive then A will only be processed once. Thus we should have .

InLink PP v
FwdLink
A fanout
FwdLink C
InLink NPP }

Process Passive: Fiekekch field of each database record type has an attribute qaibedss passive . This

attribute attribute is specified in the record definition file. It is not under the control of the application
developer. This attribute is used only bPutField . It determines if a passive record will
be processed aftatbPutField changes a field in the record. Consult the record specific
information in the record reference manual for the setting of individual fields.

18 EPICS I0C Application Developer's Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

Maximize Severity; Input and output links have an option called maximize severity. For each such link the

Link option

application developer can specify maximize sevefRUE(MS or maximize severitf-ALSE
(NMS.

When database input or output links are defined, the application developer can specify if alarm
severities should be propagated across links. For input links the severity is propagated from the
record referred to by the link to the record containing the link. For output links the severity of
the record containing the link is propagated to the record referenced by the link. The alarm
severity is transferred only if the new severity will be greater than the current severity. If the
severity is propagated the alarm status is set equ#iNi© ALARM

Guidelines for Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thus the
application developer never needs to consider the possibility of delays when he defines a set of
related records. The only consideration is deciding when records should be processed and in
what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when
to process a record and for enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), via I/O event, or via
Event.

2. For each periodic group and for each Event group the phase field can be used to specify
processing order.

3. The application programmer has no control over the record processing order of records
in different groups.

4. The disable fields3DIS, DISA, andDISV) can be used to disable records from being
processed. By letting th8DIS field of an entire set of records refer to the same input
record, the entire set can be enabled or disabled simultaneously. See the Record
Reference Manual for details.

5. A record (periodic or other) can be the root of a set of passive records that will all be
processed whenever the root record is processed. The set is formed by input, output, and
forward links.

6. Theprocess passive option specified for each field of each record determines if a
passive record is processed whendPutField is directed to the field. The
application developer must be aware of the possibility of record processing being
triggered by external sources dbPutFields are directed to fields that have
process_passive TRUE

7. The process_passive option for input and output links provides the application
developer control over how a set of records are scanned.

8. General link structures can be defined. The application programmer should be wary,

however, of defining arbitrary structures without carefully analyzing the processing
order.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 19

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

Guidelines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB input
record. When the record is processed the GPIB request is started and the processing routine
returns. Processing, however, is not really complete until the GPIB request completes. This is
handled via an asynchronous completion routine. Lets state a few attributes of asynchronous
record processing.

During the initial processing for all asynchronous records the following is done:

9. pact is sefTRUE
10. Data is obtained for all input links
11. Record processing is started
12. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

1. Record processing continues

1. Record specific alarm conditions are checked
2. Monitors are raised

3. Forward links are processed

4. pact is setFALSE

A few attributes of the above rules are:

1. Asynchronous record processing does not delay the scanners.

1. Between the time record processing begins and the asynchronous completion routine
completes, no attempt will be made to again process the record. This is bpeatisis
TRUE The routinedbProcess checkspact and does not call the record processing
routine if it is TRUE Note, however, that filbProcess finds the record active 10 times
in succession, it raisesSCAN_ALARM

2. Forward and output links are triggered only when the asynchronous completion routine
completes record processing.

With these rules the following works just fine:

ASYN dbScanPasive B

When dbProcess is called for record ASYN, processing will be started but
dbScanPassive will not be called. Until the asynchronous completion routine executes any
additional attempts to process ASYN are ignored. When the asynchronous callback is invoked
thedbScanPassive is performed.

Problems still remain. A few examples are:

Infinite Loop Infinite processing loops are possible.
Assume both A and B are asynchronous passive records and a request is made to process A.
The following sequence of events occur.
1. A starts record processing and returns leapa TRUE .
20 EPICS IOC Application Developer's Guide

Chapter 2: Database Locking, Scanning, And Processing
Cached Puts

Obtain Old Data

Delays

Task Abort

dbScanPasive

dbScanPasive

2. Sometime later the record completion for A occurs. During record completion a request
is made to process B. B starts processing and control returns to A which completes
leaving itspact field FALSE

3. Sometime later the record completion for B occurs. During record completion a request
is made to process A. A starts processing and control returns to B which completes
leaving itspact field FALSE

Thus an infinite loop of record processing has been set up. It is up to the application developer
to prevent such loops.

A dbGetLink to a passive asynchronous record can get old data.

A dbGetLink B

If A is a passive asynchronous record thendb&etLink request forcesbProcess to be
called for A. dbProcess starts the processing and returmthGetLink then reads the
desired value which is still old because processing will only be completed at a later time.

Consider the following:

ASYN dbScanPasive ASYN dbScanPasive ——

The second ASYN record will not begin processing until the first completes, etc. This is not
really a problem except that the application developer must be aware of delays caused by
asynchronous records. Again, note that scanners are not delayed, only records downstream of
asynchronous records.

If the processing task aborts and the watch dog task cleans up before the asynchronous
processing routine completes what happens? If the asynchronous routine completes before the
watch dog task runs everything is okay. If it doesn’'t? This is a more general question of the
consequences of having the watchdog timer restart a scan task. EPICS currently does not allow
scanners to be automatically restarted.

Cached Puts

The rules followed bydbPutLink and dbPutField provide for "cached” puts. This is
necessary because of asynchronous records. Two cases arise.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 21

Chapter 2: Database Locking, Scanning, And Processing

Channel Access Links

INLINK

The first results from abPutField , which is a put coming from outside the database, i.e.
Channel Access puts. If this is directed to a record that alreadpd@sTRUE because the

record started processing but asynchronous completion has not yet occurred, then a value is
written to the record but nothing will be done with the value until the record is again processed.
In order to make this happeaibPutField arranges to have the record reprocessed when the
record finally completes processing.

The second case results frodibPutLink finding a record already active because of a
dbPutField directed to the record. In this casbPutLink arranges to have the record
reprocessed when the record finally completes processing. Note that it could already be active
because it appears twice in a chain of record processing. In this case it is not reprocessed
because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record
while it is active, each new value is placed in the record but it will still only be processed once,
i.e. last value wins.

Channel Access Links

A channel access link is:

1. Arecord link that references a record in a different 10C.
2. A link that the application developer forces to be a channel access link.

A channel access client task (dbCa) handles all 1/0 for channel access links. It does the
following:

At IOC initialization dbCa issues channel access search requests for each channel access link.

For each input link it establishes a channel access monitor. It esefteld_type and
ca_element _count when it establishes the monitor. It also monitors the alarm status.
Whenever the monitor is invoked the new data is stored in a buffer belonging to dbCa. When
iocCore or the record support module asks for data the data is taken from the buffer and
converted to the requested type.

For each output link, a buffer is allocated the first time iocCore/record support issues a put and
a channel access connection has been made. This buffer is allocated according to
ca_field_type andca_element_count . Each time iocCore/record support issues a

put, the data is converted and placed in the buffer and a request is made to dbCa to issue a new
ca_put.

Even if a link references a record in the same IOC it can be useful to force it to act like a
channel access link. In particular the records will not be forced to be in the same lock set. As
an example consider a scan record that links to a set of unrelated records, each of which can
cause a lot of records to be processed. It is often NOT desirable to force all these records into
the same lock set. Forcing the links to be handled as channel access links solves the problem.

Because channel access links imply network activity, they are fundamentally different than
database links. For this reason and because channel access does not understand process passive
or maximize severity, the semantics of channel access links are not the same as database links.
Let’s discuss the channel access semantics of INLINK, OUTLINK, and FWDLINK separately.

The options for process passive are:

22

EPICS IOC Application Developer’'s Guide

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links

OUTLINK

FWDLINK

 PPorNPP- This link is made a channel access link because the referenced record is not
found in the local IOC. It is not possible to honor PP, thus the link always acts like NPP.

* CA - Force the link to be a channel access link.

e CP - Force the link to be a channel access link and also request that the record
containing the link be processed whenever a monitor occurs.

» CPP - Force the link to be a channel access link and also request that the record
containing the link, if it is passive, be processed whenever a monitor occurs.

Maximize Severity is honored.

The options for process passive are:

* PPorNPP- This link is made a channel access link because the referenced record is not
found in the local I0C. It is not possible to honor PP thus the link always acts like NPP.

» CA - Force the link to be a channel access link.
Maximize Severity is not honored.
A channel access forward link is honored only if it references the PROC field of a record. In
that case a ca_put with a value of 1 is written each time a forward link request is issued.

The options for process passive are:

 PPorNPP- This link is made a channel access link because the referenced record is not
found in the local I0C. It is not possible to honor PP thus it always acts like NPP.

* CA - Force the link to be a channel access link.

Maximize Severity is not honored.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 23

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links

24 EPICS I0C Application Developer's Guide

Chapter 3: Database Definition

Overview

This chapter describes database definitions. The following definitions are described:

* Menu

» Record Type

» Device

 Driver

» Breakpoint Table
» Record Instance

Record Instances are fundamentally different from the other definitions. A file containing
record instances should never contain any of the other definitions and vise-versa. Thus the
following convention is followed:

» Database Definition File- A file that contains any type of definition except record
instances.

* Record Instance File- A file that contains only record instance definitions.
This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to each
other via include files.

Definitions

Summary path "path”
addpath "path"
include “filename"
#comment
menu(name) {
include “filename"
choice(choice_name,"choice_value")

}

recordtype(record_type) {
include "“filename"
field(field_name,field_type) {
asl(asl_level)
initial("init_value™)

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 25

Chapter 3: Database Definition
Definitions

promptgroup(gui_group)
prompt("prompt_value™)
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)

}

device(record_type,link_type,dset_name,”choice_string”)

driver(drvet_name)

breaktable(name) {
raw_value, eng_value,

}

#The Following defines a Record Instance

record(record_type,record_name) {
include “filename”
field(field_name,"value")

}
#NOTE: GDCT uses grecord instead of record

General Rules

Keywords The following are keywords, i.e. they may not be used as values unless they are enclosed in
quotes:

path
addpath
include
menu
choice
recordtype
field
device
driver
breaktable
record
grecord

26 EPICS IOC Application Developer's Guide

Chapter 3: Database Definition
Definitions

Unquoted Strings

Quoted Strings

Macro Substitution

Escape Sequences

dbTranslateEscape

Define before
referencing

Multiple Definitions

filename extension

path addpath

In the summary section, some values are shown as quoted strings and some unquoted. The
actual rule is that any string consisting of only the following characters does not have to be
guoted:

a-zA-Z0-9_-:.[]<>;

These are also the legal characters for process variable names. Thus in many cases quotes are
not needed.

A quoted string can contain any ascii character except the quote character ". The quote
character itself can given by using \ as an escape. For example "\"" is a quoted string containing
the single character ".

Macro substitutions are permitted inside quoted strings. The macro has the form:

$(name)
or
${name}

Except for \" the database routines never translate standard C escape sequences, however,a
routinedbTranslateEscape can be used to translate the standard C escape sequences:

\a \b \f\n \r\t \v W \? \"\"\00O \xhh

(\000 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal number of
1 or 2 digits) A typical use is device support which expects escape sequences in the parm field:

The routine is:

int dbTranslateEscape(char *s,const char *ct);

/*

* copies ct to s while substituting escape sequences
* returns the length of the resultant string

* The result may contain O characters

*/

No item can be referenced until it is defined. For examplecardtype menu field can not
reference a menu unless that menu definition has already been defined. Another example is that
a record instance can not appear until the associated record type has been defined.

If a particular menu, recordtype, device, driver, or breakpoint table is defined more than once,
then only the first instance is used. Record instance definitions are cumulative, i.e. each time a
new field value is encountered it replaces the previous value.

By convention:

» Record instances files have the extensidh™.
» Database definition files have the extensidbd:'.

The path follows the standard Unix convention, i.e. it is a list of directory names separated by
colons (Unix) or semicolons (winXX).

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 27

Chapter 3: Database Definition

Definitions
Format:
path "dir:dir...:dir"
addpath "dir:dir...:dir
NOTE: In winXX the separator is ; instead of :
Thepath command specifies the current path. Hoelpath appends directory names to the
current path. The path is used to locate the initial database file and included files. An empty
dir at the beginning, middle, or end of a non-empty path string means the current directory.
For example:
nnn::mmm # Current directory is between nnn and mmm
:nnn # Current directory is first
nnn: # Current directory is last
Utilities which load database filesllfExpand , dbLoadDatabase , etc.) allow the user to
specify an initial path. Th@ath andaddpath commands can be used to change or extend
the initial path.
The initial path is determined as follows:
If an initial path is specified, it is used. Else:
If the environment variablEPICS_DB_INCLUDE_PATHSs defined, it is used. Else:
the default path is ".", i.e. the current directory.
The path is used unless the filename contains a / or \. The first directory containing the
specified file is used.
include Format:
include "filename"
An include statement can appear at any place shown in the summary. It uses the path as
specified above.
comment The comment symbol is "#". Whenever the comment symbol appears, it and all characters
through the end of the line are ignored.
menu Format:
menu(name) {
choice(choice_name,"choice_value")
}
Where:
name - Name for menu. This is the unique name identifying the menu. If duplicate
definitions are specified, only the first is used.
choice_name - The name placed in theenum generated bydbToMenuH or
dbToRecordtypeH
choice_value- The value associated with the choice.
Example:
menu(menuYesNo) {
choice(menuYesNoNO,"NO")
choice(menuYesNoYES,"YES")
}
28 EPICS IOC Application Developer's Guide

Chapter 3: Database Definition
Definitions

Record Type Format:

recordtype(record_type) {

rules .

definitions .

field(field_namefield_type) {
asl(asl_level)
initial("init_value™)
promptgroup(gui_group)
prompt("prompt_value™)
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu("name")

asl- Access Security Level. The defaultASL1. Access Security is discussed in a later
chapter. Only two values are permitted for this fieRS(0 and ASL1). Fields which
operators normally change are assigiesl 0. Other fields are assignedSL1. For
example, thé/AL field of an analog output record is assigne8L0 and all other fields
ASL1. This is because only thé&AL field should be modified during normal operations.
initial - Initial Value.

promptgroup - Prompt group to which field belongs. This is for use by Database
Configuration Tools. This is defined only for fields that can be given values by database
configuration tools. Filegguigroup .h contains all possible definitions. The different
groups allow database configuration tools to present the user with groups of fields rather
than all prompt fields. | don’t know of any tool that currently uses groups.

prompt - A prompt string for database configuration tools. Optiong@rdmptgroup

is not defined.

special- If specified, then special processing is required for this field at run time.

pp - Should a passive record be processed when Channel Access writes to this field?
The default isNQ

interest - Only used by thdbpr shell command.

base- For integer fields, a base &fECIMALor HEXcan be specified. The default is
DECIMAL

size- Must be specified fdDBF_STRINGfields.
extra - Must be specified fdbBF _NOACCESfelds.
menu - Must be specified fddBF_MENUWields. It is the name of the associated menu.

record_type - The unique name of the record type. If duplicates are specified, only the
first definition is used.

field_name- The field name. Only alphanumeric characters are allowed. When include
files are generated, the field name is converted to lower case. Previous versions of
EPICS required that field name be a maximum of four characters. Although this

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 29

Chapter 3: Database Definition
Definitions

restriction no longer exists, problems may arrise with some Channel Access clients if
longer field names are chosen.

« field_type - This must be one of the following values:
* DBF_STRING
« DBF_CHAR
« DBF_UCHAR
* DBF_SHORT
« DBF_USHORT
« DBF_LONG
* DBF_ULONG
« DBF_FLOAT
- DBF_DOUBLE
* DBF_ENUM
« DBF_MENU
« DBF_DEVICE
* DBF_INLINK
* DBF_OUTLINK
« DBF_FWDLINK
* DBF_NOACCESS
asl_level- This must be one of the following values:
* ASLO
e ASL1 (default value)
* init_value - A legal value for data type.
» prompt_value - A prompt value for database configuration tools.
* gui_group - This must be one of the following:
* GUI_COMMON
* GUI_ALARMS
* GULBITS1
* GUL_BITS2
* GUI_CALC
* GUI_CLOCK
* GUI_COMPRESS
* GUI_CONVERT
* GUI_DISPLAY
e GUI_HIST
* GULLINPUTS
* GUI_LINKS
* GUI_MBB
* GUI_MOTOR
* GUI_OUTPUT
* GUL_PID
* GUI_PULSE
* GUI_SELECT
* GUL_SEQ1
* GUI_SEQ2
* GUI_SEQ3

30 EPICS I0C Application Developer's Guide

Chapter 3: Database Definition
Definitions

- GUI_SUB
« GUI_TIMER
« GUI_WAVE

* GUI_SCAN
NOTE: GUI types were invented with the intention of allowing database
configuration tools to prompt for groups of fields and when a user selects a group
the fields within the group. This feature has never been used and a result is that
many record types have not assigned the correct GUI groups to each field.

special_valuemust be one of the following:

< An integer value greater than 103. In this case, the record support special routine
is called whenever the field is modified by database access. This feature is
present only for compatibility. New support modules shouldSide MOD

The following value disallows access to field.

« SPC_NOMO®Drhis means that field can not be modified at runtime except by the
record/device support modules for the record type.

The following values are used for database common. They must NOT be used for
record specific fields.

e SPC_SCAN Scan related field.
« SPC_ALARMACKAIlarm acknowledgment field.
« SPC_AS- Access security field.

The following value is used if record support wants to tdifNameToAddr
calls.

« SPC_DBADDRTHhis is set if the record suppavt_dbaddr routine should be
called whenevedbNameToAddr is called, i.e. when code outside record/device
support want to access the field.

The following values all result in the record support special routine being called
whenever database access modifies the field. The only reason for multiple values
is that originally it seemed like a good idea. New support modules should only
useSPC_MOD

« SPC_MOD Notify when modified, i.e. call the record support special routine
whenever the field is modified by database access.

« SPC_RESET a reset field is being modified.
* SPC_LINCONW- A linear conversion field is being modified.
« SPC_CALG A calc field is being modified.

pp_value - Should a passive record be processed when Channel Access writes to this
field? The allowed values are:

* NO(default)
* YES
interest_level -An interest level for thedbpr command.
base- For integer type fields, the default base. The legal values are:
* DECIMAL (Default)
* HEX
size_value- The number of characters fob&8F_STRINGfield.

extra_info - For DBF_NOACCESfgIds, this is the C language definition for the field.
The definition must end with the fieldname in lower case.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 31

Chapter 3: Database Definition
Definitions

Example The following is the definition of the binary input record.

recordtype(bi) {

include "dbCommon.dbd"

field(INP,DBF_INLINK) {
prompt(“Input Specification")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}

field(VAL,DBF_ENUM) {
prompt("Current Value™)
asl(ASLO)
pp(TRUE)

}

field(zSV,DBF_MENU) {
prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

field(OSV,DBF_MENU) {
prompt("One Error Severity")
promptgroup(GUI_BITS1)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

field(COSV,DBF_MENU) {
prompt("Change of State Svr")
promptgroup(GUI_BITS2)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

field(ZNAM,DBF_STRING) {
prompt("Zero Name")
promptgroup(GUI_CALC)
pp(TRUE)
interest(1)
size(20)

}

field(ONAM,DBF_STRING) {
prompt("One Name")
promptgroup(GUI_CLOCK)
pp(TRUE)
interest(1)
size(20)

}

field(RVAL,DBF_ULONG) {
prompt("Raw Value™)
pp(TRUE)

32 EPICS IOC Application Developer's Guide

Chapter 3: Database Definition
Definitions

}
field(ORAW,DBF_ULONG) {

prompt("prev Raw Value")
special(SPC_NOMOD)
interest(3)

}

field(MASK,DBF_ULONG) {
prompt("Hardware Mask")
special(SPC_NOMOD)
interest(1)

}

field(LALM,DBF_USHORT) {
prompt(‘"Last Value Alarmed")
special(SPC_NOMOD)
interest(3)

}

field(MLST,DBF_USHORT) {
prompt(‘"Last Value Monitored")
special(SPC_NOMOD)
interest(3)

}

field(SIOL,DBF_INLINK) {
prompt('Sim Input Specifctn®)
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}

field(SVAL,DBF_USHORT) {
prompt('Simulation Value")

}

field(SIML,DBF_INLINK) {
prompt("Sim Mode Location")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}

field(SIMM,DBF_MENU) {
prompt("Simulation Mode")
interest(1)
menu(menuYesNo)

}

field(SIMS,DBF_MENU) {
prompt("Sim mode Alarm Svrty")
promptgroup(GUI_INPUTS)

interest(2)
menu(menuAlarmSevr)
}
}
device This definition defines a single device support module.

device(record_type,link_type,dset_name,”choice_string”)

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 33

Chapter 3: Database Definition

Definitions

definitions

Examples

driver

Definitions

Examples

breakpoint table

» record_type - Record type. The combination ofrecord_type and
choice_string must be unique. If the same combination appears multiple times, the
first definition is used.

* link_type - Link type. This must be one of the following:
* CONSTANT
* PV_LINK
* VME_IO
* CAMAC_IO
* AB_IO
* GPIB_IO
* BITBUS_IO
*INST_IO
* BBGPIB_IO
*RF_IO
* VXI_IO

» dset_name - The exact name of the device support entry table without the trailing
"DSET. Duplicates are not allowed.

» choice_string Choice string for database configuration tools. Note that it must be
enclosed in "™'. Note that for a given record type, eativice_string must be
unique.

device(ai, CONSTANT,devAiSoft,"Soft Channel™)
device(ai,VME_lO,devAiXy566Se,"XYCOM-566 SE Scanned")

Each driver definition contains the name of a driver entry table. It has the form:

driver(drvet_name)

» drvet_name- If duplicates are defined, only the first is used.

driver(drvVxi)
driver(drvXy210)

This defines a breakpoint table.

breaktable(name) {
raw_value, eng_value,

}

Definitions » name- Name of breakpoint table. If duplicates are specified only the first is used.

» raw_value - The raw value, i.e. the actual ADC value associated with the beginning of

the interval.

» eng_value- The engineering value associated with the beginning of the interval.

Example breaktable(typeJdegC) {
0.000000 0.000000

34 EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Definitions

record instance

definitions

365.023224 67.000000

1000.046448 178.000000
3007.255859 524.000000
3543.383789 613.000000
4042.988281 692.000000
4101.488281 701.000000

}

Each record instance has the following definition:

record(record_type,record_name) {
field(field_name,"value")

 record_type- The record type.
» record_name- The record name. This must be composed of the following characters:

a-zA-Z0-9_-:[]<>;
NOTE: If macro substitutions are used the name must be quoted.

If duplicate definitions are given for the same record, then the last value given for each
field is the value assigned to the field.

« field_name- The field name
« value - Depends on field type.

DBF_STRING
Any ASCII string. If it exceeds the field length, it will be truncated.
DBF CHAR DBF UCHAR DBF SHORT DBF USHORT DBF_LONG
DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied,
i.e. a leading 0 means the value is given in octal and a leading Ox means that
value is given in hex.
DBF_FLOATDBF_DOUBLE
The string must represent a valid floating point number.
DBF_MENU
The string must be one of the valid choices for the associated menu.
DBF_DEVICE
The string must be one of the valid device choice strings.
DBF_INLINK , DBF_OUTLINK
The allowed value depends on the bus type of the assodiai¥éfield. These
are as follows:
NOTE: aDTYPof CONSTANTan be either a constant oP%_LINK.

o CONSTANT

A constant valid for the field associated with the link.
* PV_LINK
A value of the form:

record.field process maximize

field, process , andmaximize are optional.

The default value fofield is VAL

process can have one of the following values:
* NPP- No Process Passive (Default)

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 35

Chapter 3: Database Definition
Definitions

* PP- Process Passive
* CA- Force link to be a channel access link
¢ CP- CA and process on monitor
¢ CPP- CA and process on monitor if record is passive
NOTES:
CP and CPP are valid only for INLINKSs.
FWD_LINKs can be PP or CA. If a FWD_LINK is a channel
access link it must reference the PROC field.
maximize can have one of the following values
« NMS- No Maximize Severity (Default)
¢ MS- Maximize severity
* VME_IO
#Ccard Ssignal @parm
where:
card - the card number of associated hardware module.
signal - signal on card
parm - An arbitrary character string of up to 31 characters.
This field is optional and is device specific.
* CAMAC_IO
#Bbranch Ccrate Nstation Asubaddress Ffunction
@parm
branch , crate , station , subaddress , andfunction should be
obvious tocamac users.Subaddress andfunction are optional (O if
not given).Parm is also optional and is device dependent (25 characters
max).
* AB_IO
#Llink Aadapter Ccard Ssignal @parm
link - Scanner., i.e. vme scanner number
adapter - Adapter. Allen Bradley also calls this rack
card - Card within Allen Bradley Chassis
signal - signal on card
parm - An optional character string that is device dependent(27 char max)
* GPIB_IO
#Llink Aaddr @parm
link - gpib link, i.e. interface
addr - GPIB address
parm - device dependent character string (31 char max)
* BITBUS_IO
#Llink Nnode Pport Ssignal @parm
link - link, i.e. vme bitbus interface.
node - bitbus node
port - port on the node
signal - signal on port
parm - device specific character string(31 char max)
* INST_IO
@parm
parm - Device dependent character string(35 char max)
* BBGPIB_IO
#Llink Bbbaddr Ggpibaddr @parm
link - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpibaddr - gpib address
parm - optional device dependent character string(31 char max)

36 EPICS I0C Application Developer's Guide

Chapter 3: Database Definition

Definitions

Examples

record attribute

*RF_IO
#Rcryo Mmicro Ddataset Eelemen t
* VXL_IO
#Vframe Cslot Ssignal @parm (Dynamic addressing)
or
#Vla Signal @parm (Static Addressing)

frame - VXI frame number

slot - Slot within VXI frame

la - Logical Address

signal - Signal Number

parm - device specific character string(25 char max)

* DBF_FWDLINK

This is either not defined or else iP¥_LINK. See above for definitions.

record(ai,STS_AbAiMaSO0) {

}

field(SCAN,".1 second")
field(DTYP,"AB-1771IFE-4t020MA")
field(INP,"#L0 A2 CO SO FO @")
field(PREC,"4")
field(LINR,"LINEAR")
field(EGUF,"20")

field(EGUL,"4")
field(EGU,"MilliAmps")
field(HOPR,"20")

field(LOPR,"4")

record(ao,STS_AbAoMaC1S0) {

}

field(DTYP,"AB-17710FE")
field(OUT,"#L0 A2 C1 SO FO @")
field(LINR,"LINEAR")
field(EGUF,"20")

field[EGUL,"4")
field[EGU,"MilliAmp")
field(DRVH,"20")

field(DRVL,"4")

field(HOPR,"20")

field(LOPR,"4")

record(bi,STS_AbDIA0OC0S0) {

}

field(SCAN,"I/O Intr")
field(DTYP,"AB-Binary Input")
field(INP,"#L0 AO CO SO FO @")
field(ZNAM,"Off")
field(ONAM,"On")

Each record type can have a set of record attributes. Each attribute is a “psuedo” field that can
be accessed via database and channel access. An attribute is given a name the acts like a field
name which has the same value for every instance of the record type. Two attributes are
generated automatically for each record type: RTYP and VERS. The value for RTYP is the

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer’'s Guide

37

Chapter 3: Database Definition

Breakpoint Tables

record type name. The default value for VERS is "none specified", which can be changed by
record support. Record support can call the following routine to create new attributes or change
existing attributes:

long dbPutAttribute(char *recordTypename,
char *name,char*value)

The arguments are:

recordTypename - The name of recordtype.
name - The attribute name, i.e. the psuedo field name.
value - The value assigned to the attribute.

