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Abstract

One emerging threat to the national critical infrastructure is the release of chemical or
biological agents in or near large complex facilities.  Predictive computational models for
the time-dependent transport of gas and aerosol in and around target facilities is required
to effectively assess and mitigate this threat.  Despite this growing need for
computational flow models that can be used in extremely large, complex geometries,
current computational approaches are limited to 107 – 108 nodes.  This is sufficient to
model a single large interior space with a typical level of turbulence, but far less than the
number of computational cells required to model all or even part of a large, modern
building.  The use of non-overlapping finite-element domain decomposition methods to
achieve scalability with respect to problem size on massively parallel computers has been
extensively developed over the past decade.  In some cases, a high degree of scalability is
achieved with only a single level of domain decomposition.  Since a single level of
domain decomposition is desirable for load balancing on massively parallel computers, a
single-level method has the advantage of not introducing additional complex
substructures on the problem, although special requirements may be imposed by the
domain decomposition method on the nature of the subdomains to preserve scalability.

Of the many different domain decomposition methods that have been developed, the
single-level finite element tearing and interconnecting (FETI) method has become
recognized as an effective way to achieve good scalability in large problems.  This
iterative method with a built-in "coarse" problem has been developed primarily for static
and time-dependent elasticity problems, with both homogeneous and highly
heterogeneous material properties.  However, it has also been applied to potential
problems.  This report discusses the extension of FETI methods to boundary element
methods (BEM).  The immediate motivation for this extension is the development of
scalable methods for solving for the potential in BEM-based velocity-vorticity
formulations of incompressible flow.
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1   Introduction

One emerging threat to the national critical infrastructure is the release of chemical or
biological agents in or near large complex facilities.  Predictive computational models for
the time-dependent transport of gas and aerosol in and around target facilities is required
to effectively assess and mitigate this threat.  Despite this growing need for
computational flow models that can be used in extremely large, complex geometries,
current computational approaches are limited to 107 – 108 nodes.  This is sufficient to
model a single large interior space with a typical level of turbulence, but far less than the
number of computational cells required to model all or even part of a large, modern
building.  After significant investigation, a computational approach to provide this
modeling capability was explored under a 3 year LDRD.  Unfortunately, when Sandia’s
FY00 LDRD budget was reduced from 6% to 4% the present work was abruptly
cancelled just after the first year had been completed.  The present report discusses the
work that was completed before the end of the project, and represents a useful foundation
if the project is refunded under a future LDRD.  However, it does not describe a
completed research effort.
The use of non-overlapping finite-element domain decomposition methods to achieve
scalability with respect to problem size on massively parallel computers has been
extensively developed over the past decade.  In some cases, a high degree of
scalability is achieved with only a single level of domain decomposition.  Since a
single level of domain decomposition is desirable for load balancing on massively
parallel computers, a single-level method has the advantage of not introducing
additional complex substructures on the problem, although special requirements may
be imposed by the domain decomposition method on the nature of the subdomains to
preserve scalability.�

Of the many different domain decomposition methods that have been developed,[1]
the single-level finite element tearing and interconnecting (FETI) method[2] has
become recognized as an effective way to achieve good scalability in large problems.
This iterative method with a built-in "coarse" problem has been developed primarily
for static and time-dependent elasticity problems, with both homogeneous and highly
heterogeneous material properties.  However, it has also been applied to potential
problems.  For the finite element applications the condition number for the FETI
method with optimal preconditioning is typically stated as:

� �� �h/Hlog1 m
����                  

(1)

where H is the length scale of the subdomains, h is the length scale of the mesh, and
m = 3 or 2, depending on the presence or absence, respectively of edge or corner
cross-ties in the problem.

                                                
� Such requirements for finite element methods have been studied extensively.  However, the
requirements with respect to the boundary element technique will not be discussed here but
will be the subject of future investigations.
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Note that the condition number � is independent of the number of subdomains.  This
is important for the type of scalability of interest here, which is embodied in the so-
called speed-up factor.  A condition number independent of the number of
subdomains means a problem can be set up with a given number of subdomains per
processor, each with a given number of degrees of freedom (DOF).  According to
Equation (1), the number of processors and thus the problem size can be increased
without changing the condition number.  This translates into linear scaling of the
speed-up factor with problem size, provided, of course, that one can neglect the effort
required to solve the "coarse" or global aspects of the problem which are essential to a
condition number that is independent of subdomain number.

