
 
SAND REPORT 
 

SAND2001-2892 
Unlimited Release 
Printed September 2001 
 
 
Location Algorithms and Errors in 
Time-Of-Arrival Systems 

Eugene A. Aronson 
 

 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of  
Energy under Contract DE-AC04-94AL85000. 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 
 



 
 

Issued by Sandia National Laboratories, operated for the United States Department 
of Energy by Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of 
the United States Government.  Neither the United States Government, nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, make any warranty, express or implied, or assume 
any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represent that its use would 
not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government, any agency thereof, or any of their contractors or 
subcontractors.  The views and opinions expressed herein do not necessarily state or 
reflect those of the United States Government, any agency thereof, or any of their 
contractors. 
 
Printed in the United States of America. This report has been reproduced directly 
from the best available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov 
Online ordering:  http://www.doe.gov/bridge 
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order:  http://www.ntis.gov/ordering.htm 

 
 

 
 



3 

SAND2001-2892 
Unlimited Release 

Printed September 2001 
 
 

LOCATION ALGORITHMS AND ERRORS 
IN TIME-OF-ARRIVAL SYSTEMS 

 
 
 

Eugene A. Aronson 
Mission Analysis and Simulation Department (6524) 

Sandia National Laboratories 
P. O. Box 5800 

Albuquerque, NM  87185-0670 
 
 
 

 
 
 
 

Abstract 
 

This report describes least squares solution methods and linearized estimates of solution 
errors caused by data errors. These methods are applied to event locating systems 
which use time-of-arrival (TOA) data. Analyses are presented for algorithms that use 
the TOA data in a “direct” manner and for algorithms utilizing Time-of-arrival Squared 
(TSQ) methods. Location and error estimation results were applied to a “typical” 
satellite TOA detecting system. Using Monte Carlo methods, it was found that  the 
linearized location error estimates were valid for random data errors with relatively 
large variances and relatively poor event/sensor geometries. 
 
In addition to least squares methods, which use an 2L  norm, methods were described 
for 1L  and L∞  norms. In general, these latter norms offered little improvement over 
least squares methods. 
 
Reduction of the location error variances can be effected by using information in 
addition to the TOA data  themselves by adding  judiciously chosen “conditioning” 
equation(s) to the least squares system. However, the added information can adversely 
affect the mean errors. Also, conditioned systems may offer location solutions where 
nonconditioned scenarios may not be solvable. Solution methods and linearized error 
estimates are given for “conditioned” systems. It was found that for significant data 
errors, the linearized estimates were also close to the Monte Carlo results. 
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1.0  INTRODUCTION 
 
 
An event at an unknown location generates a pulse of energy at an unknown time. The pulse 
radiates outward and is detected by a set of sensors, each sensor at a known location. Each sensor 
estimates the time of arrival (TOA) of the pulse at the sensor. If the velocity of the pulse to each 
sensor is known, it is possible to estimate the location of the event and its time of occurrence, 
since the distance from the event to each sensor is proportional to the time difference from the 
event time to the time measured at the sensor.  Data from a minimum of four sensors are required 
to estimate the (three-space) event location and time.  This report discusses various methods for 
finding the event location and the errors in the event location and time associated with the data 
errors. 
 
In general, the TOA data are subject to errors, so any scheme to estimate the event location and 
time will produce errors. The location and time errors depend on the TOA data errors and also on 
the geometric configuration of the sensors and the event.  If, for example, the event and all 
sensors are coplanar, the event cannot even be located unless it is known that the event was 
coplanar with the sensors. We will discuss the properties of these location errors for various 
location algorithms and event/sensor configurations. 
 
A very common and useful method for location estimation is by the method of least squares.  A 
general discussion of this method is given in Section 2.  A discussion of errors in general least 
squares solutions appears in Section 3.  The application of various least squares schemes to 
location estimation in TOA systems and their associated error estimates are given in Section 4. 
Section 5 contains numerical results for location and time errors for specific “realistic” 
event/sensor geometries, data errors, and location algorithms. A Linear Programming approach is 
discussed in Section 6, and “conditioned” least squares methods are examined in Section 7.  In 
the context of this report, “conditioning” means using some information external to the data 
measurements themselves to improve the location accuracy. A summary of the report is in 
Section 8. Most of the analyses in Sections 2, 3, and 4 is discussed in references [1] through [4]. 
 
We use bold for matrices and vectors.  Unless otherwise noted, vectors will be column vectors. 
Upper-case T denotes vector or matrix transpose. Expectation is denoted by E{…}. 
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2.0  THE METHOD OF LEAST SQUARES 
 
 
The method of least squares is usually attributed to Gauss, who towards the end of the 18th 
century used, or suggested the use of, the method to estimate celestial orbits from measurements 
subject to errors.  The basic idea is to create an estimate that minimizes the sum of the squares of 
the data errors.  In addition to references [1] through [4], discussions of the method may be 
found in Hamming [5], Papoulis [6], and Lawson and Hanson [7]. Least squares uses an 2L norm 
in that it minimizes the sum of squares of data errors. It has the advantage over other norms in 
that it succumbs relatively easily to analytic solutions.  It has the disadvantage, compared to the 

1L  norm, in that it tends to exaggerate large data errors (see pages 225 and 226 of Hamming [5] 
for a brief but lucid discussion of this phenomenon). 
 
Suppose we have a set of M  unknowns, 1 2( , ,..., ) ,T

Mx x x=x  and a set of N  independent 
measurements (or data), 1 2( , ,..., ) , .T

Nd d d M N= ≤d   If there are fewer measurements than 
unknowns, the unknowns cannot be uniquely found unless other information is provided. We 
assume that the unknowns are related to the data by a set of N  independent “model” equations, 

1 2( , ) ( , ,..., ) .T
Nf f f=f x d   Also, we choose a positive definite, symmetric weighting matrix W, 

which in some sense takes into account our estimates of the accuracy of the measurements. The 
least squares solution is the value of x that minimizes the scalar 
 
 ( , ) ( , ).Ts = f x d Wf x d  (2.1) 
 
The functions f may be linear or nonlinear, or any mix of the two. 
 
2.1 Least Squares Solutions 
 
In general, we assume that f is differentiable with respect to both x and d. Minimization of 
equation (2.1) is usually accomplished by observing that the necessary condition for a minimum 
of s occurs where the partial derivatives of s with respect to x, / ,s∂ ∂x  are zero. This method 
leads to M equations in M unknowns.  If ,M N≤  the system is said to be “overdetermined.”  In 
this case, some or all of the model equations may not have value zero at the solution values. In 
fact, if there are errors in the data, the model equations need not be satisfied exactly. 
 
Define /= ∂ ∂A f x . Then the “best” solution in the least squares sense, is the value of x that 
satisfies the equation 
 
 .T =A Wf 0  (2.2) 
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These equations are called “normal equations” and consist of M equations in M unknowns. If all 
the elements of f are linear in x, then the normal equations are also linear in x, and the “best” 
solution, if it exists, is the solution of a system of M linear equations in M unknowns. Assume 
that that f is linear in x and that = +f Ax c , where A and c are constant.  Then 
 
 ( ) 0.T T= + =A Wf A W Ax c  (2.3) 
 
The solution of equation (2.3) is  
 
 1 ,T−= −x B A Wc  (2.4) 
 
where 
 
 .T=B A WA  (2.5) 
 
Note that since W is symmetric, B is symmetric, as well as B-1. 
 
If f is nonlinear in x, other methods must be used to solve equation (2.2). 
 
2.2 Newton’s Method 
 
If the normal equations are nonlinear, as is the case with all our location algorithms, they may be 
solved by Newton’s method, which is an iterative scheme. Let ix  be the i-th estimate of x, where 

0x is an initial estimate. Define / | .ii
=

∂ ∂ x xA f x�  Then the successive estimates of x are 
 
 11 ( , )i i i iT i−+ = −x x B A Wf x d , .i iT i=B A WA  (2.6) 
 
The iteration ends when 
 
 1| | 0,i i ε+ − ≤ >x x  (2.7) 
 
where ε  is a preassigned positive number.  Note that this method requires the choice of an initial 
estimate of x and a convergence criterion, .ε   If the initial guess is “poor” or if the data errors 
are “large” or if iB  is “ill conditioned,” the method may not converge. By “ill conditioned,” we 
mean that the elements of 

1i−

B are very sensitive to minor changes in the elements of .iB  In fact, 
for example, if the rows of iB  are linearly dependent, its inverse does not even exist! 
 
Another difficulty with iterative methods is that the result may depend on the initial guess.  The 
solution may go to a local, rather than a global, minimum.  Also, because of data errors and 
problem condition, the “correct” solution may be at a local minimum, and the global solution 
may not be the desired one. 
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3.0  ERRORS IN LEAST SQUARES 
 
 
In general, there are errors in the data that induce errors in the unknowns.  Let the actual data be 

o e= +d d d , where 1( ,... )T
o o oNd d=d  is the “exact” data measurements and 1( ,..., )T

e e eNd d=d is 
the vector of data errors. Let the solution be o e= +x x x , where the exact result is 

1( ,..., )T
o o oMx x=x  and 1( ,..., )T

e e eMx x=x is the resultant error in the unknowns. 
 
In general, we assume that the ed are random variables, so we can compute only the statistics of 

ex . Indeed, if the f are nonlinear, we can usually only estimate the statistics of the errors in x.  
The errors in x depend on the errors in d, the condition of B and, if an iterative method is used, 
perhaps on the initial guess of x and the convergence criterion. For the TOA problem, these 
phenomena correspond to the errors in the TOA measurements at the sensors, the condition of 
event/sensor geometry, the choice of an initial location, and the choice of the convergence 
criterion. 
 
In any iterative (thereby nonlinear) least squares problem, there is always the possibility of 
finding local, rather than global, minima because of the initial solution choice. Even if data errors 
are small and the problem is well conditioned, the procedure can find a local minimum if the 
initial guess is in the wrong region. There is also the possibility that the global minimum is not 
unique. What is even more problematic is that the global minimum may not be the desired 
minimum. All TOA algorithms are nonlinear. The only way to (hopefully) guarantee that the 
found minimum conforms to the desired solution is to utilize some information external to the 
method itself as a test of the reasonableness of any solution. Because of data errors, finding the 
global minimum is not necessarily a sufficient guarantee. The error analyses in this report 
assume that solutions are “near” the desired locations, not at some other, far-away minimum. 
 
3.1 Linear Estimation of Least Square Errors 
 
Define 
 
 ( , )o o of f x d� , ,/ |

o oo = =∂ ∂ x x d dA f x� , and ,/ | ;
o oo = =∂ ∂ x x d dG f d�  

 
that is, oA  is the sensitivity of f with respect to x, and oG  is the sensitivity of f with respect to 
the data d, both evaluated at the “exact” solution and with errorless measurements. Expanding f 
in a Taylor series about o=x x  and ,o=d d  and retaining only the linear terms, suggests the least 
squares problem 
 
 min( ) ( ),T

o o el o e o o el o e+ + + +f A x G d W f A x G d   
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where elx  is the linear estimate of the solution errors. Since these equations are linear in ,elx  the 
solution is 
 
 1 ( ),T

el o o o o e
−= − +x B A W f G d   .T

o o o≡B A WA  
 
But 0o =f , hence  
 
 1 .T

el o o o e
−= −x B A WG d  (3.1) 

 
Note that the linear estimates of the location errors are linear combinations of the data errors. 
 
Assuming that the elements of ed  are random variables, we can compute the mean and variance 
of .elx  We get 
 
 1 1{ } { } .T T

el el o o o e o o o eE E− −= − = −x x B A WG d B A WG d�  (3.2) 
 
Define the covariance matrix of the linear errors in x as {( )( ) }.T

xl el el el elE − −C x x x x�  From 
equation (3.1), we get 
 
 1 1{( )( ) },T T T

xl o o o e el o o o e elE − −= − − − −C B A WG d x B A WG d x  (3.3) 
 
and since ( )T T T=XY Y X  for any matrices X and Y , and B is symmetric (i.e., T=B B ), 
 
 1 1 ,T T T

xl o o o d o o o el el
− −= −C B A WG C G WA B x x  (3.4) 

 
where { }T

d e eEC d d�  is the covariance matrix of the data errors. 
 
In general, the mean of the data errors is zero; that is, 0e =d . If this is not so, the data errors are 
said to be “biased.” An estimate should be made of the bias and, if the estimate is believable, a 
translation of the values of d  should be made to remove the mean errors. Given that 0,e =d  we 
get 
 
 0el =x , and 1 1.T T

xl o o o d o o o
− −=C B A WG C G WA B  (3.5) 

 
From Graupe [8]: If the data errors are (unbiased) Gaussian random variables, a common 
practical situation, then the maximum-likelihood, minimum-variance estimate of xlC  is obtained 
if W is chosen as 1( ) .T

o d o
−=W G C G  In this case, 

 
 1.xl o

−=C B  (3.6) 
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Although the maximum-likelihood, minimum-variance is exactly valid for Gaussian random 
variables, it is a practical approximation for almost any non pathological, single mode, 
symmetric distribution.  In the following material, we shall refer to this weighting choice as 
“optimal” weighting. 
 
