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ABSTRACT

Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are
mostly of unknown composition and concentration until measurements are taken of post-accident ground
concentrations from plume-ground deposition of constituents.  Unfortunately, measurements often are
days post-incident and rely on hazardous manned air-vehicle measurements.  Before this happens,
computational plume migration models are the only source of information on the plume characteristics,
constituents, concentrations, directions of travel, ground deposition, etc.  A mobile ‘lighter than air’
(LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response
in emergency conditions.  These interactive and remote unmanned air vehicles will carry light-weight
detectors and weather instrumentation to measure the conditions during and after plume release.  This
requires a cooperative computationally organized, GPS-controlled set of LTA’s that self-coordinate
around the objectives in an emergency situation in restricted time frames.

A critical step before an optimum and cost-effective field sampling and monitoring program proceeds
is the collection of data that provides statistically significant information, collected in a reliable and
expeditious manner.  Efficient aerial arrangements of the detectors taking the data (for active airborne
release conditions) are necessary for plume identification, computational 3-dimensional reconstruction,
and source distribution functions.  

This report describes the application of stochastic or geostatistical simulations to delineate the plume
for guiding subsequent sampling and monitoring designs.  A case study is presented of building digital
plume images, based on existing “hard” experimental data and “soft” preliminary transport modeling
results of Prairie Grass Trials Site.  Markov Bayes Simulation, a coupled Bayesian/geostatistical
methodology, quantitatively combines soft information regarding contaminant location with hard
experimental results.  Soft information is used to build an initial conceptual image of where
contamination is likely to be.  As experimental data are collected and analyzed, indicator kriging is used
to update the initial conceptual image.  The sequential Gaussian simulation is then practiced to make a
comparison between the two simulations.  Simulated annealing is served as a postprocessor to improve
the result of Markov Bayes simulation or sequential Gaussian simulation. 

STOCHASTIC SIMULATION METHODOLOGY

Stochastic simulation is a Monte-Carlo procedure for generating outcome of digital images of a
variable that are consistent with its values at sampled locations and with its in situ spatial variability, as
characterized by histograms and variograms.  There are many algorithms for simulating variables, for
example, sequential Gaussian simulation, LU decomposition algorithm, indicator-based algorithms,
object-based algorithms, simulated annealing etc.  In this report the spatial distribution of contamination
is simulated using Markov Bayes Simulation, sequential Gaussian simulation, and simulated annealing.

1. The Sequential Simulation Approach

The sequential simulation algorithm is described elsewhere;1-3 however, to help readers better
understand the principle, it is briefly repeated here. 

The family of all “sequential” procedures makes use of the same basic algorithm.  Consider the
distribution over a field A of one or more attributes z(u), u�A.  Stochastic simulation is the process of
building alternative, equally probable, high-resolution models of the spatial distribution of z(u); each
realization is denoted with the superscript l: {z(l)(u), u�A }.  The simulation is said to be “conditional” if
the resulting realizations honor data values at their locations:
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The variable z(u) can be continuous, such as concentrations over a contaminated site, or it can be
categorical, e.g., indicating different levels of concentrations.  

Approximation allows drawing the value of a variable Z(u) from its conditional distribution given the
value of the most related covariate at the same location u. The sequential simulation principle is a
generalization of that idea: the conditioning is extended to include all data available within a
neighborhood of u, including the original data and all previously simulated values.

Consider the joint distribution of N random variables Zi with N possibly very large.  The N random
variables Zj may represent the same attribute at the N nodes of a dense grid discretizing the field A.  Or,
they can represent N different attributes measured at the same location, or they could represent a
combination of K different attributes defined at the N ' nodes of a grid with N = K� N ' .

Next consider the conditioning of these N random variables by a set of n data of any type symbolized
by the notation |(n).  The corresponding N variate conditioning cumulative distribution function (ccdf) is
denoted:

The above expression is completely general with no limitation; some or all of the variables Zi could
be categorical.  Successive application of the conditional probability relation shows that drawing an N
variate sample from the ccdf can be done in N successive steps, each involving a univariate ccdf with
increasing level of conditioning:

• Draw a value z1
(l) from the univariate ccdf of Z1 given the original data (n). The value z1

(l) is
now considered as a conditioning datum for all subsequent drawings; thus, the information set
(n) is updated to (n+1) = (n) � { Z1 = z1

(l) }.
• Draw a value z2

(l) from the univariate ccdf of Z2 given the updated data set (n+1), then update
the information set to (n+2) = (n+1) � { Z2 = z(l) }.

