
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76CH03073

PRINCETON PLASMA PHYSICS LABORATORY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL-3599 PPPL-3599
UC-70

Simulations of Electron Transport in Laser Hot Spots

by

S. Brunner and E. Valeo

August 2001



PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy’s Princeton
Plasma Physics Laboratory Publications and Reports web site in Calendar
Year 2001. The home page for PPPL Reports and Publications is:
http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000

Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm



Simulations of Electron Transport in Laser Hot Spots

S. Brunner∗ and E. Valeo

Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543–0451

Abstract

Simulations of electron transport are carried out by solving the Fokker-Planck

equation in the diffusive approximation. The system of a single laser hot

spot, with open boundary conditions, is systematically studied by performing

a scan over a wide range of the two relevant parameters: (1) Ratio of the

stopping length over the width of the hot spot. (2) Relative importance of

the heating through inverse Bremsstrahlung compared to the thermalization

through self-collisions. As for uniform illumination [J. P. Matte et al., Plasma

Phys. Controlled Fusion 30, 1665 (1988)], the bulk of the velocity distribu-

tion functions (VDFs) present a super-Gaussian dependence. However, as a

result of spatial transport, the tails are observed to be well represented by

a Maxwellian. A similar dependence of the distributions is also found for

multiple hot spot systems. For its relevance with respect to stimulated Ra-

man scattering, the linear Landau damping of the electron plasma wave is

estimated for such VDFs. Finally, the non-linear Fokker-Planck simulations

of the single laser hot spot system are also compared to the results obtained

with the linear non-local hydrodynamic approach [A. V. Brantov et al., Phys.

Plasmas 5, 2742 (1998)], thus providing a quantitative limit to the latter

method: The hydrodynamic approach presents more than 10% inaccuracy in

the presence of temperature variations of the order ∆T/T >∼ 1%, and similar

∗E-mail: sbrunner@pppl.gov
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levels of deformation of the Gaussian shape of the Maxwellian background.
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I. INTRODUCTION

The non-Maxwellian electron velocity distributions, resulting from the non-classical drive

and transport under laser-fusion relevant conditions, may significantly affect the dispersion

and damping of the different waves present in the plasma. This in turn may alter the

thresholds and gains of parametric instabilities, such as stimulated Raman scattering (SRS)

and stimulated Brillouin scattering (SBS), involving the plasma wave and the ion acoustic

wave respectively. This issue has been addressed in the past by Bychenkov et al.1 as well as

Afeyan et al..2

The systematic characterization of the non-Maxwellian electron velocity distribution

functions was performed by Matte et al.3 in the case of uniform laser illumination, i.e. ne-

glecting spatial transport. In this study, the competition between inverse Bremsstrahlung,

which pushes the distribution towards a super-Gaussian of the form f ∼ exp[−(v/u)5],4 and

the thermalization through self-collisions was considered. It was shown, that the distribu-

tion is well represented, at all energies, by a so-called Dum-Langdon-Matte (DLM) type

function fDLM ∼ exp[−(v/u)n], where the parameter n takes intermediate values between

n = 2 (a Maxwellian), in the absence of drive, and n = 5, when inverse Bremsstrahlung

dominates. As a practical result, a relation n = n(α) was established between the DLM

exponent n and the relevant parameter α = Z(vos/vth)
2, measuring the relative importance

of inverse Bremsstrahlung compared to self-collisions. Here, Z is the degree of ionization,

vos the quiver velocity, and vth the thermal velocity.

A question, which naturally arises in this context, concerns the validity of Matte’s local

relation in the case of an inhomogeneous plasma, where spatial transport takes place. Inho-

mogeneities are expected to particularly affect the tails of the distribution, formed by the

highly mobile particles. In reference 3, the relation n = n(α) was in fact already tested in a

simulation of a non-uniform plasma, modeling the laser absorption in an underdense region,

and the subsequent heat transport into the overdense region. As expected, the local relation

failed to correctly represent the distributions near the critical surface, where the plasma
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parameters vary rapidly and spatial transport is therefore important. The representation

of the electron distributions with DLM functions was also applied in reference 2, in the

particular case of a plasma heated by a realistic intensity profile of a random phase plate

(RPP) laser beam.

To our knowledge, besides these few particular cases, no systematic study of the effect

of spatial transport on the electron velocity distributions has been published. We therefore

propose here to carry out a somewhat more detailed characterization of the distributions

under conditions of spatial transport. Due to its relative simplicity, the case of a single laser

hot spot seems well suited for this purpose. Indeed, besides α = Z(vos/vth)
2, measuring

the level of drive, such a system is characterized by essentially one additional parameter,

measuring the level of spatial transport. This parameter can be chosen as the ratio λ/∆r

between the effective mean free path λ, and the radial focal width ∆r. By carrying out a

scan over this two-dimensional parameter space, one can thus obtain a complete picture of

the dynamics of a single hot spot in all possible regimes. The ongoing single laser hot spot

experiment at the Los Alamos National Laboratory (LANL)5 provides further incentive for

studying such a system.

The case of a single hot spot is also ideal for testing the limits of the non-local hydro-

dynamic approach.6–8 This method provides closure relations to the fluid equations for all

regimes of collisionality, but is only valid in the linear regime of small perturbations with

respect to a given background plasma, assumed to be Maxwellian. Defining quantitatively

the limits of the linear regime remains an open issue, and we shall attempt to address this

point in this context by using our non-linear Fokker-Planck simulations as a reference.

The single hot spot naturally remains a particular case of an inhomogeneous system.

In fact, the relevance of such results even to the case of a multiple hot spot system is, a

priori, not evident. For this reason, we shall also present simulations of a plasma heated by

multiple heat sources, and show to what extent the single source results may still be applied.

The rest of the paper is organized as follows. The equations solved in the simulations

are derived in Sec. II, and their numerical implementation is briefly described in Sec. III.
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The parameter scan for the single laser hot spot system is then presented in Sec. IV. The

actual parameter range considered is defined in Sec. IV A, the evolution of temperature is

discussed in Sec. IV B, the appropriate fitting of the velocity distributions is addressed in

Sec. IV C. To estimate the effect of the non-Maxwellian distributions on Landau damping,

these fits are then used in Sec. IV D for solving the dispersion relation of plasma waves.

Section V presents the comparisons between the Fokker-Planck calculations and the non-

local hydrodynamic results. Simulations of a multiple hot spot system are discussed in Sec.

VI. We finally conclude in Sec. VII.

II. PHYSICAL MODEL

The transport of electrons is described by the corresponding Fokker-Planck equation:

∂f

∂t
+ v·∂f

∂x
+

(−e)

m
E·∂f

∂v
= −{Cee[f, f ] + Ceif } , (1)

where E stands for the self-consistent electrostatic field ensuring quasineutrality, Cee for

the Landau electron–electron self-collision operator, and Cei for the Lorentz electron–ion

collision operator. For the simulations presented in this paper, ions have been kept fixed.

To lighten notations, physical quantities relative to electrons will often not be explicitly

labeled as such, unless required for clarity.