If the weighting is normalized by using ( )trace N=W , then xlC  from equation (3.6) is an 
estimate of the conditioning of the event/sensor geometry, also referred to as Geometric Dilution 
of Precision (GDOP). For any weighting matrix, the condition of xlC  from equation (3.6) is the 
measure of GDOP if dC is normalized by ( ) .dtrace N=C  If the diagonal elements of xlC  are 
large compared to unity, the system is ill conditioned, and vice versa. Another, and essentially 
equivalent, estimate of GDOP is Error Probable (EP). For our location problem, EP has three 
components: Circular Error Probable (CEP), Vertical Error Probable (VEP), and Time Error 
Probable (TEP). These measures are directly computed from the location error covariance matrix 
(Aronson [1]). 
 
At this juncture, we note that all location algorithms discussed in this report are nonlinear; 
therefore, if the data errors are “large” and/or the event/sensor geometry is ill conditioned, the 
actual location error statistics can differ substantially from their linear approximations. 
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4.0  TIME-OF-ARRIVAL LOCATION ALGORITHMS 
 
 
For TOA location systems, there are four unknowns: the three-space location of the event and the 
time of the event.  We assume that the pulse velocity v  is constant and identical from event to all 
sensors.  For simplicity, we take this velocity to be unity. Thus, the “time of event,” vtτ = , has 
the units of distance. The vector of unknowns has four dimensions: 
 
 ( , , , ) .Tx y z τ=x  (4.1) 
 
For N sensors, the data vector is 
 
 1( ,..., ) , ( ),T

N n nd d d vt= =d  (4.2) 
 
where nt is the detected time of arrival at the n-th sensor.  The location of the n-th sensor is 
 
 ( , , ) .T

n n n nx y z=x  (4.3) 
 
In the following, we assume that the sensor locations are known exactly. Analysis of event 
location errors when the sensor locations also contain errors (in addition to the data errors) is 
given in Aronson [3]. 
 
In all the following, we assume that the data errors are mutually independent random variables 
with zero mean.  Thus, { } 0en emE d d =  if n m≠ , and the variance of the n-th data error is 
 
 2 2{ }.n enE dσ =  (4.4) 
 
The covariance matrix of data errors is therefore diagonal: 
 
 2 2

1( ,..., ).d Ndiag σ σ=C  (4.5) 
 
In Sections 4.1 through 4.8, we discuss four important algorithms for finding event location via 
least squares and the location errors associated with them. 
 
4.1 TOA Method 
 
Let the location of the n-th sensor be 
 
 ( , , ) .T

n n n nx y z=x  (4.6) 
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The distance from the event to the n-th sensor is 
 
 2 2 2( ) ( ) ( ) .n n n nr x x y y z z= − + − + −  (4.7) 
 
For the TOA method the model equations are 
 
 ( ), 1,..., ;n n nf r d n Nτ= − − =  (4.8) 
 
that is, the distance from the event to the n-th sensor should be equal to the difference between 
the arrival time at that sensor and the event time. 
 
The matrix /= ∂ ∂A f x  has N  rows and 4 columns, and its n-th row is 
 
 [( ) / , ( ) / , ( ) / ,1]n n n n n n nx x r y y r z z r= − − −A . (4.9) 
 
The sensitivity of the model equations with respect to the data is the matrix / ,= ∂ ∂G f d  with 
N rows and N columns, and is 
 
 = −G I . (4.10) 
 
Thus, the “optimal” weighting matrix is diagonal; namely, 
 
 1 2 2

1[( ) ( )] (1/ ,...,1/ ).d Ndiag σ σ−= − − =W I C I  (4.11) 
 
The TOA equations are usually solved by Newton’s iterative method.  An initial location guess 
starts the iteration. Since there are four unknowns, each iteration requires the solution of a 4 by 4 
set of linear equations; that is, the B matrix is 4 by 4. 
 
Because the model equations are linear in ,τ  it is not necessary to make an initial guess for .τ   
Instead of using equation (2.6), we iterate on 
 
 1 1ˆ ( , ),i i i iT i+ −= −x x B A f x d�� �  
 
where ( , , ,0) ,i i i i Tx y z=x�  2 1 1(0, ,..., ) ,T

Nd d d d= − −d�  and 1 1 1 1 1ˆ ( , , , ) .i i i i i Tx y z τ+ + + + +=x  The iteration 

terminates when 1 .i i ε+ − ≤x x� �  Let the final iteration be at ,i I=  then the solution is 
 
 1 1 1 1

1( , , , ) .I I I I Tx y z dτ+ + + += +x  
 
For TOA, it is prudent for numerical operation reasons to translate the data to the minimum 
datum value, for example.  That is, if nd� is the actual measured n-th datum value, 

min( )n n nd d d= −� �  should be used.  The resultant value of τ should be negative, but can then be 
translated forward to the original time basis. Section 5.4 shows that although a data translation 
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should be used, translation to the minimum data value should not be used for the Bancroft 
method. 
 
4.2 Linear Location Errors in TOA 
 
If the weighting is optimal, equation (3.6) is used to obtain the linear error covariance. We get 
 
 1,xl o

−=C B  (4.12) 
 
where  ,T

o o o=B A WA  
 
 [( ) / , ( ) / , ( ) / ,1]on o n on o n on o n onx x r y y r z z r= − − −A , 
 
 2 2 2( ) ( ) ( ) .on o n o n o nr x x y y z z= − + − + −  
 
If nonoptimal weighting is used, xlC  is computed from equation (3.5). 
 
4.3 Time-Difference-of-Arrival Method 
 
The Time-Difference-of-Arrival (TDOA) method is motivated by the fact that if the various 
TOA model equations are subtracted from each other in some pairwise fashion, theτ unknown 
drops out and only a 3 by 3 linear system need be solved in the Newton iteration. It is proven in 
Aronson [2] that “If the TOA data errors are independent random variables with zero means and 
the weighting matrix is chosen as the inverse of the data difference errors, then the (linear) 
covariance matrix of the position errors is independent of the particular choice of difference 
pairs—provided, of course, that a set of independent, non-redundant differences is used.”  As a 
TDOA example, we choose to subtract the first model equation from all the rest.  We get 
 
 1 1 1 1, 1,... 1n n nf r r d d n N+ += − − + = − , (4.13) 
 

1 1 1 1 1 1 1 1 1 1 1 1[( ) / ( ) / , ( ) / ( ) / , ( ) / ( ) / ],n n n n n n nx x r x x r y y r y y r z z r z z r+ + + + + += − − − − − − − − −A  (4.14) 
 
and the n-th row of the G matrix is 
 
 (0,..., 1,...,1).n = −G  (4.15) 
 
Note that A is (N-1) by 3, G is (N-1) by N, and the solution vector is ( , , ) .Tx y z  The TDOA 
method does not directly yield ,τ  but it may be easily found by other means once the location is 
found. 
 
The TDOA method was initially considered because –in the 1970s computer time and memory 
were very expensive, and the inversion of a 3 by 3 linear system was considered a significant 
advantage over inversion of a 4 by 4 system. Such consideration is no longer valid, and there is 
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no need to use TDOA. One disadvantage of TDOA is that numerical roundoff problems may 
arise from taking TOA model equation differences. 
 
4.4 Location Errors in TDOA 
 
If the weighting is optimal, 1( ) ,T

d
−=W GC G  then it is proved in Aronson [2] that the (3 by 3) 

linear location error matrix xlC  for TDOA is identical to the upper 3 by 3 submatrix of xlC  for 
TOA. Note that W is (N-1) by (N-1). The closed form for the inversion of T

dGC G is given in 
Aronson [3] and Gregory and Karney [9]. For nonoptimal weighting, equation (3.5) is used; 
otherwise, equation (3.6) is used. We will not study TDOA further in this report. 
 
4.5 Time-of-Arrival Squared Method 
 
The model equations for the Time-of-Arrival Squared (TSQ) method are 
 
 2 2 2 2 2 2[( ) ( ) ( ) ( ) ] / 2 [ ( ) ] / 2, 1, , ;n n n n n n nf x x y y z z d r d n Nτ τ= − + − + − − − = − − = …  (4.16) 
 
that is, if the distance from the event is equal to the TOA minus the event time, then the squares 
of these quantities should also be equal. The division by 2 is for convenience. The TSQ least 
squares equations can be solved by Newton iteration with  
 
 ( , , , ).i i i i i

n n n n nx x y y z z d τ= − − − −A  
 
Note that, unlike TOA and TDOA, the model equations are nonlinear in τ as well in , ,x y and z , 
and that the data values themselves appear in the iB  matrix. 
 
The associated G matrix is diagonal: 
 
 1 1( ,..., ) ( ,..., )N Ndiag d d diag r rτ τ= − − =G  
 
Thus the optimal weighting matrix is also diagonal; 
 
 1 2 2 2 2

1 1( ) [1/ ( ) ,...,1/ ( ) ]T
d N Ndiag d dσ τ σ τ−= = − −W GC G . 

 
There are three apparent disadvantages in the iterated TSQ method. First, an initial estimate of 
all four unknowns ( , , , )x y z τ must be made; second, a convergence criterion must be established, 
and third, one must know the “true” values of τ and d to achieve optimal weighting. 
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4.6 Linear Location Errors in TSQ 
 
If optimal weighting is used in TSQ, the linear location error covariance matrix, xlC , is identical 
to that in the TOA method. Note that on o ond rτ− = , where onr  is the “true” distance from the 
event to the n-th sensor. Thus T

o o o=B A WA for TSQ is identical to oB for TOA, and 1
xl o

−=C B  
(QED). 
 
4.7 TSQ with Bancroft’s Method (TSQB) 
 
Bancroft [10] has devised a scheme for solving the TSQ problem requiring neither iteration nor 
an initial guess of the unknowns.  His method is a special case of a more general least squares 
method.  Consider the following parametric least squares problem: Let the model equations have 
the form 
 
 ( , , )n nf f p= x d , 
 
where p is a parameter and d is given. 
 
Suppose that a solution can be found with x  as a function of p, say, ( ).p=x S  Now, if we 
constrain p to be a function of x , ( ),pp f= x  we may substitute S  in pf  and obtain 

[ ( )]pp f p= S .  If we solve this last equation for p, we may then find x from ( ).p=x S  
 
If the model equations are linear in p and x, S  is easily found.  Let 
 
 n n n nf u p c= + +A x , 
 
where , ,n nu A and nc are constants. 
 
The solution to the weighted problem is 
 
 1 1( ) ,T T

pp p p− −= − − = +x B A WU B A WC v v  (4.17) 
 
where T=B A WA , 1( ,..., )T

Nu u=U , and 1( ,..., ) .T
Nc c=C   Solving [ ( )]pp f p= x  for p and 

substituting in equation (4.17) yields x. 
 
For the TSQB method, we write the TSQ model equations as 
 
 n n n n n nf p xx yy zz d cτ= − − − + + , (4.18) 
 
 2 2 2 2( ) / 2n n n n nc x y z d= + + − . (4.19) 
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 2 2 2 2( ) / 2p x y z τ= + + − . (4.20) 
 
Note that the model equations are linear in x  and p . We have 
 
 ( , , , ),n n n n nx y z d= − − −A  (4.21) 
 
 (1,...,1)T=U . (4.22) 
 
Substituting equations (4.19), (4.21), and (4.22) in equation (4.17) yields values of pv and v . 
 
From equation (4.20), we get the equation in p  
 
 2 2( / 2) ( 1) / 2 0,T T T

p p pp p ap bp c+ − + = + + =v Mv v Mv v Mv  (4.23) 
 

where  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 =
 
  − 

M . 

 
Equation (4.23) is solved for p by the quadratic formula 2( 4 ) / 2p b b ac a= − ± − . The values of 
p are substituted in equation (4.17). The Bancroft method is computationally very fast because 
no iteration is required.  Also, it requires neither an initial guess of the event location, nor a 
convergence criterion. 
 
The two solutions represent two local minima.  Numerical tests have shown that if the TOA 
method is initialized near each of these solutions, it converges to that solution. A major difficulty 
with TSQB is the resolution of the ambiguity in the quadratic solution. A possible method for 
resolving the two-solution ambiguity is to choose the value of p that offers the minimum scalar 
value of the TOA or TSQ problem, that is, minimizes either 
 

 2

1
( )

N

nn n n
n

w r dτ
=

+ −∑ , or 2 2 2

1
[ ( ) ] ,

N

nn n n
n

w r dτ
=

− −∑  

 
where nnw  is the n-th diagonal element of W, for either the TOA or TSQ weighting matrix. 
Section 5.5 demonstrates that these are not good choices in general because even if they find the 
global minimum, there is no guarantee that the global minimum is the “correct” solution. 
Another possibility is that one of the resultant values of τ may be in “past” time and the other in 
“future” time.  The “past” time solution is then chosen as the correct answer.  However, if data 
errors are “large” or if the geometry is ill conditioned, this choice may also be poor.  It appears 
that some criterion external to the Bancroft procedure itself must be employed to resolve the 
ambiguity. 
 



19 

For larger data errors and poorer geometries, the discriminant  2 4b ac−  approaches zero. In this 
situation, the two minima approach each other, and it becomes impossible to choose the 
“correct” solution. Very large data errors and/or an ill-conditioned geometry are indicated if the 
discriminant becomes negative, so the quadratic has complex roots. In this situation no solution 
is possible, unless information in addition to the data themselves is employed (Section 7).  In 
general, this situation is equivalent to nonconvergence of the TOA method. 
 
Data translation is also recommended for TSQB, but not to the minimum data value as suggested 
for TOA. Note that the data values themselves appear in the B  matrix and therefore can affect its 
conditioning. Data translation to the minimum data value appears to cause poor conditioning in 
some cases. Translation is still recommended, but to a different value. We suggest translation to 
a value where the minimum data value translates to a “typical” value of 2 2 2 .n n nx y z+ +  This 
matter is discussed further in Section 5.4. 
 