Breakpoint Tables

The menumenuConvert is handled specially by thai andao records (field isLINR).
These records allow raw data to be converted to/from engineering units via one of the
following:

1. No Conversion.
2. Linear Conversion.
3. Breakpoint table.

Other record types can also use this feature. The first two choices specify no conversion and
linear conversion. The remaining choices are assumed to be the names of breakpoint tables. If
a breakpoint table is chosen, the record support modules calRawToEngBpt or
cvtEngToRawBpt . You can look at thai andao record support modules for details.

If a user wants to add additional breakpoint tables, then the following should be done:

» Copy themenuConvert .dbd file from EPICSbase /src/bpt
» Add definitions for new breakpoint tables to the end

* Make sure modifiednenuConvert .dbd is loaded into the I0C instead of EPICS
version.

Please note that it is only necessary to load a breakpoint file if a record instance actually
chooses it. It should also be mentioned that the Allen Bradley IXE device support misuses the
LINR field. If you use this module, it is very important that you do not change any of the
EPICS supplied definitions menuConvert .dbd. Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the
IOC beforeiocinit is called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is
desirable to create a breakpoint table from a table of raw values representing equally spaced
engineering units. A good example is the Thermocouple tables in the OMEGA Engineering,
INC Temperature Measurement Handbook. A taalkeBpt is provided to convert such data

to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to
equally spaced engineering values is:

Ilcomment line
<header line>
<data table>

38

EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

The header line contains the following information:

* Name ASCII string specifying breakpoint table name

* Low Value Eng: Engineering Units Value for first breakpoint table entry
» Low Value Raw. Raw value for first breakpoint table entry

» High Value Eng: Engineering Units: Highest Value desired

* High Value Raw. Raw Value for High Value Eng

 Error : Allowed error (Engineering Units)

* First Table: Engineering units corresponding to first data table entry

* Last Table: Engineering units corresponding to last data table entry

» Delta Table: Change in engineering units per data table entry

An example definition is:

"TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing
makeBpt bptXXX.data

The input file must have the extension of data. The output filename is the same as the input
filename with the extension of dbd.

Another way to create the breakpoint table is to include the following definition in a
Makefile.Vx:

BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the form
bpt<name>.data and a breakpoint table bpt<name>.dbd.

Menu and Record Type Include File Generation.

Introduction Given a file containing menudbToMenuH generates an include file that can be used by any
code which uses the associated menus. Given a file containing any combination of menu
definitions and record type definitiordyToRecordtypeH generates an include file that can
be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype definitions.
Users generating local record types are encouraged to do likewise.

» Each menu that is either for fields in database common (for exam@heiScan) or is
of global use (for examplenenuYesNo) is defined in a separate file. The name of the
file is the same as the menu name with an extensialbdf The name of the generated
include file is the menu name with an extensiorhofThusmenuScan is defined in a
file menuScan.dbd and the generated include file is namezhuScan.h

» Each record type definition is defined in a separate file. In addition, this file contains any
menu definitions that are used only by that record type. The name of the file is the same
as the recordtype name followed Becord .dbd. The name of the generated include
file is the same name with an extensionhof Thus aoRecord is defined in a file
aoRecord .dbd and the generated include file is namedRecord .h. Since
aoRecord has a private menu callebOIF, thedbd file and the generated include file

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 39

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

have definitions for this menu. Thus for each record type, there are two source files
(xxxRecord .dbd andxxxRecord .c) and one generated filexkRecord .h).

Before continuing, it should be mentioned that Application Developers don’t have to execute
dbToMenuH or dbToRecordtypeH . If a developer uses the proper naming conventions, it is
only necessary to add definitions to thdakefile .Vx. The definitions are:

MENUS += menuXXX.h (menus)

RECTYPES += xxRecord.h (recordtype & record specific menus)
USER_DBDFLAGS += -| dir

USER_DBDFLAGS += -S macsub

Consult the document on building I0C applications for details.

dbToMenuH This tool is executed as follows:
dbToMenuH -Idir -Smacsub menuXXX.dbd

It generates a file which has the same name as the input file but with an extendion of
Multiple -I options can be specified for an include path and multifleoptions for macro
substitution.

Example menuPriority .dbd, which contains the definitions for processing priority contains:

menu(menuPriority) {
choice(menuPriorityLOW,"LOW")
choice(menuPriorityMEDIUM,"MEDIUM")
choice(menuPriorityHIGH,"HIGH")

}

The include filemenuPriority .h, generated bgbToMenuH contains:

#ifndef INCmenuPriorityH

#define INCmenuPriorityH

typedef enum {
menuPriorityLOW,
menuPriorityMEDIUM,
menuPriorityHIGH,

}¥menuPriority;

#endif XINCmenuPriorityH*/

Any code that needs to use the priority menu values should use these definitions.

dbToRecordtypeH This tool is executed as follows:
dbTorecordtypeH -Idir -Smacsub xxxRecord.dbd

It generates a file which has the same name as the input file but with an extendion of
Multiple -I options can be specified for an include path and multiSleoptions for macro
substitution.

Example aoRecord .dbd, which contains the definitions for the analog output record contains:

menu(aoOIF) {
choice(aoOIF_Full,"Full")
choice(aoOIF_Incremental,"Incremental”)

}
recordtype(ao) {

40 EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.

include "dbCommon.dbd"

field(VAL,DBF_DOUBLE) {
prompt('Desired Output")
asl(ASLO)
pp(TRUE)

}

field(OVAL,DBF_DOUBLE) {
prompt("Output Value™)

}

... (Many more field definitions

}

}

The include fileaoRecord .h, generated bgbToRecordtypeH contains:

#include <vxWorks.h>
#include <semLib.h>
#include "ellLib.h"
#include "fast_lock.h"
#include "link.h"
#include "tsDefs.h"

#ifndef INCaoOIFH

#define INCaoOIFH

typedef enum {
aoOIF_Full,
aoOIF_Incremental,

}aoOlIF;

#endif /*INCaoOIFH*/

#ifndef INCaoH

#define INCaoH

typedef struct aoRecord {

char name[29]; /*Record Name*/
... Remaining fields in database common
double val; /*Desired Output*/
double oval; /*Output Value*/
... remaining record specific fields

} aoRecord;

#define aoRecordNAME 0
... defines for remaining fields in database common
#define aoRecordVAL 42
#define aoRecordOVAL 43
... defines for remaining record specific fields
#ifdef GEN_SIZE_OFFSET
int aoRecordSizeOffset(dbRecordType *pdbRecordType)
{
aoRecord *prec = 0;
pdbRecordType->papFldDes|[0]->size=sizeof(prec->name);
pdbRecordType->papFldDes[0]->offset=
(short)((char *)&prec->name - (char *)prec);
... code to compute size&offset for other fields in dbCommon
pdbRecordType->papFldDes[42]->size=sizeof(prec->val);
pdbRecordType->papFldDes[42]->offset=
(short)((char *)&prec->val - (char *)prec);

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 41

Chapter 3: Database Definition
Utility Programs

pdbRecordType->papFldDes[43]->size=sizeof(prec->oval);
pdbRecordType->papFldDes[43]->offset=

(short)((char *)&prec->oval - (char *)prec);
... code to compute size&offset for remaining fields
pdbRecordType->rec_size = sizeof(*prec);
return(0);

}
#endif *GEN_SIZE_OFFSET?*/

The analog output record support module and all associated device support modules should use
this include file. No other code should use it.

Discussion of Only the analog output record support module and associated device support should include
Generated File this record definition. Let’s discuss the various parts of the file.:

* Theenum generated from the menu definition should be used to reference the value of
the field associated with the menu.

» Thetypedef and structure defining the record are used by record support and
device support to access fields in an analog output record.

» A #define is present for each field within the record. This is useful for the record
support routines that are passed a pointer RBADDRstructure. They can have code
like the following:

switch (dbGetFieldIndex(pdbAddr)) {
case aoRecordVAL :

break;
case aoRecordXXX:

break;

default:
}
The C source routinaoRecordSizeOffset is automatically called when a record type file

is loaded into an IOC. Thus user code does not have to be aware of this routine except for the
following convention: The associate record support module MUST include the statements:

#tdefine GEN_SIZE_OFFSET
#include "xxxRecord.h"
#undef GEN_SIZE_OFFSET

This convention ensures that the routine is defined exactly once.

Utility Programs

dbExpand dbExpand -Idir -Smacsub filel file2 ...

Multiple -I options can be specified for an include path and multifleoptions for macro
substitution. Note that the environment variaBlBICS DB_INCLUDE_PATHcan also be
used in place of thé options.

42 EPICS I0C Application Developer's Guide

Chapter 3: Database Definition
Utility Programs

dbLoadDatabase

EXAMPLE

NOTE: Host Utility Only

This command reads the input files and then writesstttout , a file containing ASCII
definitions for all information described by the input files. The difference is that comment lines
do not appear and all include files are expanded.

This routine is extremely useful if an 10C is not using NFS for ti#.oadDatabase
commands. It takes more than 2 minutes to loadbidee /rec /base .dbd file into an IOC if
NFS is not used. lfibExpand creates a locdbase .dbd file, it takes about 7 seconds to load
(25 MHZ 68040 10C).

dbLoadDatabase(char *db_file, char *path, char *substitutions)
NOTES:

* |OC Only
 Using a path on the ioc does not work very well.
» Both path and substitutions can be null, i.e. they do not have to be given.

This command loads a database file containing any of the definitions given in the summary at
the beginning of this chapter.

dbfile must be a file containing onlgcord instance# standard ASCII format. Such files
should have an extension oflb.”.

As each line ofdbfile is read, the substitutions specified Bubstitutions is
performed The substitutions are specified as follows:

“varl=subl,var2=subs,...”
Variables are specified in the dbfile as $(variable_name). If the substitution string
"a=1,b=2,c=\"this is a test\""

were used, any variabl&¢a), $(b), $(c) would be substituted with the appropriate data.

For example, letest .db be:

record(ai,"$(pre)testrecl")

record(ai,"$(pre)testrec2")

record(stringout,"$(pre)testrec3") {
field(VAL,"$(STR)")
field(SCAN,"$(SCAN)")

}

Then issuing the command:
dbLoadDatabase("test.db",0,"pre=TEST,STR=test, SCAN=Passive")
gives the same results as loading:

record(ai,"TESTtestrec1")

record(ai,"TESTtestrec2")

record(stringout,"TESTtestrec3") {
field(VAL,"test")
field(SCAN,"Passive")

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 43

Chapter 3: Database Definition
Utility Programs

dbLoadRecords
NOTES:

« 10C Only.
+ dbfile must contain only record
- dbLoadRecords

dbLoadRecords(char* dbfile, char* substitutions)

instances.

is no longer needed.It will probably go away in the future. At

the present time dbLoadRecords loads faster than dbLoadDatabase.

dbLoadTemplate

dbLoadTemplate reads a template

dbLoadTemplate(char* template_def)

definition file. This file contains rules about loading

database instance files, which contrxx) macros, and performing substitutions.

template_def

contains the rules for performing substitutions on the instance files. For

convenience two formats are provided. The format is:

file name.db {

put Version-1 or Version-2 here

}

Version-1

{ setlvarl=subl, setlvar2=sub2,
{ set2varl=subl, set2var2=sub?,
{ set3varl=subl, set3var2=sub2,
- Or -
Version-2

pattern{ varl,var2,var3,

}

{subl_for_setl, sub2_for_setl, sub3_for_setl, ... }
{subl_for_set2, sub2_for_set2, sub3_for_set2, ...}
{subl_for_set3, sub2_for_set3, sub3_for_set3, ... }

The first line (filename.db) specifies the record instance input file.

Each set of definitions enclosed in {}

is variable substitution for the input file. The input file

has each set applied to it to produce one composite file with all the completed substitutions in
it. Version 1 should be obvious. In version 2, the variables are listed ingdgetn {}” line,

which must precede the braced substitution lines. The braced substitution lines contains sets
which match up with thpattern {} line.

EXAMPLE

Two simple template file examples are shown below. The examples specify the same

substitutions to performthis =subl andthat =sub2 for a first set, andhis =sub3 and

that =sub4 for a second set.

file test.db {
{ this=sub1,that=sub2 }
{ this=sub3,that=sub4 }
}

file test.db {
pattern{this,that}
{subl,sub2}
{sub3,sub4 }

Assume thatest .db is:

44

EPICS IOC Application Developer’'s Guide

Chapter 3: Database Definition
Utility Programs

record(ai,"$(this)record") {
field(DESC,"this = $(this)")

}

record(ai,"$(that)record") {
field(DESC,"this = $(that)")

}

UsingdbLoadTemplate with either input is the same as defining the records:

record(ai,"sublrecord") {
field(DESC,"this = sub1")

}

record(ai,"sub2record") {
field(DESC,"this = sub2")

}

record(ai,"sub3record") {
field(DESC,"this = sub3")

}

record(ai,"sub4record") {
field(DESC,"this = sub4")

}

dbReadTest dbReadTest -Idir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance
files. It just reads all the specified files

Multiple -I, and-S options can be specified. An arbitrary number of database definition and
database instance files can be specified.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 45

Chapter 3: Database Definition
Utility Programs

46 EPICS IOC Application Developer’'s Guide

Chapter 4: 10C Initialization

Overview

After vxWorks is loaded at IOC boot time, the following commands, normally in a vxWorks
startup command file, are issued to load and initialize the control system software:

For many board support packages the following must be added
#cd <full path to target bin directory>
< cdCommands
cd appbin
Id < iocCore
Ild < <appname>Lib
cd startup
dbLoadDatabase("<file>.dbd")
dbLoadDatabase("<file>.db")
dbLoadRecords("<file>.db")
and/or
dbLoadTemplates("<file>.db,"<template_def>")

ioclnit
NOTE: The "IOC Applications: Building and Source/Release Control" manual describes

procedures and tools for building IOC applications. This manual should be consulted before
creating new startup file.

cdCommands defines vxWorks global variables that allow vxWorks cd commands for
convient locations. For example in one of my test areas the followthgommands file
appears:

startup = "/home/phoebus6/MRK/epics/test/iocBoot/iocaccess"
appbin = "/home/phoebus6/MRK/epics/test//bin/mv167"
share = "Thome/phoebus/MRK/iocsys/share"

NOTE: This file is automatically generated via make rules.

The firstld command loads the core EPICS software. The second command loads the record,
device, and driver support plus any other application specific modules.

One or moralbLoadDatabase commands load database definition files.

One or moredbLoadDatabase , dbLoadRecords , anddbLoadTemplate commands
load record instance definitions.

ioclnit initializes the various epics components.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 47

Chapter 4: 10C Initialization

ioclnit
loclnit
ioclInit performs the following functions:
coreRelease Prints a messages showing which version of iocCore is being loaded.
getResources See below. This is obsolete feature.
iocLoglnit Initialize system wide logging facility.
taskwdInit start the task watchdog task. This task accepts requests to watch other tasks. It runs
periodically and checks to see if any of the tasks is suspended. If so it issues an error message.
It can also optionally invoke a callback routine
callbacklnit Start the general purpose callback tasks. Three tasks are started with the only difference being
scheduling priority.
dbCaLinklnit CallsdbCaLinkinit . The initializes the task that handles database channel access links.
initDrvSup InitDrvSup locates each device driver entry table and calls the init routine of each driver.
initRecSup InitRecSup locates each record support entry table and calls the init routine.
initDevSup InitDevSup locates each device support entry table and calls the init routine with an
argument specifying that this is the initial call.
ts_init Ts_init initializes the timing system. If a hardware timing board resides in the 10C,
hardware timing support is used, otherwise software timing is used. If the IOC has been
declared to be a master timer, the initial time is obtained from the UNIX master timer,
otherwise the initial time is obtained from the IOC master timer.
initDatabase InitDatabase makes three passes over the database performing the following functions:
e Pass 1. |Initializes following fieldsrset , dset , mlis . Calls record support
init_record (First pass)
» Pass 2. Convert ea@V_LINK toDB_LINK or CA_LINK
» Pass 3: Calls record suppimit_record (second pass)
After the database is initializetbLockInitRecords is called. It creates the lock sets.
finishDevSup InitDevSup locates each device support entry table and calls the init routine with an
argument specifying that this is the finish call.
scanlnit The periodic, event, and io event scanners are initialized and started.
interruptAccept A global variable nterruptAccept " is set TRUE Until this time no request should be

made to process records and all interrupts should be ignored.

48 EPICS IOC Application Developer’'s Guide

Chapter 4: 10C Initialization
Changing iocCore fixed limits

initialProcess

rsrv_init

callbackSet
QueuesSize

dbPvdTableSize

scanOnceSet
QueueSize

errloglnit

dbProcess is called for all records that hai?NI TRUE.

The Channel Access server is started

Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits.
The commands should be given before any dbLoad commands are given.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errloglnit(buffersize)

Requests for the general putpose callback tasks are placed in a ring buffer. This command can
be used to set the size for the ring buffers. The defaultis 2000. A message is issued when a ring
buffer overflows. It should rarely be necessary to override this default. Normally the ring buffer
overflow messages appear when a callback task fails.

Record instance names are stored in a process variable directory, which is a hash table. The
default number of hash entries is 5tbPvdTableSize can be called to change the size. It

must be called before argbLoad commands and must be a power of 2 between 256 and
65536. If an IOC contains very large databases (several thousand) then a larger hash table size
speeds up searches for records.

scanOnce requests are placed in a ring buffer. This command can be used to set the size for the
ring buffer. The default is 1000. t should rarely be necessary to override this default. Normally
the ring buffer overflow messages appear when the scanOnce task fails.

Thus overrides the default buffer size for the errlog message queue. The default is1280 bytes.

TSconfigure

EPICS supports several methods for an IOC to obtain time so that accurate time stamps can be
generated. The default is to obtain NTP time stamps from another computer. The following can
be used to change the defaults. If ant argument is given the value 0 then the default is applied.

TSConfigure(master,sync_rate,clock rate,master_port,slave_port)
* master. 1=master timing IOC, O=slave timing, default is slave.

» sync_rate The clock sync rate in seconds. This rate tells how often the synchronous
time stamp support software will confirm that an 10C clock is synchronized. The default
is 10 seconds.

 clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the event
system. The value will be set to the IOC's internal clock rate when soft timing is used.

* master_port: UDP port for master. The default is 18233
* slave_port UDP port for slave.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 49

Chapter 4: 10C Initialization
initHooks

* time_out: UDP information request time out in milliseconds, if zero is entered here,
the default will be used which is 250ms.

* type: O=normal operation, 1=force soft timing type

See "Synchronous Time Stamp Support”, by Jim Kowalkowski for details. Note that the
default is to be a slave. If no master is found the slave will obtain a starting time from Unix.

initHooks

NOTE: starting with release 3.13.0betal2 initHooks was changed drastically (thanks to
Benjamin Franksen at BESY). Old initHooks.c functions will still work but users are
encouraged to switch to the new method.

The inithooks facility allows application specific functions to be called at various states during
ioc initialization. The states are defined in initHooks.h, which contains the following
definitions:

typedef enum {
initHookAtBeginning,
initHookAfterGetResources,
initHookAfterLoglnit,
initHookAfterCallbackinit,
initHookAfterCaLinklnit,
initHookAfterInitDrvSup,
initHookAfterInitRecSup,
initHookAfterInitDevSup,
initHookAfterTS_init,
initHookAfterInitDatabase,
initHookAfterFinishDevSup,
initHookAfterScanlnit,
initHookAfterInterruptAccept,
initHookAfterlInitialProcess,
initHookAtEnd

}initHookState;

typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);

Any new functions that are registered before ioclnit reaches the desired state will be called
when ioclnit reaches that state. The following is skeleton code to use the facility:

#include <vxWorks.h>
#include <stdlib.h>
#include <stddef.h>
#include <initHooks.h>

static initHookFunction myHookFunction;

int myHookInit(void)
{

return(initHookRegister(myHookFunction));

}

50 EPICS IOC Application Developer’'s Guide

Chapter 4: 10C Initialization
Environment Variables

static void myHookFunction(initHookState state)

{

switch(state) {
case initHookAfterInitRecSup:

break;

case initHookAfterInterruptAccept:
break;

default:
break;

}
}

Assuming the code is in file myHook.c, the st.cmd file should contain (before ioclnit).

Id < bin/myHook.o
myHookInit

An arbitrary number of functions can be registered.

Environment Variables

The following environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_TS_MIN_WEST
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

These variables can be overridden via the vxWorks putenv function. For example:
putenv("EPICS_TS_MIN_WEST=300")

Any putenv commands should be issued after iocCore is loaded and before any dbLoad
commands.

Initialize Logging

Initialize the logging system. See chapter "IOC Error Logging" for details. For initiliization
just realise that the following can be used if you want to use a private host log file.

putenv("EPICS_IOC_LOG_PORT=7004")

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 51

Chapter 4: 10C Initialization

Get Resource Definitions

putenv("EPICS_IOC_LOG_INET=164.54.8.12")

These command must be given immediately after iocCore is loaded.

If you want to disable logging to the system wide log file just give the command.
iocLogDisable = 1

This must be given after iocCore is loaded and before any dbLoad commands.

Get Resource Definitions

NOTE: This facility is supported for compatibility with previous releases. It should NOT be
used for new applications.

ioclnit accepts a string argument which is the name of a resource file which can set values of
IOC global variables. The resource file contains lines with the following format:

global_name type value
global_name is the name of the variable to be changed.
type must be one of the following:

DBF_STRING
DBF_SHORT
DBF_LONG
DBF_FLOAT
DBF_DOUBLE

value is the value to be assigned to the global variable.

Please note that type MUST be set so that it matches the actual type of the global variable
because there is no way f6etResources to know the actual type.

52

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security

Overview

This chapter describes access security. i.e. the system that limits access to I0C databases. It
consists of the following sections:
1. Overview - This section
. Quick start - A summary of the steps necessary to start access security.
. User’s Guide - This explains what access security is and how to use it.
. Design Summary - Functional Requirements and Design Overview.
. Application Programmer’s Interface
. Database Access Security - Access Security features for EPICS IOC databases.
. Channel Access Security - Access Security features in Channel Access
. Implementation Overview

00N O U WN

The requirements for access security were generated at ANL/APS in 1992. The requirements
document is:

EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.

This document is available via the EPICS WWW documentation

Quick Start

In order to “turn on” access security for a particular I0C the following must be done:

» Create the access security file.
» |OC databases may have to be modified

* Record instances may have to have values assigned to field ASG. If ASG is null
the record is in group DEFAULT.

» Access security files can be reloaded after ioclnit via a subroutine record with
asSublnit andasSubProcess as the associated subroutines. Writing the
value 1 to this record will cause a reload.

» The vxWorks startup file must contain the following command before ioclnit.
asSetFilename(“accessSecurityFile”)
The following is an optional command.
asSetSubstitutions(“varl=subl,var2=sub2,...”))

The following rules decide if access security is turned on for an 10C:

« If asSetFilename is not executed before ioclnit, access security will NEVER be started..

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 53

Chapter 5: Access Security

User’'s Guide

Features

Limitations

Definitions

Access Security
Configuration File

Simple Example

« If asSetFile is given and any error occurs while first initializing access security, then
ALL access to that ioc is denied.

* If after successfully starting access security, an attempt is made to restart and an error
occurs then the previous access security configuration is maintained.

User’s Guide

Access security protects IOC databases from unauthorized Channel Access Clients. Access
security is based on the following:

* Who: Userid of the channel access client.

» Where: Hostid where the user is logged on. This is the host on which the channel
access client exists. Thus no attempt is made to see if a user is local or is remotely
logged on to the host.

» What: Individual fields of records are protected. Each record has a field containing the
Access Security Group (ASG) to which the record belongs. Each field has an access
security level, which must be 0 or 1.The security level is defined in the ascii record
definition file. Thus the access security level for a field is the same for all record
instances of a record type.

* When: Access rules can contain input links and calculations similar to the calculation
record.

An I0C database can be accessed only via Channel Access or via the vxWorks shell. It is
assumed that access to the local IOC console is protected via physical securi#ynand /
rlogin access protected via normal Unix and physical security.