• Sequentially consider all N random variables Zi.
The set {zi

(l), i = 1,…., N} represents a simulated joint realization of the N dependent random
variables Zi.  If another realization is needed, {zi

(l’), i = 1,…., N}, the entire sequential drawing process is
repeated.

Different simulation algorithms impart different global statistics and spatial features on each
realization.  For example, simulated categorical values can be made to honor specific geometrical
patterns as in indicator-based simulation or the covariance of simulated continuous values can be made to
honor a prior covariance model as in Gaussian-related simulation. 

2. Markov-Bayes Indicator Simulation 

Markov Bayes Simulation is a coupled Bayesian/geostatistical methodology.  It quantitatively
combines soft information regarding contaminant location with hard experimental results.  Soft
information is used to build an initial conceptual image of where contamination is likely to be.  As hard
data are collected and analyzed, indicator kriging is used to update the initial conceptual image.  Soft
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information can include historical information, non-intrusive geophysical survey data, preliminary
transport modeling results, etc.  

A Bayesian approach assumes that parameters are unknown initially, but have some known
probability distribution called the prior probability density function (pdf).  For example, the presence of
contamination at a point is unknown initially, but its prior pdf is known.  As additional information, such
as new experimental or sampling data becomes available, these prior pdfs can be updated quantitatively
using Bayes’ rule to produce posterior probability density functions:

P(X|Y) is the posterior pdf for X, P(X) is the prior pdf for X, and P(Y|X) reflects the probability
distribution associated with observing Y given the prior pdf of X.

From a Bayesian perspective, a two parameter beta distribution B(�,�) is a conjugate prior in the
context of Bernoulli trials and the binomial distribution.4 B(�,�) ranges between zero and one, and can
assume a variety of shapes depending on the values of � and �.  For a random variable � that follows a
beta distribution, the expected value of � is given by:

where �,� = parameters associated with the beta pdf for �, �,��0.  The variance of � is given by:

In the case of a binomial trial with an unknown underlying probability � of seeing a success in any
given trial, if X successes are obtained in N trials, a prior for � of the form B(�,�) becomes the posterior
B(�+x, �+N-X).  N functions as the total amount of additional information supplied to the prior.  As N
grows large, E(�) approaches the classical maximum likelihood estimator for �, X/N, and the Var(�)
decreases monotonically.

The issue now is how to update a prior beta distribution at a given point in space with results from
hard samples or experimental points nearby in a manner consistent with the derivation of beta
distributions as conjugate priors for binomial distributions and that recognizes their spatial
autocorrelation.  Two pieces of information are required from the set of samples: N*

xo, the total amount
of information represented by the set of samples appropriate for that point in space, xo, and P*

xo, the
probability of encountering contamination at xo based on the experimental or samples’ results.  Indicator
kriging provides a means for deriving these two pieces of information.  An unbiased estimator of P* at xo
is given by:

where
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xi = locations where samples or experimental data have been collected;
Z(xi) = 0 or 1, depending on whether the sample at xi encountered contamination below or above a

threshold
�I = kriging weights
The set of kriging weights, �, can be derived by solving the following set of simultaneous linear

equations:

where
Cij = covariance between sample locations xi and xj;
Cjo = covariance between sample locations xj and the point where the interpolation is taking

place, xo.
N* at xo can be tied to N, the number of samples taken, through the following relationship:

where 
Varestim = the estimation variance associated with the interpolation of p* at location xo;

Coo = the variance of the indicator values;
� = the average of the indicator values for the sample locations involved in the

updating.
A general Bayesian/geostatistical approach to merging soft and hard data is the Markov Bayes model

described by Deutsch and Journel (1998),1 where the soft indicator data covariances and cross-covari-
ances are calibrated from the hard indicator covariance models.  The soft indicator data, i.e., the prior
probability cdf’s of type, are derived from calibration scattergrams using subroutine “bicalib” in the
software package GSLIB developed by Deutsch and Journel (1998).1  In all other aspects the Markov
Bayes algorithm is similar to sequential indicator simulation. 

