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Executive Summary 

This  report describes and  illustrates the use of the  routine MaxFits. This 
routine  estimates  statistics of extremes corresponding to  arbitrary dynamic 
load or response processes. It estimates  statistics of extremes from limited- 
duration  time histories, which  may arise either from experimental tests or 
computationally expensive simulation. A wide range of statistics-e.g., mean, 
standard deviation,  and  arbitrary fractiles-can be estimated for an extreme 
over an  arbitrary  duration T.  The routine also assesses, through  boot- 
strapping  methods,  the  statistical  uncertainty associated with  these  extremal 
statistics due to  the amount of data at hand.  This will consistently reflect the 
growing uncertainty as, for example, we extrapolate to (1) increasingly high 
fractiles of the  extreme response; or (2) increasingly long target  durations T ,  
relative to the  length of the  input signal. 

Central  to  this routine is a core group of algorithms used to probabilis- 
tically model various aspects of the dynamic process of interest. The user is 
permitted  to model either the time history itself, a set of local peaks (max- 
ima), or a coarser set of global peaks (e.g., 5- or 10-minute maxima). A 
number of distribution  types  are included for these various purposes. For 
example, normal distributions  and  their 4-moment transformations  (“Her- 
mite”)  are included as likely candidates  to  apply  directly to  the process itself. 
Weibull  models and their 3-moment distortions (“Quadratic Weibull”) have 
been found particularly useful in modelling local peaks and ranges. Extremal, 
Gumbel models are also included to permit natural choices of global peaks. 
These  algorithms build on the distribution  library of the FITS routine,  most 
recently documented in  RMS Report 38 (Manuel et al, 1999). 

To focus on upper  tails of interest,  the user can also supply  an arbitrary 
lower-bound threshold, xl,, above  which a shifted version of a positive ran- 
dom variable model-exponential, Weibull, or quadratic Weibull-is fit. In 
estimating  statistics of the maximum response, the program automatically 
adjusts for the decreasing rate of response events as the threshold xl, is 
raised. 

This program is intended to be applicable to general cases of dynamic re- 
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sponse. A particular example shown here concerns the  estimation of extreme 
bending moments experienced by wind turbine blades under  stationary Gaus  
sian random field simulations. This  is a topic of ongoing interest  within the 
general wind turbine community. It is shown here how the use of the fitted 
models provided in MaxFits can produce accurate estimates-in comparison 
with extensive simulation results-with reduced data needs. 
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1 Introduction 

1.1 Background  and  Motivation 

This  report describes and illustrates the use  of the  routine MaxFits.  This 
routine  estimates  statistics of extremes corresponding to arbitrary  dynamic 
load or response processes. It estimates  statistics of extremes from limited- 
duration  time histories, which  may arise either from experimental tests or 
computationally expensive simulation. A wide range of statistics-e.g., mean, 
standard  deviation,  and  arbitrary fractiles-can be estimated for an extreme 
over an arbitrary duration T .  The  routine also assesses, through  boot- 
strapping  methods,  the  statistical uncertainty associated with these  extremal 
statistics  due  to  the  amount of data at hand. This will consistently reflect the 
growing uncertainty as, for example, we extrapolate to (1) increasingly high 
fractiles of the extreme response; or (2) increasingly long target  durations T 
(relatively to  the length of the  input signal). 

Typical problems that motivated this  study include the  statistical  anal- 
ysis of extreme wave and wind loads/responses, based on limited data from 
either model or field tests. Of particular  interest here is the prediction of 
extreme  bending moments experienced by  wind turbine blades under  station- 
ary Gaussian random field simulations. This  is a topic of ongoing interest 
within the general wind turbine community. An extended discussion of a 
wind turbine example is shown in Chapter 3. Chapter 4 shows the practical 
details of applying MaxFits in the wind turbine  context. In particular, it 
is shown how the use of the fitted models provided in MaxFi t s  can provide 
accurate estimates-in comparison with extensive simulation results-with 
reduced data needs.  Note  also that a complementary offshore application of 
MaxFits ,  to  the extreme offset motions of a floating  “spar buoy” structure, 
has been published in an earlier report (De Jong  and Winterstein, 1998). 
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1.2 Problem Statement: What We Seek 

In general, we focus here on the extreme value X,,, of a random process 
X ( t ) ,  over a duration T that reflects the  stationary  duration of the event of 
interest: 

X,, = maxX(t) ;  0 5 t 5 T (1) 

Minimum  values can generally be  estimated in turn by replacing X ( t )  by 
- X ( t ) ,  l / X ( t ) ,  or another  appropriate  transformation. “Two-sided” max- 
ima, e.g.  of IX(t)  1, are less directly handled unless symmetry  arguments can 
be applied; e.g., treating max 1x1 over duration T as statistically equivalent 
to  maxX over duration 2T. 

Because X,, will v a g  in a random fashion over various histories of 
duration T ,  we seek various statistics of X,,,. A first central  measure  is given 
by its mean value, p~,,,,,. If we supplement this by its  standard deviation, 
OX,,,. we have  sufficient information to fit a fairly general, two-parameter 
distribution function to X,,. Alternatively, we may directly seek various 
fractiles, xp, defined so that 

P[X,a, 5 xP] = p for fixed p ( 2 )  

Here the probability level, p ,  is  specified and  the consistent fractile xp is 
sought. For example, with p=0.50, x.50 is a representative or “median” level, 
which is equally likely to be exceeded or not in a given duration T. Upper 
fractiles of x may be useful to report to cover response variability;  for exam- 
ple, it  has recently been suggested that  the p=.85 or .90- fractile response 
maximum provides a useful estimate, when  used with the 100-year seast- 
ate, to predict the 100-year response (Engebretsen and  Winterstein, 1998; 
Winterstein and Engebretsen, 1998). 

Finally, we also may invert Eq. 2;  i.e.,  seek the probability level p for 
which a specified x is  not exceeded: 

The MaxFits routine 
either Eq. 2 or Eq. 3. 

P[X,a, 5 X] = p for fixed X (3) 

permits  the user to obtain  statistics  in  the form of 
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1.3 Problem  Methodology:  What We Model 

We may seek to model a  random process at a variety of different time scales. 
We begin  here at the finest time scale, and proceed to increasingly global 
time scales. 