No attempt has been made to protect against the sophisticated saboteur. Unix security must be
used to limit access to the subnet on which the iocs reside.

This document uses the following terms:

» ASL: Access Security Level (Called access level in Req Doc)
* ASG: Access Security Group (Called PV Group in Req Doc)
* UAG: User Access Group

* HAG: Host Access Group

This section describes the format of a file containing definitions of the user access groups, host
access groups, and access security groups. An IOC creates an access configuration database by
reading an access configuration file (the extensamfi .is recommended). Lets first give a

simple example and then a complete description of the syntax.

UAG(uag) {userl,user2}
HAG(hag) {host1,host2}
ASG(DEFAULT) {
RULE(1,READ)
RULE(1,WRITE) {
UAG(uag)
HAG(hag)

54

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
User’s Guide

}

These rules provide read access to anyone located anywhere and write aaces4 tand
user2 if they are located dtostl orhost2 .

Syntax Definition In the following description:

[]
I

Lists optional elements

Separator for alternatives

Means that an arbitrary number of definitions may be given.
Any line beginning with # is a comment

UAG(<name>) [{ <user> [, <user>...] }]

HAG(<name>) [{ <host> [, <host> ..] }]

ASG(<name>) [{
[INP<index>(<pvhame>)

1]

R

]

ULE(<level>,NONE | READ | WRITE) {

[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC("<calculation>")

Discussion * UAG: User Access Group. This is a list of userids. The list may be empty. The same

userid can appear in multiple UAGs. For iocs the userid is taken from the user field of
the boot parameters.

HAG : Host Access Group. This is a list of host names. It may be empty. The same host
name can appear in multiple HAGs. For iocs the host name is taken from the target
name of the boot parameters.

ASG: An access security group. The groupEFAULT is a special case. If a member
specifies a null group or a group which has no ASG definition then the member is
assigned to the groufpEFAULT.
« INP<index> Index must have one of the value&™to “L". These are just like
the INP fields of a calculation record. It is necessary to deflE fields if a
CALCfield is defined in anRULEfor the ASG.

« RULE This defines access permissionevel > must be 0 or 1. Permission
for a level 1 field implies permission for level O fields. The permissionN&BE
READ and WRITE WRITE permission implielREADpermission. The standard
EPICS record types have all fields set to level 1 excep¥fdr, CMOcommand),
andRES(reset).
* UAG specifies a list of user access groups that can have the access
privilege. If UAG is not defined then all users are allowed.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 55

Chapter 5: Access Security
User’s Guide

ascheck - Check
Syntax of Access
Configuration File

» HAG specifies a list of host access groups that have the access privilege. If
HAG is not defined then all hosts are allowed.

* CALC is just like theCALCfield of a calculation record except that the
result must evaluate to TRUE &ALSE If the calculation results in (0,1)
meaning FALSETRUB then the rule (doesn't apply, does apply) . The
actual testis .99 result < 1.01.

Each 10C record contains a fieldSG which specifies the name of the ASG to which the
record belongs. If this field is null or specifies a group which is not defined in the access

security file then the record is placed in grolEFAULT.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.
2. Each RULE is checked for the following:
a. The field’s level must be less than or equal to the level for this RULE.
b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is
not defined all users are accepted.
c. IfHAG is defined, the user’s host must belong to one one of the HAGs. If HAG is
not defined all hosts are accepted.
d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of
the INP fields associated with this calculation are in INVALID alarm severity the
calculation is considered false. The actual test for TRUE is .99 < result < 1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULESs can be defined for a given ASG, even RULEs with identical levels and access
permission.

After creating or modifying an access configuration file it can be checked for syntax errors by
issuing the command:

ascheck -S “xxx=yyy,...” < "filename"

This is a Unix command. It displays errors stdout . If no errors are detected it prints
nothing. Only syntax errors not logic errors are detected. Thus it is still possible to get your self
in trouble. The flagS means a set of macro substitutions may appear. This is just like the
macro substitutions for dbLoadDatabase.

IOC Access Securityin order to have access security turned on during 10C initialization the following command

Initialization

must appear in the startup file befaelnit is called:
asSetFilename("<access security file>")

If this command does not appear then access security will not be startedlbiy . If an
error occurs when ioclnit callasinit than all access to the ioc is disabled, i.e. no channel
access client will be able to access the ioc.

Access security also supports macro substitution justdiMeoadDatabase . The following
command specifies the desired substitutions:

asSetSubstitutions(“varl=subl,var2=sub2,...”)
This command must be issued befioranit

After an IOC is initialized the access security database can be changed. The preferred way is
via the subroutine record described in the next section. It can also be changed by issuing the
following command to the vxWorks shell:

aslnit

56

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
User’s Guide

Database
Configuration

Access Security
Group

Subroutine Record
Support

Record Type
Description

Example:

It is also possible to reissuasSetFilename and/or asSetSubstitutions before
aslnit . If any error occurs duringasinit the old access security configuration is
maintained. It iSNOT permissable to ca#lsinit beforeioclnit is called.

Restarting access security after ioc initialization is an expensive operation and should not be
used as a regular procedure.

Each database record has a fiedsG which holds a character string. Any database
configuration tool can be used to give a value to this field. If the ASG of a record is not defined
or is not equal to a ASG in the configuration file then the record is plaB#eHAULT

Two subroutines, which can be attached to a subroutine record, are available (provided with
iocCore):

asSublnit
asSubProcess

If a record is created that attaches to these routines, it can be used to force the IOC to load a
new access configuration database. To change the access configuration:

1. Modify the file specified by the last call &sSetFilename so that it contains the new
configuration desired.
2. Write a 1 to thesubroutine record/AL field. Note that this can be done via channel
access.
The following action is taken:

1. When the value is found to beak)nit is called and the value set back to 0.

2. The record is treated as an asynchronous record. Completion occurs when the new
access configuration has been initialized or a time-out occurs. If initialization fails the
record is placed into alarm with a severity determineBR$V

Each field of each record type has an associated access security lagl@br ASL1. See the
chapter “Database Definition” for details.

Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access
to most level O fields only if the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to
most level O fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have
write access to all fields but must have some way of not changing something
inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed
under tighter control. These will follow rules 1 and 4 but not 2 or 3.

6. 10C channel access clients always have level 1 write privilege.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 57

Chapter 5: Access Security

User’'s Guide

Most Linac 10C records will not have th&SGfield defined and will thus be placed in ASG
“DEFAULT. The following records will have a&SGdefined:

» LI:OPSTATE and any other records that need tighter control E&&="critical
One such record could be a subroutine record used to cause a new access configuration
file to be loadedLl_OPSTATE has the value (0,1) if the Linac is (not operational,
operational).

* Ll:levlpermit hasASG="permit ". In order for theopSup, linacSup , or an
appDev to have write privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {op1,0p2,superguy}
UAG(opSup) {superguy}
UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}
UAG(appDev) {nda,kko}
HAG(icr) {silver,phebos,gaea}
HAG(cr) {mars,hera,gold}
HAG(ioc)
{ioclicl,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)

INPB(LI:levipermit)

RULE(O,WRITE) {
UAG(op)

HAG(icr,cr)
CALC("A=1")

}

RULE(O,WRITE) {
UAG(op,linac,appdev)
HAG(icr,cr)
CALC("A=0")

}

RULE(1,WRITE) {
UAG(opSup,linacSup,appdev)
CALC("B=1")

}

RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)

}

}
ASG(permit) {

RULE(O,WRITE) {

UAG(opSup,linacSup,appDev)
}

RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)

}

}
ASG(critical) {
INPB(LI:levlpermit)

58

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Desigh Summary

RULE(1,WRITE) {
UAG(opSup,linacSup,appdev)
CALC("B=1")

}

RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)

}

Design Summary

Summary of A brief summary of the Functional Requirements is:
Funct.ional 1. Each field of each record type is assigned an access security level.
Requirements 2. Each record instance is assigned to a unique access security group.
3. Each user is assigned to one or more user access groups.
4. Each node is assigned to a host access group.
5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. An optional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables
Additional
Requirements
Performance Although the functional requirements doesn’t mention it, a fundamental goal is performance.

The design provides almost no overhead during normal database access and moderate
overhead for the following: channel access client/server connection, ioc initialization, a change
in value of a process variable referenced by an access calculation, and dynamically changing a
records access control group. Dynamically changing the user access groups, host access
groups, or the rules, however, can be a time consuming operation. This is done, however, by a
low priority IOC task and thus does not impact normal ioc operation.

Generic Access security should be implemented as a stand alone system, i.e. it should not be imbedded
Implementation tightly in database or channel access.

No Access Security Within an IOC no access security is invoked. This means that database links and local channel
within an 10C access clients calls are not subject to access control. Also test routines such as dbgf should not
be subject to access control.

Defaults It must be possible to easily define default access rules.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 59

Chapter 5: Access Security
Design Summary

Access Security is When an 10C is initialized, access security is optional.
Optional

Design Overview The implementation provides a library of routines for accessing the security system. This
library has no knowledge of channel access or IOC databases, i.e. it is generic. Database
access, which is responsible for protecting an IOC database, calls library routines to add each
IOC record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channel access
interact with it.

Configuration File User access groups, host access groups, and access security groups are configured via an
ASCII file.

Access Security The access security library consists of the following groups of routines: initialization, group

Library manipulation, client manipulation, access computation, and diagnostic. The initialization
routine reads a configuration file and creates a memory resident access control database. The
group manipulation routines allow members to be added and removed from access groups. The
client routines provide services for clients attached to members.

|OC Database Accedde interface between an IOC database and the access security system.
Security

Channel Access Whenever the Channel Access broadcast server reces@ssaarch request and finds the

Security process variable, it callsasAddClient . Whenever it disconnects it calls
asRemoveClient . Whenever itissues a get or put to the database it mushis@heckGet
or asCheckPut .

Channel access is responsible for implementing the requirement of allowing the user to be
changed dynamically.

Comments It is likely that the access rules will be defined such that many IOCs will attach to a common
process variable. As a result the IOC containing the PV will have many CA clients.

What about password protection and encryption? | maintain that this is a problem to be solved
in a level above the access security described in this document. This is the issue of protecting
against the sophisticated saboteur.

Performance and Performance has not yet been measured but during the tests to measure memory usage no

Memory noticeable change in performance during ioc initialization or during Channel Access clients

Requirements connection was noticed. Unless access privilege is violated the overhead during channel access
gets and puts is only an extra comparison.

In order to measure memory usage, the following test was performed:

1. A database consisting of 5000 soft analog records was created.

2. A channel access clientgput) was created that perfornts._put s on each of the
5000 channels. Each time it begins a new set of puts the value increments by 1.

3. A channel access clientgget) was created that has monitors on each of the 5000
channels.

60 EPICS I0C Application Developer's Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface

Definitions

Initialization

Group manipulation

add Member

The memory consumption was measured befoodnit , afterioclnit , after caput
connected to all channels, and aftaget connected to all 5000 channels. This was done for
APS release 3.11.5 (before access security) and the first version which included access
security. The results were:

R3.11.5 After
Before ioclnit 4,244,520 4,860,840
After ioclnit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the
memory usage before ioclnit resulted from storage for records. The increase since R3.11.5
results from added fields dbCommon Fields were added for access security, synchronous
time support and for the new caching put support. The other increases in memory usage result
from the control blocks needed to support access control. The entire design was based on
maximum performance. This resulted in increased memory usage.

Access Security Application Programmer’s Interface

typedef struct asgMember *ASMEMBERPVT;
typedef struct asgClient *ASCLIENTPVT;
typedef int (*ASINPUTFUNCPTR)(char *buf,int max_size);
typedef enum{
asClientCOAR/*Change of access rights*/
[*For now this is all*/
} asClientStatus;
typedef void (*ASCLIENTCALLBACK)(ASCLIENTPVT,asClientStatus);

long aslnitialize(ASINPUTFUNPTR inputFunction)
long aslInitFile(const char *filename,const char *substitutions)
long asInitFP(FILE *fp,const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The caller
must provide a routine to provide input lines fasinitialize. aslnitFile and
asInitFP do their own input and also perform macro substitutions.

The initilization routines can be called multiple times. If an access system already exists the
old definitions are removed and the new one initialized. Existing members are placed in the
newASG.

long asAddMember(ASMEMBERPVT *ppvt, char *asgName);

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 61

Chapter 5: Access Security
Access Security Application Programmer’s Interface

This routine adds a new member to Aa&gName. The calling routine must provide storage
for ASMEMBERPVYUpon successful returrmppvt will be equal to the address of storage used
by the access control system. The access system keeps an orphan liseggNaimes not
defined in the access configuration.

The caller must provide permanent storageagName.

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

remove Member long asRemoveMember(ASMEMBERPVT *ppvt);

This routine removes a member from an access control group. If any clients are still present it
returns an error status of S_asLib_clientExists without removing the member.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

get Member Pvt void *asGetMemberPvt(ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This routine
returns the value of the pointer.

This routine returns NULL if access security is not active

put Member Pvt long asPutMemberPvt(ASMEMBERPVT pvt,void *userPwvt);
This routine is used to set the pointer returned by asGetMemberPvt.

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

change Group long asChangeGroup(ASMEMBERPVT *ppvt, char *newAsgName);

This routine changes the group for an existing member. The access rights of all clients of the
member are recomputed.

The caller must provide permanent storagenéwAsgName

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

Client Manipulation

add Client long asAddClient(ASCLIENTPVT *ppvt, ASMEMBERPVT pvt,int asl,
char *user,char*host);

This routine adds a client to an ASG member. The calling routine must provide storage for
ASCLIENTPVT ASMEMBERPMS the value that was set by callirgAddMember. asl is
the access security level.

The caller must provide permanent storageufmr andhost .

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

62 EPICS IOC Application Developer's Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface

change Client long asChangeClient(ASCLIENTPVT ppvt,int asl,
char *user,char*host);

This routine changes one or more of the valask, user , andhost for an existing client.
Again the caller must provide permanent storageuker andhost . It is permissible to use
the samauser andhost used in the call tasAddClient with different values.

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

remove Client long asRemoveClient(ASCLIENTPVT *pvt);
This call removes a client.

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

get Client Pvt void *asGetClientPvt(ASCLIENTPVT pwvt);

For each client, the access system keeps a pointer that can be used by the caller. This routine
returns the value of the pointer.

This routine returndlULL if access security is not active.

put Client Pvt void asPutClientPvt(ASCLIENTPVT pvt, void *userPvt);

This routine is used to set the pointer returneddsyetClientPvt

register Callback long asRegisterClientCallback(ASCLIENTPVT pvt,
ASCLIENTCALLBACK pcallback);

This routine registers a callback that will be called whenever the access privilege of the client
changes.

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

check Get long asCheckGet(ASCLIENTPVT pvt);

This routine, actually a macro, returnERUEFALSE) if the client (has, doesn’'t have) get
access rights.

check Put long asCheckPut(ASCLIENTPVT pvt);

This routine, actually a macro, returnSERUEFALSE) if the client (has, doesn’t have) put
access rights

Access Computation

compute all Asg long asComputeAllAsg(void);
This routine callesComputeAsg for each access security group.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 63

Chapter 5: Access Security
Access Security Application Programmer’s Interface

compute Asg

compute access
rights

Diagnostic

dump

dump UAG

dump HAG

dump Rules

dump member

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

long asComputeAsg(ASG *pasg);

This routine calculates alCALCentries for theASGand callsasCompute for each client of
each member of the specified access security group.

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

long asCompute(ASCLIENTPVT pwt);

This routine computes the access rights of a client. This routine is normally called by the
access library itself rather than use code.

This routine return§_asLib_asNotActive without doing anything if access control is not
active.

int asDump(void (*member)(ASMEMBERPVT),
void (*client)(ASCLIENTPVT),int verbose);

This routine prints the current access security database. If verboseAd.8E), then only the
information obtained from the access security file is printed.

If verbose isTRUEthen additional information is printed. The value of e#ldR is displayed.

The list of members belonging to each ASG and the clients belonging to each member are
displayed. If member callback is specified as an argument, then it is called for each member. If
client callback is specified, it is called for each access security client.

int asDumpUag(char *uagname)

This routine displays the specifi€tAGor if uagname is NULLeachUAGdefined in the access
security database.

int asDumpHag(char *hagname)

This routine displays the specifi€tAGor if uagname is NULLeachUAGdefined in the access
security database.

int asDumpRules(char *asgname)

This routine displays the rules for the specifi88Gor if asgname is NULLthe rules for each
ASG defined in the access security database.

int asDumpMem(char *asgname,
void (*memcallback)(ASMEMBERPVT),int clients)

64

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Database Access Security

dump hash table

Access Level
definition

Access Security
Group definition

Access Client
Definition

Database Access
Library

Initialization

This routine displays the member and, if client RUE client information for the specified
ASGor if asgname is NULL the member and client information for ea88Gdefined in the
access security database. It also callsncallback for each member if this argument is not
NULL

int asDumpHash(void)
This shows the contents of the hash table used to lbédeEeandHAG,

Database Access Security

The definition of access level means that a level is defined for each field of each record type.

1. StructureldDes (dbBase .h), which describes the attributes of each field, contains a
field access_securitylevel . In addition definitions exist for the symbol&SLO and
ASL1.

2. Each field description in a record description contains a field with theA@lue
The meanings of the Access Security Level definitions are as follows:

» ASLO Assigned to fields used during normal operation

« ASL1 Assigned to fields that may be sensitive to change. Permission to access this
level implies permission fokSLO.

Most record types assign ASL as follows: The fieldsL, RES(Reset), andCMDuse the value
ASLO. All other fields uséSL1.

dbCommoncontains the fieldASGand ASR ASG (Access Security Group) is a character
string. The value can be assigned via a database configuration tool or else a utility could be
provided to assign values during ioc initialization. ASP is an access security private field. It
contains the address of ASGMEMBER

StructdbAddr contains a fieldasPvt , which contains the address of ASGCLIENT This
definition is also added to strudb_addr so that old database access also supports access
security.

Two filesasDbLib .c andasCa.c implement the interface between IOC databases and access
control. It contains the following routines:

int asSetFilename(char *acf)

Calling this routine sets the filename of an access configuration file. The next aalhtb
uses this file. This routine must be called befmenit otherwise access configuration is
disabled. Is access security is disabled during ioclnit it will never be turned on.

int asSetSubstitutions(char *substitutions)

This routine specifies macro substitutions.

int asInit()

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 65

Chapter 5: Access Security

Database Access Security

Routines used by
Channel Access
Server

Routine to test
asAddClient

int asinitAsyn(ASDBCALLBACK *pcallback)

This routines callaslinitialize . If the current access configuration file, as specified by
asSetFilename , is NULL then the routine just returns, otherwise the configuration file is
used to create the access configuration database.

This routine is called byoclnit . aslnit can also be called at any time to change the
access configuration information.

aslnitAsyn spawns a taskaslnitTask to perform the initialization. This allows
aslnitAsyn to be called from a subroutine called by the process entry of a subroutine
record.asInitTask calls taskwdInsert so that if it suspends for some reagaskwd

can detect the failure. After initialization all records in the database are made members of the
appropriate access control group.

If the caller provides ahSDBCALLBACIKhen when either initialization completestaskwd
detects a failure the users callback routine is called via one of the standard callback tasks.

aslnitAsyn will return a value of1 if access initialization is already active. It returns O if
aslnitTask is successfully spawned.

int asDbGetAsl(void *paddr)

Get Access Security level for the field referenced by a database access structure. The argument
is defined as goid * so that both old and new database access can be used.

ASMEMBERPVT asDbGetMemberPvt(void *paddr)

Get ASMEMBERPMOr the field referenced by a database access structure. The argument is
defined as &oid * so that both old and new database access can be used.

int astac(char *pname,char *user,char *host)

This is a routine to tesasAddClient . It simulates the calls that are made by Channel
Access.

Subroutines attachedhese routines are provided so that a channel access client can force an ioc to load a new
to a subroutine recor@ccess configuration database.

long asSublnit(struct subRecord *prec,int pass)
long asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to the
record, asSubProcess calls aslnit . If aslnit returns success, it returns with
asynchronously. WhenaslnitTask calls the completion routine supplied by
asSubProcess |, the return status is used to place the record in alarm.

Diagnostic Routines These routines provide interfaces to tbump routines described in the previous chapter.

They do NOT lock before calling the associated routine. Thus they may fail if the access
security configuration is changing while they are running. However the danger of the user
accidently aborting a command and leaving the access security system locked is considered a
risk that should be avoided.

asdbdump(void)

66

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Channel Access Security

This routine call@sDump with a member callback and with verbd@$eUE

aspuag(char *uagname)

This routine calleasDumpUag

asphag(char *hagname)

This routine calleasDumpHag

asprules(char *asgname)

This routine callasDumpRules .

aspmem(char *asgname,int clients)

This routine call@sDumpMem

Channel Access Security

EPICS Access Security is designed to protect Input Output Controllers (IOCs) from
unauthorized access via the Channel Access (CA) network transparent communication
software system. This chapter describes the interaction between the CA server and the Access
Security system. It also briefly describes how the current access rights state is communicated
to clients of the EPICS control system via the CA communication system and the CA client
interface.

CA Server InterfacesThe CA server callasAddClient() and asRegisterClientCallback() for each

to the Access
Security System

of the channels that a client connects to the server. The roasRemoveClient() is
called whenever the client clears (removes) a channel or when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these
strings are supplied to the server when the client connects and can be updated at any time by
the client. When these strings change tlasChangeClient() is called for each of the
channels maintained by the server for the client.

The server checks for read access when processing gets and for write access when processing
puts. If access is denied then an exception message is sent to the client.

The server checks for read access when processing requests to register an event callback
(monitor) for the client. If there is read access the server always sends an initial update
indicating the current value. If there isn’t read access the server sends one update indicating no
read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the callback
registered wittasRegisterClientCallback() . When a channel’s access rights change

the server communicates the current state to the client library. If read access to a channel is lost
and there are events (monitors) registered on the channel then the server sends an update to the
client for each of them indicating no access and disables future updates for each event. If read

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 67

Chapter 5: Access Security
Access Control: Implementation Overview

Client Interfaces

Implementation
Overview

access is reestablished to a channel and there are events (monitors) registered on the channel
then the server re-enables updates and sends an initial update message to the client for each of
them.

Additional details on the channel access client side callable interfaces to access security can be
obtained from the “Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each channel
that it has established. The client library receives asynchronous updates of the current access
rights state from the server. It uses this state to check for read access when processing gets and
for write access when processing puts. If a program issues a channel access request that is
inconsistent with the client library’s current knowledge of the access rights state then access is
denied and an error code is returned to the application. The current access rights state as known
by the client library can be tested by an applications program with the C macros
ca_read_access() andca_write_access()

An application program can also receive asynchronous notification of changes to the access
rights state by registering a function to be called back when the client library updates its
storage of the access rights state. The application’s call back function is installed for this
purpose by callinga_replace_access_rights_event()

If the access rights state changes in the server after a request is queued in the client library but
before the request is processed by the server then it is possible that the request will fail in the
server. Under these circumstances then an exception will be raised in the client.

The server always sends one update to the client when the event (monitor) is initially
registered. If there isn’t read access then the status in the arguments to the application
program’s event call back function indicates no read access and the value in the arguments to
the clients event call back is set to zero. If the read access right changes after the event is
initially registered then another update is supplied to the application programs call back
function.

Access Control: Implementation Overview

This chapter provides a few aids for reading the access security code. IncludsLiflie .h
describes the control blocks used by the access security library.

The following files form the access security system:

» asLib.h Definitions for the portion of access security that is independent of 10C
databases.

» asDbLib.h Definitions for access routines that interface to an I0C database.

» asLib_lex.I Lex andYacc (actually EPICSlex andantelope) are used to parse
the access configuration file. This is te input file.

» aslLib.y This is theyacc input file. Note that it includessLibRoutines .c, which
do most of the work.

» asLibRoutines.c These are the routines that implement access security. This code has
no knowledge of the database or channel access. It is a general purpose access security
implementation.

» asDbLib.c This contains the code for interfacing access security to the |IOC database.

68

EPICS IOC Application Developer’'s Guide

Chapter 5: Access Security
Access Control: Implementation Overview

» asCa.c This code contains the channel access client code that implemeidttand
CALCdefinitions in an access security database.
» ascheck.c The Unix program which performs a syntax check on a configuration file.

Locking Because it is possible for multiple tasks to simultaneously modify the access security database
itis necessary to provide locking. Rather than try to provide low level locking, the entire access
security database is locked during critical operations. The only things this should hold up are
access initialization, CA searches, CA clears, and diagnostic routines. It should NEVER cause
record processing to wait. In addition CA gets and puts should never be delayed. One
exception exists. If the ASG field of a record is changed tas@hangeGroup is called

which locks.

All operations invoked from outside the access security library that cause changes to the
internal structures of the access security database.routines lock.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 69

Chapter 5: Access Security

Structures
Structures
> UAG
node UAGNAME
name node
||St user
HAG
node HAGNAME
ASBASE name node
uagList list host
hagList > ASGINP
asglList ASG node
phash node inp
name capvt
inpList pasg
ruleList inpinde
memberLigt >
pavalue ASGRULE ASGUAG
inpBad node node
inpChangegd access puag
level
inpUsed ASGHAG
result node
calc ha
rpcl phag
uaglist
hagList
> ASGCLIENT
ASGMEMBER node
node pasgMember
pasg user
clientList host
asgName userPvt
userPvt pcallback
level
access
70 EPICS I0C Application Developer's Guide

Chapter 6: 10C Test Facilities

dbl

dbgrep

Overview

This chapter describes a number of IOC test routines that are of interest to both application
developers and system developers. All routines can be executed from the vxWorks shell. The
parentheses are optional, but the arguments must be separated by commas. All character string

arguments must be enclosed in .

The user should also be aware of the fieERRQ which is present in every database record. If it
is setTRUEthen a message is printed each time its record is processed and a message is printed
for each record processed as a result of it being processed.