In a FETI method, a relatively small global "coarse" problem arises naturally and is
related to the collective null-spaces that are often present in stiffness matrix (K(s)) for
each subdomain.  This coarse problem is solved twice per iteration cycle (in the
finite-element version of FETI) and the information from this solution is propagated
throughout the subdomains.  The DOF in this coarse problem correspond to the rigid-
body translational and rotational modes of a subdomain for an elasticity problem and
to the overall constant term in the potential within a subdomain for a potential
problem, whenever such "modes" are not fixed by external Dirichlet boundary
conditions.  Thus, the coarse problem can contain up to 6 DOF per subdomain in an
elasticity problem and up to one DOF per subdomain in a potential problem.

The present memo discusses the extension of FETI methods to boundary element
methods (BEM).  The immediate motivation for this extension is the development of
scalable methods for solving for the potential in BEM-based velocity-vorticity
formulations of incompressible flow.  The FETI method has been selected for
generalization to BEM because of the fact that the former utilizes Lagrange
multipliers to enforce continuity constraints on the boundary between subdomains.  It
is well known that these Lagrange multipliers play the role of boundary tractions in
an elasticity problem and velocities in a potential problem.  This formulation has a
logical extension to BEM, which generates an inherently mixed formulation with
explicit displacement and traction, or potential and normal potential velocity, terms.
(Hereafter, all velocities in the following discussion will be assumed to refer to the
normal component at the boundary, unless otherwise specified.)

This mixed nature is apparent at the internal interfaces between subdomains because both
the displacements and tractions (potentials and potential velocities) appear as unknowns
along such boundaries.  The logical extension of FETI to BEM is to treat the potential
velocities in a manner analogous to the Lagrange multipliers in the FETI method.  It may
be possible to extend other finite element domain decomposition methods to BEM, but
the extension is less obvious since one must first deal with (i.e., eliminate) one of the
unknowns (e.g., the potential velocities) obtained in BEM at the internal interfaces.  One
likely candidate besides FETI is the finite element Balancing Domain Decomposition
(BDD) method,[3] which can be considered the "dual space" formulation to FETI.  In
contrast to FETI, BDD deals strictly with the displacement (potential) degrees of
freedom.  Successful extensions to BEM of such related methods cannot be ruled out and
may be considered in more detail at a later date.
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2   The Proposed BEM Formulation

A key step in the development of a velocity-vorticity-based formulation of
incompressible flow is the solution of a potential problem, in which the potential is
chosen to satisfy external boundary conditions on the potential and velocity.  To do
this within a FETI-like formulation, we assume that a non-overlapping domain
decomposition of the entire domain � has created Ns subdomains, which we denote
by �s.  In what follows we distinguish segments of the external domain boundary
from internal interfaces between subdomains.  Figure 1 shows segments of the
internal interfaces between subdomains and the pairing of the internal interface nodes
between adjacent subdomains.  Note that a discontinuous BEM representation is
assumed to be used at edges and corners between subdomains (as opposed to planar
faces) so that node multiplicities on the internal interfaces (i.e. the number of
subdomains that share an interface node) are always equal to 2.

In the derivation of the subdomain governing equation (Equation (4) below), velocity
continuity conditions are imposed between subdomains to eliminate one velocity
unknown between the node pairs in Figure 1.  In contrast, the enforcement of
continuity of the potential between node pairs generates the system equation
(essentially, Equation (7)), and since this equation is solved interatively, continuity of
the potential is achieved only at convergence.

In the following, we will for simplicity neglect compressibility effects and consider
the interface velocity v to be composed of a potential part and vorticity-induced part,
v = v� + v�, where as usual

s
s

3
)s( Rd

r
)'(

4
1v �

��
�

�
�� �

�

�

ωxxn  

(2)

where n is the outward normal of �s and � is the vorticity.  Note that the vorticity
contributions to the velocity are treated in a local manner; only the vorticity internal
to a subdomain is considered to contribute to the velocity )s(v

�
 defined for that

subdomain.  The effects of the vorticity external to a given subdomain are assumed to
be included in the potential velocity v�.  Consequently, the continuity conditions on
the normal velocity apply to the total normal velocity at the internal interface between
two subdomains i and j and not just the potential part:

)j()j()i()i( vvvv
����

����

(3)

In the following, we will use notation that parallels that in Reference 2 to the extent
possible.  In contrast to FEM, the BEM formulation is inherently mixed and for
subdomain s generates a governing equation of the form
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(s)T(s)(s)(s)(s)   -  fqBJuK ��            
(4)

where u(s) is a generalized vector of unknowns, consisting of unknown external
boundary potential velocities, if any exist for subdomain s; unknown external
boundary potentials, if any; and unknown internal interface potentials for s; q is a
global vector of length nI consisting of one unknown potential velocity per node pair
along all internal interfaces between subdomains; and K(s) and J(s) are the coefficient
matrices associated with u(s) and B(s)Tq, respectively.  (The structure of these vectors
and matrices will be discussed more fully in the next section.)  The matrix B(s) is the
signed Boolean matrix of dimension ns � nI, that when multiplied into u(s) extracts the
latter's restriction to the internal interfaces of the domain decomposition. The
dimension ns is the total number of unknowns associated with subdomain s, including
the unknown potentials and potential velocities on the external boundary segments
and unknown potentials on the internal interfaces but excluding the potential
velocities on the internal interfaces.  Note that, by definition, unknowns in u(s)

corresponding to the external boundary are multiplied by zero entries in B(s) and are
ignored in this restriction.  The sign applied to the restriction is determined by the +-
sign pairing assigned to each node pair.  (In Figure 1 this sign pairing is shown to be
assigned on a subdomain by subdomain basis, although this is not necessary.)  This
pairing determines the arbitrary direction of positive velocity across the boundary.
The vector f(s) is determined from values of v� at the subdomain interfaces and from
the Dirichlet and Neumann boundary conditions on any external boundary segments
that are included in the subdomain.

In Equation (4), the vector q plays the role of the Lagrange multiplier vector λ  in the
FETI formulation.[2]  Note that the organization of unknowns in Equation (4) reflects
the fact that the roles of u and q in the FETI solver are different.  In the FETI method
the q vector is solved iteratively, and at each step of the q iteration, the u(s) vector is
solved (typically directly) using the q values for that iteration as boundary conditions.
This differentiation of roles is a key distinguishing feature of a Neumann-Neumann
iterative method.  In contrast, in conventional BEM all unknowns are treated on the
same footing and are accommodated within one large system matrix.

It should be noted that Neumann-Neumann and related methods to date have been
applied only to a limited extent and with limited success to BEM.[4]  One reason is
that published BEM-specific methods, at least those known to the author, do not deal
with the null spaces typically present in K(s) for pure Neumann boundary conditions,
and thus the published Neumann-Neumann methods cannot be used for domain
decompositions with interior subdomains.  A related method, the Dirichlet-Dirichlet
approach, does not lead to singular matrix for internal subdomains but seems to
converge very slowly even for a handful of subdomains.[4]  This may be related to
the fact that a suitable "coarse" problem for global information propagation has not
been used in conjunction with the BEM-specific techniques.

The general solution of Equation (4) for one subdomain may be written as
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)s()s(T)s()s()s()s()s( αRqBJfKu ��
�

�
�
�

�
�	

�

(5)

where K(s)+ is the generalized inverse of  K(s) if K(s) is singular and the inverse of K(s)

if K(s) is not singular.  (Although methods to solve for the generalized inverse have
been developed for FETI applications, they will not be discussed here.)  If K(s) is
singular, then R(s) is the matrix whose columns consist of the vectors that span the
null space and �(s) is the amplitude of the various null space vectors in the solution.
The subdomains with singular K(s) are called "floating."  In elasticity problems such
subdomains arise whenever the 6 possible rigid body modes for a subdomain are not
fully pinned by external Dirichlet boundary conditions.  For potential problems, such
subdomains are those that do not include an external boundary segment with Dirichlet
boundary conditions. Thus, the total number of degrees of freedom represented by the
null spaces includes up to 6 DOF per floating subdomain for elasticity problems and
one DOF per floating subdomain for potential problems.  For floating subdomains in
potential problems, R(s) consists of just a single column with the same nonzero value
for all entries, representing the fact that the potential within a subdomain with pure
Neumann boundary conditions is not defined to within an overall constant.