4.8 Linear Location Errors for TSQB 
 
The TSQB method solves the identical problem as the TSQ method, assuming that TSQ 
converges properly and the correct value of p is chosen in TSQB.  Therefore, xlC  for TSQB is 
identical to that of TSQ and TOA. 
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5.0  NUMERIC RESULTS FOR “REALISTIC” LOCATION SCENARIOS 
 
 
A pair of FORTRAN codes, EPSCAN and MONTEC, was written to study location errors for 
various location algorithms and sensor groupings.  A set of 24 sensors was used at fixed sites 
given by a “typical” ephemeris.  They are placed very close to a sphere about 26,700 km (4.2 
earth radii) from the center of the earth.  A spherical earth of radius 6378 km was used. For light 
speed, this distance is equivalent to 21.26 ms. The distance unit of earth radius was used for all 
computations; that is, an object on the earth’s surface is 1.0 unit from its center. 
 
Each event was located by specifying its distance from earth center, longitude, and latitude 
( , , )R θ φ . Although the codes can treat events at any location, all studies were conducted 
at 1.00R =  (i.e., on the earth’s surface) and at 1.10R = , 637.8 km above the surface. The earth 
surface location offered maximum signal masking by the earth. No solution was discarded if it 
was at an impossible site, such as inside the earth. The higher altitude was used to simulate a 
nonatmospheric event. At each event location, the (Cartesian) coordinate system was rotated so 
that the first coordinate represented the east-west direction, the second the north-south, and the 
third the vertical direction. 
 
The codes produce CEP, VEP, and TEP (Time Error Probable) results, which are deemed to be 
more informative than error covariances. The rotation choice translates easily into the metrics 
CEP, VEP, and TEP. The metric CEP is the radius of a circle in a plane tangent to the earth’s 
surface within which the locations fall with probability 50%, with the assumption that the errors 
in the two orthogonal dimensions in this plane are jointly Gaussian random variables with zero 
means. VEP and TEP are one-dimensional 50% probabilities in the vertical and time dimensions, 
respectively, for zero-mean Gaussian random variables. The computation of these error 
probabilities is given in Appendix B of Aronson [1]. We use the notation EP to denote either 
CEP, VEP, or TEP. 
 
Although the sensor positions were fixed, four different sensor scenarios were studied. A 
“candidate” sensor is one whose line of sight to the event is not masked by the earth.  Suppose 
that at some specified event location there are M candidate sensors, indexed by increasing 
distance from the event. A code input option is ,N M≤  the number of sensors that “see” the 
event. There are four scenario options to choose which sensors are used in any computation. Let 

uN be the set of used sensors. For example, let 10M = and 5.N =  The scenarios are 
 
(1)  NEAREST,              {1, 2,3,4,5}uN = , (2) FARTHEST,      {6,7,8,9,10}uN = , 
(3)  NEAR ONE + FAR, {1,7,8,9,10}uN = , (4)  MIDDLE,          {3,4,5,6,7}uN = . 
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5.1 Code EPSCAN 
 
This code was written to 
 
1. Gain insight into location errors for “realistic” event and sensor locations and sensor sets. 
 
2. Numerically verify that the linear error covariance estimates are identical for TOA and 

TSQB with optimum weighting. 
 
3. Assess error covariance differences between optimum and non-optimum weighting for 

TSQB.  Nonoptimum TSQB weighting uses the same weighting as TOA. 
 
4. Find ill-conditioned situations for further study. 
 
The code user chooses the number of sensors that “see” the event N, specifies the distance from 
earth center of the event R, the sensor scenario to be used, and the algorithm to be used. The code 
is currently implemented with TOA and TSQB. The event is positioned on its sphere of 
radius R in a set of locations that cover the sphere at (approximately) equal angular spacing 
DELP degrees apart. For example, with DELP = 6 degrees, 1134 event locations are used. 
 
It is assumed that the data errors are independent random variables with mean zero and identical 
variance: 2 2

nσ σ=  for all n. At each event location, linear CEP, VEP, and TEP (that is, from 
linear covariances) are computed. The results are normalized by assuming that 2 1σ = . 
Normalized linear error probable (NLEP) statistics are presented as output. The magnitudes of 
the  NLEP are measures of the geometric conditioning (GDOP) of the event/sensor system, as is 

xlC . If these elements are large compared to unity, the system is ill conditioned, and vice versa. 
 
5.1.1 EPSCAN Input 
 
N  = Number of sensors to use. Error if 4N <  or N > minimum number of unmasked 

sensors. 
R  = Distance of event from earth center. Error if 1R < . 
DELP = Nominal angular (degree) spacing of events. Error if DELP < 3 or DELP > 30, or 

DELP is not a factor of 90. 
Specification of sensor scenario; i.e., NEAREST, etc. 
Type of algorithm: TOA or TSQB. 
 
5.1.2 EPSCAN Output 
 
The code computes certain statistics of Normalized Linear Error Probable (NLEP), with optimal 
weighting, over the set of event locations for the given input conditions. For TSQB, the statistical 
differences between optimal and nonoptimal weighting are also given. Output notation is 
 
Lon/min  Longitude of the minimum EP occurred. 
Lat/min Latitude of the minimum EP. 
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EPmin  Minimum EP. 
Lon/max Longitude of maximum EP. 
Lat/max Latitude of maximum EP. 
EPmax  Maximum EP. 
Epavg  Average EP over events* [?]. 
Epstd  Standard deviation of EP*. 
Epavgd EPavg for nonoptimal weighting minus EPavg for optimal – TSQB only. 
EPstdd  EPstd for nonoptimal weighting minus EPstd for optimal – TSQB only. 
 
Some of the event/scenario situations exhibited very poor conditioning and yielded extreme 
NLEP values. In general, the largest NLEP values were the NLVEP values. These extreme 
values tended to dominate the NLEP statistics.  Therefore, it was decided to eliminate all NLEP 
values that exceeded 75. A cutoff value of 75 was chosen because it was found that the TOA 
iteration would usually not converge if NLVEP exceeded that value, even if the data errors had 
the very small deviation of 0.000001σ =  (21.26 ns). The output listing notes how many NLEP 
data values were discarded in each situation. As an example of excessively poor conditioning, 
the value of NLVEP for 4, 237.33, 42N Lon Lat= = = −  and the FARTHEST sensor set was 
35893. This value was among the discards. 
 
5.1.3 EPSCAN Results 
 
The EPSCAN results are shown in Table 1a, Table 1b, and Table 1c for, 4,5,6N = and 1R = . 
The results for 1.10R =  are in Table 2a through Table 2c.  (Tables are located at the end of the 
report.)  All results are for DELP = 6 degrees, which is likely a fine enough grid for my 
purposes. This angular spacing produced a scan of 1134 event locations. The results clearly 
indicate that the normalized linear EP, and therefore the linear error covariances, are identical for 
optimally weighted TOA and TSQB for the NEAREST scenario. The same equalities hold for all 
the other sensor scenarios and were not tabulated. The results also show that at least for all 
conditions studied, there is little differences between optimal and nonoptimal weighting in 
TSQB. However, all the work in this report assumes that the data error variances are identical. If 
the variances are not identical, it may be possible that optimal TSQB weighting may make a 
more significant difference in the NLEP values. Except for the possibility of a truly pathological 
case, we personally feel that there are very minor differences between optimal and nonoptimal 
TSQB. 
 
5.2 Code MONTEC 
 
This code was written to 
 
1. Examine “true” error covariances and EP values for specified event locations, algorithms, 

data error variances, and sensor scenarios. 
 
2. Assess differences among various data error probability distributions. 
 
3. Ascertain the importance of optimal vs. nonoptimal weighting for TSQ. 
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4. Derive a choice method to resolve the ambiguity in the TSQB method. 
 
MONTEC is a Monte Carlo analysis of EP values. In the absence of considerable, and perhaps 
extremely difficult (if at all possible) exact statistical analysis, we make the assumption that the 
statistics generated by the Monte Carlo procedure are close to the “true” values without 
speculating on how “close” the results are. An event/sensor geometry, data error variance, and 
location method are specified. With these specifications, location and time errors are computed 
using a set of (pseudo) random data errors with specified statistics. Each solution is a Monte 
Carlo trial. Numerous trials, each with a different set of random data errors, are processed. The 
statistics of the resultant location and time errors in the form of CEP, VEP, TEP, and the average 
position error are presented as output. 
 
The user specifies the number of sensors that “see” the event N, the radial distance, longitude, 
and latitude of the event, the sensor scenario (NEAREST, etc.), the number of Monte Carlo 
trials, an initial seed for the pseudo-random number generator (input value zero generates a  
default), the probability distribution used to generate the data errors, and the standard deviation 
of the data errors.  For fair comparisons, each algorithm is subject to the same data errors. The 
resultant EP statistics are computed from the Monte Carlo tries.  It must be emphasized that EP 
is defined only for distributions with mean zero. If the means are not zero, as is the case with the 
results here, the EP values are to be taken as about the solution mean values. 
 
In all cases, the data errors used are mutually independent (pseudo) random variables with zero 
mean and equal variance.  Optimal weighting is used for all algorithms, except in Section 5.6. 
The code can use various algorithms as specified by the user. All units are in earth radii. 
Weighting is normalized such that ( ) .trace N=W  For all algorithms, all solutions are allowed. 
 
Ten iterations are allowed for each TOA solution.  If any trial exceeds 10 iterations, the code 
terminates with an error message. The initial TOA guess is randomly chosen by 
 
 2 ( 0.5),g ox x uκ= + −  
 
where u is a random variable uniform in [0,1] and independent of the data errors. The other 
guesses, gy  and ,gz  are similarly chosen, with independent values of u  for each dimension and 

trial. We use 0.3κ = in the code. The TOA iteration is terminated when 1 0.001i i+ − ≤x x� � , 

[ ( , , )i i i i Tx y z=x� ]. 
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5.2.1 MONTEC Input 
 
The algorithm to be used: TOA, TSQB, TSQBN, LPTOA 
 
N  = Number of sensors to use. Error if 4N < , if N > , QUIT. 
R = Distance of event from earth center. Error if 1R < . 
Lon = Longitude of event, degrees. 
Lat = Latitude of event, degrees. Error if 90Lat ≥ . 
Sensor scenario; i.e., NEAREST, etc. 
Number of Monte Carlo trials, must be positive. All results shown used 10,000 trials. 
Pseudo-random generator seed. (Enter zero value for default.) 
Data error probability distribution: Gaussian, uniform, or “tailed.” 
σ =  Standard deviation of data errors. Error if 0σ ≤ . 
 
The available data error probability distributions are 
 
1. Gaussian – normal distribution, mean zero, variance 2 ,σ  2(0, ).Gau σ  
 
2. Uniform – uniform distribution, mean zero, variance 2.σ  2(0, ).Unif σ  
 
3. Tailed – This is a special distribution, concocted to generate more errors near the 

distribution tails.  It chooses 2(0, )Gau σ  with probability (1 )p−  and 2[0, ( ) ]Gau kσ  with 

probability p. The resultant random variable is divided by 21 ( 1)p k+ −  so its variance 
will be 2.σ   We use 0.02p =  and 3k = . 

 
All studies were made using those event/sensor geometries that had the NLVEP max values, that 
is, the poorest conditioning. Since the NLVEP values generally exceeded the NLCEP and 
NLTEP values, the NLVEP were chosen as the criterion for poor conditioning. In general, large 
NLVEP implied large NLCEP and NLTEP values. Instead of doing the excessive computation 
for all possible combinations, it was decided that these cases represented the least favorable ones 
for accurate location results. The selected cases are printed in bold in Table 1a through Table 2c. 
 
5.2.2 MONTEC Output 
 
For the given event/sensor set, the linear EP values are estimated by Monte Carlo using the 
givenσ . These values are not normalized; that is, the data error statistics are generated using the 
given value of .σ  The Monte Carlo values of ex  and EP values are computed. Note that 0.el =x  
The LEP (Linear Error Probable) values are also shown. For comparison with the Monte Carlo 
results, these values are not normalized. For TOA, the average number of iterations and the value 
of κ (0.3) are also listed. For TSQB, additional output information is given, as noted below. 
Each event/sensor combination is identified by a code of the form #n/r.dd/s, where n = (4, 5, 6) is 
the number of sensors, r.dd = (1.00, 1.10) is the distance of the event from the center of the earth, 
and s = (1, 2, 3, 4) is the sensor scenario index. 
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All studies were done with the data error standard deviation of 0.001σ = . This is a relatively 
large error, equivalent to 6.378 km or 21.26 sµ at light speed. 
 
5.3 Statistical Results for TOA 
 
Table 3 gives the Monte Carlo TOA results for the selected cases using the “tailed” distribution. 
At a data error level of 0.001,σ =  the EP values were consistently in agreement with the LEP 
values; in fact, the EP values with TOA tended to be a bit lower than the LEP values. A possible 
rationale of this result may be that the Monte Carlo EP is taken about the MC mean, thereby 
tending to reduce the variance. The results suggest that the linear EP estimates are essentially 
valid in all cases. Certainly, they are valid for 0.001σ ≤  and perhaps for larger σ  values. 
 
Table 4 shows that there is little change if the Gaussian or uniform distributions are used. To 
avoid excessive computation, we will use only the tailed distribution in all further study. 
 