Model of the entire process, X ( t ) .  At the finest time scale, we may seek 
to model the cumulative distribution function (CDF) F,(z) of the ran- 
dom process z(t) selected at arbitrary  time t: 

Fz(z) = P[X(t) 5.1 (4) 

In the most common case X ( t )  is assumed Gaussian, in which case 
Fx(z) can be evaluated numerically in terms of only the mean px and 
standard deviation ox of the process X ( t ) :  

in which @(u) is the  standard  normal  distribution  function. 

Model of local peaks, Y .  We may instead choose to ignore all  points of 
the  time history except its local peaks, typically defined as the largest 
peak per upcrossing of the mean level.  For a narrow-band normal pro- 
cess, this  results in a Raylezgh distribution for Y ,  which again  depends 
only the mean px and  standard  deviation gx: 

for y 2 0 only. 

Model of global peaks, 2. Finally, we may instead choose the maximum 
vdue 2 over a still coarser time scale, which comprise multiple local 
peaks (e.g., 10-minute maxima,  l-hour  maxima). As when proceeding 
from the process to local peaks, this  step  has  the  advantage of focus- 
ing more locally on the upper tail of interest,  and the corresponding 
disadvantage of using  less detailed information about  the  time history. 
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In general, the  distribution function of 2 is commonly estimated from 
that of Y as follows: 

Fz(z) = [FY(Z)IN (7) 
in which N here is the number of local peaks (Y values) within the  duration 
over  which 2 extends  (again,  10 minutes, 1 hour,  etc.) Eq. 7 assumes both 
that  the number of peaks, N ,  is deterministic  and that  their levels are mu- 
tually  independent. Neither assumption is strictly  correct, but corrections 
generally become insignificant as we consider extremes in the upper  tails of 
the response probability  distribution. 

In the Gaussian case, combining Eqs. 6-7 yields the result 

E exp ( - N ~ - ( ~ - P X ) ' / ~ U $  ) (8) 
The MaxFits  routine  permits the user to select both which quantity is di- 
rectly input-X(t), Y ,  or 2-and also to choose  which quantity is to  be 
probabilistically modelled: either X ( t ) ,  Y ,  or 2. As noted below,  in the 
special case when the entire process X(t) is to be modelled, we permit only 
a single, "Hermite" distribution model. 

The various distributions available within MaxFits  are described in  sub- 
sections that follow.  Once estimated, Fy(y) or Fz(z )  can  be used to estimate 
the  distribution of X,, in Eq. 1, in a manner analogous to Eq. 7: 

Fx,,, (x) = P[Xmax L x] = [FY (%)INy (9) 
= [Fz(x)lNZ (10) 

If FY has been fit we use  Eq. 9, in  which Ny is the number of local peaks 
expected in  time 2'. If FZ has  instead been fit we use &. 10,  in which Nz is 
the number of global peaks (e.g., number of 10-minute or 1-hour segments) 
in time 5". 

The mean and  standard deviation, px,,, and OX,,,,, corresponding to 
the  distribution of X,, given above is found in MaxFits  by numerical inte- 
gration, using Gaussian  quadrature procedures. 
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1.4 Uncertainty Estimates through Bootstrapping 

Finally, bootstrapping  methods (e.g., Efron and  Tibshirani, 1993) are used 
here to estimate  the  statistical uncertainty associated with  any/all of our 
estimated  statistics of Xmm. The method  is conceptually straightforward, 
generating multiple “equally likely” data sets by simulating, with replace- 
ment, from the original data set. Thus some of the  data values will be re- 
peated  multiple times, while others will be  omitted,  in any single bootstrap 
sample (which is of the same size as the original data  set).  The same esti- 
mation procedure performed for the original data set  is  repeated for  each of 
the  bootstrapped samples, and  the net statistics on the results  are collected 
and  reported. 

The  bootstrap method  is  “non-parametric” by definition, in  that  it oper- 
ates  with  no  additional information beside the  actual  data values. Alterna- 
tive approaches might fit a  parametric model, either  statistical or physical, 
to generate  additional “equally likely” samples from  which to infer sampling 
variability levels.  Such approaches may confer advantages in some cases but 
are generally problem-specific; the  bootstrap method is adopted here primar- 
ily due to  its virtue of generality. 

1.5 Distribution Fitting: Relation to Other Algorithms 

Central to  this routine  is a core group of algorithms used to probabilistically 
model various aspects of the dynamic process of interest  noted above: the 
process X ,  its local peaks Y ,  or its global peaks 2. The  set of distribution 
types available are, with the sole exception of the  4moment Hermite model, 
the same as those available in the  routine FITS, as documented most recently 
in  RMS Report 38 (Manuel et  al, 1999). Again apart from the Hermite case, 
this  distribution set was  chosen to provide relatively robust fits, preserving 
two or at most three moments. 

In this sense, both FITS and MaxFits are intended to complement the pre- 
viously distributed  routine, FITTING, documented in RMS Report 14 (Win- 
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terstein et al, 1994). The FITTING routine  implements relatively complex, 
four-moment distribution models,  whose parameters  are fit with numerical 
optimization  routines. While these four-moment fits can be quite useful and 
faithful  to  the observed data, their complexity can make them difficult to 
automate within standard fitting  algorithms,  and  repeated  application over 
sets of bootstrapped samples. As noted above, however, we do include the 
4moment Hermite distribution as implemented in FITTING, in view of its 
growing  use in a variety of applications. 