The condition for the solution in Equation (5) to exist is that the quantity in brackets
in that equation be orthogonal to the null space of K(s), whenever such a space exists
for s:

0
T)s()s()s(T)s( ��

�

�
�
�

�
� qBJfR

(6)

This condition is known as the equilibrium condition, or equivalently, the flux
conservation condition in a potential problem.  As discussed above, for a potential
problem, R(s) is just a vector with the same value for all entries.  Thus, the above
equation is equivalent to a column sum of the vector quantity defined by the brackets.

The system equation is formed from the continuity condition on the potential at the
internal subdomain interfaces.  First, recall that B(s) restricts a vector to the internal
interfaces of the domain decomposition.  It should be clear from the discussion above
and also in the following section that the entries of u(s) corresponding to the internal
interfaces represent only potentials, not potential velocities.  Thus, the continuity
condition for potentials across the internal boundaries can be written as

0
sN

1s

)s()s(
��

�

uB

(7)

When u(s) from Equation (5) is substituted into the above equation and Equation (6) is
taken into account, one obtains a system equation of the form
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where
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where Nf is the number of floating subdomains, GI
(s) = B(s) R(s), and )s(

I
~G  = B(s)J(s)TR(s).

As discussed in Reference 2, the coupling to the null space (i.e., the � terms) in Equation
(8) can be formally eliminated through projection operator methods.  We first write q as

qPqq ~0
��

(9)

where q0 is a particular solution of  eqG �

T
I

~  of the form

� � eGGGq
1

I
T

II
0 ~ �

�

(10)

and P is the (non-orthogonal) projection operator

T
I

1
I

T
II

~)~( GGGGIP �

��

(11)

Note that PT � P and also .0~
I

T
I �� GPPG   The non-orthogonality of P is a

consequence of the non-symmetric form of Equation (8) with respect to the off-diagonal
subblocks (i.e., II

~ GG � ).  (Note that although non-orthogonal projection operators are
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also discussed in Reference 2, the non-orthogonality is explicitly introduced through the
matrix Q defined in that reference.  As discussed there, the use of certain Qs (not equal to
the identity matrix) helps to preserve scalability in heterogeneous FETI problems.  The
use a matrix analogous to Q does not appear to be possible for BEM because the non-
symmetric off-diagonal subblocks in Equation (8) require that the projection operator be
applied somewhat differently than in Reference 2.)

The substitution of Equations (9)-(11) into Equation (8) and left multiplication of the first
row of Equation (8) by P (not PT) lead to the equation

� �0
II

~ qFdPqPFP ��  
(12)

Also, one can show that the second row of Equation (8) (the equilibrium or flux
conservation condition) is identically satisfied for any q~ .  These are the principal new
results of this document.

Before discussing the structure of the BEM matrices, the nature of the inherent "coarse"
problem in FETI methods should be discussed further.  This "coarse" problem is
essentially embodied in the effects of the inverse in Equation (11).  The square matrix

I
T

I
~ GG  has a dimension equal to the total number of degrees of freedom represented by

the null spaces in the problem.  Although this matrix is sparse, its inverse is fully
populated and serves to propagate information between all subdomains whenever the
projection operator is applied.  This global propagation is the type of behavior expected
from a "coarse" problem, if it is to substantially enhance the conditioning of the problem
overall.
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3   Structure of the BEM Matrices

The structure of the K and J matrices is determined from application of standard BEM to
a subdomain.  There are in general four types of unknowns when external boundary
conditions are taken into account:  (1) external boundary potential velocities for nodes at
which Dirichlet boundary conditions are applied, (2) external boundary potentials for
nodes at which Neumann boundary conditions are applied, (3) internal interface
potentials, defined separately on the two  sides of the interface, and (4) internal interface
potential velocities.  Note that if a subdomain is strictly an interior one and does not
include segments of the external domain boundary, the first two types of unknowns will
be absent for that subdomain.  As discussed above, the continuity condition for the
interface potentials on the two sides of an internal interface is imposed as a separate
condition and is equivalent to the system equation (see Equations (7) and (8)).