The mean values are also similar, although the four-sensor, uniform case shows a somewhat 
larger mean error in the z direction. 
 
5.4 Statistical Results for TSQB – Optimal Weighting 
 
The advantages of the TSQB method over TOA are that TSQB requires neither an initial location 
guess nor a convergence criterion. It is very fast and noniterative. It has two difficulties: the 
choice of a data translation value and the need to select one of two potentially ambiguous 
solutions. 
 
Recall that unlike TOA, the data values themselves appear in the A  matrix, equation (4.21), and 
therefore in the B  matrix, which dominates the problem conditioning. Initially we used a data 
translation value of min( ),nd  which placed a zero value in A. Even with very small data errors 
and correct solution choice, the procedure did not give the correct solution in some cases. When 
We used a translation value of min( ) 3nd −  the solutions were correct in all cases. The translation 
bias value of 3 was chosen because it represented a nominal distance from the event to a nearby 
sensor.  We do not know why the procedure is so sensitive to the translation value, or if the 
solutions are especially sensitive to the translation chosen. It appears from some preliminary 
study of this problem that the solutions are not particularly sensitive to the translation bias choice 
unless it was very near zero. We did not study this phenomenon further. 
 
Before studying solution choices, we computed location error statistics for TSQB using “perfect” 
choice, that is, never choosing incorrectly. While this choice is not realistic in an actual location 
situation, it indicates what errors can ideally be expected with TSQB. The results are given in 
Table 5a and Table 5b. The TSQB results are virtually identical to the TOA results. However, 
the results presume that a method can be found to always choose the correct solution. In general, 
the errors can be enormous if the wrong solution is used. The number 1 after the TSQB 
characters indicates that “perfect” choice was made. The following two numbers indicate how 
many trials had complex roots (none) and how many did not choose the correct solution 
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(obviously, none for this choice). If there were complex roots or if incorrect solutions were 
chosen, the output would indicate these facts. 
 
Also, the results shown are for optimum TSQB weighting. This presents a dilemma, since 
optimal weighting requires a priori knowledge of the solution. One possibility around this 
difficulty is to solve TSQB using nonoptimal weighting (i.e., the same weighting as TOA), use 
that solution to estimate the optimal weighting, and do a TSQB solution again using weighting 
estimated from the first solution. However, such a procedure may not improve the accuracy 
enough to be worth the effort.  In Section 5.6, we consider TSQB with nonoptimal weighting and 
conclude that optimal TSQB weighting makes very little difference in the results. 
 
5.5 TSQB Solution Choice 
 
Let the two solutions offered by TSQB be indexed by (1,2).β =  The solutions are 

( , , , ).x y zβ β β β βτ=x  Associated with each solution is the parameter pβ . Five choice methods 

were tried. Define 2 2 2( ) ( ) ( ) .n n n nr x x y y z zβ β β β− + − + −�  The five methods tested were to 
choose the value of β  that satisfies the following: 
 
 min( ),T

TOA TOAf Wf where , ,TOA n n n nf r dβ βτ= + −  (5.1a) 
 
 min( )T

TSQ TSQf Wf , where 2 2 2 2
, ( ) ( ) ( ) ( ) ,TSQ n n n n nf x x y y z z dβ β β βτ= − + − + − − −  (5.1b) 

 
 2 2 2min( ),x y zβ β β+ +  (5.1c) 
 

 2 2 2min 1 ,x y zβ β β+ + −  (5.1d) 

 
 min .pβ  (5.1e) 
 
The first two methods seek to minimize the TOA and TSQ residuals, respectively. Since both 
solutions represent local minima, these methods failed in many of the 24 test cases. Method 
(5.1c) chooses the solution nearest the center of the earth, and (5.1d) chooses the solution nearest 
the earth’s surface. Both of these failed in some cases. However, method (5.1e) always chose the 
correct solution in all cases. Those results are not presented because they are identical to 
Table 5(a and b). Admittedly, this result is heuristic and is not a proof. However, the results offer 
strong evidence that this is the correct way to choose .β  We shall refer to this method as 
“minimum p choice.” The cases where the other choice methods produced failures in one or 
more trials are as follows: 
 
(5.1a)   4/1.00/1,  4/1.00/2,  4/1.00/3,  4/1.00/4,  5/1.00/2 
(5.1b)   4/1.00/2,  4/1.00/3,  4/1.00/4,  5/1.00/2 
(5.1c)   6/1.00/4,  4/1.10/2,  4/1.10/3,  5/1.10/1,  6/1.10/4 
(5.1d)   4/1.001/,  4/1.10/1,  4/1.10/2,  4/1.10/3,  5/1.10/1,  6/1.10/4 
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5.6 Statistical Results for TSQB with Nonoptimal Weighting 
(TSQBN) 

 
For reasons discussed above, optimal weighting poses a difficulty for the Bancroft method. A 
natural question is whether the minimum p choice is valid for nonoptimal as well as optimal 
TSQB. Monte Carlo trials were made using TSQB with nonoptimal weighting: that is, weighting 
the same as TOA: 1( ) .d

−=W C  Table 6(a and b) indicates that the minimum p choice procedure 
is as valid for nonoptimal Bancroft, denoted TSQBN, as for optimal weighting  TSQB for all 
cases tested. Note that the results for four sensors are identical in both situations. This result is 
expected, since the least squares minimum must solved exactly to satisfy four model equations in 
four unknowns. 
 
The EP maximum, average, and standard deviations all decrease with data from an increasing 
number of sensors. This result is expected, since more information is always “better” than less 
information, and because with more sensors the event/sensor geometry is less coplanar and 
therefore better conditioned. In general, the MIDDLE scenario exhibited the smallest NLEP 
values, thereby showing the best overall conditioning. 
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6.0  AN ITERATIVE LINEAR PROGRAMMING 
LOCATION ALGORITHM (LPTOA) 

 
As mentioned in Section 2.0, the 2L norm in the least squares method has a tendency to 
exaggerate large data errors. It may be that some other norms may not exhibit this phenomenon 
and thereby reduce location errors. In particular, location solutions for two other interesting 
norms, 1L  and ,L∞  can be found by Linear Programming (LP) (Gass [11] or Bradley, Hax, and 
Magnanti [12]). We suggest finding x  to satisfy 
 

 1
1

: min ( )
N

nn n n
n

L w r dτ
=

+ −Σ , (6.1a) 

 
 : min[max ( ) ]nn n nL w r dτ∞ + − , (6.1b) 
 
where nnw  is the n-th diagonal element of the (TOA) weighting matrix. Since equation (6.1a and 
b) is nonlinear, an iterative LP approach must be used. 
 
An LP finds a vector of unknowns, x, which minimizes (or maximizes) the linear combination 
 
 Tc x  (6.2a) 
 
subject to the constraints 
 
 ( , , )≤ = ≥Ax b , 0,≥x  (6.2b) 
 
where c, A, and b are constants. Maximization is obtained by replacing c  with −c . The 0≥x  
constraint is not very restrictive, since 0x ≤  may be effected by the transformation ' ,x x= −  an 
unrestricted value of x by ' ",x x x= −  and a constraint of the form a x− ≤ ( a positive) by 

' .x x a= +  LPs are solved by the “simplex” method described in [11] and [12]. For our nonlinear 
problem, each step in the iteration requires an LP solution of locally linearized TOA model 
equations. 
 
Define 2 2 2( ) ( ) ( )i i i i

n n n nr x x y y z z− + − + −� . For the 1L norm, we solve the following iterated 

LP. Find 1( , , , , ,..., )i i i i i i
Nx y z e eδ δ δ τ  to 

 

 
1

min
N

i
n

n
e

=
Σ , (6.3a) 
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subject to 
 

[ ( ) / ( ) / ( ) / ]i i i i i i i i i i i i i
n nn n n n n n n n n ne w r x x x r y y y r z z z r d eδ δ δ τ− ≤ + − + − + − + − ≤ , 1,...n N=  (6.3b) 

 
 0 , 0i i

ne τ≤ ≤  (6.3c) 
 
 , ,i i ib x y z bδ δ δ− ≤ ≤ , 0 .b≤  (6.3d) 
 
For L∞ , find ( , , , , )i i i i ix y z eδ δ δ τ  to 
 
 min ,ie  (6.4a) 
 
subject to 
 

[ ( ) / ( ) / ( ) / ]i i i i i i i i i i i i i
nn n n n n n n n ne w r x x x r y y y r z z z r d eδ δ δ τ− ≤ + − + − + − + − ≤ , 1,...n N=  (6.4b) 

 
 0 , 0i ie τ≤ ≤  (6.4c) 
 
 , ,i i ib x y z bδ δ δ− ≤ ≤ , 0 .b≤  (6.4d) 
 
The (6.3d) and (6.4d) constraints are used to control possible wild fluctuations in the iteration. 
For the initial guess 0 0 0 0( , , )Tx y z=x , the iteration is 1i i ix x xδ+ = + , etc. The iteration terminates 

when either 1i ie e ε+ − ≤ , or 2 2 2 .i i ix y zδ δ δ ε+ + ≤  
 
The simplex procedure is itself iterative and generally requires considerably more computation 
than TOA or TSQB. However, because of the special nature of our problem, a specialized and 
much faster simplex procedure could be devised if desired. The simplex process has two steps: it 
first funds a “solution” that is “feasible” and then finds the optimum (minimum or maximum) 
solution. An LP problem is “feasible” if there exists at least one set of unknowns that satisfies the 
constraints. The feasibility step can be skipped, since our LP is always feasible at any value of 
( , , )x y zδ δ δ  that satisfies equations (6.3d) and (6.4d). Another concern in the general LP 
situation is that the optimum solution may be unbounded. All our potential “solutions” are 
bounded, so we need not be concerned with testing this condition. 
 
As with TOA, an initial location guess must be made. Initially, we used the same random initial 
location for LPTOA as TOA (Section 5.2). However, the LP did not converge to near the “true” 
location in many cases. Therefore, we set the initial LPTOA location to the TSQB solution, and 
then proceeded with the LP iterations. The salient question to be answered is whether the 1L  or 
L∞  norms yielded improved location errors statistics compared to the 2L  norms from TOA or 
TSQB. Table 7(a through d) shows the results of LPTOA for the 24 test cases. The same 
convergence criteria for TOA, as described in Section 5.2 were used for LPTOA: 0.001ε =  as 
the convergence criterion with up to 10 iterations allowed. The bounding constraint value was set 
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to 0.3b κ= = . The tables indicate that there is very little, if any, improvement using norms other 
than 2L . These results suggest that the LPTOA method is not worth its additional complexity 
compared to TOA and TSQB. 
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7.0  LEAST SQUARES WITH CONDITIONING EQUATIONS 
 
 
If some a priori information besides the TOA data themselves is available, it may be possible to 
reduce location errors by adding equations to the model equations. If properly applied, these 
added equations can make a considerable improvement in the condition of the event/sensor 
system. Conditioning equations are discussed in Aronson [3], where they are referred to as 
“augmenting” equations. We use the super tilde (~) to denote the augmenting equations and 
super caret (^) to denote the augmented, that is, conditioned, equations. The conditioned model 
equations become 1

ˆ ( ,..., , ) ,T T
Nf f=f f�  where the nf  are the original model equations, f� are the 

conditioning equations, and f̂ is the conditioned (augmented) model equations. In general, f� is a 
function of the location unknowns x, the data d, and a set of chosen parameters p ; thus. 
ˆ [ ( , ) , ( , , ) ] .T T T=f f x d f x d p�  
 
Linear estimations of the location errors with respect to the data errors and errors in the chosen 
conditioning parameters can be found as follows. Define the gradients in the usual way 
 

 
/ˆ
/

∂ ∂ 
 ∂ ∂ 

f x
A

f x
� � , 

/ˆ
/

∂ ∂ 
 ∂ ∂ 

f d
G

f d
� � , and

/ 0ˆ
/ /

∂ ∂   
=   ∂ ∂ ∂ ∂   

f p
U

f p f p
� � � . 

 
This last gradient expresses the sensitivity of the model equations to the conditioning parameters. 
The / 0∂ ∂ =f p  relationship is valid if the conditioning parameters do not appear in the original 
model equations. In general, our external information is imperfect, and the conditioning 
parameters may be in error. Let ,o e= +p p p  where op  are the “true” parameter values and ep  
are the errors in the chosen parameters. Expanding the model equations about the “true” values 
of the location, data, and parameters ( , , ),o o ox d p  we have the linearized least squares problem 
 
 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆmin( ) ( )],T

o o el o e o e o o el o e o e+ + + + + +f A x G d U p W f A x G d U p  
 

where ˆ
T
ξ

ζ

 
=   
 

W W
W

W W

�
� �  is a symmetric augmented weighting matrix for most applications. Since 

ˆ 0o =f , we get 
 
 1 ˆ ˆˆ ˆ ˆ( )T

el o o o e o e
−= − +x B A W G d U p , ˆ ˆˆ ˆ .T

o o o=B A WA  (7.1) 
 
With { } 0eE =d , the linearized mean location errors are 
 
 1 ˆˆ ˆ ˆ{ } .T

el o o o eE −= −x B A WU p  (7.2) 
 
In general, { } 0elE ≠x . Thus, conditioning tends to bias the least squares location solutions. 
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The location error variance (about the mean) for the conditioned system is 
 
 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆT T

xl o o o d o o o
− −=C B A WG C G WA B , (7.3) 

 
where { }.T

d e eE=C d d  The analysis above applies to least squares in general and not just to 
location algorithms. 
 