Database List, Get, Put

Database List:
dbl (“<record type>","<filename>")
Examples

dbl
dbl “ai”

This command prints the names of records in the run time databasectird type> s
not specified, all records are listed.dfecord type> s specified, then only the names of
the records of that type are listed.

If <filename> s specified the output is written to the specified file (if the file already exists
it is overwritten). If this argument is 0 then the output is sestdout

List Record Names That Match a Pattern:
dbgrep (“<pattern>")

Examples

dbgrep “S0*”
dbgrep “*gpibAi*”

Lists all record names that match a pattern. The pattern can contain any characters that are
legal in record names as well as “*”, which matches 0 or more characters.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 71

Chapter 6: I0OC Test Facilities

Database List, Get, Put

dba Database Address:
dba (“<record_name.field_name>")
Example
dba “aitest”
dba “aitest.VAL”
This command callsbNameToAddr and then prints the value of each field in tgAddr
structure describing the field. If the field name is not specified ¥&his assumed (the two
examples above are equivalent).
dbgf Get Field:
dbgf (“<record_name.field_name>")
Example:
dbgf “aitest”
dbgf “aitest.VAL”"
This performs albNameToAddr and then albGetField . It prints the field type and value.
If the field name is not specified th&AL is assumed (the two examples above are equivalent).
dbpf Put Field:
dbpf (“<record_name.field_name>","<value>")
Example:
dbpf “aitest”,”5.0"
This command performs dbNameToAddr followed by adbPutField and dbgf . If
<field_name> is not specifie?AL is assumed.
dbpr Print Record:
dbpr (“<record_name>" <interest level>)
Example
dbpr “aitest”,2
This command prints all fields of the specified record up to and including those with the
indicated interest level. Interest level has one of the following values:
» 0: Fields of interest to an Application developer and that can be changed as a result of
record processing.
» 1. Fields of interest to an Application developer and that do not change during record
processing.
 2: Fields of major interest to a System developer.
» 3: Fields of minor interest to a System developer.
 4: Fields of no interest.
dbtr Test Record:
dbtr (“<record_name>")
This callsdbNameToAddr, thendbProcess and finallydbpr (interest level 3). Its purpose
is to test record processing.
72 EPICS IOC Application Developer’'s Guide

Chapter 6: IOC Test Facilities
Breakpoints

dbnr

dbb

dbd

dbs

dbc

dbp

Print number of records:
dbnr(all_recordtypes)

This command displays the number of records of each type and the total number of records. If
all_record_types is 0 then only record types with record instances are displayed. If
all_record_types is not 0 then all record types are displayed.

Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lockset
basis. This facility has been constructed in such a way that the execution of all locksets other
than ones with breakpoints will not be interrupted. This was done by executing the records in

the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing
breakpoints. A record that is processed through external means, e.g.: a scan task, is called an
entrypoint into that lockset. Thdbstat command described below will list all detected
entrypoints to a lockset, and at what rate they have been detected.

Set Breakpoint:
dbb (“<record_name>")

Sets a breakpoint in a record. Automatically spawns tk@tCont , or breakpoint
continuation task (one per lockset). Further record execution in this lockset is run within this
task’s context. This task will automatically quit if two conditions are met, all breakpoints have
been removed from records within the lockset, and all breakpoints within the lockset have been
continued.

Remove Breakpoint:
dbd ("<record_name>")

Removes a breakpoint from a record.

Single Step:
dbs (“<record_name>")
Steps through execution of records within a lockset. If this command is called without an
argument, it will automatically step starting with the last detected breakpoint.
Continue:
dbc (“<record_name>")
Continues execution until another breakpoint is found. This command may also be called
without an argument.
Print Fields Of Suspended Record:
dbp

Prints out the fields of the last record whose execution was suspended.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 73

Chapter 6: I0OC Test Facilities

Error Logging

dbap Auto Print:
dbap (“<record_name>")
Toggles the automatic record printing feature. If this feature is enabled for a given record, it
will automatically be printed after the record is processed.
dbstat Status:
dbstat
Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the
records with breakpoints set, what records have the autoprint feature s#igpy, and what
entrypoints have been detected. It also displays the vxWorks task ID of the breakpoint
continuation task for the lockset. Here is an example output from this call:
LSet: 00009 Stopped at: so#B: 00001 T: 0x23cafac
Entrypoint: so#C: 00001 C/S: 0.1
Breakpoint: so(ap)
LSet: 00008#B: 00001 T: Ox22fee4dc
Breakpoint: output
The above indicates that two locksets contain breakpoints. One lockset is stopped at record
“s0.” The other is not currently stopped, but contains a breakpoint at reamrgput .”
“LSet :"is the lockset number that is being consideretB” is the number of breakpoints set
in records within that locksetT: " is the vxWorks task ID of the continuation taskC:” is the
total number of calls to the entrypoint that have been detec@®®&. " is the number of those
calls that have been detected per secdap) indicates that the autoprint feature has been
turned on for recordsob.”
Error Logging
eltc Display error log messages on console:
eltc(int noYes)
This determines if error messages are displayed on vxWorks console. A value of 0 means no
and any other value means yes.
Hardware Reports
dbior I/O Report:
dbior (“<driver_name>" <interest level>)
This command calls the report entry of the indicated driver<dfiver_ name> is not
specified then the report for all drivers is generated. It also calls the report entry of all device
support modules. Interest level is one of the following:
« 0: Print a short report for each module.
74 EPICS I0C Application Developer's Guide

Chapter 6: IOC Test Facilities
Scan Reports

dbhcer

scanppl

scanpel

scanpiol

TSreport

» 1. Print additional information.
» 2. Print even more info. The user may be prompted for options.

Hardware Configuration Report:
dbhcr("filename")

This command produces a report of all hardware links. To use it on the IOC, issue the
command:

dbhcr > report
or
dbhcr("report™)

The report will probably not be in the sort order desired. The Unix command:
sort report > report.sort

should produce the sort order you desire.

Scan Reports

Print Periodic Lists:
scanppl(double rate)

This routine prints a list of all records in the periodic scan list of the specidied rate. If rate is 0.0
all period lists are shown.

Print Event Lists:
scanpel(int event_number)
This routine prints a list of all records in the event scan list for the specified event nunber. If
event_number is 0 all event scan lists are shown.
Print I/O Event Lists:
scanpiol

This routine prints a list of all records in the I/O event scan lists.

Time Server Report

Format:
TSreport
This routine prints out information about the Time server. This includes:

* Slave or Master
» Soft or Hardware synchronized

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 75

Chapter 6: I0OC Test Facilities
Access Security Commands

asSetFilename

* Clock and Sync rates
* etc.

Access Security Commands

Format:
asSetFilename (“<filename>")

This command defines a new access security file.

aslnit Format:
aslnit
This command reinitializes the access security system. It rereads the access security file in
order to create the new access security database. This command is useful either because the
asSetFilename command was used to change the file or because the file itself was
modified. Note that it is also possible to reinitialize the access security via a subroutine record.
See the access security document for details.
asdbdump Format:
asdbdump
This provides a complete dump of the access security database.
aspuag Format:
aspuag (“<user access group>")
Print the members of the user access group. If no user access group is specified then the
members of all user access groups are displayed.
asphag Format:
asphag (“<host access group>")
Print the members of the host access group. If no host access group is specified then the
members of all host access groups are displayed.
asprules Format:
asprules (“<access security group>")
Print the rules for the specified access security group or if no group is specified for all groups.
aspmem Format:
aspmem (“<access security group>", <print clients>)
Print the members (records) that belong to the specified access security group, for all groups if
no group is specified. Kprint clients> is (0, 1) then Channel Access clients attached to
each member (are not, are) shown.
76 EPICS I0C Application Developer's Guide

Chapter 6: IOC Test Facilities
Channel Access Reports

Channel Access Reports

ca_channel_status Format:
ca_channel_status (taskid)

Prints status for each channel in use by specialized vxWorks task.

casr Channel Access Server Report
casr(level)
Level can have one of the following values:

0
Prints server's protocol version level and a one line summary for each client
attached. The summary lines contain the client’s login name, client’s host name,
client’s protocol version number, and the number of channel created within the
server by the client.

Level one provides all information in level 0 and adds the task id used by the
server for each client, the client’s IP protocol type, the file number used by the
server for the client, the number of seconds elapsed since the last request was
received from the client, the number of seconds elapsed since the last response
was sent to the client, the number of unprocessed request bytes from the client,
the number of response bytes which have not been flushed to the client, the
client's IP address, the client’s port number, and the client’s state.

Level two provides all information in levels 0 and 1 and adds the number of bytes
allocated by each client and a list of channel names used by each client. Level 2
also provides information about the number of bytes in the server’s free memory
pool, the distribution of entries in the server’s resource hash table, and the list of
IP addresses to which the server is sending beacons. The channel names are
shown in the form:

<name>(nrw)

where
n is number of ca_add_events the client has on this channel
ris (-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.
dbel Format:
dbel (“<record_name>")

This routine prints the Channel Access event list for the specified record.

dbcar Database to Channel Access Report - See “Record Link Reports”

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 77

Chapter 6: I0OC Test Facilities

Interrupt Vectors

veclist

epicsPrtEnvParams

epicsRelease

dbt

dbtgf

Interrupt Vectors

Format:
veclist

Print Interrupt Vector List

EPICS

Format:
epicsPrtEnvParams

Print Environment Variables

Format:
coreRelease

Print release of iocCore.

Database System Test Routines

These routines are normally only of interest to EPICS system developers NOT to Application
Developers.

Measure Time To Process A Record:
dbt (“<record_name”)

Times the execution of 100 successive processings of reemard name . Note that
process passive and forward links within this record may incur the processing of other records
in its lockset. This function is a wrapper around the VxWotksexN() function, and
directly displays its output. Therefore one must divide the result by 100 to get the execution
time for one processing oécord_name .

Test Get Field:
dbtgf (“<record_name.field_name>")

Example:

dbtgf “aitest”
dbtgf “aitest.VAL”

78

EPICS IOC Application Developer’'s Guide

Chapter 6: IOC Test Facilities
Record Link Routines

dbipf

dbtpn

dblsr

dbcar

This performs albNameToAddr and then callslbGetField with all possible request types
and options. It prints the results of each call. This routine is of most interest to system
developers for testing database access.

Test Put Field:
dbtpf (“<record_name.field_name>","<value>")
Example:

dbtpf “aitest”,”5.0”

This command performs@dbNameToAddr, then callsdbPutField, followed bydbgf for
each possible request type. This routine is of interest to system developers for testing database
access.

Test Put Notify:

dbtpn (“<record_name.field_name>","<value>")
Example:

dbtpn “aitest”,”5.0”

This command performs dbNameToAddr, then callsdbPutNotify ~ and has a callback
routine that prints a message when it is called. This routine is of interest to system developers
for testing database access.

Record Link Routines

Lock Set Report:
dblsr(recordname,level)

This command generates a report showing the lock set to which each record belongs. If
recordname is O all records are shown, otherwise only records in the same lock set as
recordname are shown.

level can have the following values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

Database to channel access report
dbcar(recordname,level)

This command generates a report showing database channel accessigdardfame is0
then information about all records is shown otherwise only information about the specified
record.

level can have the following values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 79

Chapter 6: I0OC Test Facilities
Old Database Access Testing

dbhcr Report hardware links. See “Hardware Reports”.
Old Database Access Testing
These routines are of interest to EPICS system developers. They are used to test the old
database access interface, which is still used by Channel Access.
gft Get Field Test:
gft (“<record_name.field_name>")
Example:
gft “aitest”
gft “aitest.VAL”"
This performs adb_name_to addr and then callsdb_get field with all possible
request types. It prints the results of each call. This routine is of interest to system developers
for testing database access.
pft Put Field Test:
pft (“<record_name.field_name>","<value>")
Example:
pft “aitest”,”5.0”
This command performs db_name_to_addr , db_put field , db_get field and
prints the result for each possible request type. This routine is of interest to system developers
for testing database access.
tpn Test Put Notify:
tpn (“<record_name.field_name>","<value>")
Example:
tpn “aitest”,”5.0”
This routine testdbPutNotify via the old database access interface.
Routines to dump database information
dbDumpPath Dump Path:
dbDumpPath(pdbbase)
dbDumpPath(pdbbase)
The current path for database includes is displayed.
80 EPICS I0C Application Developer's Guide

Chapter 6: IOC Test Facilities
Routines to dump database information

dbDumpMenu Dump Menu:
dbDumpMenu(pdbbase,”’<menu>")

dbDumpMenu(pdbbase,’"menuScan”)

If the second argument is 0 then all menus are displayed.

dbDumpRecordTypeDump Record Description:
dbDumpRecordType(pdbbase,’<record type>")

dbDumpRecordType(pdbbase,"ai”)

If the second argument is O then all descriptions of all records are displayed.
dbDumpFIldDes Dump Field Description:

dbDumpFldDes(pdbbase, ’<record type>","<field name>")

dbDumpFldDes(pdbbase,"ai”,”"VAL")

If the second argument is 0 then the field descriptions of all records are displayed. If the third
argument is 0 then the description of all fields are displayed.

dbDumpDevice Dump Device Support:
dbDumpDevice(pdbbase,”<record type>")
dbDumpDevice(pdbbase,’ai")
If the second argument is O then the device support for all record types is displayed.
dbDumpDriver Dump Driver Support:
dbDumpDriver(pdbbase)
dbDumpDriver(pdbbase)
dbDumpRecords Dump Record Instances:

dbDumpRecords(pdbbase,”<record type>",level)

dbDumpRecords(pdbbase,"ai")

If the second argument is 0 then the record instances for all record types is displayed. The third
argument determines which fields are displayed just like for the comaband

dbDumpBreaktable Dump breakpoint table

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 81

Chapter 6: I0OC Test Facilities
Routines to dump database information

dbPvdDump

dbDumpBreaktable(pdbbase,name)

dbDumpBreaktable(pdbbase, typeKdegF”)
This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are
dumped.
Dump the Process variable Directory:

dbPvdDump(pdbbase,verbose)

dbPvdDump(pdbbase,0)

This command shows how many records are mapped to each hash table entry of the process
variable directory. If verbose is not 0 then the command also displays the names which hash to
each hash table entry.

82

EPICS IOC Application Developer’'s Guide

Chapter 7: 10C Error Logging

Overview

Errors detected by an IOC can be divided into classes: Errors related to a particular client and
errors not attributable to a particular client. An example of the first type of error is an illegal
Channel Access request. For this type of error, a status value should be passed back to the
client. An example of the second type of error is a device driver detecting a hardware error.
This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

» In many cases it is not possible for the routine detecting an error to decide which type of
error occurred.

* Normally, only the routine detecting the error knows how to generate a fully descriptive
error message. Thus, if a routine decides that the error belongs to a particular client and
merely returns an error status value, the ability to generate a fully descriptive error
message is lost.

« If a routine always generates fully descriptive error messages then a particular client
could cause error message storms.

» While developing a new application the programmer normally prefers fully descriptive
error messages. For a production system, however, the system wide error handler should
not normally receive error messages cause by a particular client.

If used properly, the error handling facilities described in this chapter can process both types of
errors.

This chapter describes the following:

» Error Message Generation Routines - Routines which pass messages to the errlog Task.

« errlog Task - A task that displays error messages on the target console and also passes
the messages to all registered system wide error logger.

» status codes - EPICS status codes.

* iocLog- A system wide error logger supplied with base. It writes all messages to a
system wide file.

NOTE: recGbl error routines are also provided. They in turn call one of the error message
routines.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 83

Chapter 7: 10C Error Logging
Error Message Routines

Error Message Routines

Basic Routines int errlogPrintf(const char *pformat, ...);
int errlogVprintf(const char *pformat,va_list pvar);

int errlogMessage(const char *message);

errlogPrintf and errlogVprintf are likeprintf andvprintf provided by the
standard C library, except that the output is sent to the errlog task. Consult any book that
describes the standard C library such as "The C Programming Language ANSI C Edition" by
Kernighan and Ritchie.

errlogMessage sends message to the errlog task

Log with Severity typedef enum {
errloginfo,errlogMinor,errlogMajor,errlogFatal
lerrlogSevEnum;

int errlogSevPrintf(const errlogSevEnum severity,
const char *pformat, ...);

int errlogSevVprintf(const errlogSevEnum severity,
const char *pformat,va_list pvar);

char *errlogGetSevEnumsString(const errlogSevEnum severity);
void errlogSetSevTolLog(const errlogSevEnum severity);

errlogSevEnum errlogGetSevTolLog(void);

errlogSevPrintf and errlogSevVprintf are like errlogPrintf and
errlogVprintf except that they add the severity to the beginning of the message in the
form "sevr=<value>" where value is on of "info, minor, major, fatal". Also the message is
suppressed if severity is less than the current severity to suppress.

errlogGetSevEnumsString gets the string value of severity.

errlogSetSevTolLog sets the severity to logerrlogGetSevTolLog gets the current
severity to log.

Status Routines void errMessage(long status, char *message);
void errPrintf(long status, const char *pFileName,
int lineno, const char *pformat, ...);
RoutineerrMessage (actually a macro that caksrPrintf) has the following format:
void errMessage(long status, char *message);
Where status is defined as:

* 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
e Other: See “Return Status Values” above.

84 EPICS IOC Application Developer’'s Guide

Chapter 7: 10C Error Logging
errlog Task

Obsolete Routines

errMessage , via a call toerrPrintf , prints the message, the status symbol and string
values, and the name of the task which invoked/iessage . It also prints the name of the
source file and the line number from which the call was issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsystems
provide routines built on top @frMessage which generate descriptive messages.

An IOC global variableerrVerbose , defined as amxternal in errMdef.h , specifies
verbose messages.dfrVerbose is TRUEthenerrMessage should be called whenever an
error is detected even if it is known that the error belongs to a specific clieertMérbose

is FALSEthenerrMessage should be called only for errors that are not caused by a specific
client.

RoutineerrPrintf has the following format:

void errPrintf(long status, FILE__, LINE__,
char *fmtstring <argl>, ...);

Where status is defined as:

* 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
e Other: See “Return Status Values”, above.

FILE and LINE are defined as:

e FILE__ As shown arRULLf the file name and line number should not be printed.
e LINE__ Asshown

The remaining arguments are just like the arguments to then routine.errVerbose
determines if the filename and line number are shown.

int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogVprintf. They are provided for compatibility.

errlog Task

The error message routines can be called by any non-interrupt level code. These routines
merely pass the message to the errlog Task.

Task errlog manages the messages. Messages are placed in a message queue, which is read by
the errlog task. The message queue uses a fixed block of memory to hold all messages. When
the message queue is full additional messages are rejected but a count of missed messages is
kept. The next time the message queue empties an extra message about the missed messages is
generated.

The maximum message size is 256 characters. If a message is longer, the message is truncated
and a message explaining that it was truncated is appended. There is a chance that long
messages corrupt memory. This only happens if client code is defective. Long messages most
likely result from "%s" formats with a bad string argument.

The error message routines are partially implemented on the host. The host version just calls
fprintf or vfprintf instead of using a separate task and a message queue. Thus host messages are
NOT sent to a system wide error logger.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 85

Chapter 7: 10C Error Logging

Status Codes

Add and Remove
Log Listener

target console

typedef void(*errlogListener) (const char *message);
void errlogAddListener(errlogListener listener);
void errlogRemovelListener(errlogListener listener);

These routines add/remove a callback that receives each error message. These routines are the
interface to the actual system wide error handlers.

int eltc(int yesno); /* error log to console (0 or 1) */

routines int errloglnit(int bufsize);
eltc determines if errlog task writes message to the console. During error messages storms this
command can be used to suppress console messages. A argument of O suppresses the messages
and any other value lets the message go to the console.
errloglnit can be used to initialize the error logging system with a larger buffer. The default is
1280 bytes. An extra MAX_MESSAGE_SIZE (currently 256) bytes are allocated but never
used. This is a small extra protection against long error messages.
Status Codes

EPICS defined status values provide the following features:

» Whenever possible, IOC routines return a status value: (0, non-0) fiQERKROR

» The include files for each 10C subsystem contain macros defining error status symbols

and strings.
* Routines are provided for run time access of the error status symbols and strings.
» A global variable errVerbose helps code decide if error messages should be
generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning
EPICS status values. No consensus was reached.
Whenever it makes sense, IOC routines return a long word status value encoded similar to the
vxWorks error status encoding. The most significant short word indicates the subsystem
module within which the error occurred. The low order short word is a subsystem status value.
In order that status values do not conflict with the vxWorks error status values all subsystem
numbers are greater than 500.
A file epics/share/epicsH/errMdef.h defines each subsystem number. For example
thedefine for the database access routines is:

#define M_dbAccess (501 << 16) \

[*Database Access Routines*/

Directory "epics/share/epicsH " contains arinclude library for every IOC subsystem
that returns standard status values. The status values are encoded with lines of the following
format:

#define S_xxxxxxx value /*string value*/
For example:

#define S_dbAccessBadDBR (M_dbAccess|3) \

/*Invalid Database Request*/
86 EPICS I0C Application Developer's Guide

Chapter 7: 10C Error Logging
iocLog

iocLogServer

iocLogClient

Initialize Logging

For example, wherdbGetField detects a bad database request type, it executes the
statement:

return(S_dbAccessBadDBR);
The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */ }

locLog

This consists of two modules: iocLogServer and iocLogClient. The client code runs on each
ioc and listens for the messages generated by the errlog system. It also reports the messages
from vxWorks logMsg.

This runs on a host. It receives messages for all enabled iocLogClients in the local area
network. The messages are written to a file. Epics base provides a startup file "base/src/util/
rc2.logServer", which is a shell script to start the server. Consult this script for detalils.

This runs on each ioc. It is started by default when ioclnit runs. The global variable
iocLogDisable can be used to enable/disable the messages from being sent to the server.
Setting this variable to (0,1) (enables,disables) the messages generation. If iocLogDisable is
set to 1 immediately after iocCore is loaded then iocLogClient will not even initialize itself.

Initialize the logging system. This system trapslagiMsg calls and sends a copy to a Unix
file. Note that this can be disabled by issuing the commantdogDisable =1 before
issuingioclnit

The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that a log of IOC error messages is stored in a circular
ASCII file on a PC or UNIX workstation. Each entry in the log contains the IOC's DNS name,

the date and time when the message was received by the log server, and the text of the message
generated on the IOC.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are placed in
the log. Messages generated by the vxWorks function logMsg() are also placed in the log
(logMsg() can be safely called from interrupt level). Messages generated by printf() do not end
up in the log and are instead used primarily by diagnostic functions called from the vxWorks
shell.

To start a log server on a UNIX or PC workstation you must first set the following environment
variables and then run the executable "iocLogServer" on your PC or UNIX workstation.

EPICS_IOC_LOG_FILE_NAME
The name and path to the log file.
EPICS_IOC_LOG_FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circular
file and writes new messages over old messages at the beginning of the file). If
the value is zero then there is no limit on the size of the log file.
EPICS_IOC_LOG_FILE_COMMAND

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 87

Chapter 7: 10C Error Logging

iocLog

Configuring a
Private Log Server

A shell command string used to obtain the log file path name during initialization

and in response to SIGHUP. The new path name will replace any path name

supplied in EPICS_I0C_LOG_FILE_NAME.

Thus, if EPICS_IOC_LOG_FILE_NAME is

"a/b/c.log" and EPICS_IOC_LOG_FILE_COMMAND returns "A/B" or "A/B/"

the log server will be stored at "A/B/c.log"

If EPICS_IOC_LOG_FILE_COMMAND is empty then this behavior is

disabled. This feature was donated to the collaboration by KECK, and it is used

by them for switching to a new directory at a fixed time each day. This variable is

currently used only by the UNIX version of the log server.
EPICS_IOC_LOG_PORT

THE TCP/IP port used by the log server.

To configure an IOC so that its messages are placed in the log you must set the environment
variable EPICS_IOC_LOG_INET to the IP address of the host that is running the log server
and EPICS_IOC_LOG_PORT to the TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/
CONFIG_SITE_ENV and $(EPICS_BASE)/config/CONFIG_ENV.

In base/src/util there is a solaris script for starting the log server. This can be adapted for use on
other host architectures.

In a testing environment it is desirable to use a private log server. This can be done as follows:

* Add a putenv command to your I0C startup file. For example
Id < iocCore
putenv("EPICS_10C_LOG_INET=XXX.XXX.XXX.XXX")

The inet address is for your host workstation.

» On you host start a version of the log server.

88

EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support

Overview

The purpose of this chapter is to describe record support in sufficient detail such that a C
programmer can write new record support modules. Before attempting to write new support
modules, you should carefully study a few of the existing support modules. If an existing
support module is similar to the desired module most of the work will already be done.

From previous chapters, it should be clear that many things happen as a result of record
processing. The details of what happens are dependent on the record type. In order to allow
new record types and new device types without impacting the core I0C system, the concept of
record support and device support has been created. For each record type, a record support
module exists. It is responsible for all record specific details. In order to allow a record support
module to be independent of device specific details, the concept of device support has been
created.

A record support module consists of a standard set of routines that can be called by database
access routines. This set of routines implements record specific code. Each record type can
define a standard set of device support routines specific to that record type.

By far the most important record support routingiscess , whichdbProcess calls when

it wants to process a record. This routine is responsible for the details of record processing. In

many cases it calls a device support I/O routine. The next section gives an overview of what

must be done in order to process a record. Next is a description of the entry tables that must be
provided by record and device support modules. The remaining sections give example record
and device support modules and describe some global routines useful to record support
modules.

The record and device support modules are the only modules that are allowed to include the
record specific include files as definedbase/rec . Thus they are the only routines that
access record specific fields without going through database access.