To focus on upper tails of interest, the user can also supply an  arbitrary 
lower-bound threshold, xlw, above which a shifted version of a positive ran- 
dom variable model-exponential, Weibull, or quadratic Weibull-is fit. (In 
estimating  statistics of the maximum response, the program  automatically 
adjusts for the decreasing rate of response events as the threshold qaW is 
raised.) 
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1.6 Available Distribution  Types 

Specific distributions  currently included in MaxFits to estimate F,(x) include 
the following, as catalogued by the distribution index IDIST: 

IDIST=l: 

IDIST=2: 

IDIST=3: 

IDIST=4: 

IDIST=5: 

IDIST=6: 

IDIST=7: 

IDIST=8: 

IDIST=9: 

Normal Distribution 

Lognormal Distribution 

Exponential  Distribution 

Weibull Distribution 

Gumbel Distribution 

Shifted Exponential  Distribution 

Shifted Weibull Distribution 

Quadratic Weibull Distribution 

Shifted Quadratic Weibull Distribution 

IDIST=10: Four-Moment Hermite Distribution 

IDIST=11: Hermite Distribution Model of Peaks, based on four moments Of 

the underlying process 

The  distributions IDIST=l through 5 and 8 are all fit to statistical  moments 
of a l l  available data.  The single-parameter exponential preserves only the 
mean m, of the  data, while the normal, lognormal, Weibull, and Gumbel 
preserve both the mean and  standard deviation uz estimated from the  data. 
The  quadratic Weibull preserves the first three  moments of the  data (mean, 
standard  deviation,  and skewness). The Hermite model (IDIST=10) is per- 
haps the most general, seeking to preserve the first four moments of the  data 
(mean,  standard deviation, skewness, and kurtosis). The Hermite model of 
peaks (IDIST=11) is special, in that  it takes as input  the first four moments 
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of the underlying random process X ( t ) ,  and provides a consistent  distribution 
of the local peaks Y .  

Most of the one-sided distributions above (exponential, Weibull, and 
quadratic Weibull) are also generalized here by shifting (IDIST=6, 7, and 
9). These impose a user-defined  lower threshold xl,, ignore data below xl,, 
and fit standard exponential/Weibull/quadratic Weibull models to x - xl, 
based on observed moments. These  are  perhaps the most relevant distribu- 
tions when modelling local peaks, Y, which generally have a broadly skewed 
distribution away from a well-defined  lower bound. 

The result  aims to provide the user with a suite of smooth  probability 
models, to be fit throughout the body of the available data.  It does  not 
directly address various special topics of data fitting; e.g., selective tail fit- 
ting,  fitting bimodal models to hybrid data,  etc. Some of these issues can 
be addressed, in a limited way, through the use here of the shifted mod- 
els (IDIST=6, 7, and 9). In this way the user can focus the distribution 
modelling resources on the extreme response levels of interest. 

More  specific tail-fitting procedures have not been given here, because 
optimal use of these may be rather problem-specific. In  the same vein our 
extrema1 models are limited here to so-called “Type I” behavior, leading 
to (shifted) exponential  distributions of peaks over a given threshold  and 
to Gumbel distributions of annual  maxima. Type I1 and I11 distributions 
are ill-suited to our moment fits, due to potential  moment divergence (Type 
11) or to  the difficulty in predicting truncated  distributions  (Type 111) from 
moment information. 

1.7 Limitations 

An important  limitation arises when the user seeks to model the  entire pro- 
cess X ( t ) ,  as opposed to directly modelling its local peaks, Y, or its global 
peaks, 2. (As discussed in section 4.1, this choice is  made by choosing the 
input  parameter DATASWITCH=l.) In this case, MaxFits requires a model of 
local peaks, Y ,  whose distribution is consistent with moment statistics of 
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the random process X@). The only such distribution available in MaxFi t s  
for this purpose is IDIST=11; i.e., a model of local peaks consistent with a 
four-moment cubic ( “Hermite”)  transformation of a Gaussian process. As a 
result, if the user selects DATASWITCH=l, the routine  automatically forces the 
distribution choice IDIST=11. 

Also, in this case  when the user models the entire process X ( t ) ,  we do 
not  permit the bootstrapping  option, as this would distort  the time-scale of 
variation of X ( t )  if its values  were  merely sampled with replacement over the 
time-axis. 

Finally, NMAX, the maximum number of data, has been set to 45000. 
This has been set in a PARAMETER statement  in  the main driver program 
to MaxFits .  This  is a rather  arbitrarily selected limit,  and  can be reset by 
the user without  fundamental consequence. 
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2 Distribution  Fitting:  Routines 

The  routine MaxFits has been separated  into  three files containing  Fortran 
source code: maxf . f contains the main program, aux-f  its.  f contains am- 
iliary subroutines .used  by FITS, and aux-maxf . f contains all additional  sub- 
routines used  by MaxFits. 

Specifically, the  fitting algorithm includes the following set of subroutines, 
contained in aux-f  its. f :  

CALMOM Estimates the mean m,, standard deviation a,, skewness a3 and 
kurtosis a4 from an  input set of data. These are based on unbiased 
estimates of the cumulants kl=mz, k2=ai, k3=a34, and k4=(a4-3)ai. 
If the user includes an  optional lower limit $lour, moments of the shifted 
variable (z - zlm)+=max(O, z - %lour) are estimated. 

DISPAR: Based on the sample moments estimated in CALMOM,  DISPAR seeks 
a consistent set of distribution  parameters.  The  interpretation of these 
parameters  depends on the  distribution  type selected by the user. A p  
pendix A includes a complete listing of the  distribution  functions  and 
their  parameters. 

GETCDF: For the user-defined distribution  type with the  distribution  param- 
eters from DISPAR, this routines  estimates the cumulative  distribution 
function value, F(z)=P[Outcome < z] for given input z value. 

FRACTL: For the user-defined distribution  type  with  the  distribution  param- 
eters from DISPAR, this routines  estimates  the  fractile z corresponding 
to a specified input value of the probability p=F(z)=P[Outcome < x]. 

QDMOM: Uses Gaussian quadrature to estimate  the first four moment of the 
theoretical fitted distribution.  These can be compared with the  sample 
moments from the  data, as given by CALMOM, to verify the accuracy of 
the fitted model-and in the case of the higher moments  not used in 
the original fitting, to test  its accuracy. 

10 



The routines GETCDF and FRACTL, which supply general distribution func- 
tions  and  their inverses, may also be useful in other  stand-alone  applications; 
e.g., to create a distribution  library for standard  FORM/SORM or simulation 
analyses (Madsen et al, 1986), or for use with new  Inverse FORM  algorithms 
(Ude  and  Winterstein, 1996). 

The additional  subroutines contained in aux-maxf . f  are as follows: 

DATAPREP: Prepares the  data for the analysis. The user specifies whether 
the  input  data represent the entire process X ( t ) ,  the local peaks Y, 
or the global peaks 2. DATAPREP selects, from the  input information, 
the appropriate data values to be  retained for purposes of probabilistic 
modelling/fitting. 