For solving the Fokker-Planck equation, a high ionic charge Z is assumed, such that the

electron-ion mean free path λei is small compared to any characteristic scale-length L of the

system. In this ordering, the electron stopping length9,10 λε ∼ (λeeλei)
1/2 ∼ Z1/2 λei, can

however be such that λε/L ∼ 1, thus potentially giving rise to nonlocal transport. Equation

(1) can then be solved in an expansion series with respect to the small parameter ε = λei/L:

f(x, v; t) =
∑
n=0

fn(x, v; t), with fn ∼ εn. (2)

To lowest order, the electron dynamics are dominated by the pitch-angle scattering off of

ions:
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0 = −Ceif0.

As a result, f0 = f0(x, v; t) is an isotropic function of velocity. Expansion (2) is only

considered up to the next order term f1, which represents the lowest order anisotropy in

velocity, and arises from the convection both in space and velocity. The corresponding

equation is given by

∂f1

∂t
+ v·∂f0

∂x
+

(−e)

m
E·v

v

∂f0

∂v
= −{Cee[f0, f1] + Cee[f1, f0] + Ceif1 } . (3)

Invoking again high Z, ∂f1/∂t and the Cee terms appearing in (3) are small compared to

Ceif1, and can therefore be neglected. It is then straightforward to solve for f1:

f1 = − v

2νei(v)
·
[
∂f0

∂x
+

(−e)

m
E

1

v

∂f0

∂v

]
, (4)

where νei(v) = e2Ni(Ze)2 lnΛ/8π ε2
0 m2 v3 is the electron-ion collision frequency.

After having inserted in Eq.(1) the relation f ' f0 + f1, with f1 given by Eq.(4), and

averaged over the solid angle in v-space, one obtains an effective equation for the isotropic

component f0:

∂f0

∂t
− ∂

∂x
·
[
χ

(
∂f0

∂x
− a

1

v

∂f0

∂v

)]
− 1

v2

∂

∂v

[
χ

(
a·a∂f0

∂v
− v a· ∂f0

∂x

)]

= −Cee[f0, f0] + SIB f0, (5)

using the notations a = eE/m, and χ(x, v) = v2/6 νei(x, v). Equation (5) is the so-called

diffusive approximation11–13 to the Fokker–Planck equation. Let us point out, that in this

last derivation contributions from Cee[f1, f1] have been neglected compared to Cee[f0, f0].

The relation for the self-collision operator is given by:14

Cee[f0, f0] = −Yee

v2

∂

∂v

[
I0 f0 +

v

3
(I2 + J−1)

∂f0

∂v

]
,

with Ij =
4π

vj

∫ v

0
dv′f0(v

′) v′j+2, and Jj =
4π

vj

∫ +∞

v
dv′f0(v

′) v′j+2,

with Yee = 4π lnΛ(e2/4πε0m)2.
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Note, that an external heating source SIB, representing inverse Bremsstrahlung between

the laser light and the plasma, has been added to Eq.(5). The relation for SIB has been

derived in reference 4:

SIB f0 =
A

3

(
vos

v

)2 ∂

∂v

(
g

v

∂f0

∂v

)
,

g(v) =

[
1 +

(
vω

v

)6
]−1

,

where A/v3 = νei(v), vos = eE0/ω0 is the quiver velocity, E0 the laser field amplitude, ω0

the laser frequency, and the velocity vω is defined such that νei(vω) = ω0/2.

By taking the zeroth order velocity moment (4π
∫ +∞
0 v2 dv) of equation (5), one obtains

the continuity equation for the electron density:

∂Ne

∂t
+

∂Γ

∂x
= 0,

with the particle flux: Γ = −4π
∫ +∞

0
v2dv χ

(
∂f0

∂x
− a

1

v

∂f0

∂v

)
.

The condition of quasineutrality thus requires a divergence-free particle flux Γ, which, in a

one-dimensional system, can be reduced to:

Γ ≡ 0 ⇐⇒ a =

∫ +∞
0 v2dv χ ∂f0/∂x∫+∞

0 v2dv (χ/v) ∂f0/∂v
.

This last condition provides the equation for computing the self-consistent electrostatic field

E.

The heat equation is derived by taking the second order velocity moment

(4π
∫ +∞
0 v2 dv v2) of (5):

∂

∂t
(
3

2
NeTe) +

∂q

∂x
= (−e)Γ·E +

4π

3
A mv2

os

∫ +∞

0
dv

∂g

∂v
f0, (6)

with the heat flux: q = −m

2
4π
∫ +∞

0
v2dv v2 χ

(
∂f0

∂x
− a

1

v

∂f0

∂v

)
.

III. NUMERICAL IMPLEMENTATION

Except for the ion dynamics, which are neglected here, equation (5) is identical to the

Fokker-Planck equation considered by Epperlein in the code SPARK.13 The implementation
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of this equation was therefore achieved with essentially the same numerical methods as those

presented in reference 13. For this reason, only a brief description of the numerics is given

here, and we shall refer the reader to Epperlein’s work for more details.

The Fokker-Planck equation (5) is solved here in one-dimensional configuration space,

assuming either a slab or cylindrical geometry. In this way, phase space has been reduced

to two dimensions: Position x (slab) or r (cylinder), and velocity amplitude v.

Reflective, fixed, and periodic boundary conditions are considered. Implementing open

boundary conditions is a challenging problem in the case of the Fokker-Planck equation.

Therefore, simulating an open system is effectively carried out by choosing the computa-

tion region large enough, so that no perturbation reaches the edge during the time of the

simulation.

The alternating-direction-implicit (ADI) scheme enables one to efficiently solve the

Fokker-Planck equation implicitly in time. For this approach to be applicable, Eq. (5)

must be written as a sum of differential terms operating separately on x and v:

∂f0

∂t
= Lxf0 + Lvf0, (7)

Lxf0 =
∂

∂x
·
[
χ

(
∂f0

∂x
+ aαf0

)]
,

Lvf0 =
1

v2

∂

∂v

{
χ

(
a·a∂f0

∂v
+ v a· βf0

)
+ Yee

[
I0 f0 +

v

3
(I2 + J−1)

∂f0

∂v

]
+

A

3
v2

os

g

v

∂f0

∂v

}
.

The contribution to Lv proportional to χ is the so-called Ohmic term, which seems to be

negligeable for most one-dimensional simulations. This is reflected by the fact, that its

second order velocity moment leads to the Ohmic heating (−e)Γ·E in Eq. (6), which is zero

as a result of the quasineutrality condition Γ = 0.

Notice that the cross-derivative terms with respect to x and v appearing in Eq. (5) are

now treated as non-linear terms, having defined α = −(1/v)∂ ln f0/∂v, and β = −∂ ln f0/∂x.

All non-linear terms in Eq. (7) have been dealt with iteratively in time. In other words,

to advance the distribution by one time step ∆t from fn
0 = f0[t = n∆t] to fn+1

0 = f0[t =

(n + 1)∆t], the coefficients of operators Lx,v are first estimated with fn
0 . Having obtained a
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first estimate f̃n+1
0 for fn+1

0 , using the ADI method, the step is repeated by estimating the

coefficients of operators Lx,v with fn+
0 = θf̃n+1

0 + (1− θ)fn
0 . Here θ is the same implicitness

parameter used in the ADI procedure (usually θ = 1/2).