In general, conditioning, if properly applied, can reduce the solution error covariance, and 
therefore the EP values, but perhaps at the expense of increasing the mean errors. 
 
7.1 Conditioning for TOA (CTOA) 
 
We now apply the methods above to a specific conditioner for the TOA location method. One 
possible piece of external information may be that the event is “near” the surface of the earth: 
that is, 2 2 2 1x y z+ + ≈ . We therefore use the (single) conditioning equation 
 
 2 2 2 0,cx y z r+ + − =  (7.4) 
 
with the (single) condition parameter 1cr ≥ , and conditioning weight 0.cw >  Defining 

2 2 2 ,r x y z+ +�  the various conditioned matrices become 
 

 ˆ
/ , / , / ,0x r y r z r

 
=  
 

A
A , ˆ

0
 

=  
 

G
G , 

0ˆ
1

 
=  − 

U , and 
0ˆ

0 cw
 

=  
 

W
W . (7.5) 

 
For TOA, .=W I  The parameter error is .e c or r= −p  The linear location error mean is computed 
from equation (7.2), and the linear location error covariance from equation (7.3). Note that since 
Â , Ŵ , and Ĝ  are independent of ,cr  the error covariance does not depend on the conditioning 
parameter choice. 
 
A spherical earth was used in this study. However, a nonspherical earth can easily be 
implemented as a conditioning equation. 
 
Although conditioning can reduce EP values, perhaps while increasing mean errors, it has 
another potential use. Suppose, for example, an event is located within the earth, which is clearly 
impossible for TOA location, or at some other unacceptable site. Instead of discarding the result, 
one may recompute the solution using conditioning that would result in an acceptable site. 
 
7.1.1 TOA Conditioning with TSQB Initialization (CBTOA) 
 
The CTOA method may be implemented by solving the conditioned equations by Newton’s 
method. However, an initial location guess may be avoided by solving the nonconditioned 
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system by the TSQB method (with or without optimal weighting) and using that solution as the 
initial condition for Newton’s method with the conditioned TOA equations. 
 
7.1.2 Statistical Results for CBTOA 
 
Monte Carlo statistics were generated for conditioned TOA with the code CTOAMON, which 
has the same input as MONTEC, plus cr  and .cw  The results are shown in Table 8(a through d). 
The ill-conditioned event/sensor scenarios from Table 1(a through c) were used as conditioned 
examples. For all these cases, the “true” solutions are (0,0,1,0) .T

o =x  We chose 1.001,cr =  as 
the parameter. Thus, the parameter error was 0.001ep = , equivalent to 6.378 km. The data error 
standard deviation used was 0.001,σ =  as before. A relatively small conditioning 
weight, 0.01,cw =  was used. 
 
It was found that the EP errors were dramatically reduced in cases where the nonconditioned EP 
values were substantial, and less dramatically where the nonconditioned EP values were less. 
The vertical mean errors were not much affected in the former cases, but degraded somewhat in 
the latter cases. The mean errors in the x and y directions were not very much affected by the 
conditioning in any cases. In all cases, there was substantial agreement between the linear 
estimations and Monte Carlo results for both mean errors and EP values. 
 
To estimate the effect of the conditioned weight, ,cw  Table 8d was generated for the scenarios 
with six sensors for 0.1.cw =  As would be expected, these scenarios tended to have lower 
unconditioned EP values than those with four or five sensors. The mean errors were about 
doubled, but the EP values were decreased by one-half to one order of magnitude. In general, the 
conditioned mean does not appear to be especially sensitive to the conditioning weight, and the 
EP values are not very sensitive to the parameter choice. However, as cw  increases, the EP 
values decrease, but the mean errors increase, and vice versa. 
 
Some of the scenarios computed with code EPSCAN had very large normalized linear EP values 
and thus were not included in Table 1. For error values of 0.001,σ =  these scenarios would not 
converge for TOA and would offer complex roots in Bancroft’s method. Table 9 gives Monte 
Carlo and linear statistics for these scenarios with conditioning. The CTOA method had to be 
used, since an initial TSQB would not produce an initial location. The unconditioned Monte 
Carlo mean values are not presented because they cannot be computed for nonconvergent 
situations. Not only do these scenarios converge with conditioning, but the EP value 
improvement is very dramatic. 
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7.2 Time-Difference-Squared Conditioning 
 
The TSQ model equations may also be used for conditioning. In this case, we use 
 
 22 2 2( ) / 2cx y z r+ + −  (7.6) 
 
as the augmenting equation. Performing a Newton iteration on the TSQ system with equation 
(7.6) added is straightforward, and the linear mean and covariance estimates follow from 
equations (7.2) and (7.3), with (0,..,0, 1)T= −U  and 2 2( ) / 2e c op r r= − . 
 
However, a given conditioning weight in TSQ is not equivalent to the same conditioning weight 
in TOA. We have used the convention that the trace of the (nonconditioned) weighting matrix 
equal N, the number of sensors, for both TSQ and TOA. Therefore, for independent data errors 
with equal variance, the weighting matrix is =W I  for both (nonoptimized) TSQ and TOA. 
Since TOA = −G I  and 1( ,.., )TSQ Ndiag r r=G , a TSQ conditioning weight of 
 
 2( / )cq n cw r N w≈ Σ  
 
is equivalent to the TOA conditioning weight of cw . For our sensor geometry and near-earth 
events, 11cq cw w= should be a reasonable approximation. 
 
7.2.1 Conditioned Iterated Bancroft Method – CISQB 
 
There does not seem to be a noniterative method for introducing conditioning of the form of 
equation (7.6) into the Bancroft method (Section 7.2.2). The difficulty is that the last row of the 
augmented Â  matrix is zero, causing ˆ ˆˆ ˆT=B A WA  to be identical to the nonaugmented B, 
thereby effectively deleting the conditioning equation from the result. 
 
An iterative Bancroft method is as follows: Solve the nonconditioned problem, yielding an initial 
solution, 0 0 0 0 0( , , , ).x y z τ=x  Then use this solution to create a datum for a pseudo sensor of 
index N+1 at the center of the earth that senses an event on the conditioning surface and uses the 
event time of 0τ ; that is, 0 0

1 .N cd r τ+ = −  Now the augmented system may be solved iteratively by 
Bancroft’s method using the conditioning equation 2 2 2 1 2

1[ ( ) ]i i
Nf x y z d τ−

+= + + − − , where 

1 ,i i
N cd r τ+ = −  and ( , , , )i i i i ix y z τ=x is the solution at the i-th iteration. The iteration ends when 

1i i ε−− ≤x x . A numerical example of the procedure is shown in Table 10 for one scenario and 

value of cr  and .cqw  In this case, the process converged in five iterations. The final Monte Carlo 
mean and EP values were in close agreement with their linear values. As far as computation 
speed is concerned, we see little preference for the CISQB method over the CBTOA method. 
 
7.2.2 Conditioned Bancroft Method with Parameter Iteration 
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A possible scheme for using Bancroft’s method to apply conditioning “directly” is by a 
translation of one coordinate. It makes no difference which coordinate is translated. We 
arbitrarily choose the x  to translate. To avoid excessive subscripting, let the “new” coordinate be 
denoted as x , where , 0oldx x ξ ξ= + ≠ . The original and augmented TSQ equations become 
 
 2 2 2 2[( ) ( ) ( ) ( ) ] / 2,n n n n nf x x y y z z dξ τ= − − + − + − − −  
 
 2 2 2 2

1 [( ) ] / 2.N cf x y z rξ+ = − + + −  
 
There equations may be written in the form 
 
 ( ) ,n n n n n nf p q x x y y z z d cξ τ= + − + − − + +  
 
 2 2

1 1( ) / 2 ,N c Nf p x r p x cξ ξ ξ+ += − + − = − +  
 
where 
 
 2 2 2( ) / 2p x y z= + + , 2 / 2,q τ= −  and (7.7) 
 
 2 2 2 2[( ) ] / 2.n n n n nc x y z dξ= + + + −  
 
The conditioned system is solved for x  as a linear combination of the parameters p and q: 
 
 p q= + +x u v w , where 
 1 ˆˆ ˆ (1,..,1) ( , , , ) ,T T T

x y zu u u uτ
−= − =u B A W  

 
 1 ˆˆ ˆ (1,...,1,0) ( , , , ) ,T T T

x y zv v v vτ
−= − =v B A W  (7.8) 

 1
1 1

ˆˆ ˆ ( ,..., ) ( , , , ) .T T T
N x y zc c w w w wτ

−
+= − =w B A W  

 
Substituting equation (7.8) in equation (7.7) yields a pair of quadratics in p and q: 
 
 2 2

1 1 1 1 1 1 0p q pq p qα β γ δ ε ϕ+ + + + + =  (7.9a) 
 
 2 2

2 2 2 2 2 2 0.p q pq p qα β γ δ ε ϕ+ + + + + =  (7.9b) 
 
 2 2 2

1 ( ) / 2x y zu u uα = + + , 2
2 / 2,uτα =  

 2 2 2
1 ( ) / 2x y zv v vβ = + + , 2

2 / 2,vτβ =  
 1 x x y y z zu v u v u vγ = + + , 2 ,u vτ τγ =  
 1 1x x y y z zu w u w u wδ = + + − , 2 ,v wτ τδ =  
 1 x x y y z zv w v w v wε = + + , 2 1,v wτ τε = +  
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 2 2 2
1 ( ) / 2x y zw w wϕ = + + , 2

2 / 2.wτϕ =  
 
Since 1 1 2 2, , , 0α β α β > , equation (7.9) represents a pair of simultaneous ellipses, which, if they 
intersect, may be solved by Newton’s method for p and q. Equation (7.9) is the “model” 
equations, and the gradient matrix is 
 

 1 1 1 1 1 1

2 2 2 2 2 2

2 2
2 2

p q q p
p q q p

α γ δ β γ ε
α γ δ β γ ε

+ + + + 
=  + + + + 

A . 

 
This technique was tested with the usual scenarios. Two values of ξ  were used: 0.1ξ =  and 

1.5ξ =  It appeared to work well for very small data errors, but with 0.001,σ =  it was found that 
the ellipses did not intersect in many cases for both ξ  values. We do not recommend the method. 
 



37 

8.0  SUMMARY 
 
 
Section 2.  In this section, we formulated the least squares method and described solution 
procedures for linear problems and Newton’s iterative method for nonlinear problems. 
 
Section 3.  Formulae for linear approximations of the statistics of errors in least squares solutions 
because of errors in the data were presented. 
 
Section 4. Specific relationships for various TOA location methods were shown. In particular, 
the TOA, TDOA, TSQ, and TSQB methods and their linear location error estimates were 
discussed. The TSQB method is a special, noniterative scheme to solve the TSQ problem. In the 
rest of the report, only the TOA and TSQB algorithms were studied. 
 
Section 5. In this section, we applied the location algorithms to sets of “realistic” event/sensor 
scenarios. Statistics of NLEP (Normalized Linear Error Probable) were generated using a fixed 
set of sensors in various combinations and numbers and sampling NLEP on a longitude and 
latitude grid on the surface of a spherical earth and also on a sphere of radius 1.10 earth radii. 
The results, Table 1a through Table 2c, indicated which event/sensor combinations were the 
most ill conditioned, that is, had the greatest GDOP or, equivalently, the greatest values of 
NLEP. As had been proved in Section 4, optimally weighted TOA and TSQB (TSQ) had 
identical NLEP values. There were very little differences between optimal and nonoptimal 
TSQB weighting. 
 
The event locations in each of the 24 sets (4, 5, and 6 sensors with four sensor set scenarios each 
and events at R = 1 and R = 1.10), which had the largest NLEP values, were studied further by 
Monte Carlo trials. These event locations would be expected to yield the largest location errors 
compared to any other locations for the given number of data-producing sensors and sensor set 
scenarios at the given radial distances and thereby offer “worst case” conditions for location 
algorithms. 
 
In all cases, the data errors were taken as mutually independent random variables with mean zero 
and equal variance. A relatively large data error standard deviation of 0.001,σ =  equivalent to 
6.378 km or 21.26 ,sµ  was used in the studies. Table 3 indicated that for the TOA method, the 
EP values for the Monte Carlo results were in close agreement with their linear estimates, LEP, 
and that the mean errors tended to be near zero, as predicted by the linear approximation. This 
result implies that the linear estimators for TOA are valid for all event/sensor scenarios, even 
with the relatively large data error variances. 
 
Three data error probability distributions were considered: Gaussian, uniform, and a specialized 
“tailed” distribution. Table 4 shows that the distribution used makes little difference in the results 
if all distributions have zero mean and the same variance.  For the remaining studies, the tailed 
distribution was used. 
 
The TSQB algorithm, with optimal weighting, was tested under the same conditions as TOA.  As 
Table 5 shows, the location mean and EP values also agree with their linear approximations. In 
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general, the TSQB method is preferable to TOA, since TSQB requires neither an initial guess of 
the event location nor convergence criteria. Also, since TSQB is not iterative, it is 
computationally very fast. We point out two important considerations in the application of the 
TSQB method: Since the sensor data are “clock” time, it is judicious to bias the data in any 
algorithmic application. For TOA, subtracting the minimum data value from all the data works 
very well. However, this biasing level was found not to be good procedure for TSQB. We 
suggest biasing so that the smallest data measurement is biased to a number that represents a 
nominal distance from event to the sensor set, say, 3 earth radii for our system. The other 
consideration is the choice of the parameter derived from Bancroft’s quadratic equation. It was 
found that choosing the parameter value of least absolute value gave the best results in every 
case. However, this result is heuristic and not proven. 
 