DISTINT: Finds  the mean and  standard  deviation, px,,, and OX,,,, of the 
maximum value X,, by numerical integration, using Gaussian  quadra- 
ture methods. 

RESAMP: Generates a new, “equally likely” dataset of the same size from the 
original data by sampling with replacement. This is used to produce 
bootstrap  estimates of the  standard deviation of our estimates. 

CALCES: Handles administrative work  involved with bootstrapping, such 
as keeping track of running sums, etc. 
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3 Estimating  Extreme Loads on Wind Tur- 
bines 

This  chapter considers how the foregoing probability models can be applied 
to estimate  extreme bending loads on wind turbines. The  database we use 
contains  multiple 10-minute simulations of Gaussian wind fields, and corre- 
sponding in- and out-of-plane bending moment loads on a specific horizon- 
tal axis wind turbine  (the Aerodynamics Experiment  Phase I11 turbine; see 
Madsen et al, 1999 and  its associated references). The  turbine  has a rotor 
diameter of 10m and a nominal rotor speed of 1.2 Hz. It is a three-bladed 
turbine with a hub height of 17m. 

A total of 100 10-minute simulations have been performed for various 
choices of the mean wind speed v. These use a general-purpose, commercially 
available structural analysis code (ADAMS), linked with special-purpose rou- 
tines to estimate  aerodynamic effects (Hansen, 1996). We focus here on three 
cases: 

1. V=14m/s,  typical of nominal or “rated” wind conditions; 

2. V=20m/s,  the maximum or “cut-out” wind speed at which the  turbine 
operates;  and 

3. V=45m/s,  an  extreme wind speed (e.g.,  50-year level) during which 
the  turbine is parked. 

The last case is somewhat analogous to extreme winds on buildings and 
other  stationary  structures, and we may expect similar  statistical behavior 
in this wind turbine analysis. The lower-speed cases, however, correspond 
to operating  conditions, in which the  turbine blades rotationally  sample  the 
stationary wind field.  Also notable here are  the  systematic effects of gravity 
on in-plane bending: a strong sinusoidal trend is induced at the  turbine 
operating speed. We investigate here whether various probabilistic response 
models can  remain  accurate in the face of these special features that wind 
turbines  exhibit. 
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In particular, we study here the behavior of two different types of proba- 
bilistic models: (1) Hemite models, which  seek to statistically  characterize 
the entire  random process history by a limited set of its moments; and (2) 
quadratic Weibull models,  which  seek to statistically characterize only the 
process peaks over a specified threshold (in this case, through corresponding 
moments of these peak values). Recall that  the MaxFits routine implements 
both  types of models. 

3.1 Numerical Results 1: Sample  Time Histories and 
Correlations 

Figure 1 shows simulated wind and load time histories from one 10-minute 
simulation.  The  uppermost figure  shows the  entire wind input;  the remaining 
three show enlarged, 10-second portions of the wind and load histories during 
which the wind input is maximized. (This maximum wind episode does  not 
generally produce the maximum bending loads.) 

To identify peaks from the response histories, we define a peak here as 
the largest value of the history between  successive upcrossings of its mean 
level. Figure 1 shows the mean levels of each history by horizontal lines, and 
the circled response points indicate the set of peaks that are  obtained.  The 
out-of-plane (flap) bending loads  are found here to roughly follow the wind 
speed process, although  additional high-frequency content is observed. Note 
also that our definition of peaks (largest response per upcrossing of the  mean) 
serves to filter out many of these high-frequency response oscillations. The 
edge bending loads are of less interest in this case, showing small oscillations 
about  the mean load. 

Figure 2 shows similar simulated wind and load time histories, now from 
a wind speed V=20m/s  during which the  turbine is  operating. Now the 
effect of gravity is clearly seen in the edge bending history, which  shows 
a strong sinusoidal component at the operating speed of roughly 1.2 Hz. 
The flap bending history also shows systematic  variations at this frequency, 
although it is combined with significantly larger high-frequency content here 
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than in the edgewise  case. Again, our peak identification method removes 
some of this high-frequency effect.  Note in the edgewise case, however, that a 
somewhat anomalous  effect  can arise. While only one “large amplitude”  peak 
is usually found per blade revolution, other “secondary”, near-zero peaks 
are sometimes also identified. This arises from the high-frequency small- 
amplitude oscillations shown  by the edgewise loads about  their  mean level. 
The resulting distribution of all peaks is found in such cases to  be bimodal; 
i.e., to possess a probability  distribution model with several distinct regions 
of relatively high probability  (“modes”). Because our models are unimodal- 
i.e.,  designed to be fit to  the single most important probability “mode”-we 
shall find it useful in these edgewise  cases to pass a higher threshold (above 
the mean) to exclude these secondary peaks. We shall return  to  this issue in 
the next section. 

Finally, recall that  to estimate  the  distribution of the largest peak,  it is 
common to assume that successive peaks are mutually  independent. This is 
the assumption inherent in our current  implementation of MaxFits (see, for 
example, Eq. 7). To  test  this assumption, Figures 3 through 6 show scatter- 
plots of ( Y k , Y k + J ,  i.e., all pairs of adjacent  peaks Y k  and Yk+l .  It is clear 
from the plots, and  the  reported correlation coefficients they  contain, that  the 
assumption of independence should not induce large modelling errors in this 
application.  This conclusion may differ in other  applications; for example, 
the lightly damped slow-drift  response of some moored marine  structures. 

3.2 Numerical Results 2: Observed vs  Predicted Dis- 
tributions of Peaks 

We  now test the ability of a three-moment, quadratic Weibull distribution 
to accurately model the simulated response peaks across various wind con- 
ditions. For illustration purposes, we again show results for the first (of the 
100) 10-minute simulations. (A sample input and output file, described in 
the next chapter,  illustrates  the use of MaxFits to derive some of the results 
shown here.) 
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We again consider first the parked turbine  (V=45m/s), whose statistical 
behavior may be expected to be most  well-behaved. Figure 7 shows the 
cumulative probability distribution function Fy(y)=P[Y 5 y] of all peaks, 
as estimated directly from the  data. Specifically, for both flap and edge cases, 
the peaks yi are first ordered so that y1 5 y2 5 ... 5 yn, and associated with 
the cumulative probabilities pi=Fy(yi)=i/(n + 1). Results  are  plotted on a 
distorted “Weibull” scale, which plots y not versus Fy(y) but  rather versus 
- ln[l - Fy(y)]. The results, when  viewed on log-log scale, should appear as 
a straight line if the  data follow a Weibull probability  distribution model. 