Phase-space differentiation is carried out with a finite-difference scheme on a fixed Carte-

sian grid in (x, v). Various methods specifically developed for implementing the Landau

self-collision operator15,16 have been applied. Non-equidistant meshes have been considered

both in x and v. In cylindrical geometry for example, consecutive grid zones of a feathered

radial mesh are such that ∆ri+1/∆ri = c, with c > 1. Such a mesh is particularly useful for

simulating the heat transport transversely out of a single laser hot spot in an open system.

Indeed, it provides high resolution within the laser beam, while the coarser mesh is sufficient

far off axis, where phase-space presents little structure.

Typical numerical parameters used for the single hot spot simulations are nr = 200

spatial grid points in the radial direction, and nv = 50 points for the velocity mesh. For

simulating open boundaries as described above, up to a thousand radial focal widths are

considered for the total spatial size of the system. For velocity space, an interval of at least

6− 8vth,max is chosen, where vth,max is evaluated at the maximum temperature estimated to

be reached during the simulation. Time steps of the order ∆t ' 0.1ν−1
ee provide very good

temporal covergence.

IV. PARAMETER SCAN OF SINGLE LASER HOT SPOT SYSTEM

The spatially one-dimensional Fokker-Planck code was applied for computing the electron

heat transport transverse to the beam of a diffraction limited (i.e. single hot spot) laser, thus

neglecting the transport parallel to the beam. This is justified in first approximation when

considering the high intensity hot spot at the center of the focal region. Indeed, assuming a

large focal length to beam diameter ratio F , this hot spot is very elongated along the beam:

width ∼ Fλ0, and length ∼ 8F 2λ0, λ0 being the wavelength of the laser light.17
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A. Parameter Space Covered by the Simulations

As an initial conditions for the simulation, a uniform Maxwellian background plasma with

temperature T0 is assumed. This system is then driven, through inverse Bremsstrahlung, by

a fixed laser intensity. The radial intensity profile I(r) of the beam within the hot spot is

approximated by a Gaussian profile:

I(r) = I0 exp

[
−1

2

(
r

∆rFW

)2
]
, (8)

where ∆rFW is the radial focal width, of order Fλ0.

In the diffusive approximation, and assuming open boundary conditions, two independent

parameters characterize the Fokker-Planck simulation of a single hot spot. This can easily

be seen by writing equation (5) in normalized units, e.g. normalizing positions with respect

to the thermal stopping length defined by λε = vth/[νei(vth) νee]
1/2, velocities with respect

to the background thermal velocity vth,0 =
√

T0/m, and time with respect to the inverse

of the background thermal self-collision frequency, defined here by νee = (4/Z)νei(vth) =

6.91 ·10−10 Ncm−3 lnΛ/T 1.5
keV. In the following, all quantities labeled with the index 0 are

evaluated with the background temperature T0 and peak intensity I0.

The first of the two parameters measures the relative importance between velocity dif-

fusion through self-collisions and spatial diffusion:

[
Spatial Diffusion

Self-Collisions

]1/2

∼ λε,0 /∆rFW = 3.84 · 1022 T 2
0keV√

Z Ncm−3 lnΛ ∆rFWµm

,

with lnΛ standing for the Coulomb logarithm.

The second parameter measures the relative importance between self-collisions and in-

verse Bremsstrahlung:

Inverse Bremsstrahlung

Self-Collisions
∼ Z(vos,0/vth,0)

2 = 3.73·10−16 Z I0W/cm2 λ2
0 µm

T0keV
.

Our goal was to include in the considered parameter range the conditions of the single

laser hot spot experiments,5 carried out at the the Los Alamos National Laboratory (LANL).
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These conditions are given by: λ0 = 0.5µm laser light, focused by an F/7 lens to a radial

focal width ∆rFW = 1.6µm [corresponding to a focal width half maximum diameter of

dFWHM = (8 ln 2)1/2∆rFW = 3.8µm], peak intensities in the range I0 = 2.5 · 1014 − 1.6 ·
1016 Wcm−2, an electron density N = 2.23 · 1020cm−3 (= 5% of critical density Ncr cm−3 =

1.11 ·1021 λ−2
0 µm), and a background temperature T0 = 500 eV . Assuming a fully ionized

CH (parylene-N) plasma, the effective degree of ionization is Z = 4.3. Finally, choosing a

Coulomb logarithm of the order of lnΛ = 5, these conditions lead to the following values for

the relevant parameters: λε,0 /∆rFW = 2.60 and Z(vos,0/vth,0)
2 = 0.201− 12.83.

On this basis, the actual parameters considered in the simulations were chosen as follows:

To actually consider a certain range for spatial transport, the first parameter was varied

between λε,0 /∆rFW = 2.60/54 − 2.60/50, by factors of 5, while the second parameter was

varied between Z(vos,0/vth,0)
2 = 12.83/43 − 12.83/40 , by factors of 4. In this scan, the

conditions of the LANL experiment thus correspond to the cases with the largest spatial

transport.

B. Evolution of Temperature

The single hot spot parameter scan was mainly performed in cylindrical geometry. All

simulations were carried out up to the arbitrary time t = 500 ν−1
ee,0. For the LANL experimen-

tal conditions, this corresponds to a constant laser illumination in time for approximately

230ps, which is a somewhat longer drive than the 200ps Gaussian pulse considered in the

experiment. It is however important to note, that the system at a given point remains

essentially unchanged at later times over a very long period. Indeed, at least in the linear

regime, it can be shown [from Eq.(24), Sec. V] that asymptotically in time the temperature

at a fixed radius increases logarithmically, i.e. at an ever slower rate.

The evolution in time of the temperature variation ∆T at r = 0 for the intensity

Z(vos,0/vth,0)
2 = 12.83/40 and the different considered levels of spatial transport is shown in

Fig. 1. The final (t = 500 ν−1
ee,0) temperature profiles are given in Fig. 2 for four different
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reference cases illustrating the limits of the considered parameter space: Cases (a) and (b)

correspond both to the highest considered intensity Z(vos,0/vth,0)
2 = 12.83/40 and to the

spatial transport levels λε,0 /∆rFW = 2.60/50 and 2.60/54 respectively; same for cases (c)

and (d), but at the lowest considered intensity Z(vos,0/vth,0)
2 = 12.83/43. In the following,

cases (a)-(d) will always refer to these four conditions. The final temperatures at r = 0 for

the whole parameter scan are plotted in Fig. 3.

For the highest spatial transport considered, i.e. λε,0 /∆rFW = 2.60, the actual simula-

tions showed a temperature increase on the axis of the laser beam (r = 0) of 19.5% (Fig.

2.a) with respect to the background temperature T0 for Z(vos,0/vth,0)
2 = 12.83/40 , and of

just 1.8% for Z(vos,0/vth,0)
2 = 12.83/43 (Fig. 2.c). For theses cases of rapid spatial diffusion,

the relative temperature increase in the last 200 ν−1
ee,0 period of the run is less than 0.1% for

all considered intensities, indicating that the system has reached a quasi-steady state within

the laser beam.