Overview of Record Processing

The most important record support routingiecess . This routine determines what record
processing means. Before the record specifio¢ess ” routine is called, the following has
already been done:

 Decision to process a record.
» Check that record is not active, ipact must be FALSE.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 89

Chapter 8: Record Support
Record Support and Device Support Entry Tables

» Check that the record is not disabled.

The process routine, together with its associated device support, is responsible for the
following tasks:

» Set record active while it is being processed

» Perform I/O (with aid of device support)

» Check for record specific alarm conditions

» Raise database monitors

» Request processing of forward links
A complication of record processing is that some devices are intrinsically asynchronous. It is
NEVER permissible to wait for a slow device to complete. Asynchronous records perform the
following steps:

1. Initiate the I/O operation and getct TRUE

2. Determine a method for again calling process when the operation completes

3. Return immediately without completing record processing

4. When process is called after the 1/0 operation complete record processing

5. Setpact FALSE and return

The examples given below show how this can be done.

Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located
via the data structures defined @pics/share/epicsH/recSup.h . The concept of

record support routines isolates tloeCore software from the details of each record type.

Thus new records can be defined and supported without affecting the IOC core software.

Each record type also has zero or more sets of device support routines. Record types without
associated hardware, e.g. calculation records, normally do not have any associated device
support. Record types with associated hardware normally have a device support module for
each device type. The concept of device support isolates IOC core software and even record
support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines is the
same for every record type. These routines are located via a Record Support Entry Table
(RSET), which has the following structure

struct rset { /* record support entry table */
long number; /* number of support routine */
RECSUPFUN report; [* print report */
RECSUPFUN init; [* init support */
RECSUPFUN init_record; /* init record */
RECSUPFUN process; /* process record */
RECSUPFUN special; /* special processing */
RECSUPFUN get value; /* OBSOLETE: Just leave NULL */
RECSUPFUN cvt_dbaddr; /* cvt dbAddr */
RECSUPFUN get_array_info;
RECSUPFUN put_array_info;
RECSUPFUN get_units;

90 EPICS I0C Application Developer's Guide

Chapter 8: Record Support
Example Record Support Module

Declarations

RECSUPFUN get_precision;

RECSUPFUN get_enum_str; /* get string from enum */
RECSUPFUN get_enum_strs; /* get all enum strings */
RECSUPFUN put_enum_str; /* put enum from string */
RECSUPFUN get_graphic_double;

RECSUPFUN get_control_double;

RECSUPFUN get_alarm_double;

¥
Each record support module must define its RSET. The external name must be of the form:
<record_type>RSET

Any routines not needed for the particular record type should be initialized to theN&lue
Look at the example below for details.

Device support routines are located via a Device Support Entry Table (DSET), which has the
following structure:

struct dset{ /* device support entry table */
long number; /* number of support routines */
DEVSUPFUN report; /* print report */
DEVSUPFUN init; /* init support */
DEVSUPFUN init_record;/* init record instance*/
DEVSUPFUN get_ioint_info; /* get io interrupt info*/
/* other functions are record dependent*/
¥
Each device support module must define its associated DSET. The external name must be the
same as the name which appeamdanSup.ascii

Any record support module which has associated device support must also include definitions
for accessing its associated device support modules. Thedsst™, which is located in
dbCommon contains the address of the DSET. It is given a valuedbyit

Example Record Support Module

This section contains the skeleton of a record support package. The recordxypeand the
record has the following fields in addition to tdeCommonfields: VAL, PREC EGU HOPR
LOPR HIHI , LOLQ HIGH, LOWHHSYLLSV, HSVY LSV, HYST ADEL, MDEL LALM ALST,
MLST These fields will have the same meaning as they have foaitheecord. Consult the
Record Reference manual for a description.

/* Create RSET - Record Support Entry Table*/
#define report NULL

#define initialize NULL

static long init_record();

static long process();

#define special NULL

#define get_value NULL

#define cvt_dbaddr NULL

#define get_array_info NULL

#define put_array_info NULL

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 91

Chapter 8: Record Support

Example Record Support Module

init_record

static long get_units();

static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
#define put_enum_str NULL
static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset XxxxRSET={
RSETNUMBER,

report,
initialize,
init_record,
process,
special,
get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,
get_enum_strs,
put_enum_str,

get_graphic_double,
get_control_double,
get_alarm_double};

/* declarations for associated DSET */
typedef struct xxxdset { /* analog input dset */

long number;

DEVSUPFUN

DEVSUPFUN

DEVSUPFUN
success)*/

DEVSUPFUN

DEVSUPFUN
Ixxxdset;

dev_report;
init;
init_record; /* returns: (1,0)=> (failure,

get_ioint_info;
read_Xxx;

/* forward declaration for internal routines*/
static void alarm(xxxRecord *pxxx);
static void monitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the
associated Device Support Entry Table (DSET), and forward declarations to private routines.

The RSET must be

declared with an external namex®RSET. It defines the record support

routines supplied for this record type. Note that forward declarations are given for all routines
supported and BULL declaration for any routine not supported.

The template for the DSET is declared for use by this module.

static long init_record(void *precord, int pass)

92

EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support
Example Record Support Module

process

{

xxxRecord*pxxx = (xxxRecord *)precord,;

xxxdset *pdset;

long status;

if(pass==0) return(0);

if((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
recGblRecordError(S_dev_noDSET,pxxx,"xxX: init_record”);
return(S_dev_noDSET);

}

/* must have read_xxx function defined */

if((pdset->number < 5) || (pdset->read_xxx == NULL)) {
recGbIRecordError(S_dev_missingSup,pxxx,

"XxX: init_record”);

return(S_dev_missingSup);

}

if(pdset->init_record) {
if((status=(*pdset->init_record)(pxxx))) return(status);

}

return(0);

}

This routine, which is called bipclnit twice for each record of typexx , checks to see if it
has a proper set of device support routines and, if present, caltsttirecord entry of the
DSET.

During the first call tanit_record (pass=0) only initializations relating to this record can

be performed. During the second call (pass=1) initializations that may refer to other records
can be performed. Note also that during the second pass, other records may refer to fields
within this record. A good example of where these rules are important is a waveform record.
The VAL field of a waveform record actually refers to an array. The waveform record support
module must allocate storage for the array. If another record has a database link referring to the
waveform VAL field then the storage must be allocated before the link is resolved. This is
accomplished by having the waveform record support allocate the array during the first pass
(pass=0) and having the link reference resolved during the second pass (pass=1).

static long process(void *precord)
{
xxxRecord*pxxx = (xxxRecord *)precord,;
xxxdset *pdset = (xxxdset *)pxxx->dset;
long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
[* leave pact true so that dbProcess doesnt call again*/
pxxx->pact=TRUE;
recGblRecordError(S_dev_missingSup,pxxx,”"read_xxx");
return(S_dev_missingSup);

}

[* pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx)(pxxx); /* read the new value */
* return if beginning of asynch processing*/

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 93

Chapter 8: Record Support
Example Record Support Module

if(!pact && pxxx->pact) return(0);
pxxx->pact = TRUE;
recGblGetTimeStamp(pxxx);

/* check for alarms */

alarm(pxxx);

[* check event list */

monitor(pxxx);

[* process the forward scan link record */
recGbIFwdLink(pxxx);

pxxx->pact=FALSE;
return(status);

}

The record processing routines are the heart of the IOC software. The record specific process
routine is called bydbProcess whenever it decides that a record should be processed.
Process decides what record processing really means. The above is a good example of what
should be done. In addition to being called diyProcess the process routine may also be

called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For
example, ifread_xxx is an asynchronous routine, the following sequence of events will

occur:

» process is called withpact FALSE

» read_xxx is called. Sincepact is FALSE it starts 1/O, arranges callback, and sets

pact TRUE
e read _Xxxx returns

* becausgact went fromFALSEto TRUEprocess just returns
» Any new call todbProcess is ignored because it finggct TRUE
» Sometime later the callback occurs amodcess is called again.

» read_xxx is called. Sincg@act is TRUEit knows that it is a completion request.

* read_xxx returns

» process completes record processing
* pact is setFALSE

* process returns

At this point the record has been completely processed. The nextpiiooess

everything starts all over from the beginning.

Miscellaneous Utility static long get_units(DBADDR *paddr, char *units)
{

Routines
xxxRecord *pxxx=(xxxRecord *)paddr->precord;

strncpy(units,pxxx->egu,sizeof(pxxx->egu));
return(0);

}

static long get_graphic_double(DBADDR *paddr,
struct dbr_grDouble *pgd)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;

is called

94 EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support
Example Record Support Module

int fieldindex = dbGetFieldIndex(paddr);

if(fieldindex == xxxRecordVAL) {
pgd->upper_disp_limit = pxxx->hopr;
pgd->lower_disp_limit = pxxx->lopr;
} else recGblGetGraphicDouble(paddr,pgd);
return(0);
}
/* similar routines would be provided for */
/* get_control_double and get_alarm_double*/

These are a few examples of various routines supplied by a typical record support package.
The functions that must be performed by the remaining routines are described in the next
section.

Alarm Processing static void alarm(xxxRecord *pxxx)

double val;
float hyst,lalm,hihi,high,low,lolo;
unsigned short hhsv,lisv,hsv,Isv;

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;

}

hihi=pxxx->hihi; lolo=pxxx->lolo;
high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; lIsv=pxxx->lIsv;
hsv=pxxx->hsv; Isv=pxxx->Isv;

val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */
if (hhsv && (val >= hihi
[| ((lalm==hihi) && (val >= hihi-hyst)))) {
if(recGblSetSevr(pxxx,HIHI_ALARM,pxxx->hhsv)
pxxx->lalm = hihi;
return;
}
/* alarm condition lolo */
if (lIsv && (val <= lolo
[| ((lalIm==lolo) && (val <= lolo+hyst)))) {
if(recGblSetSevr(pxxx,LOLO_ALARM,pxxx->llsv))
pxxx->lalm = lolo;
return;
}
/* alarm condition high */
if (hsv && (val >= high
[| ((lalIm==high) && (val >= high-hyst)))) {
if(recGblSetSevr(pxxx,HIGH_ALARM,pxxx->hsv))
pxxx->lalm = high;
return;

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 95

Chapter 8: Record Support
Example Record Support Module

Raising Monitors

}

This is a typical set of code for checking alarms conditions for an analog type record. The
actual set of code can be very record specific. Note also that other parts of the system can raise
alarms. The algorithm is to always maximize alarm severity, i.e. the highest severity

/* alarm condition low */
if (Isv && (val <= low
[| (lalm==low) && (val <= low+hyst)))) {
if(recGblSetSevr(pxxx,LOW_ALARM,pxxx->Isv))
pxxx->lalm = low;
return;

}

/*we get here only if val is out of alarm by at least hyst*/

pxxx->lalm=val,
return;

outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm
storms from occurring in the event that the current value is very near an alarm limit and noise
makes it continually cross the limit. It honors the hysteresis only when the value is going to a

lower alarm severity.

static void monitor(xxxRecord *pxxx)

{

unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms(pxxx);

/* check for value change */

delta = pxxx->mlst - pxxx->val;

if(delta<0.0) delta = -delta;

if (delta > pxxx->mdel) {
[* post events for value change */
monitor_mask |= DBE_VALUE;
/* update last value monitored */
pXxx->mlst = pxxx->val;

}

/* check for archive change */

delta = pxxx->alst - pxxx->val;

if(delta<0.0) delta = 0.0;

if (delta > pxxx->adel) {
/* post events on value field for archive change */
monitor_mask |= DBE_LOG,;
/* update last archive value monitored */
pxxx->alst = pxxx->val;

}

/* send out monitors connected to the value field */

if (monitor_mask){
db_post_events(pxxx,&pxxx->val,monitor_mask);

}

return;

96

EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support
Record Support Routines

Generate Report of

All record types should callecGblResetAlarms as shown. Note thatsta andnsev

will have the value O after this routine completes. This is necessary to ensure that alarm
checking starts fresh after processing completes. The code also takes care of raising alarm
monitors when a record changes from an alarm state to the no alarm state. It is essential that
record support routines follow the above model or else alarm processing will not follow the
rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this
example.

db_post_events results in channel access issuing monitors for clients attached to the
record and field. The call is

int db_post_events(void *precord, void *pfield,
unsigned int monitor_mask)

where:

precord - The address of the record

pfield - The address of the field

monitor_mask - A bit mask that can be any combinations of the following:
DBE_ALARM - A change of alarm state has occured. This is set by
recGblResetAlarms
DBE_LOG - Archive change of state.
DBE_VAL - Value change of state

IMPORTANT : The record support module is responsible for callig post_event for
any fields that change as a result of record processing. Also it shN@d call
db_post_event for fields that do not change.

Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not apply to a
specific record type must be declaMidLL

report(void *precord); /* addr of record*/

Each Field in Recordrhjs routine is not used by most record types. Any action is record type specific.

Initialize Record
Processing

Initialize Specific
Record

init(void);

This routine is called once at IOC initialization time. Any action is record type specific. Most
record types do not need this routine.

init_record(
void *precord, /* addr of record*/
int pass);

ioclnit calls this routine twice (pass=0 and pass=1) for each database record of the type
handled by this routine. It must perform the following functions:

» Check and/or issue initialization calls for the associated device support routines.
» Perform any record type specific initialization.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 97

Chapter 8: Record Support
Record Support Routines

Process Record

Special Processing

* During the first pass it can only perform initializations that affect the record referenced
by precord.

 During the second pass it can perform initializations that affect other records.

process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.

special(
struct dbAddr *paddr,
int after);/*(FALSE, TRUE)=>(Before,After)Processing*/

This routine implements the record type specific special processing for the field referred to by
dbAddr . Note that it is called twice. Once before any changes are made to the associated field
and once after. Filspecial.h defines special types. This routine is only called for user
special fields, i.e. fields witBPC_xxx >= 100. A field is declared special in the ASCII record
definition file. New values should not by addedpecial.h , instead us&PC_MOD

The database access routinbGetFieldindex can be used to determine which field is
being modified.

Get Value This routine is no longer used. It should be left as a NULL procedure in the record support
entry table.

Convert dbAddr cvt_dbaddr(struct dbAddr *paddr);

Definitions This routine is called bgbNameToAddr if the field has special set equal$C_DBADDRA
typical use is when a field refers to an array. This routine can change any combination of the
dbAddr fields:no_elements |, field type |, field_size , Special, and dbr_type
For example if theVAL field of a waveform record is passed ttbNameToAddr,
cvt_dbaddr would changelbAddr so that it refers to the actual array rather ah.

The database access routiakGetFieldindex can be used to determine which field is
being modified.

Get Array get_array_info(

Information struct dbAddr *paddr,

long *no_elements,

long *offset);
This routine returns the current number of elements and the offset of the first value of the
specified array. The offset field is meaningful if the array is actually a circular buffer.
The database access routinbGetFieldindex can be used to determine which field is
being modified.

Put Array put_array_info(

Information struct dbAddr *paddr,

long nNew);
This routine is called after new values have been placed in the specified array.
The database access routidbGetFieldindex can be used to determine which field is
being modified.

Get Units get_units(

98 EPICS I0C Application Developer's Guide

Chapter 8: Record Support
Record Support Routines

Get Precision

Get Enumerated
String

Get Strings for
Enumerated Field

Put Enumerated
String

Get Graphic Double

Information

struct dbAddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

The database access routinbGetFieldindex can be used to determine which field is
being modified.

get_precision(
struct dbAddr *paddr,
long *precision);

This routine gets the precision, i.e. number of decimal places, which should be used to convert
the field value to an ASCII stringecGblGetPrec should be called for fields not directly
related to the value field.

The database access routinbGetFieldindex can be used to determine which field is
being modified.

get_enum_str(
struct dbAddr *paddr,
char *p);

This routine setgp equal to the ASCII string for the field value. The field must have type
DBF_ENUM

Look at the code for thiei ormbbi records for examples.
The database access routineGetFieldindex can be used to determine which field is
being modified.

get_enum_strs(
struct dbAddr *paddr,
struct dbr_enumStrs *p);

This routine gives values to all fields of structdbe_enumStrs

Look at the code for thiei ormbbi records for examples.

The database access routidbGetFieldindex can be used to determine which field is
being modified.

put_enum_str(
struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string with the
string values associated with each enumerated value and if it finds a match sets the database
field equal to the index of the string which matched.

Look at the code for thiei ormbbi records for examples.
The database access routidbGetFieldindex can be used to determine which field is
being modified.

get_graphic_double(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 99

Chapter 8: Record Support
Global Record Support Routines

Get Control Double
Information

Get Alarm Double
Information

Alarm Status and
Severity

This routine fills in the graphics related fields of structumbr_grDouble
recGblGetGraphicDouble should be called for fields not directly related to the value
field.

The database access routiabGetFieldindex can be used to determine which field is
being modified.

get_control_double(
struct dbAddr *paddr,
struct dbr_ctriDouble *p); /* addr of return info*/

This routine gives values to all fields of structuredbr_ctriDouble
recGblGetControlDouble should be called for fields not directly related to the value
field.

The database access routinbGetFieldindex can be used to determine which field is
being modified.

get_alarm_double(
struct dbAddr *paddr,
struct dbr_alDouble *p); /* addr of return info*/

This routine gives values to all fields of structdbe alDouble

The database access routineGetFieldindex can be used to determine which field is
being modified.

Global Record Support Routines

A number of global record support routines are available. These routines are intended for use
by the record specific processing routines but can be called by any routine that wishes to use
their services.

The name of each of these routines begins webGbl .

Alarms may be raised in many different places during the course of record processing. The
algorithm is to maximize the alarm severity, i.e. the highest severity outstanding alarm is
raised. If more than one alarm of the same severity is found then the first one is reported. This
means that whenever a code fragment wants to raise an alarm, it does so only if the alarm
severity it will declare is greater then that already existing. Four fields (in database common)
are used to implement alarmsevr , stat , nsev, andnsta . The first two are the status and
severity after the record is completely processed. The last two fiedtis (andnsev) are the

status and severity values to set during record processing. Two routines are used for handling
alarms. Whenever a routine wants to raise an alarm it cati&blSetSevr . This routine

will only changensta andnsev if it will result in the alarm severity being increased. At the

end of processing, the record support module mustreatbblResetAlarms . This routine
setsstat =nsta , sevr =nsev, nsta =0, andnsev =0. If stat or sevr has changed value
since the last call it callglb_post event for stat andsevr and returns a value of
DBE_ALARMIf no change occured it returns 0. Thus after callregGblResetAlarms

everything is ready for raising alarms the next time the record is processed. The example
record support module presented above shows how these macros are used.

recGblSetSevr(

100

EPICS IOC Application Developer’'s Guide

Chapter 8: Record Support
Global Record Support Routines

void *precord,
short nsta,
short nsevr);

Returns: TRUE FALSE) if (did, did not) changasta andnsev .
unsigned short recGblResetAlarms(void *precord);

Returns: Initial value fomonitor_mask

Alarm Database common contains two additional alarm related fiedldks (Highest severity

Acknowledgment unacknowledged alarm) aratkt (does transient alarm need to be acknowledged). These
field are handled byocCore andrecGblResetAlarms and are not the responsibility of
record support. These fields are intended for use by the alarm handler.

Generate Error: SUGGESTION: usepicsPrintf instead of this for new code.
Process Variable recGblDbaddrError(

Name, Caller, long status,

Message struct dbAddr *paddr,

char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following
information: Status information, process variable name, calling routine.

Generate Error: SUGGESTION: usepicsPrintf instead of this for new code.
Status String, recGblRecordError(

long status,
Record Name, Caller void *precord, /* addr of record */

char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine.

Generate Error: SUGGESTION: usepicsPrintf instead of this for new code.
Record Name, recGblRecsupError(
Caller, Record long status,

S t M struct dbAddr *paddr,
upport Message char *pcaller_name, /* calling routine name */

char *psupport_name); /* support routine name*/

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine, record support entry name.

Get Graphics recGblGetGraphicDouble(
Double struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by thget graphic_double record support routine to obtain
graphics values for fields that it doesn’t know how to set.

Get Control Double recGblGetControlDouble(
struct dbAddr *paddr,
struct dbr_ctriDouble *pcd);

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 101

Chapter 8: Record Support

Global Record Support Routines

Get Alarm Double

Get Precision

Get Time Stamp

Forward link

Initialize Constant
Link

This routine can be used by thlyet control_double record support routine to obtain
control values for fields that it doesn’t know how to set.

recGblGetAlarmDouble(
struct dbAddr *paddr,
struct dbr_alDouble *pcd);

This routine can be used by thet_alarm_double record support routine to obtain control
values for fields that it doesn’t know how to set.

recGblGetPrec(
struct dbAddr *paddr,
long *pprecision);

This routine can be used by thget precision record support routine to obtain the
precision for fields that it doesn’t know how to set the precision.
recGblGetTimeStamp(void *precord)

This routine gets the current time stamp and puts it in the record

recGbIFwdLink(
void *precord);

This routine can be used by process to request processing of forward links.

int recGblInitConstantLink(
struct link *plink,
short dbfType,
void *pdest);

Initialize a constant link. This routine is usually called imt_record (or by associated
device support) to initialize the field associated with a constant link. It returns(FALSE, TRUE)
if it (did not, did) modify the destination.

102

EPICS IOC Application Developer’'s Guide

Chapter 9: Device Support

Overview

In addition to a record support module, each record type can have an arbitrary number of
device support modules. The purpose of device support is to hide hardware specific details
from record processing routines. Thus support can be developed for a new device without
changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to
the hardware directly or how to call a device driver which interfaces to the hardware. Thus
device support routines are the interface between hardware specific fields in a database record
and device drivers or the hardware itself.

Database common contains two device related fields:

 dtyp: Device Type.
» dset Address of Device Support Entry Table.

The field dtyp contains the index of the menu choice as defined by the device ASCII
definitions.ioclnit uses this field and the device support structures defindehiSup.h to
initialize the fielddset . Thus record support can locate its associated device support via the
dset field.

Device support modules can be divided into two basic classes: synchronous and asynchronous.
Synchronous device support is used for hardware that can be accessed without delays for 1/0.

Many register based devices are synchronous devices. Other devices, for example all GPIB

devices, can only be accessed via I/O requests that may take large amounts of time to

complete. Such devices must have associated asynchronous device support. Asynchronous
device support makes it more difficult to create databases that have linked records.

If a device can be accessed with a delay of less then a few microseconds then synchronous
device support is appropriate. If a device causes delays of greater than 100 microseconds then
asynchronous device support is appropriate. If the delay is between these values your guess
about what to do is as good as mine. Perhaps you should ask the hardware designer why such a
device was created.

If a device takes a long time to accept requests there is another option than asynchronous
device support. A driver can be created that periodically polls all its attached input devices.
The device support just returns the latest polled value. For outputs, device support just notifies
the driver that a new value must be written. the driver, during one of its polling phases, writes
the new value. The EPICS Allen Bradley device/driver support is a good example.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 103

Chapter 9: Device Support
Example Synchronous Device Support Module

Example Synchronous Device Support Module

/* Create the dset for devAiSoft */
long init_record();
long read_ai();
struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;
}devAiSoft={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

static long init_record(void *precord)

{
aiRecord *pai = (aiRecord *)precord;
long status;

/* ai.inp must be a CONSTANT, PV_LINK, DB_LINK or CA_LINK*/
switch (pai->inp.type) {
case (CONSTANT) :
recGblInitConstantLink(&pai->inp,
DBF_DOUBLE,&pai->val);
break;
case (PV_LINK):
case (DB_LINK) :
case (CA_LINK) :
break;
default :
recGblRecordError(S_db_badField, (void *)pai,
"devAiSoft (init_record) lllegal INP field”);
return(S_db_badField);
}
/* Make sure record processing routine does not perform any
conversion*/

pai->linr=0;

return(0);
}
static long read_ai(void *precord)
{

aiRecord*pai =(aiRecord *)precord;

104 EPICS I0C Application Developer's Guide

Chapter 9: Device Support
Example Asynchronous Device Support Module

long status;

status=dbGetGetLink(&(pai->inp.value.db_link),
(void *)pai,DBR_DOUBLE,&(pai->val),0,1);

if(status) return(status);

return(2); /*don’t convert*/

}

The example idevAiSoft , which supports soft analog inputs. TP field can be a
constant or a database link or a channel access link. Only two routines are provided (the rest
are declaredNULL). Theinit_record routine first checks that the link type is valid. If the

link is a constant it initialize¥AL If the link is a Process Variable link it caltbhCaGetLink

to turnitinto a Channel Access link. Thead_ai routine obtains an input value if the link is

a database or Channel Access link, otherwise it doesn’t have to do anything.

Example Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does the
following sequence of operations:

1. When first callegpact is FALSE It arranges for a callbackryCallback) routine to
be called after a number of seconds specified byvhkfield. callbackRequest is
an EPICS supplied routine. The watchdog timer routines are supplied by vxWorks.

2. It prints a message stating that processing has startegpaet®RUE , and returns. The
record processing routine returns without completing processing.

3. When the specified time elapseg/Callback is called. It locks the record, calls
process , and unlocks the record. It calls the process entry of the record support
module, which it locates via theset field in dbCommon directly rather than
dbProcess . dbProcess would not callprocess becausgact is TRUE

4. Whenprocess executes, it again caltead_ai . This timepact is TRUE

5.read_ai prints a message stating that record processing is complete and returns a
status of 2. Normally a value of 0 would be returned. The value 2 tells the record
support routine not to attempt any conversions. This is a convention (a bad convention!)
used by the analog input record.