In the derivation of Equation (4), it was assumed that terms in the BEM governing
equation containing the first three types of unknowns enumerated above were brought to
the left side of Equation (4).  We also assume for simplicity of notation that u(s) consists
of unknowns for the subdomain s that are grouped in the order given.  The first part of
u(s) then consists of a vector of external boundary unknown DOFs

�
�
�

�

�
�
�

�
� )s(

i

)s(
i)s(

i φ
q

u

(13)

where qi
(s) denotes the external boundary potential velocities and �i

(s) the external
boundary potentials, and the second part consists of the internal interface potentials for
that subdomain

)s(
b

)s(
b φu �

(14)

In what follows we will use a block form corresponding to the decomposition

�
�
�

�

�
�
�

�
� )s(

b

)s(
i)s(

u
u

u

(15)

The use of the subscripts "i" and "b" follows the notation used in Reference 2.  The
subscript "i" stands for a DOF that is "internal" to a subdomain; i.e., not defined on the
interface between two subdomains.  The subscript "b" on the other hand denotes a DOF
at an internal interface (i.e., boundary).  The rationale for this notation is that in the finite-
element method, the "internal" DOFs correspond primarily to the interior nodes of a
subdomain.  In a BEM, there are no nodes except on the subdomain boundaries, but one
must take into account the fact that the unknowns corresponding to segments of the
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external boundary play the same role as an "internal" unknowns.  Thus, we continue to
use this notation, although it is somewhat confusing in the present application.)

In Equation (4), q is the internal interface potential velocity vector, consisting of one
DOF for each internal interface node pair.  How this vector is defined is somewhat
arbitrary.  For definiteness, this can be chosen as the outward normal potential velocity
on the "minus" side of an interface pair.  The continuity condition on the total velocity,
Equation (3), can then used to define the potential velocity on the "plus" side of the
interface.  Thus the same unknown can be used on the two sides of the interface, provided
the sum of the vorticity terms is incorporated into the "plus" side f(s).

With respect to the subblocks shown in Equation (15), one can write

�
�
�

�

�
�
�

�
� )s(

bb
)s(

bi

)s(
ib

)s(
ii)s(

KK
KK

K

(16)

and
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�

�
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�
�

�
� )s(

bb

)s(
ib)s(

0
0

J
J

J

(17)

The first column of the J(s) matrix has been set to zero since J(s) multiplies B(s)T, which
has non-zero entries only for internal interface DOFs.  (Recall that the unknown potential
velocities on external boundaries were taken to the left side of Equation (4) and are
considered lumped into the u(s) vector.)

Note that the form of flux conservation condition given in Equation (6) depends in part
on the definition of J(s).  This matrix can vary, for example, depending on whether the
singular or hypersingular form of the boundary integral equation is used, or whether the
rows in the discretized matrix equations have been multiplied by some arbitrary factors.
While it is not clear why this ambiguity should exist, J(s) should presumably be chosen so
that Equation (6) is equivalent to the conventional flux conservation equation.  The
natural formulation to use in this respect is the Galerkin form of the hypersingular
equation, since it can be shown to produce the conventional flux conservation equation,
provided column-sum relations are preserved in the numerical evaluation of the singular
integral contributions to J(s).  Whether other boundary integral formulations are also
appropriate is still being investigated.
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4   Modified CGSTAB Solver

In Table I we illustrate how an iterative unsymmetric matrix solver could be modified to
deal with the presence of the projection operators in Equation (12).  We have chosen
CGSTAB for illustration.[5]  Other methods would presumably be treated in an
analogous manner, but may require application of both P and PT.  The results of Table I
are given without derivation for illustration only (for example, to show the number and
nature of the projection steps).  Aside from the inherent differences between the
symmetric conjugate gradient and CGSTAB methods, the steps outlined are similar to the
preconditioned conjugate projected gradient (PCPG) algorithm for symmetric matrices
presented in Reference 6.  In either approach, the function of projection operator is to
ensure that the equilibrium or flux conservation condition is satisfied after each iteration.
This follows in the present case because q0 satisfies this equation and each term added to
q is premultiplied by P, and 0~ T

�PG .  One can conclude from Table I that projection
operators must be applied four times per iteration cycle for the CGSTAB method,
compared to twice per cycle in the PCPG algorithm.
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5   The Optimal Preconditioner Matrix

The existence of an optimal choice for the preconditioner 1
IF� appearing in Table I — i.e.,

one that gives a poly-logarithmic condition number similar to Equation (1) — has not
been demonstrated for the extension of FETI to BEM discussed here.  However, the
likely choice for such a preconditioner can be deduced from arguments similar to those
given in Reference 6 for the FETI optimal preconditioner.  This preconditioner averages
over each internal interface the change in internal interface tractions  (potential velocities)
corresponding to given changes in the displacements (potentials), assuming that each
subdomain can be treated independently and that the "internal" DOFs are free to adapt to
the change.