In the regime of low spatial transport, there is a larger temperature increase on axis

over the simulation period (compare Fig. 2.b and 2.d with 2.a. and 2.c). For λε,0 /∆rFW =

2.60/54 and highest intensity Z(vos,0/vth,0)
2 = 12.83/40 , the temperature increase at r = 0

at the end of the run is ∆T = 6.3T0. The relative increase in the last 200 ν−1
ee,0 interval is

still ∼ 7% in this case (see Fig.1), so that the system has clearly not yet reached a quasi-

steady state at the end of the run. If the simulation was carried on, such a state would also

ultimately be reached.

In fact, for sufficiently driven systems, there is a significant reduction of the laser light

absorption at later times due to the non-linearities. Indeed, inverse Bremsstrahlung is

essentially proportional to f0(v = 0) [see Eq. (6)], which decreases as T−3/2 with increasing

temperature, and, as will be pointed out below, is further reduced due to the non-Maxwellian

shape acquired by the distribution. Also, spatial transport is enhanced with increasing

temperature, as λε scales as T 2. These different non-linear effects thus further contribute to

the system ultimately evolving at a slower rate within the laser beam.
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C. Characterizing the Velocity Distribution Functions (VDFs)

The velocity distribution functions on the beam axis at t = 500 ν−1
ee,0 for cases (a)-(d)

(as defined in Sec. IV B) are given in Fig. 4 and Fig. 5 in linear and logarithmic scale

respectively. Inspired by the previous applications of Dum-Langdon-Matte (DLM) -type

functions (also called super-Gaussians) for representing the distributions resulting from non-

classical drive and transport,4,3,2 the validity of such a representation was tested for the

present results. These DLM distributions are of the form:

fDLM(v; n) = An
N

v3
th

exp
[
−Bn

(
v

vth

)n]
, (9)

where the coefficients An and Bn, ensuring the definition of density (N = 4π
∫∞
0 v2dvf) and

temperature (3Nv2
th = 4π

∫∞
0 v4dvf), are given in terms of the gamma function Γ by:

An =
1

4π

n

Γ(3/n)

[
1

3

Γ(5/n)

Γ(3/n)

]3/2

, and Bn =

[
1

3

Γ(5/n)

Γ(3/n)

]n/2

.

Fitting such a DLM function fDLM to the velocity distribution f0, obtained from the Fokker-

Planck simulation, is performed in the following way: First, the density N and thermal

velocity vth in Eq. (9) are matched to those of f0. The parameter n is then varied so as to

minimize the error:

Error(n) = 4π
∫ +∞

0
v2dv [fDLM(v; n)− f0(v)]2 .

As shown in Fig.4, the DLM functions provide a good representation for the bulk of

the velocity distributions in all regimes. However, as can be seen in Fig. 5, the fit fDLM

systematically deviates from f0 in the tail of the distribution for velocities above v = 3vth,

vth being the local thermal velocity. This disagreement between fDLM and f0 is particularly

significant in the high intensity cases (a) and (b), involving large values of the DLM param-

eter: n = 3.27 and n = 3.85 respectively (values given in Fig. 4). This deficiency of the

DLM functions in representing the tail distribution of highly mobile particles is the result

of spatial transport.
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In fact, spatial transport already affects the value of the DLM parameter n itself. This

is shown in Fig. 6, where n is plotted as a function of the actual value of Z(vos/vth)
2 (i.e.

evaluated at the local value of vth not vth,0) for the final state at r = 0 of all simulations

considered in the parameter scan. These results are compared to the relation established by

Matte et al., valid for uniform illumination:3

nMatte = 2 +
3

1 + 1.66/[Z(vos/vth)2]0.724
.

For fixed density and temperature, the fraction of particles at v = 0 is reduced for

increasing values of the parameter n. The ratio of fDLM(v = 0) compared to the value for

an equivalent Maxwellian distribution is indicated for the different values of n on the right

hand side of Fig. 6. The absorption of the laser light through inverse Bremsstrahlung is

thus reduced by the same factor.

In the presence of strong spatial transport [λε,0 /∆rFW = 2.6, values labeled (A) in Fig.

6], and for all intensities, the parameter n is significantly reduced from its value nMatte

in the absence of spatial transport, essentially taking an intermediate value between n = 2

(Maxwellian) and nMatte. In the opposite limit of low spatial transport [λε,0 /∆rFW = 2.6/54,

values labeled (E) in Fig. 6], the DLM parameter is expected to asymptotically tend towards

Matte’s curve. This is obviously the case in our simulations at low intensities. However, at

high intensities, where the temperature T on axis has significantly increased with respect

to its background value T0 (see Fig. 3), and the actual mean free path λε = λε,0(T/T0)
2 is

therefore significantly amplified, this asymptotic limit would only be reached for levels of

λε,0 /∆rFW below the ones considered in this parameter scan. Note that at intermediate

levels of transport, the DLM parameter can take values above the ones predicted for uniform

illumination.

Concerning the tails of the velocity distributions f0, they are observed to be best repre-

sented for v >∼ 3vth by a Maxwellian fit of the form:

fM,tail(v; Ntail, Ttail) =
Ntail

(2π Ttail/m)3/2
exp

[
−1

2

v2

Ttail/m

]
, (10)
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where the density Ntail and temperature Ttail are in general different from the bulk values N

and T obtained by the corresponding averages of f0 over all velocities. Such a dependence

of the tail is illustrated by Fig. 5 for cases (a)-(d), and has been checked for all simulations

in the parameter scan.

The values Ntail and Ttail of the Maxwellian fit (10) were determined by minimizing the

error:

Error(Ntail, Ttail) =
∫ 5vth

3vth

dv {log [fM,tail(v; Ntail, Ttail)]− [log f0(v)]}2 .

Note that the fit was limited to the velocity interval 3− 5vth. Also, so as to provide a good

fit over the many orders of magnitude over which the tails of the distributions may vary, the

deviation between f0 and fM,tail is measured in terms of the logarithm of these functions.

In the cases of strong spatial transport, and for all intensities, the Gaussian-like tail of

the velocity distribution on the beam axis is essentially identical to the tail of the Maxwellian

background plasma (see Fig. 5.a and 5.c). This reflects the rapid thermalization with the

surrounding plasma for large values of λε,0 /∆rFW. A slight increase in the density Ntail

with respect to the background value N0 is nonetheless observed in these cases, which, as

verified, agrees well with the adiabatic response to the electrostatic potential drop:

Ntail ∼ exp(−e φ/T0),

where φ is the potential related to the self consistent electric field E = −∂φ/∂x.

For low spatial transport (as in Fig. 5.b and 5.d), the tail temperature Ttail takes an

intermediate value between the local bulk temperature T and the background temperature

T0. These values are also plotted in Fig. 3 for the entire parameter scan.

In order to combine the DLM fit (9) for the bulk of the distribution and the Maxwellian

(10) for the tail into a single continuous function, valid for representing the whole distribu-

tion, the following global fit is defined:

ffit(v) = c(v) fDLM(v) + [1− c(v)] fM,tail(v), (11)
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where c(v), ensuring the continuous transition from fDLM to fM,tail around the critical velocity

vc = 3vth, is arbitrarily chosen as:

c(v) =
1

2

[
1− tanh

(
v − vc

∆v

)]
.