The  data here show slightly positive curvature on this Weibull scale. This 
suggests the value of the  quadratic Weibull model, which yields a quadrat- 
ically varying distribution when plotted on the Weibull scale of Figure 7. 
This  quadratic model is shown  here to accurately follow both  the flap and 
edge load data in this case. 

- Figure 8 shows similar Weibull scale plots of flap and edge loads in the 
V=20m/s case, during which the  turbine is rotating. While the  distribution 
of flap load peaks remains smooth,  the  distribution of edge load peaks shows 
a sharp change in behavior, with  a “corner” located at roughly y=l. This is 
a consequence of the bimodal character of the edge load peaks, as discussed 
earlier. No smooth, single-moded distribution model can  capture  both  the 
large, one-per-revolution primary peaks and  the  small-amplitude, secondary 
peaks. For both  ultimate  and  fatigue load modelling purposes, however, 
these secondary peaks are of little consequence. We therefore seek to model 
the shifted peaks, Y - 1.5; i.e., we remove all peaks below  1.5, and  report 
the shifted values yi=yi - 1.5 of the remaining peaks. The shifting is used to 
conform with quadratic Weibull models, which generally assigns probability 
to all outcomes y’ 2 0. Figure 9 shows the  quadratic Weibull model to 
accurately follow the shifted edge loads, Y - 1.5. (Note that  the  optimal 
choice of shift parameter may require some trial  and error; e.g., comparing 
goodness-of-fit measures. This is a topic of ongoing study. Note also that in 
using these models to predict extremes, the shift value must  eventually  be 
reinstated,  to  report loads in units consistent with  their  input values. This 
is done automatically in the MaxFits routine). 
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3.3 Numerical Results 3: Estimating 10-Minute Mean 
Maxima 

Finally, we show predicted statistics of Z=max[z(t)],  the maximum response 
over a 10-minute period.  In  particular, we  seek here to estimate mz, the 
mean value of Z to be expected in an  arbitrary 10-minute period. A simple, 
“raw” estimate of mz can be found by averaging the 100 observed maxima, 
Zi, from each of the 10-minute simulations: 

1 100 

Alternatively, we can  estimate mz by fitting one of the foregoing models; e.g, 
a quadratic Weibull model to all response peaks (perhaps above a shifted 
level). Here we fit such models separately to each of the 100 simulations. 
Denoting pi as the  estimated value of rnz from simulation i (z=l, ..., loo), we 
may form an analogous average of these  estimates: 

1 loo 

One advantage of the simple, “raw” estimate z is that  it is always “unbi- 
ased”; i.e., correct on average. A potential  disadvantage is that because it is 
based on only the single observed maximum in each 10-minute history, it may 
show considerable variability. By instead  fitting  probability models to form 
estimates p, we hope to achieve results that (1) remain  nearly unbiased and 
(2) show reduced scatter (specifically, standard  deviation) compared with 
the raw estimate z. To quantify  these effects we define two factors: a bias 
factor, defined as - 

Bias (B) = = /I 
z (13) 

and a sigma reduction  factor, defined as 

Sigma Reduction (SR) = 9 (14) 

We hope to achieve bias  factors of nearly unity, and  sigma  reductions f a r  less 
than unity. 

02 
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Figures 10 and 11 show bias and SR factors, respectively, for the parked 
turbine  (v=45m/s).  Three probability models are fit: a 3-moment quadratic 
Weibull model ( “Peak  Unshifted”),  and  both 3- and 4-moment Hermite mod- 
els of the complete random response process ~ ( t ) .  (The four moment model 
has become the option of choice for general use. The three-moment sim- 
plification has been used in some mildly nonlinear wave applications,  and 
has been recently been derived independently for wind turbine  applications 
(Madsen et  al, 1999)). Note that all models yield roughly unbiased results 
(B near 1.0). The 3-moment models generally achieve a sigma reduction of 
0.5 or less. As might be expected, inclusion of the  4th moment,  with its 
attendant uncertainty, leads to higher values of afi and hence SR. 

Figures 12-15  show analogous bias and SR factors for the  operating wind 
speed conditions, v=20m/s and 14m/s. Here the random process (Hermite) 
models, which are intended to model rather general stochastic behavior, fail 
to accurately  capture the  rotating  nature of the blade response. Biases of 
about 10% are found from conventional (4moment) Hermite models, with 
considerably larger biases produced by the simpler 3-moment Hermite mod- 
els. 

In contrast,  the  quadratic Weibull (“Peak”) models remain essentially 
unbiased in all cases.  For  cases of edge loads, models have  been fit both  to 
the original data yi (“Unshifted”) and the shifted data yi - 1.5 (“Shifted”). 
For this  particular choice of duration  (T=lO-minute  maxima), even the un- 
shifted models appear reasonably accurate. Over longer durations, however, 
estimates become increasingly tail-sensitive, and  the use of the shift has been 
found more beneficial in avoiding bias. Note, also, that as in the parked case, 
sigma  reductions for these peak models all remain at roughly 0.5 or less. Nu- 
merical data is presented in Table l .  

3.4 Summary 

This  chapter  has  demonstrated  the use of both  random process and random 
peak models to estimate  extreme wind turbine loads. In particular, it has 
applied 3-moment random peak models (quadratic Weibull), and 3- and 4 
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moment random process models (Hermite).  Both the  quadratic Weibull and 
(4-moment) Hermite models are available within MaxFits. A sample  input 
and  output file, described in the next chapter,  illustrates how the  routine can 
be used to derive some of the results shown here. 