In the present case this candidate optimal preconditioner can be shown to have the form

)s(T)s(
sN

1s
)s(
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)s()s(1
I 0
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where
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is a straightforward generalization of the conventional expression for the Shur
complement and W(s) is the diagonal "topological scaling" matrix,[2,6] with diagonal
entries equal to 1/n, where n is the node multiplicity, or the number of subdomains
sharing the corresponding internal interface node.  If, as discussed above, discontinuous
boundary elements are used at all edges and corners between subdomains, then n = 2 for
all internal interface nodes.  In the above equation W(s) in this case has the effect of
splitting the displacement (potential) difference between subdomains and averaging the
resulting tractions (potential velocities) at the interface.
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6   Summary

A proposal has been given for the extension of FETI methods to BEM.  The basic
equations for such an extension have been derived, and the modifications needed in an
unsymmetric matrix iterative solver to handle the projection operators arising in the
extension have been illustrated.  A likely candidate for the optimal preconditioner in the
extension to BEM has also been suggested, but the scalability properties of this
preconditioner remain to be demonstrated, either by theoretical or numerical means.
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Table I.  Illustration of the use of the projection operator in the CGSTAB solver

_______________________________________

1. Initialize

q0 = GI ( I
T

I
~ GG )-1e

r0 = P (d - FI q
0 )

x0 = 0; p0 = 0; k=0

2. Advance k = k+1 and evaluate

�
k = r0 � rk-1

�
k = ( �k � k-1 )/( �k-1 �k-1 )

pk = rk-1 + �k ( pk-1 - �k-1 x k-1 )

3. Precondition a = F I
-1 pk

Project z = P a

4. Calculate b = FI z

Project xk = P b
�

k = �k / ( xk
� r0 )

v = rk-1 - � k xk

5. Precondition  c = F I
-1 v

Project y = P c

6. Calculate g = FI y

Project w = P g
rk = v - �k w
�

k = ( w � rk ) / ( w � w )
qk = qk-1 + � k z + �k y

7. Repeat items (2) - (6) until converged
_______________________________________
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Figure 1.  Illustration of node pairing at the internal interfaces between subdomains.
Note the position of the solid/open dots defines the sign convention
assigned to the nodes on either side of the interface (e.g., solid = +; open = -).
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8   Appendix A

Powerpoint presentation attached.
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Organization of Talk

� Introduction

� The multi-zone approach

� A highly scalable finite element (FE) domain decomposition
method

� Development of an analogous method for boundary
elements (BE)

� 3D benchmark calculation
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What is Transport and Fate?

� Transport and Fate refers to the time-dependent and
spatially varying concentrations of Chem/Bio agents that
develop following a release.  The focus here is on interior
transport in large critical infrastructures (airports,
convention centers, high-rise buildings, etc.)

� The ability to model the interior transport of agents is critical
to a variety of analyses involving risk assessment,
evacuation planning, mitigation measures, sensor
placement, building hardening, agent viability, etc.
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� Generally, the interior flow in buildings is turbulent (a flow of 1
ft/s with a characteristic length of 20 ft gives Re ~ 105 ) and
therefore difficult to model.

� Current calculations seem to have a practical limit of 107 - 108

nodes.

� The consensus appears to be that this is sufficient to model at
most a “large” room with a typical level of turbulence; therefore
only a small part of a large infrastructure can currently be
resolved.

Why Focus on Interior Transport in a LDRD?



03/20/97-S5

LDRD Objectives

� The principal objective is to develop methods, within a
velocity-vorticity flow formulation, that significantly extend
the size of interior flow problem that can be treated.  A
secondary objective is to characterize the turbulence and
turbulent mixing of interior flows.