A transition width ∆v = 5 · 10−2vth agrees well with the numerical results. Except for a

possible branch cut at v = 0, a fit of the form (11) is in fact analytic, which turns out to

be useful for solving the dispersion relation for the electron plasma waves, as will be seen

in Sec. IV D. The quality of the global fit of type (11) for representing all regimes of the

parameter scan is illustrated by the results in Figs. 4 and 5.

The contribution Qr(r, v) from each position in the phase space (r, v) to the radial heat

flux qr(r) is plotted in Fig. 7 for the final states of cases (a)-(d). More exactly, Qr is defined

by

Qr(r, v) = −4π2 mv4 r χ

(
∂f0

∂r
− ar

1

v

∂f0

∂v

)
,

and such that

2π r qr(r) =
∫ +∞

0
dv Qr(r, v),

as is straightforward to verify from Eq. (6). Figure 7 clearly illustrates the outward heat

flux carried by the more energetic particles, and a return current towards the beam axis at

lower velocities. It is interesting to note, that the heat flux essentially takes place below

the velocity 3vth, which is also the transition point between the DLM-like bulk and the

Maxwellian tail of the velocity distributions. In the cases of strong spatial transport (Figs.

7.a and 7.c), the heat flux is essentially constant, at least up to the radius r = 10∆rFW

shown, reflecting the fact that the system basically reached a stationary state in this region.

However, in the presence of weak spatial transport (Figs. 7.b and 7.d), the heat front has

barely reached r = 5∆rFW, and consequently the system is still evolving at these radii.
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D. Solving the Dispersion Relation for Electron Plasma Waves (EPWs)

To quantify the effect of the non-Maxwellian velocity distribution functions on Landau

damping, the linear dispersion relation for EPWs was solved:

ε(ω, k) = 0, (12)

where (ω, k) are the frequency and wave vector of the mode, and ε is the local dispersion

function evaluated for the distribution function f0(r, v; t) at a given radial position r and

time t:

ε(ω, k) = 1− ω2
p

k2

1

N

∫
dv

k · ∂f0/∂v

k · v − ω
,

ω2
p = Ne2/mε0 being the plasma frequency squared.

Making use of the fact that the considered distributions are isotropic in velocity space,

the integral over the solid velocity angle can be carried out, which leads to:

ε(ω, k) = 1 +
ω2

p

k2

2π

N

∫ +∞

−∞
dv

kv

kv − ω
f0(v), Imag(ω) > 0, (13)

having symmetrized f0(v) around v = 0.

Relation (13) for ε is only valid for positive imaginary frequencies (growing waves), but

can be analytically continued into the lower complex frequency half-plane (damped waves).

This can be achieved in the usual way, by deforming the contour of the velocity integral into

the lower complex velocity half-plane, a so-called Landau contour (LC), so as to avoid the

pole lying at v0 = ω/k. This procedure naturally assumes that f0 is itself analytic, and can

be continued from the real axis to a region containing v0. In this way:

ε(ω, k) = 1 +
ω2

p

k2

2π

N

∫
LC
dv

kv

kv − ω
f0(v)

= 1 +
ω2

p

k2

2π

N

[
2πi v0 f0(v0) +

∫ +∞

−∞
dv

kv

kv − ω
f0(v)

]
, Imag(ω) < 0, (14)

where the last integral is again along the real axis, so that the Landau contour integral

effectively leads to picking up the residue from the pole. The main practical problem of
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evaluating (14) for solving equation (12) consists in computing f0(v0), and thus in finding

the analytic continuation of the distribution f0, which is provided by the Fokker-Planck

simulation only for a finite number of mesh points {vj}j=1,...,nv along the real velocity axis.

This issue was resolved by making use of the analytic fit (11).

The whole issue of evaluating f0(v) in the complex plane is removed in the case of

weakly damped modes, i.e. in the asymptotic regime of large wavelengths (kλD,� 1, with

λD = vth/ωp the Debye length), in which case the resonant approximation may be applied

for solving the dispersion relation (12). The real frequency for the electron plasma waves is

then given by the Bohm-Gross relation:

ω2
R = ω2

p

[
1 + 3(kλD)2

]
, (15)

and the damping rate by the value of f0 at the resonant phase velocity vφ = ωR/k:

γ/ωp = − π2

(kλD)3

v3
th

N
f0(vφ). (16)

The growth rate γ of the EPW as a function of the wave number k has been computed

for the distributions of the limiting cases (a)-(d) (velocity distributions shown in Figs. 4 and

5), and plotted in Fig. 8. For large values of kλD, these results were obtained numerically

by directly solving the dispersion relation (12) in the complex frequency plane, making

use of Eq. (14) for ε and the fit (11) for estimating f0. For smaller values of kλD, the

resonant approximation (15)-(16) was applied. As a reference, the dispersion relation was

also solved considering three additional distributions for each case (a)-(d): The equivalent

Maxwellian, the DLM distribution fDLM fitting the bulk, and the DLM distribution from

Matte’s estimate (neglecting spatial transport) for the local value of Z(vos/vth)
2, providing

the values nMatte = 4.31, 3.42, 2.47, and 2.28 for the DLM parameter in cases (a), (b), (c) and

(d) respectively (see Fig. 6). As expected from relations (15) and (16), for each case (a)-(d)

the differences between the various growth rates γ essentially reflect the differences between

the corresponding distributions plotted in Fig. 5. In the case of low spatial transport

(see e.g. Fig. 8.b), the damping can thus be orders of magnitude lower for the actual
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velocity distribution compared to the equivalent Maxwellian. In the presence of strong

spatial transport (Figs. 8.a and 8.b), however, the differences are much less dramatic.

V. COMPARISON WITH NON-LOCAL HYDRODYNAMICS

The non-local hydrodynamic approach,6–8 providing closure relations to the fluid equa-

tions for all regimes of collisionality, is a useful benchmark for the Fokker-Planck code. In

turn, the full Fokker-Planck simulations enable one to determine quantitatively the limits of

these relations, which are valid only in the linear regime of small deviations with respect to

a Maxwellian background distribution. For this purpose, the evolution of the temperature

profile in the case of a single laser hot spot was derived in the framework of the non-local

hydrodynamic model, and compared to results from the non-linear Fokker-Planck code.

Assuming a Maxwellian background distribution driven by a low intensity laser, the heat

equation (6) can be written in linearized form:

∂

∂t

(
3

2
NδT

)
+

∂ q

∂x
= νei

N

Nc

I

c
, (17)

where I = (1/2)ε0E
2
0c stands for the laser intensity, Nc = ω2

0mε0/e
2 stands for the

critical density, and the thermal electron-ion collision frequency is defined by νei =

(2/3)
√

2/π νei(vth). So as to lighten notations for this linearized derivation, the label 0

refering to background quantities is omitted.

The non-local hydrodynamic approach provides the closure relations for the current j

and heat flux q, which can be written in Fourier representation with respect to space as8

j(k) = σE? + α ik δT + ξj
e

T
ik

N

Nc
vth λei

I

c
, (18)

q(k) = −αTE? − χ ik δT + ξq ik
N

Nc
vth λei

I

c
, (19)

with λei = vth/νei the thermal electron-ion mean free path, k the wave vector of the per-

turbation, and the effective force field being defined as E? = E + (ik/e)(δN T/N + δT ).