Table 6 indicates that there is little difference in TSQB if nonoptimal weighting is used in lieu of 
optimal weighting. Therefore, at least for the conditions studied, one should not be concerned 
with optimizing the TSQB weighting. 
 
Section 6. Linear programming location methods using 1L  and L∞  norms were described in this 
section. Note that least squares is an 2L  norm method. The LP methods are quite slow and 
offered no significant improvements over TOA or TSQB. We do not recommend them as 
location algorithms.  
 
Section 7. In cases where TOA or TSQB generate poor location results, it may be helpful to add 
weighted “conditioning” relationships to the location model equations. In general, conditioning 
affects mean as well as EP location errors. For our location problem, a potentially effective 
single conditioning relationship is to specify that the event be located “near” a sphere with 
specified radius from the center of the earth. However, conditioning can be applied to a 
nonspherical earth.  Three conditioning algorithms were presented, CTOA, CBTOA, and 
CISQB. The CBTOA scheme is identical to CTOA, except that a TSQB step initializes the 
CTOA procedure, thereby avoiding an initial location guess. For this reason, CBTOA is 
preferred to CTOA, if the problem initially converges (does not create complex roots in the 
TSQB quadratic equation). If the initial problem does not converge, CTOA must be used. 
Formulas are presented for linear estimators of conditioned mean and EP errors for TOA and 
TSQ equations. 
 
Table 8 gives location error statistics for the CBTOA method for a specific choice of the 
conditioning parameter and weight. The improvement in EP values is significant, without 
appreciable deterioration of mean errors. The improvements are especially significant in large 
NLEP cases, and not as significant in cases with smaller location errors, which implies that 
proper conditioning can mitigate cases that have large GDOP but should not adversely affect 
small GDOP situations. There is close agreement between the Monte Carlo results and the 
linearized estimates. 
 
Some cases were found in the EPSCAN runs that had extreme NLEP values, in particular 35,893 
in one case. These cases would not converge with TOA or TSQB for very small data errors. The 
CTOA method was applied to a selected group of three of these cases (CBTOA could not be 
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used here). The results in Table 9 show dramatic improvement in all cases, even with a relatively 
small conditioning weight. 
 
The CISQB method is an iterative TSQB type of scheme. One CISQB result is shown in 
Table 10. The EP reduction from nonconditioning is significant, and the results agree with their 
conditioned linear approximations. 
 
In addition to reducing location EP values, and thereby improving the GDOP of a an 
event/sensor scenario, conditioning can generate a solution that could not be found without 
conditioning. 
 
We could not find a conditioning method that uses Bancroft’s algorithm in a direct, noniterative 
way. 
 
The following conclusions were reached: 
 
1. Because it is computationally very fast and does not require an initial location guess or 

convergence criteria, we recommend that the TSQB method be used for event location. 
Care must be exercised in data biasing and in the choice of the TSQB parameter. We 
suggest the heuristic that the minimum absolute value of the parameter be chosen. Also, 
nonoptimal TSQB weighting has little effect on the solutions. 

 
2. For all algorithms, conditioned or not, the linear approximation of the mean and EP errors 

is valid for substantial data error variances, at least up to about 21 sµ  of standard deviation 
for “realistic” event/sensor scenarios. Thus, the LEP formulas can be used to obtain useful 
estimates of the system’s accuracy under most conditions. 

 
3. If properly chosen, conditioning can dramatically reduce EP values, especially in excessive 

GDOP cases and/or large data errors. In addition to reducing EP, conditioning can generate 
a reasonable solution where no convergence is possible without conditioning. Also, if a 
nonconditioned solution seems impossible (for example, an optical event located inside the 
earth) conditioning can generate a solution that is physically feasible. 
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ACRONYMS 
 
 
CBTOA Conditioned TOA method with Bancroft initialization – Section 7.1.1. 

CEP Circular Error Probable, EP in plane tangent to the earth’s surface. 

CISQB Conditioned Iterative TSQB – Section 7.2.1. 

CTOA Conditioned TOA method – Section 7.1. 

EP Error Probable. Refers to CEP, VEP, and TEP. 

GDOP Geometric Dilution Of Precision. 

LEP Linear Error Probable. The least squares linear estimate of EP, derived from the 
linear location error covariance matrix equations (3.5) or (3.6). 

LP Linear Programming 

LPTOA Linear Programming solution of TOA – Section 6.0. 

NLEP Normalized Linear Error Probable. LEP normalized for unity data error variance. 

TDOA Time-Difference-Of-Arrival. Location model equations (4.13). 

TEP Time Error Probable, EP for the time-of-event. 

TOA Time-Of-Arrival. TOA refers to a set of location model equations (4.8) and also 
to Newton’s method for location using these equations. 

TSQ Time-of-arrival-SQuared. A set of model equations (4.16) and Newton’s method 
using these equations. 

TSQB Solution of the TSQ equations using Bancroft’s method - Section 4.7. 

TSQBN Solution of TSQB with Nonoptimal weighting. 

VEP Vertical Error Probable. 
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Table 1a.  NLEP for Four Sensors and R = 1.00 

EPSCAN, N= 4, R= 1.000000, DELP= 6.0, 1134 Samples
----- TOA ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 212.680000 61.000000 6.100000
Lat/min -42.000000 -6.000000 -6.000000
EPmin .976235 1.465563 1.001415
Lon/max 229.400000 .000000 229.400000
Lat/max -12.000000 -84.000000 -12.000000
EPmax* 43.206744 74.635565 53.920697
EPavg* 3.531862 8.787046 7.171941
EPstd* 3.980962 10.765508 9.210869

EPSCAN, N= 4, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 212.680000 61.000000 6.100000
Lat/min -42.000000 -6.000000 -6.000000
EPmin .976235 1.465563 1.001415
Lon/max 229.400000 .000000 229.400000
Lat/max -12.000000 -84.000000 -12.000000
EPmax* 43.206744 74.635565 53.920697
EPavg* 3.531862 8.787046 7.171941
EPstd* 3.980962 10.765508 9.210869
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000
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Table 1a. NLEP for Four Sensors and R = 1.00 (continued) 

EPSCAN, N= 4, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- FARTHEST SET ---
* Statistics adjusted by discarding 69 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 120.000000 333.000000 75.720000
Lat/min 36.000000 -48.000000 18.000000
EPmin .793287 1.140995 .419307
Lon/max 206.460000 .000000 352.920000
Lat/max 24.000000 -24.000000 -30.000000
EPmax* 21.927524 74.175651 19.915536
EPavg* 2.187061 11.376386 2.359001
EPstd* 1.925266 11.285158 2.394701
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000

EPSCAN, N= 4, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAR ONE + FAR SET ---
* Statistics adjusted by discarding 4 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 103.700000 162.000000 90.000000
Lat/min -6.000000 -48.000000 -48.000000
EPmin .853610 .802395 .405617
Lon/max 91.500000 37.860000 91.500000
Lat/max 6.000000 -18.000000 6.000000
EPmax* 113.169941 53.017047 84.579999
EPavg* 2.907456 2.561263 1.939925
EPstd* 6.499907 4.369759 4.480409
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000

EPSCAN, N= 4, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- MIDDLE SET ---
* Statistics adjusted by discarding 46 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 162.000000 135.000000 352.980000
Lat/min -48.000000 -48.000000 24.000000
EPmin .825535 1.214084 .646262
Lon/max 30.000000 309.190000 30.000000
Lat/max 36.000000 18.000000 36.000000
EPmax* 28.832014 68.387525 38.985024
EPavg* 2.624439 9.440561 4.526676
EPstd* 2.750373 10.497048 4.691551
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000
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Table 1b. NLEP for Five Sensors and R = 1.00 

EPSCAN, N= 5, R= 1.000000, DELP= 6.0, 1134 Samples
----- TOA ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 229.040000 297.000000 315.500000
Lat/min -42.000000 -48.000000 18.000000
EPmin .833109 1.044303 .710642
Lon/max 113.580000 .000000 220.000000
Lat/max 18.000000 -84.000000 -72.000000
EPmax* 5.957163 14.144089 9.826735
EPavg* 1.466580 3.097139 2.300699
EPstd* .661211 2.052586 1.666587

EPSCAN, N= 5, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 229.040000 297.000000 315.500000
Lat/min -42.000000 -48.000000 18.000000
EPmin .833109 1.044303 .710642
Lon/max 113.580000 .000000 220.000000
Lat/max 18.000000 -84.000000 -72.000000
EPmax* 5.957163 14.144089 9.826735
EPavg* 1.466580 3.097139 2.300699
EPstd* .661211 2.052586 1.666587
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001069 .002024 .001429
EPstdd* .000788 .000780 .000948
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Table 1b. NLEP for Five Sensors and R = 1.00 (continued) 

EPSCAN, N= 5, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- FARTHEST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 173.160000 343.560000 241.800000
Lat/min 24.000000 -42.000000 12.000000
EPmin .700651 1.001697 .385132
Lon/max 6.310000 .000000 .000000
Lat/max -18.000000 -24.000000 -12.000000
EPmax* 8.807447 58.478647 17.196016
EPavg* 1.180918 5.055940 1.260743
EPstd* .783493 5.265241 1.253424
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000536 .001510 .000432
EPstdd* .000612 .001374 .000706

EPSCAN, N= 5, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAR ONE + FAR SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 317.200000 162.000000 112.500000
Lat/min -6.000000 -48.000000 36.000000
EPmin .750661 .780055 .354764
Lon/max 56.790000 318.680000 56.790000
Lat/max -18.000000 54.000000 -18.000000
EPmax* 6.139107 10.251104 5.880698
EPavg* 1.084627 1.336901 .740144
EPstd* .489518 .735161 .550384
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000510 .001964 .000536
EPstdd* .000207 .000554 .000359

EPSCAN, N= 5, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- MIDDLE SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 75.720000 294.480000 298.120000
Lat/min -18.000000 -42.000000 -54.000000
EPmin .734655 1.022985 .515243
Lon/max 353.800000 296.570000 353.800000
Lat/max 6.000000 18.000000 6.000000
EPmax* 11.914987 43.520621 15.787218
EPavg* 1.305782 3.853867 1.927413
EPstd* .775559 3.180443 1.435798
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000911 .001757 .000888
EPstdd* .000323 .000451 .000317
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Table 1c. NLEP for Six Sensors and R = 1.00 

EPSCAN, N= 6, R= 1.000000, DELP= 6.0, 1134 Samples
----- TOA ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 249.120000 299.700000 299.700000
Lat/min -30.000000 24.000000 24.000000
EPmin .740346 .808640 .478802
Lon/max 304.480000 300.000000 300.000000
Lat/max 30.000000 84.000000 84.000000
EPmax* 2.350413 5.957451 3.237534
EPavg* 1.010571 1.785338 1.187961
EPstd* .192602 .636111 .392723

EPSCAN, N= 6, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 249.120000 299.700000 299.700000
Lat/min -30.000000 24.000000 24.000000
EPmin .740346 .808640 .478802
Lon/max 304.480000 300.000000 300.000000
Lat/max 30.000000 84.000000 84.000000
EPmax* 2.350413 5.957451 3.237534
EPavg* 1.010571 1.785338 1.187961
EPstd* .192602 .636111 .392723
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001561 .002609 .001530
EPstdd* .000832 .000440 .000382
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Table 1c. NLEP for Six Sensors and R = 1.00 (continued) 

EPSCAN, N= 6, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- FARTHEST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 148.800000 324.000000 62.280000
Lat/min 12.000000 -48.000000 -30.000000
EPmin .636610 .793542 .363982
Lon/max 192.200000 297.600000 189.100000
Lat/max -12.000000 12.000000 -6.000000
EPmax* 3.289812 15.463500 4.116478
EPavg* .859233 2.668175 .848252
EPstd* .255711 1.865299 .513992
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001004 .002177 .000715
EPstdd* .000288 .000296 .000345

EPSCAN, N= 6, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAR ONE + FAR SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 210.000000 162.000000 162.000000
Lat/min 78.000000 -48.000000 -48.000000
EPmin .671358 .769469 .315988
Lon/max 315.000000 315.000000 315.000000
Lat/max 48.000000 48.000000 48.000000
EPmax* 3.601296 6.420097 3.792572
EPavg* .844805 1.192407 .596376
EPstd* .188160 .402712 .269518
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001050 .004237 .001227
EPstdd* .000528 .000702 .000703

EPSCAN, N= 6, R= 1.000000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- MIDDLE SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 257.000000 298.120000 304.480000
Lat/min -54.000000 -54.000000 30.000000
EPmin .664910 .817661 .423035
Lon/max 201.300000 189.100000 201.300000
Lat/max -6.000000 6.000000 -6.000000
EPmax* 3.505335 9.022502 4.273669
EPavg* .977853 2.334121 1.212889
EPstd* .322479 1.389456 .691445
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001502 .002566 .001258
EPstdd* .000568 .000769 .000553
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Table 2a. NLEP for Four Sensors and R = 1.10 