3. Simulated Annealing 

Simulated annealing is a generic name for a family of optimization algorithms based on the principle
of stochastic relaxation.5  Generating alternate conditional stochastic images of either continuous or
categorical variables with the aid of simulated annealing is a relatively new approach.1;3;6  The basic idea
of simulated annealing is to continuously perturb an original image until it matches some prespecified 
characteristics written into an objective function.  Each perturbation is accepted or not depending on
whether it carries the image toward the objective. The following procedure is used here to generate
realizations that reproduce both the histogram and semivariogram model:
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A. Generate an initial realization {z(l)
(o), j = 1,…, N} by freezing data values at their

locations and assigning to each unsampled grid node a z-value drawn at random from the
target cdf F(z).  

B. Compute the initial value of the objective function corresponding to that initial
realization:

Where �(hs) is the value of the target semivariogram model at lag hs, S is lags
 is the semivariogram value at lag hs of the initial realization.

C. Perturb the realization by swapping z-values at any two unsampled locations u'j and u'k
chosen at random:  becomes and vice versa. Assess the impact of the)u( j′

(l)
(o)z (u)z l

1

perturbation on the reproduction of target statistics by recomputing the objective
function accounting for the modification of the initial image.

D. Accept all perturbations that diminish the objective function.  Unfavorable perturbations
are accepted according to a negative exponential probability distribution:

Prob (Accept ith perturbation} = 
��

�
�

�
−−

≤

otherwise
)(

)]()1([exp

1)-if1

it
iOiO

O(i  O(i)

The t(i) of the exponential distribution is analogous to the “temperature” in annealing
metals.  The success of the annealing depends on a slow cooling of the realization
controlled by the contrl function, t(i), that decreases with time.  The idea is to start with
an initially high temperature t(0), which allows a large proportion of unfavorable
perturbations to be accepted at the beginning of the simulation.  As the simulation
proceeds, the temperature is lowered so as to limit discontinuous modification of the
stochastic realization.  

E. If the perturbation is accepted, update the initial realization into a new image
, with object function value O(1) = Onew (0).} ,1,   ),u({ j Njz (l)

(1) …=′

F. Repeat steps C to E until either the target low value Omin = 0.001 is reached or the
maximum number of attempted perturbations at the same temperature has been reached
three times.

Other realizations {z(l�)(u'j), j = 1,…,N}, l'� l, are generated by repeating the entire process starting
from different initial realizations. 
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Figure 1.  Locations of experiments.

CASE STUDY

1. Objective of the study

The objective of our simulation study is to generate digital representations or maps of an airborne
hazardous transport plume at the Prairie Grass Trials site.  We will then use these maps for optimum and
cost-effective field sampling design in the future.  An instrument cluster carried by a blimp was proposed
to successively sample the plume.  

2. Available data

The available information at the Prairie Grass Trials site consisted of 138 hard experimental
measurements of concentrations (in mg/m3) and soft quick re-calculation data (we call them transport
data) based on these measurements.  The raw experimental data are filed in A Field Program in Diffusion
Reports (Volumes I, II, and III), Morton L. Barad, editor, DTIC Numbers AD-152572, AD-152573, and
AD-217076. The data file PR_GRASS_STATIONS contains the UTM coordinates using a central
longitude of 99W and the Clarke 1866 ellipsoid.  The tracer source location (42.4933N, 98.5717W =
535.200 east, 4704.427 west) is used as the anchor point for all other locations. Tracer sampler stations
were calculated to form 50-, 100-, 200-, 400-, and 800-meter arcs to the north of the source location.  

Figure 1 shows the locations and concentrations of these experiments. The file PR_GRASS_CALC
holds a quick re-calculation of this experiment on a regular equi-spaced grid.  The grid consists of 180 ×
90 pixels spaced at 10 meter
intervals.  Considering the PC
capacity and CPU time, rows and
columns outside the plume were
deleted, where the concentration
value at each pixel of these rows
and columns is zero.  The grid is
reformed by using short subroutines
that we developed, Excel in
Microsoft Office, and a window
editor and pixels in the reformed
grid are reduced to 90 × 80.  Figure
2 shows the concentration
distribution based on the quick re-
calculated transport data.  We can
see that the plume travels to the
north from the source location.