Note the following transport coefficients: The electric conductivity σ, heat conductivity χ,
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thermoelectric coefficient α, and the coefficients ξj,q describing the coupling of the laser to

the plasma. In general, these coefficients are not only function of the wave number k = |k|,
but also of the rate ν at which transport evolves. It has been shown, that this frequency

dependence must be taken into account when considering the rapid relaxation of an initial

temperature perturbation under conditions of strong non-local transport.18 However, for

the driven systems studied here, the evolution takes place at a slower rate, and the trans-

port coefficients at zero frequency (ν = 0) computed in references 6–8 may therefore be

considered.

From Eq. (18), the condition of quasineutrality j = 0 provides the equation for the

self-consistent electric field

E? = − ik

σ

(
α δT + ξj

e

T

N

Nc

vth λei
I

c

)
.

The heat flux is then given by

q = −κ ik δT + ξ ik
N

Nc

vth λei
I

c
,

with the effective heat conductivity κ and coefficient ξ defined by

κ = χ− T α2

σ
,

ξ = ξq +
e α

σ
ξj .

The linearized heat equation (17) can now be written in Fourier representation with respect

to x as

∂

∂t
δT (k; t) = −νrelax δT (k, t) +

νei

3

(
vos

vth

)2

(k)
[
1 + ξ (kλei)

2
]

T, (20)

having used the notation νrelax = (2/3)κk2/N for the relaxation rate of temperature per-

turbations, and the relation I/(cNc) = (T/2)(vos/vth)
2 between the laser intensity and the

quiver velocity. It is straightforward to integrate (20) with respect to time, giving

δT (k; t) =
T

3

νei

νrelax

(
vos

vth

)2

(k)
[
1 + ξ (kλei)

2
]
[1− exp(−νrelaxt)] , (21)
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having assumed no initial temperature perturbation, and the laser drive invariant over time.

As in the numerical simulations, the heat transport is to be considered in the plane

transverse to the laser beam. Considering a radially Gaussian laser intensity profile of the

form (8), the two-dimensional Fourier transform becomes

(
vos

vth

)2

(k) =
(

vos,0

vth

)2 1

(2π)2

∫
dx exp[−1

2
(x/∆rFW)2] exp(−i k · x)

=
(

vos,0

vth

)2 ∆r2
FW

2π
exp[−1

2
(k∆rFW)2]. (22)

According to Eqs. (21) and (22), one has δT (k) = δT (|k|), and, transforming back to direct

space, the temperature perturbation becomes

δT (x; t) =
∫

dk δT (k; t) exp(ik · x) =
∫ +∞

0
dk k δT (k; t)

∫ +π

−π
dθ exp(ikr cos θ)

= 2π
∫ +∞

0
dk k J0(kr) δT (k; t), (23)

where J0 is the zeroth order Bessel function.

Inserting (21) and (22) into (23), one finally obtains the radial temperature profile re-

sulting from non-local heat transport:

δT (r; t)

T
=

Z(vos,0/vth)
2∆r2

FW

9
√

2π

∫ +∞

0
dk k J0(kr) exp[−1

2
(k∆rFW)2]

νee

νrelax
×

[
1 +

9π

2

ξ

Z
(kλε)

2

]
[1− exp(−νrelaxt)] , (24)

having defined the thermal electron-electron collision frequency as νee = (4/Z)νei(vth), and

again using the thermal stopping length λε = vth/[νei(vth) νee]
1/2 = (1/3)(2Z/π)1/2 λei.

For the transport coefficients κ and ξ appearing in (24), one can make use of the approx-

imate relations

κ(k, ν = 0) =
κ0

1 + (10
√

Z kλei) 0.9
=

64√
2π

N νee λ
2

ε

1 + (15
√

2π kλε) 0.9
, (25)

ξ(k; ν = 0)

Z
=

34.5

1 + 37 [Z (kλei)2] 0.67
=

34.5

1 + 37 [(9π/2)(kλε)2] 0.67
, (26)

given by Eq.(3.27) in Ref. 7 and Eq.(33) in Ref. 8 respectively, and valid for high Z and

kλε
<∼ 1.
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Note, that in general the interaction between the laser and the plasma not only leads

to inverse Bremsstrahlung, but to ponderomotive effects as well; ξ takes account of both of

these dynamics.8 Also, one distinguishes between the isotropic and anisotropic (quadrupole)

contribution of the laser polarization by decomposing this transport coefficient into ξ =

ξiso + (3 cos2 φ0 − 1) ξaniso, where cos φ0 = E0 · k/(E0 k). In equation (5), however, which is

evolved in the non-linear Fokker-Planck simulations, ponderomotive and quadrupole effects

of the laser light have been neglected. Relation (26) is consistent in this respect, as it

corresponds only to the isotropic component of ξ, which has no ponderomotive contribution

at zero frequency. Finally, the non-local transport coefficients computed in Refs 6–8 are valid

for finite Z, while the approximate relations (25)-(26), function only of the stopping length

λε, correspond to the high Z limit. This is again consistent with the diffusive approximation

considered in the Fokker-Planck simulations.

The comparison between the non-local hydrodynamic approach and the Fokker-Planck

simulations was carried out for a parameter scan similar to the one considered in Sec. IV.

However, only the subset of transport levels λε,0 /∆rFW = 2.60/54 − 2.60/50, by factors of

25, was considered in this case. Also, to actually reach the linear regime with the Fokker-

Planck code, lower laser intensities needed to be considered than in Sec. IV, so that the

values Z(vos,0/vth,0)
2 = 10−3 − 100, by factors of 10, were chosen for the second relevant

parameter. The simulations have again been run up to an arbitrary time, in this case

t = 100 ν−1
ee,0. The final temperature profiles were then compared to relation (24). The

corresponding results are summarized in Fig. 9.

Figure 9.a illustrates the final (t = 100 ν−1
ee,0) temperature variation profiles from the

simulations for the highest level of spatial transport λε,0 /∆rFW = 2.60 and for the different

intensities considered. These profiles have been normalized with respect to the amplitude

of the drive, i.e. Z(vos,0/vth,0)
2. Within the linear regime, these profiles should therefore

coincide with the non-local hydrodynamic result obtained from Eq. (24), and which is also

plotted in Fig. 9.a. This is clearly the case for intensities Z(vos,0/vth,0)
2 = 10−3 and 10−2;

significant deviations however appear at higher intensities.
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The differences in ∆T , at r = 0 and t = 100 ν−1
ee,0, between the linear non-local hydro-

dynamic result and the Fokker-Planck simulations, are given in Fig. 9.b as a function of

Z(vos,0/vth,0)
2 and for the different levels of spatial transport. It turns out, that in the final

state of the simulation, for all values of λε,0 /∆rFW considered, deviations of more than 10%

have appeared for intensities above Z(vos,0/vth,0)
2 = 10−2 − 10−3.