EPSCAN, N= 4, R= 1.100000, DELP= 6.0, 1134 Samples
----- TOA ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 212.680000 61.000000 6.100000
Lat/min -42.000000 -6.000000 -6.000000
EPmin .959897 1.414253 .943666
Lon/max 189.000000 .000000 .000000
Lat/max 48.000000 -84.000000 -84.000000
EPmax* 41.815490 71.899152 49.374987
EPavg* 3.443274 8.435259 6.782081
EPstd* 3.760671 10.293118 8.660070

EPSCAN, N= 4, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 212.680000 61.000000 6.100000
Lat/min -42.000000 -6.000000 -6.000000
EPmin .959897 1.414253 .943666
Lon/max 189.000000 .000000 .000000
Lat/max 48.000000 -84.000000 -84.000000
EPmax* 41.815490 71.899152 49.374987
EPavg* 3.443274 8.435259 6.782081
EPstd* 3.760671 10.293118 8.660070
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000
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Table 2a. NLEP for Four Sensors and R = 1.10 (continued) 

EPSCAN, N= 4, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- FARTHEST SET ---
* Statistics adjusted by discarding 111 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 341.000000 60.000000 335.500000
Lat/min 12.000000 -72.000000 -6.000000
EPmin .777959 1.577753 .344967
Lon/max 333.000000 37.200000 318.320000
Lat/max 24.000000 -12.000000 -30.000000
EPmax* 21.357906 73.987646 26.006126
EPavg* 2.366230 14.139197 3.894761
EPstd* 2.180054 13.828252 3.970494
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000

EPSCAN, N= 4, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAR ONE + FAR SET ---
* Statistics adjusted by discarding 2 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 352.920000 256.040000 .000000
Lat/min -30.000000 30.000000 -36.000000
EPmin .884115 .566432 .336498
Lon/max 120.000000 120.000000 120.000000
Lat/max -72.000000 -72.000000 -72.000000
EPmax* 94.836900 45.524977 43.447406
EPavg* 3.049585 1.872826 1.411355
EPstd* 5.902331 3.650363 3.291706
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000

EPSCAN, N= 4, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- MIDDLE SET ---
* Statistics adjusted by discarding 42 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min .000000 253.080000 269.880000
Lat/min -30.000000 24.000000 30.000000
EPmin .794432 1.257440 .343650
Lon/max 252.000000 252.000000 279.000000
Lat/max 48.000000 48.000000 -12.000000
EPmax* 31.455601 69.250876 18.094557
EPavg* 2.280933 10.258476 2.169835
EPstd* 2.152627 9.872375 2.459601
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000000 .000000 .000000
EPstdd* .000000 .000000 .000000



50 

Table 2b. NLEP for Five Sensors and R = 1.10 

EPSCAN, N= 5, R= 1.100000, DELP= 6.0, 1134 Samples
----- TOA ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 229.040000 288.000000 315.500000
Lat/min -42.000000 -48.000000 18.000000
EPmin .820978 1.010204 .672749
Lon/max 113.580000 .000000 220.000000
Lat/max 18.000000 -84.000000 -72.000000
EPmax* 5.812450 13.623901 9.253322
EPavg* 1.437730 2.987784 2.179298
EPstd* .650206 1.998602 1.585718

EPSCAN, N= 5, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 229.040000 288.000000 315.500000
Lat/min -42.000000 -48.000000 18.000000
EPmin .820978 1.010204 .672749
Lon/max 113.580000 .000000 220.000000
Lat/max 18.000000 -84.000000 -72.000000
EPmax* 5.812450 13.623901 9.253322
EPavg* 1.437730 2.987784 2.179298
EPstd* .650206 1.998602 1.585718
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001375 .002558 .001771
EPstdd* .001053 .001066 .001248
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Table 2b. NLEP for Five Sensors and R = 1.10 (continued) 

EPSCAN, N= 5, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- FARTHEST SET ---
* Statistics adjusted by discarding 2 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 161.200000 15.000000 216.000000
Lat/min 12.000000 -66.000000 -60.000000
EPmin .688797 1.222677 .314325
Lon/max 140.300000 195.000000 195.000000
Lat/max 6.000000 -36.000000 -36.000000
EPmax* 7.714035 50.849013 14.949978
EPavg* 1.220277 6.250337 1.563049
EPstd* .788584 5.668270 1.566608
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000401 .001275 .000268
EPstdd* .000299 .000520 .000137

EPSCAN, N= 5, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAR ONE + FAR SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 347.200000 256.040000 126.540000
Lat/min 12.000000 30.000000 -24.000000
EPmin .763774 .555285 .300975
Lon/max 302.880000 302.880000 302.880000
Lat/max 18.000000 18.000000 18.000000
EPmax* 11.136744 5.612180 7.134511
EPavg* 1.152361 .881691 .493340
EPstd* .697970 .532173 .441578
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000406 .001616 .000145
EPstdd* .000440 .000122 .000314

EPSCAN, N= 5, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- MIDDLE SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 332.160000 254.200000 273.060000
Lat/min 30.000000 12.000000 24.000000
EPmin .697513 .940891 .303013
Lon/max 322.500000 55.360000 277.640000
Lat/max -36.000000 -30.000000 -18.000000
EPmax* 5.578667 33.521382 8.613396
EPavg* 1.122675 4.249704 .876287
EPstd* .528513 3.449485 .683318
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000718 .001853 .000339
EPstdd* .000508 .000845 .000252
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Table 2c. NLEP for Six Sensors and R = 1.10 

EPSCAN, N= 6, R= 1.100000, DELP= 6.0, 1134 Samples
----- TOA ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 249.120000 299.700000 299.700000
Lat/min -30.000000 24.000000 24.000000
EPmin .730951 .788717 .459847
Lon/max 304.480000 300.000000 300.000000
Lat/max 30.000000 84.000000 84.000000
EPmax* 2.308296 5.829072 3.050950
EPavg* .991996 1.723551 1.121449
EPstd* .186974 .620153 .369062

EPSCAN, N= 6, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAREST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 249.120000 299.700000 299.700000
Lat/min -30.000000 24.000000 24.000000
EPmin .730951 .788717 .459847
Lon/max 304.480000 300.000000 300.000000
Lat/max 30.000000 84.000000 84.000000
EPmax* 2.308296 5.829072 3.050950
EPavg* .991996 1.723551 1.121449
EPstd* .186974 .620153 .369062
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001978 .003261 .001847
EPstdd* .001025 .000543 .000470
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Table 2c. NLEP for Six Sensors and R = 1.10 (continued) 

EPSCAN, N= 6, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- FARTHEST SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 179.800000 60.000000 60.000000
Lat/min -12.000000 -78.000000 -78.000000
EPmin .634389 1.020526 .274243
Lon/max 138.000000 16.360000 16.360000
Lat/max .000000 42.000000 42.000000
EPmax* 3.561343 20.319520 6.349617
EPavg* .861498 3.438580 .809109
EPstd* .297488 2.241193 .643157
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000785 .001947 .000337
EPstdd* .000177 .000356 .000167

EPSCAN, N= 6, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- NEAR ONE + FAR SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 279.720000 256.040000 201.920000
Lat/min -24.000000 30.000000 18.000000
EPmin .672817 .549722 .274464
Lon/max 243.000000 310.000000 243.000000
Lat/max 48.000000 -12.000000 48.000000
EPmax* 3.965208 3.921964 2.207646
EPavg* .837653 .753566 .351299
EPstd* .246380 .253499 .154661
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .000847 .004536 .000232
EPstdd* .000214 .000149 .000132

EPSCAN, N= 6, R= 1.100000, DELP= 6.0, 1134 Samples
----- TSQB ----- --- MIDDLE SET ---
* Statistics adjusted by discarding 0 samples with VEP > 75.
NLEP-Normalized Linear Error Probable - "OPTIMAL" Weight

CEP VEP TEP
Lon/min 352.920000 249.120000 319.680000
Lat/min 30.000000 30.000000 24.000000
EPmin .635979 .804587 .275354
Lon/max 84.000000 302.880000 51.400000
Lat/max 60.000000 18.000000 -54.000000
EPmax* 3.449705 14.920299 2.947787
EPavg* .833379 2.469557 .572369
EPstd* .224294 1.430775 .264936
NLEP-Normalized Linear Error Probable - NON-OPTIMAL Weight
EPavgd* .001257 .002648 .000445
EPstdd* .000587 .001122 .000256
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Table 3a. EP for the TOA Method, R = 1.00 

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1

----TOA ---- 4.8232 .3000
Linear CEP= .009648 VEP= .074636 TEP= .052399

MC CEP= .009684 VEP= .075019 TEP= .052709
MC Mean -.000037 .000151 -.000787 -.001514

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2

----TOA ---- 4.6208 .3000
Linear CEP= .008602 VEP= .074176 TEP= .010797
MC CEP= .008610 VEP= .074262 TEP= .011125
MC Mean -.000156 .000062 -.001076 -.001713

MONTE CARLO N= 4 R= 1.000000 Lon= 37.860 Lat= -18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3

----TOA ---- 4.3968 .3000
Linear CEP= .030489 VEP= .053017 TEP= .032360

MC CEP= .030354 VEP= .052790 TEP= .032200
MC Mean .000087 .000583 -.000814 -.001356

MONTE CARLO N= 4 R= 1.000000 Lon= 309.190 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4

----TOA ---- 4.6534 .3000
Linear CEP= .010310 VEP= .068388 TEP= .024297

MC CEP= .010287 VEP= .068229 TEP= .024262
MC Mean .000102 -.000005 .001078 -.000873

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.00/1

----TOA ---- 4.3352 .3000
Linear CEP= .002685 VEP= .014144 TEP= .009723

MC CEP= .002663 VEP= .014060 TEP= .009667
MC Mean .000003 .000011 .000079 .000010

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.00/2

----TOA ---- 5.2191 .3000
Linear CEP= .006497 VEP= .058479 TEP= .008403

MC CEP= .006497 VEP= .058383 TEP= .008505
MC Mean -.000165 .000069 -.001207 -.001140
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Table 3a. EP for the TOA Method, R = 1.00 (continued) 

MONTE CARLO N= 5 R= 1.000000 Lon= 318.680 Lat= 54.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.00/3

----TOA ---- 4.3601 .3000
Linear CEP= .004179 VEP= .010251 TEP= .005483

MC CEP= .004141 VEP= .010195 TEP= .005448
MC Mean .000001 .000037 .000139 .000034

MONTE CARLO N= 5 R= 1.000000 Lon= 296.570 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.00/4

----TOA ---- 5.5298 .3000
Linear CEP= .003326 VEP= .043521 TEP= .006887

MC CEP= .003321 VEP= .043493 TEP= .006935
MC Mean -.000022 -.000111 -.001135 -.000715

MONTE CARLO N= 6 R= 1.000000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.00/1

----TOA ---- 4.0798 .3000
Linear CEP= .001077 VEP= .005957 TEP= .003238

MC CEP= .001083 VEP= .005987 TEP= .003254
MC Mean .000008 -.000026 .000171 .000075

MONTE CARLO N= 6 R= 1.000000 Lon= 297.600 Lat= 12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.00/2

----TOA ---- 4.3111 .3000
Linear CEP= .000957 VEP= .015464 TEP= .001296

MC CEP= .000953 VEP= .015412 TEP= .001292
MC Mean .000003 .000003 .000189 -.000058

MONTE CARLO N= 6 R= 1.000000 Lon= 315.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.00/3

----TOA ---- 4.0322 .3000
Linear CEP= .003601 VEP= .006420 TEP= .003793

MC CEP= .003579 VEP= .006386 TEP= .003769
MC Mean .000008 -.000003 .000000 -.000020

MONTE CARLO N= 6 R= 1.000000 Lon= 189.100 Lat= 6.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.00/4

----TOA ---- 4.2064 .3000
Linear CEP= .001180 VEP= .009023 TEP= .004070

MC CEP= .001174 VEP= .008947 TEP= .004032
MC Mean -.000015 .000006 .000102 .000019
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Table 3b. EP for the TOA Method, R = 1.10 

MONTE CARLO N= 4 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.10/1

----TOA ---- 4.8335 .3000
Linear CEP= .009433 VEP= .071899 TEP= .049375
MC CEP= .009467 VEP= .072260 TEP= .049658
MC Mean -.000033 .000137 -.000638 -.001387

MONTE CARLO N= 4 R= 1.100000 Lon= 37.200 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.10/2

----TOA ---- 4.7397 .3000
Linear CEP= .010335 VEP= .073988 TEP= .021731

MC CEP= .010308 VEP= .073837 TEP= .021832
MC Mean -.000019 .000023 .000219 -.001370

MONTE CARLO N= 4 R= 1.100000 Lon= 120.000 Lat= -72.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.10/3

----TOA ---- 4.3879 .3000
Linear CEP= .094837 VEP= .045525 TEP= .043447
MC CEP= .094554 VEP= .045383 TEP= .043465
MC Mean -.002644 -.001334 -.000696 -.003898

MONTE CARLO N= 4 R= 1.100000 Lon= 252.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.10/4

----TOA ---- 4.7282 .3000
Linear CEP= .031456 VEP= .069251 TEP= .007511
MC CEP= .031699 VEP= .069750 TEP= .007801
MC Mean .000304 -.000520 -.000859 -.001749

MONTE CARLO N= 5 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.10/1

----TOA ---- 4.3377 .3000
Linear CEP= .002625 VEP= .013624 TEP= .009149

MC CEP= .002604 VEP= .013543 TEP= .009096
MC Mean .000003 .000010 .000082 .000012

MONTE CARLO N= 5 R= 1.100000 Lon= 195.000 Lat= -36.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.10/2