6. Whenread_ai returns the record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called
everything starts all over.

/* Create the dset for devAiTestAsyn */

long init_record();

long read_ai();

struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiTestAsyn={

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 105

Chapter 9: Device Support
Example Asynchronous Device Support Module

6,

NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

/* control block for callback*/
typedef struct myCallback {
CALLBACK callback;
sruct dbCommon *precord,;
WDOG_ID wd_id;
}myCallback;

static void myCallback(CALLBACK *pcallback)
{

dbCommon *precord;

struct rset*prset;

callbackGetUser(precord,pcallback);
prset = (struct rset *)precord->rset;
dbScanLock(precord);
*(prset->process)(precord);
dbScanUnlock(precord);

static long init_record(void *precord)

{
aiRecord *pai = (aiRecord *)precord;
myCallback *pcallback;

/* ai.inp must be a CONSTANT*/

switch (pai->inp.type) {

case (CONSTANT) :
pcallback = (myCallback *)(calloc(1,sizeof(myCallback)));
pai->dpvt = (void *)pcallback;
callbackSetCallback(myCallback, &pcallback->callback);
callbackSetUser(precord, &pcallback->callback);
pcallback->precord = (struct dbCommon *)pai;
pcallback->wd_id = wdCreate();
pai->val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError(S_db_badField, (void *)pai,

"devAiTestAsyn (init_record) lllegal INP field”);

return(S_db_badField);

}

return(0);

106 EPICS IOC Application Developer's Guide

Chapter 9: Device Support
Device Support Routines

static long read_ai(void *precord)

{
aiRecord *pai = (aiRecord *)precord;;
struct callback *pcallback=(struct callback *)(pai->dpvt);
int wait_time;

[* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :
if(pai->pact) {
printf("%s Completed\n”,pai->name);
return(2); /* don‘t convert*/
}else {
wait_time = (int)(pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
callbackSetPriority(pai->prio,&pcallback->callback);
printf("%s Starting asynchronous processing\n”,
pai->name);
wdStart(pcallback->wd_id,wait_time,
(FUNCPTR)callbackRequest,
(int)&pcallback->callback);
pai->pact = TRUE;
return(0);
}
default :
if(recGblSetSevr(pai,SOFT_ALARM,VALID_ALARM)) {
if(pai->stat'=SOFT_ALARM) {
recGblRecordError(S_db_badField, (void *)pai,
"devAiTestAsyn (read_ai) lllegal INP field”);

}
}

return(0);

Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply to a
specific record type must be declaMidLL

Generate Device report(
Report FILE fp, /*file pointer*/
int interest);

This routine is responsible for reporting all I/O cards it has founihtdrest is (0,1) then
generate a (short, long) report. If a device support module is using a driver, it normally does not
have to implement this routine because the driver generates the report.

Initialize Record init(
Processing intafter);

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 107

Chapter 9: Device Support
Device Support Routines

Initialize Specific
Record

Get I/O Interrupt
Information

Other Device
Support Routines

This routine is called twice at IOC initialization time. Any action is device specific. This
routine is called twice: once before any database records are initialized and once after all
records are initialized but before the scan tasks are stafted. has the value (0,1) (before,
after) record initialization.

init_record(
void *precord); /* addr of record*/

The record suppontit_record routine calls this routine.

get_ioint_info(
int cmd,
struct dboCommon *precord,
IOSCANPVT *ppvt);

This is called by the I/O interrupt scan task.cthd is (0,1) then this routine is being called
when the associated record is being (placed in, taken out of) an 1/0 scan list. See the chapter on
scanning for details.

It should be noted that a previous type of /O event scanning is still supported. It is not
described in this document because, hopefully, it will go away in the near future. When it calls
this routine the arguments have completely different meanings.

All other device support routines are record type specific.

108

EPICS IOC Application Developer’'s Guide

Chapter 10: Driver Support

Overview

It is not necessary to create a driver support module in order to interface EPICS to hardware.
For simple hardware device support is sufficient. At the present time most hardware support
has both. The reason for this is historical. Before EPICS there was GTACS. During the change
from GTACS to EPICS, record support was changed drastically. In order to preserve all
existing hardware support the GTACS drivers were used without change. The device support
layer was created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do | need
driver support and when don't I? Lets give a few reasons why drivers should be created.

e The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provided for
accessing the subnet. There is no reason to make the driver aware of EPICS except
possibly for issuing error messages.

» The hardware is complicated. In this case supplying driver support helps modularized
the software. The Allen Bradley driver, which is also an example of supporting a subnet,
is a good example.

 An existing driver, maintained by others, is available. | don't know of any examples.

e The driver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is a
good example. It is used by other systems, such as CODA.

The only thing needed to interface a driver to EPICS is to provide a driver support module,
which can be layered on top of an existing driver, and provide a database definition for the
driver. The driver support module is described in the next section. The database definition is
described in chapter “Database Definition”.

Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to
isolate device support routines from details of how to interface to the hardware. Device drivers
have no knowledge of the internals of database records. Thus there is no necessary
correspondence between record types and device drivers. For example the Allen Bradley driver
provides support for many different types of signals including analog inputs, analog outputs,
binary inputs, and binary outputs.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 109

Chapter 10: Driver Support
Device Drivers

init

report

Hardware
Configuration

In general only device support routines know how to call device drivers. Since device support
varies widely from device to device, the set of routines provided by a device driver is almost
completely driver dependent. The only requirement is that routeygst andinit must be
provided. Device support routines must, of course, know what routines are provided by a
driver.

File drvSup.h describes the format of a driver support entry table. The driver support module
must supply a driver entry table. An example definition is:

LOCAL long report();
LOCAL long init();
struct {
long number;
DRVSUPFUN
DRVSUPFUN
} drvAb={
2,
report,
init
2

The above example is for the Allen Bradley driver. It has an associated ascii definition of:
driver(drvAb)

report;
init;

Thus it is seen that the driver support module should supply two EPICS callable roirtnes:
andreport

This routine, which has no arguments, is calledidminit . The driver is expected to look
for and initialize the hardware it supports. As an example the init routine for Allen Bradley is:

LOCAL long init()

return(ab_driver_init());

}

The report routine is called by thitbior , an IOC test routine. It is responsible for producing a
report describing the hardware it found at init time. It is passed one argument, level, which is a
hint about how much information to display. An example, taken from Allen Bradley, is:

LOCAL long report(int level)
{

return(ab_io_report(level));

}

Guidelines for level are as follows:

Level=0
Level=1
Level=2

Display a one line summary for each device
Display more information

Display a lot of information. It is even permissible to
prompt for what is wanted.

Hardware configuration includes the following:

* VME/VXI address space
* VME Interrupt Vectors and levels

110

EPICS IOC Application Developer’'s Guide

Chapter 10: Driver Support
Device Drivers

» Device Specific Information

The information contained in hardware links supplies some but not all configuration
information. In particular it does not define the VME/VXI addresses and interrupt vectors. This
additional information is what is meant by hardware configuration in this chapter.

The problem of defining hardware configuration information is an unsolved problem for
EPICS. At one time configuration information was definedniodule_types .h Many
existing device/driver support modules still uses this method. It she@d@ be used for any
new support for the following reasons:

» There is no way to manage this file for the entire EPICS community.
* It does not allow arbitrary configuration information.
« Itis hard for users to determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support used
in each IOC makes the configuration problem much more manageable than previously.
Previously if you wanted to support a new VME modules it was necessary to pick addresses
that nothing inmodule_types .h was using. Now you only have to check modules you are
actually using.

Since there are no EPICS defined rules for hardware configuration, the following minimal
guidelines should be used:

* Never use #lefine to specify things like VME addresses. Instead use variables and
assign default values. Allow the default values to be changed before ioclnit is executed.
The best way is to supply a global routine that can be invoked from the IOC startup file.
Note that all arguments to such routines should be one of the following:

int
char *
double

* Call the routines described in chapter “Device Support Library” whenever possible.

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 111

Chapter 10: Driver Support
Device Drivers

112 EPICS I0C Application Developer's Guide

Chapter 11: Static Database Access

DBBASE

DBENTRY

Overview

An IOC database is created on a Unix system via a Database Configuration Tool and stored in
a Unix file. EPICS provides two sets of database access routines: Static Database Access and
Runtime Database Access. Static database access can be used on Unix or IOC database files.
Runtime database requires an initialized IOC databases. Static database access is described in
this chapter and runtime database access in the next chapter.

Static database access provides a simplified interface to a database, i.e. much of the complexity
is hidden.DBF_MENUand DBF_DEVICE fields are accessed via a common type called
DCT_MENLA set of routines are provided to simplify access to link fields. All fields can be
accessed as character strings. This interface is called static database access because it can be
used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must
be read viadbReadDatabase or dbReadDatabaseFP . These routines, which are also
used to load record instances, can be called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the static
database access interface. An IOC database is created on a Unix system via a database
configuration tool and stored in a Unix file with a file extension afb™. Three routines
(dbReadDatabase, = dbReadDatabaseFP and dbWriteRecord) access a Unix
database file. These routines read/write a database file to/ffrom a memory resident EPICS

database. All other access routines manipulate the memory resident database.

An include filedbStaticLib.h contains all the definitions needed to use the static database
access library. Two structureDBBASEand DBENTRY are used to access a database. The
fields in these structures should not be accessed directly. They are used by the static database
access library to keep state information for the caller.

Definitions

Multiple memory resident databases can be accessed simultaneously. The user must provide
definitions in the form:

DBBASE *pdbbase;

A typical declaration for a database entry structure is:

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 113

Chapter 11: Static Database Access
Allocating and Freeing DBBASE

DBENTRY *pdbentry;
pdbentry=dbAllocEntry(pdbbase);

Most static access to a database is VRBBENTRYstructure. As manyDpBENTRYsas desired
can be allocated.

The user should NEVER access the fieldD&ENTRMirectly. They are meant to be used by
the static database access library.

Most static access routines accept an argument which contains the addreBBBENARY
Each routine uses this structure to locate the information it needs and gives values to as many
fields in this structure as possible. All other fields are S&tiiol

Field Types Each database field has a type as defined in the next chapter. For static database access a new
and simpler set of field types are defined. In addition, at runtime, a database field can be an
array. With static database access, however, all fields are scalars. Static database access field
types are called DCT field types.

The DCT field types are:

* DCT_STRING: Character string.

* DCT_INTEGER: Integer value

* DCT_REAL : Floating point number

* DCT_MENU: A set of choice strings

« DCT_MENUFORM : A set of choice strings with associated form.

e DCT_INLINK : Input Link

e DCT_OUTLINK : Output Link

 DCT_FWDLINK : Forward Link

» DCT_NOACCESS A private field for use by record access routines
A DCT_STRINGfield contains the address of MULL terminated string. The field types
DCT_INTEGERandDCT_REALlare used for numeric fields. A field that has any of these types
can be accessed via tlibGetString , dbPutString , dbVerify , and dbGetRange
routines.
The field typeDCT_MENUWas an associated set of strings defining the choices. Routines are
available for accessing menu fields. A menu field can also be accessed diE3btString
dbPutString , dbVerify , anddbGetRange routines.
The field typeDCT_MENUFORMIike DCT_MENUWut in addition the field has an associated
link field. The information for the link field can be entered via a set of form manipulation
fields.
DCT_INLINK (input), DCT_OUTLINK(output), andDCT_FWDLINK(forward) specify that
the field is a link, which has an associated set of static access routines described in the next
subsection. A field that has any of these types can also be accessed aizGEtString
dbPutString , dbVerify , anddbGetRange routines.
Allocating and Freeing DBBASE

dbAllocBase DBBASE *dbAllocBase(void);
114 EPICS I0C Application Developer's Guide

Chapter 11: Static Database Access
DBENTRY Routines

dbFreeBase

Alloc/Free
DBENTRY

dbInitEntry
dbFinishEntry

This routine allocates and initializes a DBBASE structure. It does not return if it is unable to
allocate storage.

dbAllocBase allocates and initializes a DBBASE structure. Normally an application does
not need to call dbAllocBase because a call todbReadDatabase or
dbReadDatabaseFP automatically calls this routine gdbbase is null. Thus the user only
has to supply code like the following:

DBBASE *pdbbase=0;
status = dbReadDatabase(&pdbbase,"sample.db",
"<path>","<macro substitutions>");

The static database access library allows applications to work with multiple databases, each
referenced via a different (DBBASE *) pointer. Such applications may find it necessary to call
dbAllocBase directly.

dbAllocBase does not return if it is unable to allocate storage.

void dbFreeBase(DBBASE *pdbbase);

dbFreeBase frees the entire database reference gapbase including the DBBASE
structure itself.

DBENTRY Routines

DBENTRY *dbAllocEntry(DBBASE *pdbbase);
void dbFreeEntry(DBENTRY *pdbentry);

These routines allocate, initialize, and flBBENTRYtructures. The user can allocate and free
DBENTRYstructures as necessary. EBBENTRYs, however, tied to a particular database.

dbAllocEntry and dbFreeEntry act as a pair, i.e. the user catibAllocEntry to
create a new DBENTRY and catlsFreeEntry when done.

void dbInitEntry(DBBASE *pdbbase,DBENTRY *pdbentry);
void dbFinishEntry(DBENTRY *pdbentry);

The routinesdblInitEntry and dbFinishEntry are provided in case the user wants to
allocate @DBENTRYstructure on the stack. Note that the caller MUST dalFinishEntry

before returning from the routine that catlbInitEntry . An example of how to use these
routines is:

int xxx(DBBASE *pdbbase)

{
DBENTRY dbentry;

DBENTRY *pdbentry = &dbentry;
dblinitEntry(pdbbase,pdbentry);

;J.IbFinishEntry(pdbentry);

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 115

Chapter 11: Static Database Access

Read and Write Database

dbCopyEntry
dbCopyEntry
Contents

Read Database File

Write Database
Definitons

DBENTRY *dbCopyEntry(DBENTRY *pdbentry);
void dbCopyEntryContents(DBENTRY *pfrom,DBENTRY *pto);

The routine #CopyEntry allocates a new entry, via a call tbAllocEntry , copies the
information from the original entry, and returns the result. The caller must free the entry, via
dbFreeEntry when finished with the DBENTRY.

The routinedbCopyEntryContents copies the contents of pfrom to pto. Code should
never perform structure copies.

Read and Write Database

long dbReadDatabase(DBBASE **ppdbbase,const char *filename,
char *path, char *substitutions);

long dbReadDatabaseFP(DBBASE **ppdbbase,FILE *fp,
char *path, char *substitutions);

long dbPath(DBBASE *pdbbase,const char *path);

long dbAddPath(DBBASE *pdbbase,const char *path);

dbReadDatabase and dbReadDatabaseFP both read a file containing database
definitions as described in chapter “Database Definitions”. ppdbbase is NULL,
dbAllocBase is automatically invoked and the return address assignegdbbase . The

only difference between the two routines is that one accepts a file name and the other a "FILE
*"Any combination of these routines can be called multiple times. Each adds definitions with
the rules described in chapter “Database Definitions”.

The routinesdbPath and dbAddPath specify paths for use by include statements in
database definition files. These are not normally called by user code.

long dbWriteMenu(DBBASE *pdbbase,char *filename,
char *menuName);
long dbWriteMenuFP(DBBASE *pdbbase,FILE *fp,char *menuName);
long dbWriteRecordType(DBBASE *pdbbase,char *filename,
char *recordTypeName);
long dbWriteRecordTypeFP(DBBASE *pdbbase,FILE *fp,
char *recordTypeName);
long dbWriteDevice(DBBASE *pdbbase,char *filename);
long dbWriteDeviceFP(DBBASE *pdbbase,FILE *fp)
long dbWriteDriver(DBBASE *pdbbase,char *filename);
long dbWriteDriverFP(DBBASE *pdbbase,FILE *fp);
long dbWriteBreaktable(DBBASE *pdbbase,
const char *filename);
long dbWriteBreaktableFP(DBBASE *pdbbase,FILE *fp);

Each of these routines writes files in the same format acceptatbBRgadDatabase and
dbReadDatabaseFP . Two versions of each type are provided. The only difference is that one
accepts a filename and the otheFR.LE *". Thus only one of each type has to be described.

dbWriteMenu writes the description of the specified menu onniénuNameis NULL, the
descriptions of all menus.

116

EPICS IOC Application Developer’'s Guide

Chapter 11: Static Database Access
Manipulating Record Types

Write Record
Instances

Get Number of
Record Types

Locate Record Type

Get Record Type
Name

dbWriteRecordType writes the description of the specified record type or, if
recordTypeName is NULL, the descriptions of all record types.

dbWriteDevice writes the description of all devices to stdout.

dbWriteDriver writes the description of all drivers to stdout.

long dbWriteRecord(DBBASE *pdbbase,char * file,
char *precordTypeName,int level);

long dbWriteRecordFP(DBBASE *pdbbase,FILE *fp,
char *precordTypeName,int level);

Each of these routines writes files in the same format acceptatbRgadDatabase and
dbReadDatabaseFP . Two versions of each type are provided. The only difference is that one
accepts a filename and the otheFHLE *”. Thus only one of each type has to be described.

dbWriteRecord writes record instances. ffrecordTypeName is NULL, then the record
instances for all record types are written, otherwise only the records for the specified type are
written.level has the following meaning:

» 0 - Write only prompt fields that are different than the default value.
» 1 - Write only the fields which are prompt fields.
» 2 - Write the values of all fields.

Manipulating Record Types

int dbGetNRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

long dbFindRecordType(DBENTRY *pdbentry,
char *recordTypeName);

long dbFirstRecordType(DBENTRY *pdbentry);

long dbNextRecordType(DBENTRY *pdbentry);

dbFindRecordType locates a particular record typdbFirstRecordType locates the
first, in alphabetical order, record type. Given that DBENTRY points to a particular record
type, dbNextRecordType locates the next record type. Each routine returns O for success
and a non zero status value for failure. A typical code segment using these routines is:

status = dbFirstRecordType(pdbentry);
while(!status) {

/*Do something*/
status = dbNextRecordType(pdbentry)

}

char *dbGetRecordTypeName(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This
routine should only be called after a successful call dbFindRecordType |,
dbFirstRecordType , or doNextRecordType . It returns NULL if DBENTRY does not
point to a record description.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 117

Chapter 11: Static Database Access
Manipulating Field Descriptions

Get Number of
Fields

Locate Field

Get Field Type

Get Field Name

Get Default Value

Get Field Prompt

Manipulating Field Descriptions

The routines described in this section all assume that DBENTRY references a record type, i.e.
thatdbFindRecordType , dbFirstRecordType , or dbNextRecordType has returned
success or that a record instance has been successfully located.

int dbGetNFields(DBENTRY *pdbentry,int dctonly);
Returns the number of fields for the record instance that DBENTRY currently references.

long dbFirstField(DBENTRY *pdbentry,int dctonly);

long dbNextField(DBENTRY *pdbentry,int dctonly);
These routines are used to locate fields. If any of these routines returns success, then
DBENTRY references that field description.

int dbGetFieldType(DBENTRY *pdbentry);
This routine returns the integer value for a DCT field type, see Section on page 114, for a
description of the field types.

char *dbGetFieldName(DBENTRY *pdbentry);
This routine returns the name of the field that DBENTRY currently references. It returns
NULL if DBENTRY does not point to a field.

char *dbGetDefault(DBENTRY *pdbentry);
This routine returns the default value for the field that DBENTRY currently references. It
returns NULL if DBENTRY does not point to a field or if the default value is NULL.

char *dbGetPrompt(DBENTRY *pdbentry);

int dbGetPromptGroup(DBENTRY *pdbentry);

The dbGetPrompt routine returns the character string prompt value, which describes the
field. dbGetPromptGroup returns the field group as described in guigroup.h.

Manipulating Record Attributes

A record attribute is a "psuedo” field definition attached to a record type. If a attribute value is
assigned to a psuedo field name then all record instances of that record type appear to have that
field with the defined value. All attribute fields are DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the
record type name. VERS is initialized to the value "none specified" but can be changed by
record support.

dbPutRecord long dbPutRecordAttribute(DBENTRY *pdbentry,
Attribute char *name,char*value)

This creates or modifies attributame with value .
118 EPICS I0C Application Developer's Guide

Chapter 11: Static Database Access
Manipulating Record Instances

dbGetRecord long dbGetRecordAttribute(DBENTRY *pdbentry,char *name);
Attribute

Manipulating Record Instances

With the exception of dbFindRecord, each of the routines described in this section require that
DBENTRY references a valid record type, i.e. thatlbFindRecordType |,

dbFirstRecordType , ordbNextRecordType has been called and returned success.

Get Number of int dbGetNRecords(DBENTRY *pdbentry);

Records Returns the number of record instances for the record type that DBENTRY currently
references.

Locate Record long dbFindRecord(DBENTRY *pdbentry,char *precordName);

long dbFirstRecord(DBENTRY *pdbentry);
long dbNextRecord(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns success, then
DBENTRY references the recordibFindRecord can be called without DBENTRY
referencing a valid record typelbFirstRecord only works if DBENTRY references a

record type. ThelbDumpRecords example given at the beginning of this chapter shows how
these routines can be used.

dbFindRecord also callsdbFindField if the record name includes a field name, i.e. it
ends in “XXX. The routinedbFoundField returns TRUE FALSE) if the field (was, was
not) found. If it was not found, thedbFindField = must be called before individual fields can
be used.

Get Record Name char *dbGetRecordName(DBENTRY *pdbentry);

This routine only works properly if called aftetbFindRecord , dbFirstRecord , or
dbNextRecord has returned success.

Create/Delete/Free long dbCreateRecord(DBENTRY *pdbentry,char *precordName);
Record long dbDeleteRecord(DBENTRY *pdbentry);
long dbFreeRecords(DBBASE *pdbbase);

dbCreateRecord , which assumes th@BENTRYfeferences a valid record type, creates a
new record instance and initializes it as specified by the record description. If it returns
success, theiDBENTRYreferences the record just createthDeleteRecord deletes a
single record instancedbFreeRecords deletes all record instances.

Copy Record long dbCopyRecord(DBENTRY *pdbentry, char *newRecordName
int overWriteOK)

This routine copies the record instance currently referencddBENTRYThus it creates and
new record with the nameewRecordName that is of the same type as the original record
and copies the original records field values to the new recongewWRecordName already
exists andoverWriteOK is true, then the originahewRecordName is deleted and
recreated. IlbCopyRecord completes successfully, DBENTRY references the new record.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 119

Chapter 11: Static Database Access
Manipulating Menu Fields

Rename Record long dbRenameRecord(DBENTRY *pdbentry, char *newname)

This routine renames the record instance currently referenced DBENTRY If
dbRenameRecord completes successfully, DBENTRY references the renamed record.

Record Visibility These routines are for use by graphical configuration tools.

long dbVisibleRecord(DBENTRY *pdbentry);
long dblinvisibleRecord(DBENTRY *pdbentry);
int dblsVisibleRecord(DBENTRY *pdbentry);

dbVisibleRecord sets a record to be visiblalblnvisibleRecord sets a record
invisible. dblsVisibleRecord returns TRUE if a record is visible and FALSE otherwise.
Find Field long dbFindField(DBENTRY *pdbentry,char *pfieldName);

int dbFoundField(DBENTRY *pdbentry);

Given that a record instance has been locatbdindField finds the specified field. If it
returns success, theDBENTRYreferences that fielddbFoundField returns FALSE,
TRUB if (no field instance is currently available, a field instance is available).

Get/Put Field Values char *dbGetString(DBENTRY *pdbentry);
long dbPutString(DBENTRY *pdbentry,char *pstring);
char *dbVerify(DBENTRY *pdbentry,char *pstring);
char *dbGetRange(DBENTRY *pdbentry);
int dblsDefaultValue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field types
exceptDCT_NOACCESSut shouldNOT be used to prompt the user for information for
DCT_MENUDCT_MENUFORMr DCT_LINK xxx fields. dbVerify returns NULL a
message) if the string is (valid, invalid). Please note that the strings returned are volatile, i.e.
the next call to a routines that returns a string will overwrite the value returned by a previous
call. Thus it is the caller’s responsibility to copy the strings if the value must be kept.

DCT_MENUDCT_MENUFOR&d DCT_LINK _xxx fields can be manipulated via routines
described in the following sections. If, howewtGetString anddbPutString are used,
they do work correctly. For these field typdisGetString anddbPutString are intended
to be used only for creating and restoring versions of a database.

Manipulating Menu Fields

These routines should only be used €T _MENWnd DCT_MENUFORIii¢Ids. Thus they
should only be called ifibFindField , dbFirstField , or dbNextField has returned
success and the field typeD€T_MENWr DCT_MENUFORM

Get Number of int dbGetNMenuChoices(DBENTRY *pdbentry);
Menu Choices This routine returns the number of menu choices for menu.
Get Menu Choice char **dbGetMenuChoices(DBENTRY *pdbentry);

120 EPICS IOC Application Developer's Guide

Chapter 11: Static Database Access
Manipulating Link Fields

Get/Put Menu

Locate Menu

Link Types

This routine returns the address of an array of pointers to strings which contain the menu
choices.

int dbGetMenulndex(DBENTRY *pdbentry);
long dbPutMenulndex(DBENTRY *pdbentry,int index);
char *dbGetMenuStringFromindex(DBENTRY *pdbentry,int index);
int dbGetMenulndexFromString(DBENTRY *pdbentry,
char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGetMenulndex returns the index of the menu choice for the current field, i.e. it specifies
which choice to which the field is currently setbPutMenulndex sets the field to the
choice specified by the index.

dbGetMenuStringFromindex returns the string value for a menu index. If the index
value is invalid NULL is returneddbGetMenulndexFromString returns the index for
the given string. If the string is not a valid choice a -1 is returned.

dbMenu *dbFindMenu(DBBASE *pdbbase,char *name);

dbFindMenu is most useful for runtime use but is a static database access routine. This
routine just finds a menu with the given name.

Manipulating Link Fields

Links are the most complicated types of fields. A link can be a constant, reference a field in
another record, or can refer to a hardware device. Two additional complications arise for
hardware links. The first is that fieBTYR which is a menu field, determines if thidP or
OUTfield is a device link. The second is that the information that must be specified for a device
link is bus dependent. In order to shelter database configuration tools from these complications
the following is done for static database access.

« Static database access will trédtYPas aDCT_MENUFORId.