The breakdown of the linearized fluid approach naturally occurs when the velocity dis-

tributions deviate too strongly from the initial Maxwellian background. This can be the

result of one or both of the following: A too large (1) increase in temperature, (2) change of

the actual shape of the distribution. In an attempt to quantify the limits of the non-local

hydrodynamic approach in terms of these two effects, the temperature increase ∆T at r = 0

in the final state of the simulation is plotted in Fig. 9.c, and the parameter n of the DLM

function, fitting the bulk of the distribution, plotted in Fig. 9.d. From Figs. 9.b-9.d, one can

infer, that in the presence of temperature variations ∆T/T0
>∼ 1%, and / or deformations

from a Gaussian-shaped distribution characterized by DLM values n >∼ 2.1, the linearized

hydrodynamic approach leads to errors larger than 10%.

VI. MULTIPLE LASER HOT SPOT SYSTEMS

In general, the non-linear simulation results obtained for single hot spots cannot be

directly applied for describing systems composed of more than one such heat source. In

a non-linear regime, as soon as the heat fronts from neighboring hot spots overlap, the

principle of superposition of effects from the individual heat sources naturally breaks down.

As an illustration, let us consider such a multiple hot spot system. The cylindrical

symmetry, used for carrying out the single hot spot calculations, becomes inappropriate for

modeling two or more hot spots, and, so as to avoid the need for a fully two-dimensional

spatial simulation, a slab-like geometry is assumed instead. Note that the change of geometry

in itself affects the heat transport results.19

The system defined here is quite similar to the one considered by Afeyan et al..2 However,
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the more realistic intensity profile considered in reference 2, corresponding to the speckle

pattern produced by a random phase plate (RPP) laser beam, has been replaced by an

equidistant series of equivalent hot spots. Each of these hot spots corresponds to what may

be considered an average speckle in reference 2. The actual simulation conditions are thus

defined as follows: An initial Maxwellian background plasma is assumed at temperature

T0 = 300 eV , and density N = 9.06 · 1020 cm−3, corresponding to 10% critical for a laser

light at λ0 = 0.35µm. The ionization state is assumed to be Z = 20 (fully stripped Ca). For

these parameters, the background thermal stopping length is λε,0 = 0.17µm (taking again

lnΛ ' 5). The system simultaneously includes ten hot spots, their centers separated from

each other by a distance of 20µm, each having a Gaussian spatial dependence analogous to

the one defined in cylindrical geometry by Eq. (8), with a radial focal width ∆rFW = 3.3µm.

The peak laser intensity at each hot spot is I0 = 4.8 · 1015 Wcm−2, providing an average

intensity over all ten speckles of Iav = 2.0 · 1015 Wcm−2.

In a first simulation, the ten hot spots were placed at the center of a system 600µm wide,

with fixed boundaries defined by the initial Maxwellian background. This system was then

evolved for t = 4500 ν−1
ee,0 = 235psec, at which point it essentially reached an equilibrium

with the fixed boundaries. The corresponding temperature profile is shown in Fig. 10.a.

Thanks to the mirror symmetry of the laser intensity profile, only half of the system needed

to be computed by taking a reflective boundary at the center.

Velocity distributions are plotted in Fig. 10.b and 10.c, in linear and logarithmic scale

respectively. The distribution at the very center of the system (x = 0, minimum in intensity

profile) is compared to the one at x = 10µm (first maximum in intensity from center). As

shown in Fig. 10.b, variations in the bulk of the distribution reflect the variations of the laser

intensity profile. The DLM parameters providing the best fits at positions x = 0 and 10µm

are n = 2.79 and 3.10 respectively. The tails of the distributions are however essentially

invariant within the heating region, as illustrated in Fig. 10.c. This is due to the fact that

the slow particles of the bulk undergo heating locally, while the highly mobile particles in

the tail are mainly submitted to dynamics resulting from an average intensity profile. This
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is confirmed by actually repeating the same simulation after having replaced the intensity

profile from the ten hot spots by the average profile shown in Fig. 10.a. As appears in

Fig. 10.c, the tail of the corresponding velocity distribution (taken arbitrarily at x = 0)

indeed matches the tails resulting from the spatially modulated intensity. Furthermore, as

expected, the bulk distribution (Fig. 10.b), with a DLM fit value n = 2.85, is intermediate

between the distributions relative to minima and maxima in intensity of the multiple hot

spot case.

Due to the large temperature increase by the end of the simulation (factor 10), the

stopping length at the center of the system becomes of the order λε ' 17µm for thermal

particles, and λε(4vth) = 4.4mm for particles in the tail with velocities v ' 4vth. This is

appreciably larger than the distance of 300µm from the center to the boundary of the initial

simulation domain. One may therefore expect, that even at the very center of the system,

the tails of the distribution are affected by the fixed boundary conditions. In an attempt

to simulate open boundaries, two additional simulations were carried out by placing the

edge of the computation domain at 2mm, and then 10mm from the center of the system.

Within the initial region of 300µm from the center, the results from these two last runs are

essentially identical, thus proving that the intended goal of simulating open boundaries has

been reached. These two runs are therefore not further distinguished. The corresponding

temperature profile and distributions at time t = 4500 ν−1
ee,0 have also been plotted in Figs.

10.a and 10.c respectively. The tails of the distributions relative to the open boundary

system are significantly less depleted than the ones for the fixed boundary case. The 10%

variation in temperature at the center of the system, between the fixed and open boundary

calculations, can only partly account for these differences in the distributions. Indeed, as

can be seen in Fig. 10.c, the tails actually have different shapes: The distribution of the

energetic particles is clearly Maxwellian (Ttail = 7.8T0) for open boundaries, while more

super-Gaussian for fixed boundaries.

Finally, to provide a link between the multiple heat source simulations and the single hot

spot calculations, a run was carried out by driving the system with the Gaussian intensity
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profile shown in Fig. 10.a. This single hot spot has a peak intensity I0 = 2.8 · 1015 Wcm−2,

and a radial focal width ∆rFW = 57µm, which corresponds to the same total power and root

mean square width as the square-shaped average intensity profile, and provides the following

values for the relevant parameters: λε,0 /∆rFW = 3.0 · 10−3 and Z(vos,0/vth,0)
2 = 8.3. In this

case, open boundaries were again considered. The corresponding temperature profile and

velocity distribution at x = 0 are also plotted in Fig. 10.a and 10.c respectively. These results

are very similar to the ones from the multiple hot spot calculation with open boundaries.

This example illustrates, how the single hot spot simulation results may provide average

estimates for more complex systems.

VII. CONCLUSIONS

Single laser hot spot simulations have been carried out over a wide dynamic range,

characterized by the two relevant parameters λε,0 /∆rFW and Z(vos,0/vth,0)
2, which measure

the level of spatial transport and inverse Bremsstrahlung respectively. These Fokker-Planck

simulations have shown, that once the system has reached a quasi-steady state, the electron

velocity distributions within the laser beam are well represented by a DLM-type function

for the bulk, and a Maxwellian for the tail. Let us point out, that although most of the

distributions shown in this paper were relative to the very center of the hot spot, they can

be characterized in a similar way off axis.