For a parked wind turbine experiencing 50-year winds, all models have 
been  shown to be nearly unbiased (Figure 10) and  to achieve a significant re- 
duction in our  uncertainty  (Figure 11) in estimating m ~ ,  the mean 10-minute 
maximum. For rotating blades during  operation (at lower wind speeds),  the 
random process models can show notable bias: roughly 10% for the 4-moment 
models, and appreciably more if only 3 moments are used (Figures 12-15). 
In contrast, the random peak models remain consistently accurate,  and con- 
sistently beneficial (i.e., in reducing uncertainty) in all cases. This suggests 
that by modelling not the entire  time history but  rather  its  set of peaks, 
enough information  about the  rotating  nature of the load process is retained 
to permit  accurate  estimates of extreme behavior. 
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Figure 1: Simulated wind and blade loads; V=45m/sec. 
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Correlation Between Successive Flap Bending  Peaks 

Figure 3: Correlation between  successive flap response peaks; v=45m/sec. 
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Figure 4: Correlation between  successive edge response peaks; v=45m/sec. 
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Figure 5: Correlation between  successive flap response peaks; v=20m/sec. 
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Figure 6: Correlation between  successive  edge response peaks; v=20m/sec. 
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Figure 7: Probability  distribution of response peaks; v=45m/sec. 
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Figure 10: Bias = p/z, where jZ is the average estimate of the mean 10-min 
maximum over the 100 simulations. z is the average of the observed 10-min 
maxima. The wind speed is V=45m/sec. 
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Figure 12: Bias = p/Z, where p is the average estimate of the mean 10-min 
maximum over the 100 simulations. z is the average of the observed 10-min 
maxima. The wind speed is V=20m/sec. 
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Figure 13: Sigma ratio aJaz between estimated  and observed 10-min maxes; 
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Figure 14: Bias = p/z, where p is the average estimate of the mean 10-min 
maximum over the 100 simulations. 7 is the average of the observed 10-min 
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I Haw I 4rn-Hermite I 3m-Hermite I Peak Predictionl Peak  Prediction] 
Data Shift = 1.5  Unshifted Prediction Prediction 

20dsec Operating 

0.088 3.289  0.052  3.392  0.017 4.388 0.015 3.008 0.164 3.326 Bending 
Edge 

StdDev Mean  StdDev  Mean  StdDev  Mean  StdDev Mean  StdDev Mean 

FlaD 
Bending I 5.0921  0.4941  5.524)  0.3271  4.5171  0.1211  5.0441  0.2411 --- I -I 

14dsec Operating1 I I I I I I I I 
Edge 
Bending 

__- --- 0.182  3.978  0.098  3.540  0.238 4.41 1 0.330  3.987 Bending 
Flap 

0.073 2.878 0.060  2.876 0.011 4.244 0.010 2.783 0.112  2.884 

Edge 
Bending 4.265  0.293  4.392 0.159 

I Flap 
-__ --- 0.102 4.234 0.074 4.319 

45dsec Parked 

I Haw I 4rn-Hermite I 3m-Hermite I Peak Predictionl Peak  Prediction1 
Data Shift = 1.5  Unshifted Prediction Prediction 

Odsec Operating Bias ISR Bias ISR Bias ISR Bias ISR Mean  IStdDev 
Edae I 
BeEding 

--- --- 0.487  0.991  0.245 0.887  0.660 1.085 0.494  5.092 Bending 
Flap 

0.538- 0.989  0.318 1.020 0.103 1.319  0.092  0.904 0.164 3.326 

14mlsec  Operating 
Edge 
Bending 

--- 0.550 0.998 0.297 0.888  0.721 1.106 0.330 3.987 Bending 
Flap 

0.651 0.998 0.538  0.997 0.100 1.472  0.092  0.965 0.112 2.884 

45dsec Parked 
--- 

Edge 
Bending 

--- --- 0.469 1.017  0.392 0.996  0.845 1.004 1.577 20.000 Bending 
Flap 

--- 0.347  0.993  0.253  1.013  0.543  1.030 0.293 4.265 --- 

Table 1: Numerical results, observed and  estimated  10-minute  extremes. 
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4 Input  Format  and Wind  Turbine  Example 

We will illustrate  the use of MaxFits here through a simple example, drawn 
from among the wind turbine simulation cases discussed  previously. In  par- 
ticular, we consider here the flap bending response of a parked wind turbine 
blade. The  input is discussed  in the following paragraph. The  output is dis- 
cussed in the next section. The  data set analyzed here contains ten minutes 
of response data for a parked wind turbine blade subjected to a simulated 
Gaussian wind  field with 45m/s mean wind speed and 15% turbulence inten- 
sity (C.O.V. = .15). 

The  input file is stored in wind.dat. This file corresponds to  the flapwise 
bending time series  shown  in Figure 1. 

4.1 Runtime  Input: Batch Mode 

We desire the following situation: 

1. Results should be written to a file named wind. out 

2. Distribution results are  to be written for 20 probability values ranging 
from 1/20 to 1-1/20. 

3. The  time history data is stored in the file wind. dat 

4. The user desires to fit a shifted quadratic Weibull distribution ( IDIST=9) 
to these data. IDIST=8 should only be used if it is certain the mean of 
the underlying process equals 0. If this is not the case the fit should be 
shifted over the mean, or any other  threshold if preferred.( Although 
it is  inconvenient for the user to have to determine the mean of the 
process, there is no other  method. The only way MaxFits $an deter- 
mine the mean is if the entire process is  input. In this case if the user 
specifies a value of  7.896 for XLOW, MaxFits will  use the mean of the 
process as threshold.) 
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5. The user  desires to determine the accuracy of the results by producing 
100 bootstrap estimates of all the predictions. 

The type of input provided is specified by the INSWITCH variable. The 
available options  are: 

1. The entire process 

2. The local peaks of the process 

3. The global peaks of the process (the number of global  peaks for equal 
time segments is specified  with the NSEG variable). 

The type of data we wish to use  for the analysis is specified with the 
DATASWITCH variable, which has  the  same options as the INSWITCH variable. 

The desired output can be selected with the OUTSWITCH variable,  for which 
the user can select the following  values: 

1. The user inputs a lower limit for the  input variable, an  upper  limit  and 
a  step size (XMIN, XMAX, DX). MaxFits will output  the probability of 
exceedence  for  each  specified response. Bootstrapping will  give a mean 
and  standard  deviation for the response. Note: Selecting X M I N  too low 
or XMAX too high may cause underflow errors. Also units are free, as 
long as they  are  consistent. 