3. Data Analysis 

A. Histogram Models

The first step in our simulation study is to decide what probability distribution functions, or more
prosaically, what histogram models are to be honored by our simulated concentrations in the plume.  We
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Figure 2.  Plume generated by original transport data.

would like these histograms to be representative of the entire site.  Because the experimental data are
spatially clustered, the raw histogram (Figure 3) shows that it has sawtooth-like fluctuations.  The raw
histogram does not provide adequate models for our simulation.  To obtain a representative distribution,
we use the program declus in GSLIB that assigns declustering weights whereby values in areas/cells with
more data receive less weight than those in sparsely sampled areas. The declustered histograms are also
smoothed to remove such fluctuations and to increase the class resolution and extend the distribution
beyond the sample minimum and maximum values by using the program histsmth in GSLIB. Figure 4
shows a declustered and smoothed histogram plot of the 138 experiments.  Figure 5 is a lognormal
probability plot of the 138 experiment data.

B. Variogram model

The variogram is defined as a measure of spatial variability and is the key to any geostatistical study. 
The variogram analyses are performed on the 138 experiments (Figure 6) and the soft transport data
(Figure 7) in different directions.  The omnidirectional (0° ± 90°) and NS(0° ± 22.5°) directions
represented by red and green are plotted in Figure 6 while the omnidirectional (0° ± 90°) and EW(90° ±
22.5°) represented by red and blue are plotted in Figure 7.  The variogram of the transport data shows
that the phenomenon is reasonably well structured, with a maximum correlation distance (range) of
approximately 5 meters.   Anisotropy is found and the shape of the variogram is exponential.  The
variogram of experiment data shows that the phenomenon is not normally structured with significant
nugget effect of 1.6 meters and indeterminate maximum range.
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Figure 3.  Histogram of the 138 tracer experiments.

Figure 4.  Smoothed histogram of 138 tracer experiments.
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Figure 5.  A
cumulative
probability plot
of the 138
tracer data.

Figure 6. Measure
of spatial variability
from the 138 tracer
data.

C. Bivariate Distribution

Before we can proceed to the stochastic simulation, one last step is required.  Our simulation
algorithm can be used to generate fields of only one variable at a time.  However, we wish to simulate
two variables, Z1 (hard experiment data) and Z2 (soft transport data), reproducing not only their
respective spatial variation structures but also the relationship between them shown in Figure 8.  We
must therefore “decouple” the variables Z1 and Z2 so that we can simulate them independently.  To do
this, we use the following principal component transformation that yields the independent variables Y1
and Y2 from the correlated variables Z1 and Z2:

where � is the correlation coefficient between Z1 and Z2 which is found to be 0.887 (Figure 8).
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Figure 7.  Measure of spatial variability calculated from the transport data.

Figure 8. Scatterplot of tracer data versus transport data.
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Figure 9. Plume generated by Markov Bayes simulation.

D. Simulations Performance

We are now ready to simulate fields of the two independent variables, Y1 and Y2.  The simulations of
Y1 and Y2 are to be conditioned on 138 experiment data (hard) and grided transport data (soft) with 90 ×
80 pixels.  Each pixel has 10 m × 10 m intervals. 

To perform our simulations, we use the Markov Bayes Simulation first.  The sequential Gaussian
simulation is then conducted to make a comparison between the two simulations.  A simulated annealing
simulation is served finally as a postprocessor to improve the result of the Markov Bayes simulation or
sequential Gaussian simulation.  Plume images in Figures 9, 10, and 11 are generated by Markov Bayes
simulation, sequential Gaussian simulation, and simulated annealing, respectively.  It can be intuitively
perceived that the image produced by the Markov Bayes simulation is the best image. 

More results will be obtained from the three different simulation algorithms reproducing correlation
between soft and hard data sets.  Uncertainty associated with those simulations will also be measured and
reported at a future time.
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Figure 10.  Plume generated by sequential Gaussian simulation.