� Principal difficulty is that conventional boundary element
methods (BEM) are not scalable. (Storage ~ N2 ; direct
solver CPU time ~ N3)

� Focus of the LDRD is to develop and implement a scalable
BE method, using domain decomposition, or multi-zone,
techniques
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Illustration of the Multi-Zone Concept

Single-Zone Two-Zone 

Multi-Zone 

…….
…….
…….
…….

. ..
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Results of Literature Survey

� Current multi-zone solution techniques for BEM methods
are extremely limited, relative to FE

- System-matrix assembly techniques, which typically use a direct
solver.  Use of iterative solvers seems to be extremely limited.

- Iterative Schwarz techniques.  These apparently do not use a
coarse problem or deal with singular Neumann-only
subdomains.

� Some recent FE domain decomposition methods have
achieved high scalability through proper treatment of
Neumann singularities, use of a coarse problem and optimal
preconditioners
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The Scalable FETI* Method

� An FE method under development since the early 90’s

� Development has primarily been toward static and dynamic
structural analysis, including plate and shell problems and
highly heterogeneous applications

� A highly scalable solver has been developed for such
applications and also for potential problems

� Recently, a FETI solver has been incorporated into the
Sandia SALINAS elasticity code, in a joint effort with the
University of Colorado

________
*Finite Element Tearing and Interconnecting
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FETI Features

� Lagrange multipliers, in conjunction with minimization
principles, are used to enforce subdomain continuity

� The condition number ~ O(1 + ln2( H/h ) ), where H is
subdomain size and h is element size, for the optimal
(Dirichlet) preconditioner

� The coarse problem arises from treatment of the rigid body
modes (up to 6 per floating subdomain in elasticity
problems and one mode per floating subdomain in potential
problems)

� A Conjugate Projected Gradient method is used to project
out the rigid body modes.   The coarse, local Dirichlet, and
Neumann problems are solved by direct methods.
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BEM Analog of FETI (BETI)

� A minimization principle is not available, but BEM is
inherently a mixed formulation and the flux unknowns can
be treated to some extent like the Lagrange multipliers in
FETI

� The subdomain matrices are unsymmetric and in addition
non-orthogonal projection operators are required

� An unsymmetric matrix (e.g., bi-conjugate gradient) global
solver with 4 projections per iteration is necessary

� A write-up of the proposed BETI method will be available
shortly

� The scalability of this method still needs to be determined
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Building a Scalable Code

� The BETI method will be used as the global solver, to obtain
the potential and normal velocities on the subdomain and
external boundaries

� The existing gridded vortex code will be used as the
“subdomain” solver

- Calculate velocity induced on the subdomain boundaries from
the subdomain vorticity (prior to global solve)

- Calculate transverse boundary velocities from the normal
velocities using the Generalized Helmholtz Decomposition

- Calculate subdomain interior velocities using the GHD

- Advance the vorticity transport equation in time
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Present and Near-Term Solver Activities

� BETI Solver Development

- Assessment of methods to calculate hypersingular BEM
coefficients

- Development of a BETI solver testbed

- Investigation of possible mathematical derivation of BETI
scalability
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Present and Near-Term Activities (cont’d)

� Gridded Vortex Code Development

- Incorporation of adaptive singular numerical quadrature
methods for 3D coefficient evaluation

- Development of a parallelized version (for use as the subdomain
solver)

- Development of 3D boundary condition options
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3D Benchmark Calculation

� The purpose is to evaluate current capabilities for large interior
transport problems and allow future comparisons with the BETI
solver at the lower end of its targeted capabilities.  This evaluation
includes the degree to which turbulence can be captured in a large
interior transport problem.

� The GILA code (a fast-running FE large-eddy simulation code with
statistics package) has been selected for this benchmark

� A full-scale, bio-aerosol mixing test (the 911-Bio Advanced
Concept Technology Demonstration test sponsored by the DOD CP
office) will be analyzed

� This work is being done in conjunction with a separate LDRD to
improve/develop GILA statistics and plotting packages
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Impact of the BETI Method

� Success of BETI methods would clearly constitute a major
breakthrough for multizone BEM, extending the practical
number of zones that can be modeled by a couple orders of
magnitude.

� The BETI method will also allow the total number of degrees
of freedom that can be treated to increase up to the point
that the size of the coarse problem begins to dominate the
scalability.  At that point the treatment of the coarse problem
will have to be revisited.
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