2. The user inputs specific response values, by first specifying  the  number 
of inputs (NOUTPTS), and  then the response for  which the probability 
of exceedence  will  be calculated.  Bootstrapping will  give a  mean  and 
standard  deviation for the response. 

3. MaxFits determines  the  entire  distribution of the  probability of excee- 
dence for a specified number of points.  Probabilities will range from 
1/N to 1-l/N. Bootstrapping will  give a mean and  standard deviation 
for the  probability of exceedence. 
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4. The user inputs specific probability levels,  by first specifying the num- 
bers of inputs (NOUTPTS), and  then the probability of exceedence for 
which the associated response will be  calculated.  Bootstrapping will 
give a mean and  standard deviation for the probability of exceedence. 

The previous options will cause the  input lines to differ, depending on 
the  output specified  on the second  line of the  batch file. Examples of input 
for all 4 possible output options  are given. The batch file for the example is 
named wind.  in, and  contains the following input lines: 

wind.  out 
1 2 3  
20 
10.  10. 
100 
wind.  dat 
9 
7.896 

: Name  of  output  file 
: INSWITCH,DATASWITCH,  OUTSWITCH 
: N, number  and  range  of  probability  levels , 1/N,  1-l/N 
: Duration  of  input  file  and  target  period 
: Number  of  bootstrap  samples 
: Name  of  input  file 
: Distribution  type  (IDIST),  see  Section 1.6 for  definitions 
: XLOW,  shift  only  for  shifted  distributions 

Alternatively the following batch files can be used for OUTOPT = 1,2,4 
respectively: 

wind.  out 
1 2 1  
8 .  20. 1. 
10. 10. 
100 
wind.  dat 
9 
7.896 

wind.  out 
1 2 2  

: Name  of  output  file 
: INSWITCHIDATASWITCH,  OUTSWITCH 
: XMIN, XMAX, DX, 
: Duration  of  input  file  and  target  period 
: Number of bootstrap  samples 
: Name  of  input  file 
: Distribution  type  (IDIST),  see  Section  1.6  for  definitions 
: XLOW,  shift  only  for  shifted  distributions 

: Name  of  output  file 
: INSWITCH,DATASWITCH,  OUTSWITCH 
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3 

15. 
20. 
Xnoutpts 

10. 10. 
100 
wind.  dat 
9 
7.896 

wind.  out 
1 2 4  
3 

0.01 
0.001 
0.0001 
Pnout , pt o 

10. 10. 
100 
wind.  dat 
9 
7.896 

: NOUTPTS, no. of  exceedence  probabilities  to  be  calculated 
: First  fractile  for  which P will  be  calculated 
: Second  extreme  for  which P will  be  calculated 
: Third  extreme  for  which P will  be  calculated 
: Nth  extreme  for  which  MaxFits  will  calculated  the  probability 

: Duration  of  input  file  and  target  period 
: Number  of  bootstrap  samples 
: Name  of  input  file 
: Distribution  type  (IDIST),  see  Section 1.6 for  definitions 
: XLOW,  shift  only  for  shifted  distributions 

of  exceedence 

: Name  of  output  file 
: INSWITCH,DATASWITCH,  OUTSWITCH 
: NOUTPTS, no. of  probabilities  for  which  fractiles  will  be 

: First  probability  of  exceedence 
: Second  probability  of  exceedence 
: Third  probability  of  exceedence 
: Nth  probability  of  exceedence  for  which  MaxFits  will 

: Duration  of  input  file  and  target  period 
: Number  of  bootstrap  samples 
: Name  of  input  file 
: Distribution  type  (IDIST),  see  Section 1.6 for  definitions 
: XLOW,  shift  only  for  shifted  distributions 

calculated 

calculate  the  fractile 

By typing  the following command: 

maxfits C wind.in 

a file named wind.  out will  be written whose content is discussed  in the next 
section. During the execution the user will be  prompted for terminal  inputs. 
These  can simply be ignored (or directed toward the null device) in this batch 
mode  operation. 
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4.2 Runtime  Input:  Interactive Mode 

If the user simply  types MaxFits, he or she will prompted for each input, 
which is the same as what  is described in the previous paragraph.  The 
prompts  are accompanied  by interactive  explanations that will list the  options 
the user has. The interactive  mode may  be particularly useful for first-time 
users. (The  text  with  the  input  prompts is written  to  the logical unit IOERR, 
which is set  to 0 in  the driver  program. The user can reset this if necessary.) 

The following is a screen dump of the  terminal  input  and  the user’s re- 
sponse. Lines beginning with “>” are  input  prompts  generated by the pro- 
gram. Other lines are  the user’s response, which should match  the  input 
given  in the first batch file in the previous paragraph. 

> ** ENTER  FILENAME WHERE OUTPUT  WILL BE WRI’ITEN ** 
> ENTER OUTPUT FILENAME: 
wind. out 

> ** ENTER  THE TYPE OF  DATA  IN  THE  DATA  FILE, 
> THE TYPE OF  DATA  TO BE USED FOR THE ANALYSIS, 
> AND  THE OUTPUT SWITCH: 

> INSWITCH/DATASWITCH = 1 . . .  POINTS  OF THE PROCESS 
> INSWITCH/DATASWITCH = 2 . . .  LOCAL PEAKS 
> INSWITCH/DATASWITCH = 3 . . .  GLOBAL  PEAKS 
> DATASWITCH >= INSWITCH 

> OUTSWITCH = 1 . . .  ENTER  XMIN,XMAX,DX -> Pl..PN 
> OUTSWITCH = 2 . . .  ENTER  Xl,X2, . . . ,  XN -> Pl..PN 
> OUTSWITCH = 3 . . . ENTER  NP -> Xi. .PN 
> OUTSWITCH = 4 . . .  ENTER Pl,P2, . . . ,  PN -> Xl..PN 

> ENTER INSWITCH,DATASWITCH,OUTSWITCH: 
1 2 3  
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> ** ENTER  NUMBER  OF  PROBABILITIES  FOR THE DISTRIBUTION OF XMAX 
20 

> ** ENTER  THE  DURATION  OF  THE  DATA  FILE 
> AND THE TARGET  DURATION  FOR  THE  PREDICTION: 
> ASSURE  TTARGET  IS  SUFFICIENTLY  LONG 
> TO  CONTAIN  AT  LEAST  ONE  CYCLE 

> Ttot  ,Ttarget : 
10. 10. 