» The information for the link field related to tHeCT_MENUFORMN be entered via a
set of form manipulation routines associated with BeéT MENUFORAdId. Thus the
link information can be entered via tB&YPfield rather than the link field.

» The Form routines described in the next section can also be used with any link field.
Each link is one of the following types:

e DCT_LINK_CONSTANT : Constant value.
» DCT_LINK_PV: A process variable link.

* DCT_LINK_FORM : A link that can only be processed via the form routines described
in the next chapter.

Database configuration tools can change any link between being a constant and a process
variable link. Routines are provided to accomplish these tasks.

The routinesdbGetString , dbPutString , anddbVerify can be used for link fields but
the form routines can be used to provide a friendlier user interface.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 121

Chapter 11: Static Database Access
Manipulating MenuForm Fields

All Link Fields

Constant and
Process Variable
Links

Alloc/Free Form

Get/Put Form

Verify Form

Get Related Field

int dbGetNLinks(DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType(DBENTRY *pdbentry);

These are routines for manipulatindCT_xxxLINK fields. dbGetNLinks and
dbGetLinkField are used to walk through all the link fields of a recatbGetLinkType
returns one of the valueBCT_LINK_CONSTANTDCT_LINK_PV, DCT_LINK_FORMor the
value -1 if it is called for an illegal field.

long dbCvtLinkToConstant(DBENTRY *pdbentry);
long dbCvtLinkToPvlink(DBENTRY *pdbentry);

These routines should be used for modifyiDgT LINK_CONSTANTor DCT_LINK_PV
links. They should not be used fOICT_LINK_FORMinks, which should be processed via the
associateddCT_MENUFORMId described above.

Manipulating MenuForm Fields

These routines are used withRCT_MENUFORfield (a DTYP field) to manipulate the
associated DCT_INLINK or DCT_OUTLINK field. They can also be used on any
DCT_INLINK, DCT_OUTLINK or DCT_FWDLINKield.

int dbAllocForm(DBENTRY *pdbentry)
long dbFreeForm(DBENTRY *pdbentry)

dbAllocForm allocates storage needed to manipulate forms. The return value is the number
of elements in the form. If the current field value contains a macro definition, the number of
lines returned is 0.

char **dbGetFormPrompt(DBENTRY *pdbentry)
char **dbGetFormValue(DBENTRY *pdbentry)
long dbPutForm(DBENTRY *pdbentry, char **value)

dbGetFormPrompt returns a pointer to an array of pointers to character strings specifying
the prompt stringdbGetFormValue returns the current valuesbPutForm , which can use
the same array of values returneddiyzetForm , sets new values.

char **dbVerifyForm(DBENTRY *pdbentry,char **value)

dbVerifyForm can be called to verify user input. It returN&JLLif no errors are present. If
errors are present, it returns a pointer to an array of character strings containing error
messages. Lines in error have a message and correct linesNiale string.

char *dbGetRelatedField(DBENTRY *pdbentry)

This routine returns the field name of the related field for a DCT_MENUFORM field. If it is
called for any other type of field it returns NULL.

Example The following is code showing use of these routines:
char **value;
char **prompt;

122 EPICS IOC Application Developer's Guide

Chapter 11: Static Database Access
Find Breakpoint Table

char **error;
int n;

n = dbAllocForm(pdbentry);
if(n<=0) {<Error>}
prompt = dbGetFormPrompt(pdbentry);
value = dbGetFormValue(pdbentry);
for(i=0; i<n; i++) {
printf("%s (%s) : \n”,prompt[i],valueli]);
/*The follwing accepts input from stdin*/
scanf("%s”,valueli]);
}
error = dbVerifyForm(pdbentry,value);
if(error) {
for(i=0; i<n; i++) {
if(error[i]) printf("Error: %s (%s) %s\n”, prompt[i],
valueli],error[i]);
}
else {
dbPutForm(pdbentry,value)

}
dbFreeForm(pdbentry);

All value strings aréMAX_STRING_SIZEin length.

A set of form calls for a particuldDBENTRYMUST begin with a call tadbAllocForm and
end with a call to dbFreeForm . The values returned bydbGetFormPrompt ,
dbGetFormValue , anddbVerifyForm are valid only between the calls tibAllocForm
anddbFreeForm .

Find Breakpoint Table

brkTable *dbFindBrkTable(DBBASE *pdbbase,char *name)

This routine returns the address of the specified breakpoint table. It is normally used by the
runtime breakpoint conversion routines so will not be discussed further.

Dump Routines

void dbDumpPath(DBBASE *pdbbase)
void dbDumpRecord(DBBASE *pdbbase,char *precordTypeName,
int level);
void dbDumpMenu(DBBASE *pdbbase,char *menuName);
void dbDumpRecordType(DBBASE *pdbbase,char *recordTypeName);
void dbDumpFldDes(DBBASE *pdbbase,char *recordTypeName,
char *fname);
void dbDumpDevice(DBBASE *pdbbase,char *recordTypeName);

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 123

Chapter 11: Static Database Access

Examples

Expand Include

void dbDumpDriver(DBBASE *pdbbase);

void dbDumpBreaktable(DBBASE *pdbbase,char *name);
void dbPvdDump(DBBASE *pdbbase,int verbose);

void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report);

These routines are used to dump information about the dataluid@umpRecord,
dbDumpMeny and dbDumpDriver just call the corresponding dbWritexxxFP routine
specifying stdout for the filedbDumpRecDes, dbDumpFldDes , anddbDumpDevice give
internal information useful on an ioc. Note that all of these commands can be executed on an
ioc. Just specify pdbbase as the first argument.

Examples

This example is like thedbExpand utility, except that it doesn’t allow path or macro
substitution options, It reads a set of database definition files and writes all definitions to
stdout. All include statements appearing in the input files are expanded.

/* dbExpand.c */
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <epicsPrint.h>
#include <dbStaticLib.h>

DBBASE *pdbbase = NULL;

int main(int argc,char **argv)
{

long status;

int i;

int arg;

if(argc<2) {
printf("usage: expandinclude filel.db file2.db...\n");
exit(0);
}
for(i=1; i<argc; i++) {
status = dbReadDatabase(&pdbbase,argv[i], NULL,NULL);
if(!status) continue;
fprintf(stderr,"For input file %s",argv]i]);
errMessage(status,"from dbReadDatabase");
}
dbWriteMenuFP(pdbbase,stdout,0);
dbWriteRecordTypeFP(pdbbase,stdout,0);
dbWriteDeviceFP(pdbbase.stdout);
dbWriteDriverFP(pdbbase.stdout);
dbWriteRecordFP(pdbbase,stdout,0,0);
return(0);

124

EPICS IOC Application Developer’'s Guide

Chapter 11: Static Database Access
Examples

dbDumpRecords NOTE: This example is similar but not identical to the actib@lumpRecords routine.

The following example demonstrates how to use the database access routines. The example
shows how to locate each record and display each field.

void dbDumpRecords(DBBASE *pdbbase)
{

DBENTRY *pdbentry;

long status;

pdbentry = dbAllocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf("No record descriptions\n”);return;}
while(!status) {
printf("record type: %s”,dbGetRecordTypeName(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf("” No Records\n”);
else printf("\n Record:%s\n",dbGetRecordName(pdbentry));
while(!status) {
status = dbFirstField(pdbentry, TRUE);
if(status) printf("” No Fields\n");
while(!status) {
printf(” %s:%s",dbGetFieldName(pdbentry),
dbGetString(pdbentry));
status=dbNextField(pdbentry, TRUE);

}
status = dbNextRecord(pdbentry);

}
status = dbNextRecordType(pdbentry);

}
printf("End of all Records\n”);
dbFreeEntry(pdbentry);

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 125

Chapter 11: Static Database Access
Examples

126 EPICS IOC Application Developer's Guide

Chapter 12: Runtime Database Access

Overview

This chapter describes routines for manipulating and accessing an initialized IOC database.
This chapter is divided into the following sections:

» Database related include files. All of interest are listed and those of general interest are
discussed briefly.

* Runtime database access overview.

 Description of each runtime database access routine.
* Runtime modification of link fields.

» Lock Set Routines

» Database to Channel Access Routines

» Old Database Access. This is the interface still used by Channel Access and thus by
Channel Access clients.

Database Include Files

Directory base/include contains a number of database related include files. Of interest to
this chapter are:

» dbDefs.h Miscellaneous database related definitions
» dbFIdTypes.h: Field type definitions

» dbAccess.h Runtime database access definitions.

« link.h: Definitions for link fields.

dbDefs.h This file contains a number of database related definitions. The most important are:

* PVNAME_SZ: The number of characters allowed in the record name.

e FLDNAME_SZ: The number of characters formerly allowed in a field name. This
restriction no longer applies in any base software exdb@alink .c. THIS SHOULD
BE FIXED. It is unknown what effect removing this restriction will have on Channel
Access Clients.

* MAX_STRING_SIZE : The maximum string size for string fields or menu choices.

* DB_MAX_CHOICES: The maximum number of choices for a choice field.

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 127

Chapter 12: Runtime Database Access
Database Include Files

dbFIdTypes.h This file defines the possible field types. A field's type is perhaps its most important attribute.
Changing the possible field types is a fundamental change to the 10C software, because many
IOC software components are aware of the field types.

The field types are:

« DBF_STRING: ASCII character string
 DBF_CHAR: Signed character
 DBF_UCHAR: Unsigned character
 DBF_SHORT: Short integer

» DBF_USHORT: Unsigned short integer
 DBF_LONG: Long integer

« DBF_ULONG: Unsigned long integer

» DBF_FLOAT: Floating point number
 DBF_DOUBLE: Double precision float
« DBF_ENUM: An enumerated field

» DBF_MENU: A menu choice field

» DBF_DEVICE: A device choice field

» DBF_INLINK : Input Link

* DBF_OUTLINK : Output Link
 DBF_FWDLINK : Forward Link

» DBF_NOACCESS A private field for use by record access routines

A field of type DBF_STRING ..., DBF_DOUBLEan be a scalar or an array.DBF_STRING
field contains aNULL terminated ascii string. The field typ&BF_CHAR..., DBF_DOUBLE
correspond to the standard C data types.

DBF_ENUNs used for enumerated items, which is analogous to the C language enumeration.
An example of an enum field is fieltAL of a multi bit binary record.

The field typesDBF_ENUNMDBF_MENPand DBF_DEVICE all have an associated set of

ASCII strings defining the choices. For@BF_ENUWMthe record support module supplies

values and thus are not available for static database access. The database access routines locate
the choice strings for the other types.

DBF_INLINK andDBF_OUTLINKspecify link fields. A link field can refer to a signal located

in a hardware module, to a field located in a database record in the same IOC, or to a field
located in a record in another IOC. BBF_FWDLINKcan only refer to a record in the same
IOC. Link fields are described in a later chapter.

DBF_INLINK (input), DBF_OUTLINK (output), andDBF_FWDLINK(forward) specify that
the field is a link structure as definedink.h . There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a
constant value. This is somewhat of a misnomer because constant link fields can be
modified viadbPutField ordbPutLink

2. Hardware links - The link contains a data structure which describes a signal connected
to a particular hardware bus. Skek.h for a description of the bus types currently
supported.

3. Process Variable Links - This is one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same 10C.
c. CA_LINK: A reference to a variable located in another I0C.

128 EPICS IOC Application Developer's Guide

Chapter 12: Runtime Database Access
Database Include Files

dbAccess.h

link.h

DCT always creates BV_LINK. When the 10C is initialized eacRV_LINK is converted
either to @DB_LINK or aCA_LINK.

DBF_NOACCESf#®Ids are for private use by record processing routines.

This file is the interface definition for the run time database access library, i.e. for the routines
described in this chapter.

An important structure defined in this header filBBADDR

typedef struct dbAddr{
struct dbCommon *precord;/* address of record*/
void *pfield; [* address of field*/
void *pfldDes; /* address of struct fldDes*/
void *asPvt; [* Access Security Private*/
long no_elements; /* number of elements (arrays)*/

short field_type; /* type of database field*/
short field_size; /* size (bytes) of the field*/

short special; [* special processing*/
short dbr_field_type; /*optimal database request type*/
}DBADDR,;

 precord: Address of record. Note that its type is a pointer to a structure defining the
fields common to all record types. The common fields appear at the beginning of each
record. A record support module can gastord to point to the specific record type.

« pfield: Address of the field within the record. Note thpdield provides direct access
to the data value.

» pfldDes This points to a structure containing all details concerning the field. See
Chapter “Database Structures” for details.

» asPvt A field used by access security.

* no_elements A string or numeric field can be either a scalar or an array. For scalar
fields no_elements has the value 1. For array fields it is the maximum number of
elements that can be stored in the array.

« field_type: Field type.

« field_size Size of one element of the field.

» special Some fields require special processing. This specifies the type. Special
processing is described later in this manual.

 dbr_field_type: This specifies the optimal database request type for this field, i.e. the
request type that will require the least CPU overhead.

NOTE: pfield , no_elements , field type , field size , Special , and
dbr_field_type can all be set by record suppornvf dbaddr). Thusfield_type
field_size , andspecial can differ from that specified IpfldDes

This header file describes the various types of link fields supported by EPICS.

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 129

Chapter 12: Runtime Database Access
Runtime Database Access Overview

Runtime Database Access Overview

With the exception of record and device support, all access to the database is via the channel
or database access routines. Even record support routines access other records only via
database or channel access. Channel Access, in turn, accesses the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the
set of routines that constitute database access. This provides a good look at the facilities
provided by the database.

Before describing database access, one caution must be mentioned. The only way to
communicate with an IOC database from outside the 10C is via Channel Access. In addition,
any special purpose software, i.e. any software not described in this document, should
communicate with the database via Channel Access, not database access, even if it resides in
the same I0C as the database. Since Channel Access provides network independent access to a
database, it must ultimately call database access routines. The database access interface was
changed in 1991, but Channel Access was never changed. Instead a module was written which
translates old style database access calls to new. This interface between the old and new style
database access calls is discussed in the last section of this chapter.

The database access routines are:

+ dbNameToAddr: Locate a database variable.

» dbGetField: Get values associated with a database variable.

» dbGetLink: Get value of field referenced by database link (Macro)

» dbGetLinkValue: Get value of field referenced by database link (Subroutine)
» dbGet: Routine called bylbGetLinkValue anddbGetField

» dbPutField: Change the value of a database variable.

» dbPutLink : Change value referenced by database link (Macro)

» dbPutLinkValue : Change value referenced by database link (Subroutine)
» dbPut: Routine called bylbPutxxx functions.

» dbPutNotify: A database put with notification on completion

» dbNotifyCancel: CanceldbPutNotify

» dbNotifyAdd: Add a new record for to notify set.

» dbNotifyCompletion: Announce that put notify is complete.

» dbBufferSize: Determine number of bytes in request buffer.

» dbValueSize Number of bytes for a value field.

» dbGetRset Get pointer to Record Support Entry Table
 dblsValueField Is this field the VAL field.

» dbGetFieldindex Get field index. The first field in a record has index 0.
» dbGetNelementGet number of elements in the field
 dblisLinkConnected s the link field connected.

» dbGetPdbAddrFromLink Get address of DBADDR.

» dbGetLinkDBFtype Get field type of link.

» dbPutAttribute Give a value to a record attribute.

130 EPICS IOC Application Developer's Guide

Chapter 12: Runtime Database Access
Runtime Database Access Overview

dbScanPassiveProcess record if it is passive.

dbScanLink: Process record referenced by link if it is passive.
» dbProcess Process Record

dbScanFwdLink: Scan a forward link.

Database Request Before describing database access structures, it is necessary to describe database request types
Types and Options and request options. WhelbPutField or dbGetField are called one of the arguments is
a database request type. This argument has one of the following values:

* DBR_STRING: Value is aNULL terminated string

 DBR_CHAR: Value is a signed char

« DBR_UCHAR: Value is an unsigned char

» DBR_SHORT: Value is a short integer

 DBR_USHORT: Value is an unsigned short integer

« DBR_LONG: Value is a long integer

* DBR_ULONG: Value is an unsigned long integer

 DBR_FLOAT: Value is an IEEE floating point value

» DBR_DOUBLE: Value is an IEEE double precision floating point value
 DBR_ENUM: Value is a short which is the enum item
 DBR_PUT_ACKT: Value is an unsigned short for setting &@KT

« DBR_PUT_ACKS: Value is an unsigned short for global alarm acknowledgment.

The request typeBBR_STRING..., DBR_DOUBLIEorrespond exactly to valid data types for
database fieldDBR_ENUMorresponds to database fields that represent a set of choices or
options. In particular it corresponds to the fields tyg@8F ENUMDBF_DEVICE and
DBF_MENUThe complete set of database field types are definedbildTypes.h
DBR_PUT_ACKBndDBR_PUT_ACKS&re used to perform global alarm acknowledgment.

dbGetField also accepts argument options which is a mask containing a bit for each
additional type of information the caller desires. The complete set of options is:

« DBR_STATUS: returns the alarm status and severity

* DBR_UNITS: returns a string specifying the engineering units
 DBR_PRECISION: returns a long integer specifying floating point precision.
« DBR_TIME : returns the time

« DBR_ENUM_STRS returns an array of strings

» DBR_GR_LONG: returns graphics info as long values

* DBR_GR_DOUBLE: returns graphics info as double values

* DBR_CTRL_LONG: returns control info as long values

« DBR_CTRL_DOUBLE: returns control info as double values
« DBR_AL_LONG: returns alarm info as long values

* DBR_AL_DOUBLE: returns alarm info as double values

Options The filedbAccess.h contains macros for using options. A brief example should show how
Example they are used. The following example defines a buffer to accept an array of up to ten float
values. In addition it contains fields for optiddBR_STATUSndDBR_TIME

struct buffer {
DBRstatus
DBRtime
float value[10];

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 131

Chapter 12: Runtime Database Access
Database Access Routines

ACKT and ACKS

dbNameToAddr

} buffer;

The associatedbGetField call is:
long options,number_elements,status;
options = DBR_STATUS | DBR_TIME;
number_elements = 10;

status =
dbGetField(paddr,DBR_FLOAT,&buffer,&options,&number_elements);

ConsultdbAccess.h for a complete list of macros.

StructuredbAddr contains a fieldibr_field_type . This field is the database request type
that most closely matches the database field type. Using this request type will put the smallest
load on the IOC.

Channel Access provides routines similardioGetField , anddbPutField . It provides
remote access wbGetField , dbPutField , and to the database monitors described below.

The request typedDBR_PUT_ACKTand DBR_PUT_ACKSare used for global alarm
acknowledgment. The alarm handler uses these requests. For each of these types the user
(normally channel access) passes an unsigned short value. This value represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS The highest alarm severity to acknowledge. If the current alarm severity is
less then or equal to this value the alarm is acknowledged.

Database Access Routines

Locate a process variable, format:

long dbNameToAddr(
char *pname, /*ptr to process variable name */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick access to
database records and fields within records. The basic rules are:

« CalldbNameToAddr once and only once for each field to be accessed.
* Read field values vidbGetField and write values vidbPutField

The routines described in this subsection are used by channel access, sequence programs, etc.
Record processing routines, however, use the routines described in the next section rather then
dbGetField anddbPutField

Given a process variable name, this routine locates the process variable and fills in the fields of
structuredbAddr . The format for a process variable name is:

“<record_name>.<field_name> "
For example the value field of a record with record nsameple_name is:
“sample_name.VAL ".

The record name is case sensitive. Field names always consist of all upper case letters.

132

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Database Access Routines

Get Routines

dbGetField

dbGetLink
dbGetLinkValue

dbGet

dbNameToAddr locates a record via a process variable directory (PVD). It fills in a structure
(dbAddr) describing the fielddbAddr contains the address of the record and also the field.
Thus other routines can locate the record and field without a search. Although the PVD allows
the record to be located via a hash algorithm and the field within a record via a binary search, it
still takes about 80 microseconds (25MHz 68040) to located a process variable. Once located
thedbAddr structure allows the process variable to be accessed directly.

Get values associated with a process variable, format:

long dbGetField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data */
long *options, /*addr of options */
long *nRequest, /*addr of number of elements */
void *pfl); /*used by monitor routines */

Thus routine locks, calldbGet , and unlocks.

Get value from the field referenced by a database link, format:

long dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
short dbrType,/* DBR_xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of number of elements desired*/

NOTES:
1) options can be NULL if no options are desired.
2) nRequest can be NULL for a scalar.

dbGetLink is actually a macro that cal#bGetLinkValue . The macro skips the call for
constant links. User code should never dhafGetLinkValue

This routine is called by database access itself and by record support and/or device support
routines in order to get values for input links. The value can be obtained directly from other
records or via a channel access client. This routine honors the link options (process and
maximize severity). In addition it has code that optimizes the case of no options and scalar.

Get values associated with a process variable, format:

long dbGet(
struct dbAddr*paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/

Thus routine retrieves the data referencegagdr and converts it to the format specified by
dbrType .

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 133

Chapter 12: Runtime Database Access

Database Access Routines

Put Routines

" options is a read/write field. Upon entry tabGet, options specifies the desired
options. WherdbGetField returns,options specifies the options actually honored. If an
option is not honored, the corresponding fields in buffer are filled with zeros.

"nRequest " is also a read/write field. Upon entry thGet it specifies the maximum number

of data elements the caller is willing to receive. WhdinGet returns it equals the actual
number of elements returned. It is permissible to request zero elements. This is useful when
only option data is desired.

"pfl " is a field used by the Channel Access monitor routines. All other users must set
pfl =NULL

dbGet calls one of a number of conversion routines in order to convert data frorDBife
types to theDBRtypes. It calls record support routines for special cases such as arrays. For
example, if the number of field elements is greater then 1 and record support routine
get_array_info exists, then it is called. It returns two values: the current number of valid
field elements and an offset. The number of valid elements may not match
dbAddr .no_elements , which is really the maximum number of elements allowed. The
offset is for use by records which implement circular buffers.

dbPutField Change the value of a process variable, format:
long dbPutField(
structdbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/
This routine is responsible for accepting data in one oDB&_xxx formats, converting it as
necessary, and modifying the database. SimilatkiGetField , this routine calls one of a
number of conversion routines to do the actual conversion and relies on record support routines
to handle arrays and other special cases.
It should be noted that routindbPut does most of the work. The actual algorithm for
dbPutField is:
1. If the DISP field is TRUEthen, unless it is thBISP field itself which is being modified,
the field is not written.
2. The record is locked.
3. dbPut is called.
4. If thedbPut is successful then:
If this is the PROCtield or if both of the following areTRUE 1) the field is a process
passive field, 2) the record is passive.
a. If the record is already active ask for the record to be reprocessed when it
completes.
b. Call dbScanPassive after settingputf TRUE to show the process request
came fromdbPutField
5. The record is unlocked.
dbPutLink Change the value referenced by a database link, format:
dbPutLinkValue long dbPutLink(
134 EPICS I0C Application Developer's Guide

Chapter 12: Runtime Database Access
Database Access Routines

dbPut

Put Notify Routines

structdb_link *pdbLink,/*addr of database link*/
short dbrType, /* DBR_xxx*/

void *pbuffer,/*addr of data to write*/

long nRequest);/*number of elements to write*/

dbPutLink is actually a macro that calgbPutLinkValue . The macro skips the call for
constant links. User code should never daPutLinkValue

This routine is called by database access itself and by record support and/or device support
routines in order to put values into other database records via output links.

For Channel Access links it cati®CaPutLink
For database links it performs the following functions:

1. CallsdbPut .
2. Implements maximize severity.

3. If the field being referenced i®ROCor if both of the following are true: 1)
process_passive is TRUEand 2) the record is passive then:
a. If the record is already active because db®utField request then ask for the
record to be reprocessed when it completes.
b. otherwise caltibScanPassive

Put a value to a database field, format:

long dbPut(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one oMB&_xxx formats, converting it as
necessary, and modifying the database. Similaht@et , this routine calls one of a number of
conversion routines to do the actual conversion and relies on record support routines to handle
arrays and other special cases.

dbPutNotify is a request to notify the caller when all records that are processed as a result
of a put complete processing. The complication occurs because of record linking and
asynchronous records. A put can cause an entire chain of records to process. If any record is an
asynchronous record then record completion means asynchronous completion.

The following rules are implemented:

1. If a putNotify is already active on the record to which the put is directed,
dbPutNotify just returnsS_db_Blocked without calling the callback routine.

In all other cases, i.e. the cases for the following rules, the callback routine will be
always be called unlestbNotifyCancel is called.

2. The user supplied callback is called when all processing is complete or when an error is
detected. If everything completes synchronously the callback routine will be called
BEFOREdbPutNotify returns.

3. The user supplied callback routine must not issue any calls that block such as Unix I/O
requests.

4. In general a set of records may need to be processed as a result of a single
dbPutNotify . If database access detects that anadb®utNotify ~ request is active

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 135

Chapter 12: Runtime Database Access
Database Access Routines

dbPutNotify

on any record in the set, other then the record referenced bghfPetNotify , then
thedbPutNotify request will restarted

5. Ifarecord in the set is found to be active becausedifRutField request then when
that record completes tlibPutNotify will be restarted.
6. If a record is found to already be active because of the origioRuUtNotify request

then nothing is done. This is what is done now and any attempt to do otherwise could
easily cause existing databases to go into an infinite processing loop.

It is expected that the caller will arrange a timeout in casadtifeutNotify ~ takes too long.
In this case the caller can cdbNotifyCancel

Perform a database put and notify when record processing is complete.
Format:
long dbPutNotify(PUTNOTIFY *pputnotify);

where PUTNOTIFY is

typedef struct putNotify{
void (*userCallback)(struct putNotify *);
DBADDR *paddr; /*dbAddr set by dobNameToAddr*/
void *pbuffer; /*address of data*/
long nRequest; /*number of elements to be written*/
short dbrType; [*database request type*/
void *usrPvt; [*for private use of user*/
[*The following is status of request.Set by dbPutNotify*/
long status;
[*fields private to database access*/

}PUTNOTIFY;
The caller must allocateRUTNOTIFYstructure and set the fields:

userCallback - Routine that is called upon completion
paddr - address of a DBADDR

pbuffer - address of data

nRequest - number of data elements

dbrType - database request type

usrPvt - a void * field that caller can use as needed.