Considering that DLM distributions provide good representations in the absence of

transport,3 it is not astonishing that such functions remain good fits for representing the

relatively slow moving particles of the bulk. Naturally, an equilibrium is established be-

tween the bulk distributions and the Maxwellian tails, which clearly are the result of spatial

transport. The actual DLM parameter values fitting the bulk can therefore be significantly

different from the estimates obtained using Matte’s relation for uniform illumination. Both

smaller (for strong spatial transport) and larger (for reduced transport) values have been

observed.
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Under conditions of strong spatial transport, such as for the LANL single hot spot

experiment,5 the Maxwellian tails within the laser beam are essentially identical to the

distribution of the surrounding thermal plasma. For cases with weak spatial transport, the

temperature of the Maxwellian tail at a given point is intermediate between the temperature

of the corresponding bulk distribution and the temperature of the surrounding background.

It is remarkable that the distributions present a Maxwellian tail over such a wide dynamical

range. Although we have not yet been able to do so, an appropriately defined reduced model

may enable to describe the underlying mechanism leading to this “universal” feature.

Although the single laser hot spot is a particular case of a non-uniformly driven plasma,

we have shown that the corresponding results may also be useful for providing estimates of

more complex systems. This was illustrated in the situation of multiple hot spots: Good

estimates of the average velocity distribution function can be obtained by replacing the

multiple heat sources by an appropriately chosen single hot spot.

As pointed out by Afeyan et al.,2 the electron distribution tails depleted by non-classical

drive may lead to orders of magnitude reductions of the linear Landau damping of plasma

waves, which in turn may enable significantly lower thresholds and faster growth rates for

SRS. Our results have mainly confirmed the possible reduction of linear Landau damping,

although strong spatial transport, as well as different boundary conditions (open boundaries,

versus fixed) can moderate this effect.

Finally, the non-linear Fokker-Planck simulations have also been applied for estimating

the limits of the linear regime, under which the non-local hydrodynamic closure relations6–8

to the heat equation are valid. It has been shown, that perturbations of the initial

Maxwellian background, corresponding to temperature variations as low as ∆T/T0
>∼ 1%,

and deformations of the Gaussian-shaped distribution characterized by DLM values n >∼ 2.1,

lead to more than 10% inaccuracy of the hydrodynamic approach.
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Fig. 1 Evolution in time of the temperature variation ∆T at r = 0 for the peak intensity

Z(vos,0/vth,0)
2 = 12.83, and for the different levels of spatial transport considered in

the parameter scan.

Fig. 2 Temperature profiles (full line) at time t = 500 ν−1
ee,0, the final state of the simulation,

for the four limiting cases of the parameter scan: Cases (a, b) and (c, d) correspond

to the intensities Z(vos,0/vth,0)
2 = 12.83/40 and 12.83/43 respectively. Cases (a, c) and

(b, d) correspond to the transport levels λε,0 /∆rFW = 2.6/50 and 2.6/54 respectively.

The Gaussian intensity profile is plotted as a reference (dashed line).

Fig. 3 Increase ∆T of the bulk temperature (full line), at r = 0 and in the final state

(t = 500 ν−1
ee,0) of the simulation, as a function of the different levels of transport

λε,0 /∆rFW, and for the different intensities Z(vos,0/vth,0)
2 considered in the parameter

scan. The temperature increase ∆Ttail of the Maxwellian tail of the distributions is

plotted with a dashed line [Ttail is defined in Eq. (10) Sec. IV C].

Fig. 4 Velocity distributions in linear scale at r = 0 and t = 500 ν−1
ee,0 for the four limiting

cases (a)-(d) of the parameter scan. The result from the Fokker-Planck (F-P) code

is plotted with a full line, the fit of the form defined by Eq. (11) labeled with (o),

the equivalent Maxwellian (same density and temperature as F-P result) with dash-

dotted line, and the background Maxwellian with dotted line. In this scale, the fit

corresponds essentially to the contribution from the DLM-type function fDLM, with

parameter value given by nDLM.

Fig. 5 Same as Fig. 4, but in logarithmic scale, and with an additional curve (dashed),

corresponding to the DLM component fDLM of the fit. These results clearly illustrate

the transition around v = 3vth from the DLM-like bulk to the Maxwellian-like tails.

The density Ntail and temperature Ttail of the Maxwellian fit fM,tail are chosen such as

to best represent the distribution in the velocity interval 3− 5vth. In cases (a) and (c)

with strong spatial transport, the tail of the distribution is essentially identical to the
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tail of the Maxwellian background.

Fig. 6 Parameter n of the DLM fit representing the bulk of the distribution at r = 0 and

t = 500 ν−1
ee,0 as a function of Z(vos/vth)

2, where vth is evaluated at the same position

and time. Labels A-E refer to the different levels λε,0 /∆rFW = 2.6/50 − 2.6/54 of

spatial transport, and the successive curves correspond to the different levels of inverse

Bremsstrahlung Z(vos,0/vth,0)
2 = 12.8/40 − 12.83/43 considered. As a reference, the

relation for uniform illumination is plotted with a dashed line. The reduction of the

number of particles at v = 0 compared to a Maxwellian is indicated on the right hand

side of the figure.

Fig. 7 Contribution Qr(r, v) to the heat flux from each point in the phase space (r, v), for all

four limiting cases (a)-(d). Contour levels plotted in full lines correspond to outward

(positive) flux, while dashed lines correspond to return (negative) flux towards the

beam axis; the dash-dotted line is the zero-flux contour level. Maximum and minimum

value of Qr(r, v) are given in units N0 T0 ν−1
ee,0 ∆r2

FW/vth. Also indicated is the velocity

3vth, with vth evaluated at r = 0.

Fig. 8 Damping rate γ (in units of plasma frequency ωp) of the EPW as a function of the

wave number k (in units of inverse Debye length λD), for the four limiting cases (a)-(d).

The curve labeled with (o) was obtained using the fit (11) to the Fokker-Planck code

result. As a reference, the damping rates assuming the following distributions have

also been plotted: Equivalent Maxwellian (dash-dotted line), DLM-type fit to the bulk

(dashed line), and DLM distribution neglecting transport, i.e. estimating nDLM with

Matte’s relation and the local value of Z(vos/vth)
2 (full line).

Fig. 9 Comparing non-linear Fokker-Planck (F-P) simulations with the linear non-local

hydrodynamic approach, considering as a test case a parameter scan of the single laser

hot spot system. All results plotted for time t = 100 ν−1
ee,0. Shown are (a) profiles of

the temperature variation ∆T in the case λε,0 /∆rFW = 2.60 and for all intensities
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Z(vos,0/vth,0)
2 = 10−3 − 100 considered, (b) relative difference in ∆T (r = 0) between

the F-P and the linear fluid results for the complete parameter scan, (c) absolute value

of ∆T (r = 0) for the F-P results, and (d) value of the DLM parameter fitting the bulk

of the distributions.

Fig. 10 Results relative to multiple hot spot system. (a) Profiles of intensity, and final

temperature. Only the right hand half of the system is shown. Three intensity patterns

are considered: ten hot spots, an average square-shaped profile, and an equivalent

single hot spot. Both fixed and open boundaries are considered. Velocity distributions

for the different simulations are given in (b) linear and (c) logarithmic scale.
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FIG.3 Brunner
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FIG.4 Brunner
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FIG.5 Brunner
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FIG.6 Brunner
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FIG.8 Brunner
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FIG.9 Brunner
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FIG.10 Brunner
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