> ** ENTER  THE NUMBER OF BOOTSTRAP  SAMPLES TO BE TAKEN: 
> FOR NO BOOTSTRAPPING  ENTER  bsN=O 
> bsN: 
100 

> ** ENTER  FILENAME WHERE DATA ARE STORED, 

> ENTER INPUT  FILENAME: 
wind.  dat 

> ** ENTER  IDIST  =INDEX OF DISTRIBUTION  TYPE  TO BE FIT 
> CURRENT  OPTIONS: 
> IDIST = 1 . . . NORMAL 
> IDIST = 2 . . .  LOGNORMAL 
> IDIST = 3 . . .  EXPONENTIAL 
> IDIST = 4 . . .  WEIBULL 
> IDIST = 5 ... GUMBEL 
> IDIST = 6 . . .  SHIFTED  EXPONENTIAL 
> IDIST = 7 . . .  SHIFTED WEIBUU 
> IDIST = 8 . . .  QUADRATIC  WEIBULL 
> IDIST = 9 . . .  SHIFTED  QUADRATIC  WEIBULL 
> IDIST = 10 . . .  HERMITE  (PROCESS) 
> IDIST = 11 . . .  HERMITE  (PEAKS) 

> ENTER IDIST: 
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> YOU  HAVE  SELECTED A SHIFTED  DISTRIBUTION  MODEL 

> ** ENTER XLOW =LOWER  BOUND  THRESHOLD,  BELOW  WHICH 
> ALL  DATA  WILL BE IGNORED 
9 
> ENTER XLOW : 
7.896 

4.3 Output Format  and  Wind  Turbine Example 

Below is the  output file wind. out that resulted from the manual input listed 
in the previous paragraph. The format is the same for all output options. 
Note that  the output  is  formatted such that  it can  be  directly  plotted using 
gnuplot. The lines starting with # will be treated as comments by gnuplot. 

The first section echoes the  input,  and how  much data was actually used 
for the analysis. 

The second section provides summary  statistics for the  data file consid- 
ered. These include on the first line the sample moments from the  data,  and 
on the second line the  standard deviation of the  bootstrap predictions. 

The  third section gives the moments that are implied by the  fitted distri- 
bution in the same way as they are given  for the original data. 

The  fourth section reports  the distribution  parameters. The  standard 
deviation of the  bootstrap predictions is given  on the second the.  The def- 
inition of the distribution  parameters is  given  in Appendix A of the fits 
manual (Manuel et al, 1999). 

The fifth section gives the mean and  standard deviation of the  distribution 
of the extreme value in the  target period. The  bootstrap  standard  deviations 
of these values are  reported on the second  line. 
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The last section reports  the  actual  distribution of the extreme value in 
the  target  period.  The first column reports  the fractiles that were calculated 
from the specified probability levels  in the  input.  The second column reports 
the  bootstrap  standard deviation of each predicted fractile,  and  indicates 
the accuracy of the prediction. The  third column reports  the probability 
levels that were input by the user. The  fourth column reports  the  standard 
deviations of, in this case, the 100 predictions of the probability levels. As 
the probability levels  were input  here  this column consists of zeros. 

# 
# RESULTS  FOR : wind. dat 
# TIME  DURATION  OF  DATABASE:  10.00 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
1) 

# 
# 
# 
# 

# 

CONTAINING:  15000  POINTS  OF  THE  PROCESS 
TARGET  TIME  DURATION:  10.00 
DIST  TYPE  SELECTED:  SHIFTED  QUADRATIC W 

FITTED  TO:  1041  LOCAL  PEAKS 
NO. OF  BOOTSTRAP  SAMPLES:  100 

** N O T E :  MOMENTS,  DIST  PARMS  APPLY HERE TO X-XLOW;  XLOW=  0.7896E+01 

MOMENTS  FROM  SAMPLE  DATA ( MEAN, SIGMA, SKEWNESS,  KURTOSIS) 
data: 0.2012E+Ol 0.1806E+Ol O.l537E+Ol 0.5965E+01 
s tdv:  0.5404E-01 0.6229E-01 0.1127E+00 0.6584E+00 

MOMENTS  FROM  FITTED  DIST ( MEAN, SIGMA,  SKEWNESS,  KURTOSIS) 
data: 0.2012E+01  0.1807E+Ol  0.1536E+Ol 0.6179~+01 
Stdv: 0.5403E-01  0.6224E-01  0.1129E+OO  0.6058E+00 

DISTRIBUTION  PARAMETERS  (SEE  DOCUMENTATION  FOR  DEFINITION) 
data: -0.712lE-01  0.2166E+Ol  O.l041E+Ol  0.8963E+00  -0.2372E-01 
StdV: 0.4817E-01  0.1350E+00  0.7607E-02  0.2072E-01  0.1989E-01 
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# 
# 
# 
# data: 
# stdv: 
# 
# 
# X 

0.1772E+02 
0.1807E+02 
0.1833E+02 
0.1855E+02 
0.1874E+02 
0.1892E+02 
0.1910E+02 
0.1927E+02 
0.1944E+02 
0.1961E+02 
0.1979E+02 
0.1998E+02 
0.2018E+02 
0.2040E+02 
0.2063E+02 
0.2090E+02 
0.2122E+02 
0.2161E+02 
0.2214E+02 
0.2301E+02 

MEAN STDV (of MAX response i n  Ttarget): 
19.97  1.57 
0.63  0.18 

As the  quadratic Weibull distribution uses only three  parameters, only the 
first three  statistical moments can be reproduced by the fitted  distribution. 
The kurtosis will  differ somewhat. 

The original data,  and  the  quadratic Weibull fit, are shown in Figure 7. 
Figure 16 shows the  distribution of the ten-minute extreme flap bending re- 
sponse produced by MaxFits, and lines reflecting this value plus and minus 
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Distribution of 1Minute Extremes 

16 17 10 19 20 21 22 23 24 25 
Extreme Response for lO-minutes 

Figure 16: Predicted  distribution of 10-minute extremes,  with iz2a confi- 
dence bands. 
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