The status value returned digPutNotify is either:

» S_db_Pending Success: Callback may already have been called or will be called later.
» S _db_Blocked The request failed becausedbPutNotify is already active in the
record to which the put is directed.

When the user supplied callback is called, the status value stoRIdTNOTIFYis one of the
following:

» 0: Success
* S_xxxx The request failed due to some other error.

The user callback is always called unledbPutNotify returns S_db_Blocked or
dbNotifyCancel is called before the put notify competes.

136

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Database Access Routines

dbNotifyCancel Cancel an outstandirgbPutNotify
Format:

void dbNotifyCancel(PUTNOTIFY *pputnotify);
This cancels an activdbPutNotify

dbNotifyAdd This routine is called by database access itself. It should never be called by user code.

dbNotifyCompletion This routine is called by database access itself. It should never be called by user code.

Utility Routines

dbBufferSize Determine the buffer size fordbGetField request, format:

long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest);/* number of elements*/

This routine returns the number of bytes that will be returnedt@etField if the request
type, options, and number of elements are specified as giveloBofferSize . Thus it can
be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

dbValueSize Determine the size a value field, format:
dbValueSize(short dbrType);/* DBR_Xxxx*/
This routine returns the number of bytes for each element ofityfigpe .

NOTE: This should become a Channel Access routine

dbGetRest Get address of a record support entry table.
Format:
struct rset *dbGetRset(DBADDR *paddr);

This routine returns the address of the record support entry table for the record referenced by
the DBADDR

dblsValueField Is this field the VAL field of the record?
Format:
int dblsValueField(struct dbFldDes *pdbFldDes);

This is the routine that makes thet value record support routine obsolete.

dbGetFieldIndex Get field index.
Format:

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 137

Chapter 12: Runtime Database Access
Database Access Routines

int dbGetFieldindex(DBADDR *paddr);

Record support routines such gggecial andcvt_dbaddr need to know which field the
DBADDReferences. The include file describing the record contains define statements for each
field. dbGetFieldindex returns the index that can be matched against the define
statements (normally via a switch statement).

dbGetNelements Get number of elements in a field.
Format:
long dbGetNelements(struct link *plink,long *nelements);

This sets helements to the number of elements in the field referenced by plink.

dblsLinkConnected Is the link connected.
Format:
int dblsLinkConnected(struct link *plink);
This routine returns (TRUE, FALSE) if the link (is, is not) connected.

dbGetPdbAddrFromIiGet address of DBADDR from link.
ink Format:
DBADDR *dbGetPdbAddrFromLink(struct link *plink);

This macro returns the address of the DBADDR for a database link and NULL for all other
link types.

dbGetLinkDBFtype Get field type of a link.
Format:
int dbGetLinkDBFtype(struct link *plink);

Attribute Routine

dbPutAttribute Give a value to a record attribute.

long dbPutAttribute(char *recordTypename,
char *name,char*value);

This sets the record attributeame for record typerecordTypename to value. For
example the following would set the version for the ai record.

dbPutAttribute("ai","VERS","V800.6.95")

Process Routines

dbScanPassive Process record if it is passive, format:
dbScanLink _ long dbScanPassive(
dbScanFwdLink struct doCommon *pfrom,

138 EPICS IOC Application Developer's Guide

Chapter 12: Runtime Database Access
Runtime Link Modification

dbProcess

struct dbCommon *pto); /* addr of record*/
long dbScanLink(

struct dbCommon *pfrom,

struct dbCommon *pto);
void dbScanFwadLink(struct link *plink);

dbScanPassive anddbScanLink are given the record requesting the scan, which may
be NULL, and the record to be processed. If the record is passivepactd=FALSE then
dbProcess is called. Note that these routine are calleddbwsetLink , dbPutField , and

by recGbIFwdLink.

dbScanFwdLink is given a link that must be a forward link field. It follows the rules for
scanning a forward link. That is for DB_LINKs it calls dbScanPassive and for CA_LINKS it
does a dbCaPutLink if the PROC field of record is being addressed.

Request that a database record be processed, format:
long dbProcess(struct dbCommom *precord);

Request that record be processed. Record processing is described in detail below.

Runtime Link Modification

Database links can be changed at run time but only via a channel access client, i.e. via calls to
dbPutField but not todbPutLink . The following restrictions apply:

» Only DBR_STRINGS allowed.

« If alink is being changed to a different hardware link type thenDi& Pfield must be
modified before the link field.

* The syntax for the string field is exactly the same as described for link fields in chapter
“Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In
addition modification to record/device support will be needed in order to properly
support dynamic modification of hardware links.

Channel Access Monitors

There are facilities within the Channel Access communication infrastructure which allow the
value of a process variable to be monitored by a channel access client. It is a responsibility of
record support (and db common) to notify the channel access server when the internal state of
a process variable has been modified. State changes can include changes in the value of a
process variable and also changes in the alarm state of a process variable. The routine
“db_post_events()" is called to inform the channel access server that a process variable state
change event has occurred.

#include <caeventmask.h>

int db_post_events(void *precord, void *pfield,

EPICS Release: R3.13.0betal2

EPICS 10C Application Developer's Guide 139

Chapter 12: Runtime Database Access

Lock Set Routines

dbScanLock

dbScanUnlock

unsigned intselect);

The first argument, “precord”, should be passed a pointer to the record which is posting the
event(s). The second argument, “pfield”, should be passed a pointer to the field in the record
that contains the process variable that has been modified. The third argument, “select”, should
be passed an event select mask. This mask can be any logical or combination of
{DBE_VALUE, DBE_LOG, DBE_ALARM]}. A description of the purpose of each flag in the
event select mask follows.

» DBE_VALUE This indicates that a significant change in the process variable’s value has
occurred. A significant change is often determined by the magnitude of the monitor
“dead band” field in the record.

» DBE_LOG This indicates that a change in the process variable’s value significant to
archival clients has occurred. A significant change to archival clients is often determined
by the magnitude of the archive “dead band” field in the record.

 DBE_ALARM This indicates that a change in the process variable's alarm state has
occurred.

The function “db_post_events()” returns O if it is successful and -1 if it fails. It appears to be
common practice within EPICS record support to ignore the status from “db_post_events()".
At this time “db_post_events()” always returns 0 (success). because so many records at this
time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be blocked
attempting to post an event because a slow client is not able to process events fast enough.
Each call to “db_post_events()” causes the current value, alarm status, and time stamp for the
field to be copied into a ring buffer. The thread calling “db_post_events()” will not be delayed

by any network or memory allocation overhead. A lower priority thread in the server is
responsible for transferring the events in the event queue to the channel access clients that may
be monitoring the process variable.

Currently, when an event is posted for a DBF_STRING field or a field containing array data the
value is NOT saved in the ring buffer and the client will receive whatever value happens to be
in the field when the lower priority thread transfers the event to the client. This behavior may
be improved in the future.

Lock Set Routines

User code only callglbScanLock anddbScanUnlock . All other routines are called by
iocCore .

Lock a lock set:
long void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.

Unlock a lock set:
long void dbScanUnlock(struct doCommon *precord);

Lock the lock set to which the specified record belongs

140

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links

dbLockGetLockld

dbLocklInitRecords

dbLockSetMerge

dbLockSetSplitSI

dbLockSetGblLock

Get lock set id:
long dbLockGetLockld(struct dbCommon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. This is most useful to determine
if two records are in the same lock set.

Determine lock sets for each record in database.
void dbLockInitRecords(dbBase *pdbbase);
Called byioclnit

Merge records into same lock set.

void dbLockSetMerge(struct dbCommon *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by
dbLockInitRecords and also when links are modifiediyutField

Recompute lock sets for given lock set
void dbLockSetSplit(struct dbCommon *psource);
This is called whedbPutField modifys links.

Global lock for modifying links.
void dbLockSetGblLock(void);

Only one task at a time can modify link fields. This routine provides a global lock to prevent
conflicts.

dbLockSetGblUnlockJnlock the global lock.

void dbLockSetGblUnlock(void);

dbLockSetRecordLotkecord is not already scan locked lock it.

void dbLockSetRecordLock(struct dbCommon *precord);

Channel Access Database Links

The routines described here are used to create and manipulate Channel Access connections
from database input or output links. At IOC initialization an attempt is made to convert all
process variable links to database links. For any link that fails, it is assumed that the link is a
Channel Access link, i.e. a link to a process variable defined in another I0C. The routines
described here are used to manage these links. User code never needs to call these routines.
They are automatically called by ioclnit and database access.

EPICS Release: R3.13.0betal2

EPICS IOC Application Developer's Guide 141

Chapter 12: Runtime Database Access
Channel Access Database Links

Basic Routines

dbCaLlinklnit

dbCaAddLink

dbCaRemovelLink

dbCaGetLink

dbCaPutLink

dbGetNelements

dbCaGetSevr

At ioclnit time a taskdbCalink is spawned. This task is a channel access client that
issues channel access requests for all channel access links in the database. For each link a
channel access search request is issued. When the search succeeds a channel access monitor is
established. The monitor is issued specifyaeag field_type andca_element_count

A buffer is also allocated to hold monitor return data as well as severity. Wh€aGetLink

is called data is taken from the buffer, converted if necessary, and placed in the location
specified by th@buffer — argument.

When the firstdbCaPutLink is called for a link an output buffer is allocated, again using
ca_field_type andca_element_count . The data specified by the pbuffer argument is
converted and stored in the buffer. A request is then madab@alink task to issue a
ca_put . Subsequent calls thCaPutLink reuse the same buffer.

These routines are normally only called by database access, i.e. they are not called by record
support modules.

Called byioclnit to initialize thedbCa library
void dbCaLinklnit(void);

Add a new channel access link
void dbCaAddLink(struct link *plink);

Remove channel access link.

void dbCaRemoveLink(struct link *plink);

Get link value

long dbCaGetLink(struct link *plink,short dbrType,
void *pbuffer,unsigned short *psevr,long *nRequest);

Put link value

long dbCaPutLink(struct link *plink,short dbrType,
void *buffering nRequest);

Get Number of Elements
long dbCaGetNelements(struct link *plink,long *nelements);

This call, which returns an error if link is not connected, sets the native number of elements.

Get Alarm Severity
long dbCaGetSevr(struct link *plink,short *severity);

This call, which returns an error if link is not connected, sets the alarm severity.

dbCalsLinkConnectaslChannel Connected

int dbCalsLinkConnected(struct link *plink)

142

EPICS IOC Application Developer’'s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links

This routine returns (TRUE, FALSE) if the link (is, is not) connected.

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 143

Chapter 12: Runtime Database Access
Channel Access Database Links

144 EPICS I0C Application Developer's Guide

Chapter 13: Device Support Library

Overview

Include file devLib.h provides definitions for a library of routines useful for device and
driver modules. These are a new addition to EPICS and are not yet used by all device/driver
support modules. Until they are, the registration routines will not prevent addressing conflicts
caused by multiple device/drivers trying to use the same VME addresses.

Registering VME Addresses

Definitions of typedef enum {

Address Types atVMEAL1S,
atVMEA24,

atVMEA32,
atLast /* atLast must be the last enum in this list */
} epicsAddressType;

char *epicsAddressTypeName][]
={
"VME A16",
"VME A24",

"VME A32"

3

int EPICStovxWorksAddrType[]
={
VME_AM_SUP_SHORT _IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA

3

Register Address long devRegisterAddress(
const char *pOwnerName,

epicsAddressType addrType,
void *baseAddress,
unsigned size,

void **pLocalAddress);

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 145

Chapter 13: Device Support Library
Interrupt Connect Routines

This routine is called to register a VME address. This routine keeps a list of all VME addresses
requested and returns an error message if an attempt is made to register any addresses that are
already being usedpt.ocalAddress is set equal to the address as seen by the caller.

Unregister Address long devUnregisterAddress(
epicsAddressType addrType,
void *baseAddress,
const char *pOwnerName);

This routine releases addresses previously registered by adalRegisterAddress

Interrupt Connect Routines

Definitions of typedef enum {intCPU, intVME, intVXI} epicsinterruptType;
Interrupt Types
Connect long devConnectinterrupt(

epicsinterruptType intType,
unsigned vectorNumber,
void (*pFunction)(),

void *parameter);

Disconnect long devDisconnectinterrupt(
epicsinterruptType intType,
unsigned vectorNumber);

Enable Level long devEnablelnterruptLevel(
epicsinterruptType intType,
unsigned level);

Disable Level long devDisableInterruptLevel(
epicsinterruptType intType,
unsigned level);

Macros and Routines for Normalized Analog Values

Normalized GetField long devNormalizedGblGetField(
long rawValue,
unsigned nbits,
DBREQUEST *pdbrequest,
int pass,
CALLBACK *pcallback);

146 EPICS I0C Application Developer's Guide

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values

This routine is just likeecGblGetField , except that if the request typeBR_FLOATor
DBR_DOUBLEhe normalized value ohwValue is obtained, i.erawValue is converted to
a value in the range 0.0<=value<.1.0

Convert Digital #define devCreateMask(NBITS)((1<<(NBITS))-1)
Value to a #define devDigToNmI(DIGITAL,NBITS) \
Normalized Double (((double)(DIGITAL))/devCreateMask(NBITS))

Value

Convert Normalized #define devNmIToDig(NORMAL,NBITS) \
Double Value to a (((long)(NORMAL)) * devCreateMask(NBITS))

Digital Value

EPICS Release: R3.13.0betal2
EPICS IOC Application Developer's Guide 147

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values

148 EPICS I0C Application Developer's Guide

Chapter 14: EPICS General Purpose Tasks

Overview

Overview

This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2)
Task Watchdog.

Often when writing code for an IOC there is no obvious task under which to execute. A good
example is completion code for an asynchronous device support module. EPICS supplies the
callback tasks for such code.

If an 10C tasks "crashes" there is normally no one monitoring the vxWorks shell to detect the
problem. EPICS provides a task watchdog task which periodically checks the state of other
tasks. If it finds that a monitored task has terminated or suspended it issues an error message
and can also call other routines which can take additional actions. For example a subroutine
record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, IOC code
that issuesprintf calls generates errors messages that are never seen. In addition the
vxWorks implementation of fprintf requires much more stack space thentf calls.
Another problem with vxWorks is thiegMsg facility. logMsg generates messages at higher
priority then all other tasks except the shell. EPICS solves all of these problems via an error
message handling facility. Code can call any of the routarelglessage , errPrintf , or
epicsPrintf . Any of these result in the error message being generated by a separate low
priority task. The calling task has to wait until the message is handled but other tasks are not
delayed. In addition the message can be sent to a system wide error message file.

General Purpose Callback Tasks

EPICS provides three general purpose 10C callback tasks. The only difference between the
tasks is scheduling priority: Low, Medium, and High. The low priority task runs at a priority
just higher than Channel Access, the medium at a priority about equal to the median of the
periodic scan tasks, and the high at a priority higher than the event scan task.The callback tasks
provide a service for any software component that needs a task under which to run. The
callback tasks use the task watchdog (described below). They use a rather generous stack and
can thus be used for invoking record processing. For example the 1/O event scanner uses the
general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#include <callback.h>

EPICS Release: R3.13.0betal2 EPICS I0C Application Developer's Guide 149

Chapter 14: EPICS General Purpose Tasks

General Purpose Callback Tasks

2.

Provide storage for a structure that is a private structure for the callback tasks:
CALLBACK mycallback;

It is permissible for this to be part of a larger structure, e.g.
struct {

CALLBACK mycallback;

.

. Call routines (actually macros) to initialize fieldSJALLBACK

callbackSetCallback(VOIDFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a function
returningVOID. The second argument is the address o€l BACKstructure.

callbackSetPriority(int, CALLBACK *);
The first argument is the priority, which can have one of the valpgsrityLow |,
priorityMedium , or priorityHigh . These values are defined ¢allback.h
The second argument is again the address @ZAd BACKstructure.
callbackSetUser(VOID *, CALLBACK *);

This call is used to save a value that can be retrieved via a call to:

callbackGetUser(VOID *,CALLBACK *);

. Whenever a callback request is desired just call one of the following:

callbackRequest(CALLBACK *);
callbackRequestProcessCallback(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a single
argument, which is the same argument that was passadllbackRequest | i.e., the
address of th€ ALLBACKSstructure.

Syntax The following calls are provided:

long callbackinit(void);

void callbackSetCallback(void *pcallbackFunction,
CALLBACK *pcallback);

void callbackSetPriority(int priority, CALLBACK *pcallback);

void callbackSetUser(void *user, CALLBACK *pcallback);

void callbackRequest(CALLBACK *);
void callbackRequestProcessCallback(CALLBACK *pCallback,
int Priority, void *pRec);

150

EPICS IOC Application Developer’'s Guide

Chapter 14: EPICS General Purpose Tasks
General Purpose Callback Tasks

void callbackGetUser(void *user, CALLBACK *pcallback);

Notes:

« callbackinit is performed automatically when EPICS initializes and 10C. Thus
user code never calls this function.

« callbackSetCallback , callbackSetPriority , callbackSetUser , and
callbackGetUser are actually macros.

« callbackRequest and callbackRequestProcessCallback can both be
called at interrupt level.

» callbackRequestProcessCallback is designed for the completion phase of

asynchronous record processing. It issues the calls:

callbackSetCallback(ProcessCallback, pCallback);
callbackSetPriority(Priority, pCallback);
callbackSetUser(pRec, pCallback);
callbackRequest(pCallback);

ProcessCallback , which is designed for asynchronous device completion
applications, consists of the following code:

static void ProcessCallback(CALLBACK *pCallback)
{

dbCommon *pRec;

struct rset *prset;

callbackGetUser(pRec, pCallback);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec);
(*prset->process)(pRec);
dbScanUnlock(pRec);

}

Example An example use of the callback tasks.

#include <callback.h>

static structure {
char begid[80];
CALLBACK callback;
char endid[80];
tmyStruct;

void myCallback(CALLBACK *pcallback)
{
struct myStruct *pmyStruct;
callbackGetUser(pmyStruct,pcallback)
printf("begid=%s endid=%s\n",&pmyStruct->begid[0],
&pmStruct->endid[0]);

example(char *pbegid, char*pendid)

{
strcpy(&myStruct.begid[0],pbegid);
strcpy(&myStruct.endid[0],pendid);

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 151

Chapter 14: EPICS General Purpose Tasks

Task Watchdog

Callback Queue

callbackSetCallback(myCallback,&myStruct.callback);
callbackSetPriority(priorityLow,&myStruct.callback);
callbackSetUser(&myStruct,&myStruct.callback);
callbackRequest(&myStruct.callback);

}

The example can be tested by issuing the following command to the vxWorks shell:
example("begin”,"end”)

This simple example shows how to use the callback tasks with your own structure that contains
the CALLBACKstructure at an arbitrary location.

The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by default to
hold 2000 requests. This value can bechanged by catifigackSetQueueSize before
inclnit in the startup file. The syntax is:

int callbackSetQueueSize(int size)

Task Watchdog

EPICS provides an IOC task that is a watchdog for other tasks. Any task can make a request to
be watched. The task watchdog runs periodically and checks each task in its task list. If any
task is suspended, an error message is issued and, optionally, a callback task is invoked. The
task watchdog provides the following features:

1. Include module:

#include <taskwd.h>

2. Insert request:

taskwdlnsert (int tid, VOIDFUNCPTR callback,
VOID *userarg);

This is the request to include the task with the specified in the list of tasks to be
watched. If callback is noNULL then if the task becomes suspended, the callback
routine will be called with a single argumerserarg

3. Remove request:
taskwdRemove(int tid);

This routine would typically be called from the callback routine invoked when the
original task goes into the suspended state.

4. Insert request to be notified if any task suspends:

taskwdAnylnsert(void *userpvt,VOIDFUNCPTR callback,
VOID *userarg);

The callback routine will be called whenever any of the tasks being monitored by the
task watchdog task suspendsserpvt must have a nonNULL unique value

152

EPICS IOC Application Developer’'s Guide

Chapter 14: EPICS General Purpose Tasks
Task Watchdog

taskwdAnylnsert , because the task watchdog system uses this value to determine
who to remove ifaskwdAnyRemove is called.

5. Remove request faaskwdAnylnsert:
taskwdAnyRemove(void *userpwvt);

userpvt is the value that was passedaskwdAnylnsert

EPICS Release: R3.13.0betal2
EPICS 10C Application Developer's Guide 153

Chapter 14: EPICS General Purpose Tasks
Task Watchdog

154 EPICS I0C Application Developer's Guide

Chapter 15:

Database Scanning

Overview

Database scanning is the mechanism for deciding when to process a record. Five types of
scanning are possible:

Periodic: A record can be processed periodically. A number of time intervals are
supported.

Event: Event scanning is based on the posting of an event by another component of the
software via a call to the routipest_event

I/0O Event: The original meaning of this scan type is a request for record processing as
a result of a hardware interrupt. The mechanism supports hardware interrupts as well as
software generated events.

Passive Passive records are processed only via requestb$canPassive . This
happens when database links (Forward, Input, or Output), which have been declared
"Process Passive” are accessed during record processing. It can also happen as a result
of dbPutField being called (This normally results from a Channel Access put
request).

Scan Once In order to provide for caching puts, The scanning system provides a
routinescanOnce which arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database
fields involved with scanning. It next discusses the interface to the scanning system. The last
section gives a brief overview of how the scanners are implemented.

Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is quite
permissible to change any of the scan related fields of a record dynamically. For example, a
display manager screen could tie a menu control to3BANfield of a record and allow the
operator to dynamically change the scan mechanism.

SCAN This field, which specifies the scan mechanism, has an associated menu of the following form:

Passive Passively scanned.

Event. Event Scanned. The fieleNTspecifies event number
I/O Event scanned

10 Second Periodically scanned - Every 10 seconds

EPICS Release: R3.13.0betal2

EPICS I0C Application Developer's Guide 155

Chapter 15: Database Scanning
Software Components That Interact With The Scanning System

PHAS

EVNT - Event
Number
PRIO - Scheduling

Priority

menuScan.ascii

.1 Second Periodically scanned - Every .1 seconds

This field determines processing order for records that are in the same scan set. For example all
records periodically scanned at a 2 second rate are in the same scan set. All Event scanned
records with the samEVNTare in the same scan set, etc. For records in the same scan set, all
records withPHAS-0 are processed before records WiHAS-1, which are processed before

all records withlPHAS=2, etc.

In general it is not a good idea to rely ®HASto enforce processing order. It is better to use
database links.

This field only has meaning whe®ICANis set toEvent scanning, in which case it specifies

the event number. In order for a record to be event scari\dTmust be in the range 0,...255.

It should also be noted that some EPICS software components will not request event scanning
for event 0. One example is tlewentRecord record support module. Thus the application
developer will normally want to define events in the range 1,...,255.

This field can be used by any software component that needs to specify scheduling priority,
e.g. the event and I/O event scan facility uses this field.

Software Components That Interact With The Scanning
System

This file contains definitions for a menu related to fi&@AN The definitions are of the form:

menu(menuScan) {
choice(menuScanPassive,”Passive”)
choice(menuScanEvent,”"Event”)
choice(menuScanl_O_Intr,”l/O Intr")
choice(menuScan10_second,”10 second”)
choice(menuScan5_second,”5 second”)
choice(menuScan2_second,”2 second”)
choice(menuScanl_second,”l second”)
choice(menuScan_5_second,”.5 second”)
choice(menuScan_2_second,”.2 second”)
choice(menuScan_1_second,”.1 second”)

}

The first three choices must appear first and in the order shown. The remaining definitions are
for the periodic scan rates, which must appear in order of decreasing rate. At IOC initialization,
the menu values are read by scan initialization. The number of periodic scan rates and the value
of each rate is determined from the menu values. Thus periodic scan rates can be changed by
changing menuScan.ascii and loading this version viadbLoadAscii . The only
requirement is that each periodic definition must begin with the value and the value must be in
units of seconds.

dbScan.h All software components that interact with the scanning system must include this file.
The most important definitions in this file are:
156 EPICS I0C Application Developer's Guide

Chapter 15: Database Scanning
Software Components That Interact With The Scanning Sys-

/* Note that these must match the first four definitions*/
/* in choiceGbl.ascii*/

#define SCAN_PASSIVE 0

#define SCAN_EVENT 1

#define SCAN_I0_EVENT 2

#define SCAN_1ST PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT,;
extern int interruptAccept;

long scanlinit(void);

void post_event(int event);

void scanAdd(struct dbCommon *);
void scanDelete(struct doCommon *);
void scanOnce(void *precord);

int scanOnceSetQueueSize(int size);
int scanppl(void); /*print periodic lists*/
int scanpel(void); /*print event lists*/
int scanpiol(void); /*print io_event list*/
void scanlolnit(IOSCANPVT *);

void scanloRequest(IOSCANPVT);

The first set of definitions defines the various scan types. The next two definitions
(IOSCANPVTandinterruptAccept) are for interfacing with the I/O event scanner. The
remaining definitions define the public scan access routines. These are described in the
following subsections.

Initializing Database scanlnit(void);

Scanners The routinescaninit is called byioclnit . It initializes the scanning system.

Adding And The following routines are called each time a record is added or deleted from a scan list.
Deleting ReC_OrdS scanAdd(struct dbCommon *);

From Scan List scanDelete(struct dbCommon *);

These routines are called bganlnit at IOC initialization time in order to enter all records
created via DCT into the correct scan list. The routofePut calls scanDelete and
scanAdd each time a scan related field is changed (each scan related field is declared to be
SPC_SCANn dbCommon.as