Figure 11.  Plume generated by simulated annealing.
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CONCLUSION

Stochastic simulation is emerging on environmental and geotechnical fronts as an invaluable tool for
characterizing spatial or temporal phenomena.  The challenge for sampling programs at an airborne
hazardous site is providing real-time sampling program support.  Supporting field sampling and
monitoring programs requires the ability to estimate the nature and extent of contamination based on
available information, to measure the uncertainty associated with those estimates, and to direct sampling
and monitoring designs so that sample locations maximize information gained.  The case study at the
Prairie Grass Trials site shows that geostatistical analysis and stochastic simulation are well suited to
quantitative sampling program support. 

By using Markov-Bayes indicator simulation, prediction of contaminant concentration can be
improved by integrating effectively the direct hard experimental data into the soft preliminary transport
modeling results.  It means that a plume can be updated when additional samples are available.  The
updated high-resolution, real-time plume images will have a realistic texture that mimics an exhaustive
characterization, while maintaining the overall statistical character of the experimental data.  In Markov-
Bayes indicator simulation, it is crucial that the bivariate relationship existing between the hard and soft
information be correctly rendered.  Very often this relationship cannot be captured by classical
parametric description based on the means and variances of the marginal distributions and the correlation
coefficient.

Simulated annealing is a relatively new approach that constructs stochastic simulation by iterative
trial and error based on optimization algorithms.  This approach is very general and can be used to
address many different situations.  It should be pointed out, however, that the relevance of its results
depends heavily on how meaningful the physical relationship is between the main and co-attribute as
described by the bivariate probabilistic model.
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APPENDIX A
Histogram Smoothing

The process of histogram smoothing not only removes sawtooth-like data fluctuations; it also allows
increasing the class resolution and extending the distribution(s) beyond the sample minimum and maximum
values.  Geostatisticians have developed their own smoothing routines rather than relying on traditional
kernel-type smoothing since traditional methods do not honor sample statistics, such as the mean and
variance, and simultaneously important quantile-type information such as the median and zero probability
of getting negative values.  The more flexible annealing approach has been retained for smoothing histogram1

(Deutsch and Journel, 1998).
Consider the problem of assigning N probability values pi, i = 1, …, N, to evenly spaced z values between

given minimum zmin and maximum zmax.  The equal spacing of the zi values is 

with .  The idea is to choose a large N
(100-500) so that the resulting distribution can be reliably used for geostatistical simulation.

The final set of smoothed probabilities is established from an initial set of probabilities by successive
perturbations.  The probabilities mechanism consists of selecting at random two indices i and j such that i
� j and i, j �]1, N[.  The probability values at i and j are perturbed as follows:

ppp i
new
i ∆+=

ppp j
new
j ∆+=

j and i are chosen such that pj � pi and the incremental change �p is calculated as 

where 0.1 is a constant chosen to dampen the magnitude of the perturbation and U is a random number in
[0,1}.  There is no need to check that pi � 1.0; it must be � 1.0 since pj

new is greater than zero.

If the initial pi, i = 1, …, N, values are legitimate (i.e., pi � [0,1], �i and �N
i = 1pi = 1), then any set of

probabilities derived from multiple applications of this perturbation mechanism is also legitimate.
The following component objective functions have been considered:

• For the mean:

where mz is the target mean (from the data or specified by the user) and  is the average from the
smoothed distribution:
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• For the variance:
                  

where 	2 is the target variance (from the data or specified by the user) and s2 is the variance from
the smoothed distribution:

• For a number of quantiles:

where nq is the number of imposed quantiles, cpi is the smoothed cdf value for threshold zi, and F(zi)
is the target cumulative probability (from the data).

• The smoothness of the set of probabilities pi, i = 1, …, N, can be measured by summing the squared
difference between each pi and a smooth  defined as an average of the values surrounding i, that
is:

where the pi, i = 1, …, N, are the smoothed probability values and  i = 1, …, N, are local average
of the pi values:

where n0 is the number of values in the smoothing window (say, 5-10),  pi = 0 �i � 1 and i � N.  The
global objective function is defined as the sum of these four components:

The weights 
m, 
v, 
q, and 
s are computed such that each component has an equal contribution to the
global objective function.
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