----TOA ---- 5.1223 .3000
Linear CEP= .003134 VEP= .050849 TEP= .014950

MC CEP= .003101 VEP= .050420 TEP= .014923
MC Mean .000024 .000019 .000978 -.000895
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Table 3b. EP for the TOA Method, R = 1.10 (continued) 

MONTE CARLO N= 5 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.10/3

----TOA ---- 4.3539 .3000
Linear CEP= .011137 VEP= .005612 TEP= .007135
MC CEP= .010948 VEP= .005513 TEP= .007014
MC Mean .000006 .000056 .000055 .000002

MONTE CARLO N= 5 R= 1.100000 Lon= 55.360 Lat= -30.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.10/4

----TOA ---- 5.1297 .3000
Linear CEP= .002311 VEP= .033521 TEP= .001193
MC CEP= .002325 VEP= .033841 TEP= .001232
MC Mean .000032 .000003 .000753 -.000300

MONTE CARLO N= 6 R= 1.100000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.10/1

----TOA ---- 4.0814 .3000
Linear CEP= .001063 VEP= .005829 TEP= .003051
MC CEP= .001068 VEP= .005858 TEP= .003066
MC Mean .000008 -.000026 .000168 .000070

MONTE CARLO N= 6 R= 1.100000 Lon= 16.360 Lat= 42.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.10/2

----TOA ---- 4.6049 .3000
Linear CEP= .001532 VEP= .020320 TEP= .006350
MC CEP= .001544 VEP= .020377 TEP= .006370
MC Mean .000039 -.000014 .000551 -.000275

MONTE CARLO N= 6 R= 1.100000 Lon= 310.000 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.10/3

----TOA ---- 3.9654 .3000
Linear CEP= .003235 VEP= .003922 TEP= .000868
MC CEP= .003252 VEP= .003938 TEP= .000877
MC Mean -.000004 .000018 .000022 -.000011

MONTE CARLO N= 6 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.10/4

----TOA ---- 4.2078 .3000
Linear CEP= .001445 VEP= .014920 TEP= .001182
MC CEP= .001450 VEP= .014975 TEP= .001187
MC Mean -.000013 -.000032 .000404 -.000041
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Table 4. EP for TOA Using Various Data Error Distributions 

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Gaussian #4/1.00/1

----TOA ---- 4.8294 .3000
Linear CEP= .009648 VEP= .074636 TEP= .052399

MC CEP= .009705 VEP= .075144 TEP= .052815
MC Mean -.000042 .000169 -.000947 -.001629

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Uniform #4/1.00/1

----TOA ---- 4.8321 .3000
Linear CEP= .009648 VEP= .074636 TEP= .052399
MC CEP= .009638 VEP= .074556 TEP= .052412
MC Mean -.000089 .000392 -.002863 -.002952

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1

----TOA ---- 4.8232 .3000
Linear CEP= .009648 VEP= .074636 TEP= .052399
MC CEP= .009684 VEP= .075019 TEP= .052709
MC Mean -.000037 .000151 -.000787 -.001514
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Table 5a. EP for the TSQB Method, R = 1.00 
(Perfect Solution Choice – Optimal Weighting) 

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1

----TSQB ----1 0. 0.
Linear CEP= .009648 VEP= .074636 TEP= .052399
MC CEP= .009684 VEP= .075019 TEP= .052709
MC Mean -.000037 .000151 -.000787 -.001514

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2

----TSQB ----1 0. 0.
Linear CEP= .008602 VEP= .074176 TEP= .010797
MC CEP= .008610 VEP= .074262 TEP= .011125
MC Mean -.000156 .000062 -.001076 -.001713

MONTE CARLO N= 4 R= 1.000000 Lon= 37.860 Lat= -18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3

----TSQB ----1 0. 0.
Linear CEP= .030489 VEP= .053017 TEP= .032360
MC CEP= .030354 VEP= .052790 TEP= .032200
MC Mean .000087 .000583 -.000814 -.001356

MONTE CARLO N= 4 R= 1.000000 Lon= 309.190 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4

----TSQB ----1 0. 0.
Linear CEP= .010310 VEP= .068388 TEP= .024297
MC CEP= .010287 VEP= .068229 TEP= .024262
MC Mean .000102 -.000005 .001078 -.000873

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.00/1

----TSQB ----1 0. 0.
Linear CEP= .002685 VEP= .014144 TEP= .009723
MC CEP= .002664 VEP= .014063 TEP= .009668
MC Mean .000007 -.000016 .000226 .000111

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.00/2

----TSQB ----1 0. 0.
Linear CEP= .006497 VEP= .058479 TEP= .008403
MC CEP= .006489 VEP= .058326 TEP= .008458
MC Mean .000011 -.000011 .000541 -.000887
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Table 5a. EP for the TSQB Method, R = 1.00 
(Perfect Solution Choice – Optimal Weighting) (continued) 

MONTE CARLO N= 5 R= 1.000000 Lon= 318.680 Lat= 54.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.00/3

----TSQB ----1 0. 0.
Linear CEP= .004179 VEP= .010251 TEP= .005483
MC CEP= .004163 VEP= .010253 TEP= .005478
MC Mean -.000001 .000050 .000172 .000051

MONTE CARLO N= 5 R= 1.000000 Lon= 296.570 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.00/4

----TSQB ----1 0. 0.
Linear CEP= .003326 VEP= .043521 TEP= .006887
MC CEP= .003430 VEP= .045001 TEP= .007156
MC Mean -.000003 -.000047 -.000237 -.000610

MONTE CARLO N= 6 R= 1.000000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.00/1

----TSQB ----1 0. 0.
Linear CEP= .001077 VEP= .005957 TEP= .003238
MC CEP= .001084 VEP= .006004 TEP= .003263
MC Mean .000010 -.000030 .000205 .000094

MONTE CARLO N= 6 R= 1.000000 Lon= 297.600 Lat= 12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.00/2

----TSQB ----1 0. 0.
Linear CEP= .000957 VEP= .015464 TEP= .001296
MC CEP= .000956 VEP= .015487 TEP= .001297
MC Mean .000006 .000008 .000303 -.000050

MONTE CARLO N= 6 R= 1.000000 Lon= 315.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.00/3

----TSQB ----1 0. 0.
Linear CEP= .003601 VEP= .006420 TEP= .003793
MC CEP= .003588 VEP= .006402 TEP= .003778
MC Mean .000007 .000014 .000030 -.000002

MONTE CARLO N= 6 R= 1.000000 Lon= 189.100 Lat= 6.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.00/4

----TSQB ----1 0. 0.
Linear CEP= .001180 VEP= .009023 TEP= .004070
MC CEP= .001176 VEP= .008965 TEP= .004040
MC Mean -.000023 .000002 .000177 .000053
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Table 5b. EP for the TSQB Method, R = 1.10 
(Perfect Solution Choice – Optimal Weighting) 

MONTE CARLO N= 4 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.10/1

----TSQB ----1 0. 0.
Linear CEP= .009433 VEP= .071899 TEP= .049375

MC CEP= .009467 VEP= .072260 TEP= .049658
MC Mean -.000033 .000137 -.000638 -.001387

MONTE CARLO N= 4 R= 1.100000 Lon= 37.200 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.10/2

----TSQB ----1 0. 0.
Linear CEP= .010335 VEP= .073988 TEP= .021731
MC CEP= .010511 VEP= .073796 TEP= .061708
MC Mean .000001 -.000010 .000236 -.000522

MONTE CARLO N= 4 R= 1.100000 Lon= 120.000 Lat= -72.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.10/3

----TSQB ----1 0. 0.
Linear CEP= .094837 VEP= .045525 TEP= .043447
MC CEP= .094554 VEP= .045383 TEP= .043465
MC Mean -.002644 -.001334 -.000696 -.003898

MONTE CARLO N= 4 R= 1.100000 Lon= 252.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.10/4

----TSQB ----1 0. 0.
Linear CEP= .031456 VEP= .069251 TEP= .007511
MC CEP= .031699 VEP= .069750 TEP= .007801
MC Mean .000304 -.000520 -.000859 -.001749

MONTE CARLO N= 5 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.10/1

----TSQB ----1 0. 0.
Linear CEP= .002625 VEP= .013624 TEP= .009149
MC CEP= .002604 VEP= .013546 TEP= .009098
MC Mean .000007 -.000015 .000219 .000104

MONTE CARLO N= 5 R= 1.100000 Lon= 195.000 Lat= -36.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.10/2

----TSQB ----1 0. 0.
Linear CEP= .003134 VEP= .050849 TEP= .014950
MC CEP= .003103 VEP= .050460 TEP= .014934
MC Mean .000019 .000016 .000882 -.000867
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Table 5b. EP for the TSQB Method, R = 1.10 
(Perfect Solution Choice – Optimal Weighting) (continued) 

MONTE CARLO N= 5 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.10/3

----TSQB ----1 0. 0.
Linear CEP= .011137 VEP= .005612 TEP= .007135
MC CEP= .010978 VEP= .005528 TEP= .007033
MC Mean .000007 .000086 .000069 .000021

MONTE CARLO N= 5 R= 1.100000 Lon= 55.360 Lat= -30.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.10/4

----TSQB ----1 0. 0.
Linear CEP= .002311 VEP= .033521 TEP= .001193
MC CEP= .002378 VEP= .034688 TEP= .001260
MC Mean .000060 .000004 .001168 -.000302

MONTE CARLO N= 6 R= 1.100000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.10/1

----TSQB ----1 0. 0.
Linear CEP= .001063 VEP= .005829 TEP= .003051
MC CEP= .001070 VEP= .005875 TEP= .003075
MC Mean .000010 -.000030 .000200 .000087

MONTE CARLO N= 6 R= 1.100000 Lon= 16.360 Lat= 42.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.10/2

----TSQB ----1 0. 0.
Linear CEP= .001532 VEP= .020320 TEP= .006350
MC CEP= .001544 VEP= .020376 TEP= .006370
MC Mean .000036 -.000013 .000515 -.000263

MONTE CARLO N= 6 R= 1.100000 Lon= 310.000 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.10/3

----TSQB ----1 0. 0.
Linear CEP= .003235 VEP= .003922 TEP= .000868
MC CEP= .003252 VEP= .003938 TEP= .000877
MC Mean -.000005 .000024 .000030 -.000009

MONTE CARLO N= 6 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.10/4

----TSQB ----1 0. 0.
Linear CEP= .001445 VEP= .014920 TEP= .001182
MC CEP= .001455 VEP= .015045 TEP= .001191
MC Mean -.000016 -.000039 .000484 -.000035
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Table 6a. EP for the TSQBN Method, R = 1.00 
(Minimum p Choice, Nonoptimal Weighting) 

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1

----TSQBN----2 0. 0.
Linear CEP= .009648 VEP= .074636 TEP= .052399
MC CEP= .009684 VEP= .075019 TEP= .052709
MC Mean -.000037 .000151 -.000787 -.001514

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2

----TSQBN----2 0. 0.
Linear CEP= .008602 VEP= .074176 TEP= .010797
MC CEP= .008610 VEP= .074262 TEP= .011125
MC Mean -.000156 .000062 -.001076 -.001713

MONTE CARLO N= 4 R= 1.000000 Lon= 37.860 Lat= -18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3

----TSQBN----2 0. 0.
Linear CEP= .030489 VEP= .053017 TEP= .032360
MC CEP= .030354 VEP= .052790 TEP= .032200
MC Mean .000087 .000583 -.000814 -.001356

MONTE CARLO N= 4 R= 1.000000 Lon= 309.190 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4

----TSQBN----2 0. 0.
Linear CEP= .010310 VEP= .068388 TEP= .024297
MC CEP= .010287 VEP= .068229 TEP= .024262
MC Mean .000102 -.000005 .001078 -.000873

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.00/1

----TSQBN----2 0. 0.
Linear CEP= .002686 VEP= .014146 TEP= .009724
MC CEP= .002664 VEP= .014062 TEP= .009667
MC Mean .000007 -.000015 .000218 .000106

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.00/2

----TSQBN----2 0. 0.
Linear CEP= .006498 VEP= .058483 TEP= .008403
MC CEP= .006490 VEP= .058332 TEP= .008460
MC Mean .000006 -.000009 .000490 -.000894
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Table 6a. EP for the TSQBN Method, R = 1.00 
(Minimum p Choice, Nonoptimal Weighting) (continued) 

MONTE CARLO N= 5 R= 1.000000 Lon= 318.680 Lat= 54.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.00/3

----TSQBN----2 0. 0.
Linear CEP= .004182 VEP= .010264 TEP= .005489
MC CEP= .004150 VEP= .010210 TEP= .005457
MC Mean -.000002 .000053 .000180 .000055

MONTE CARLO N= 5 R= 1.000000 Lon= 296.570 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.00/4

----TSQBN----2 0. 0.
Linear CEP= .003327 VEP= .043526 TEP= .006888
MC CEP= .003417 VEP= .044837 TEP= .007130
MC Mean -.000003 -.000048 -.000248 -.000608

MONTE CARLO N= 6 R= 1.000000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.00/1

----TSQBN----2 0. 0.
Linear CEP= .001077 VEP= .005960 TEP= .003239
MC CEP= .001085 VEP= .006010 TEP= .003267
MC Mean .000010 -.000030 .000202 .000092

MONTE CARLO N= 6 R= 1.000000 Lon= 297.600 Lat= 12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.00/2

----TSQBN----2 0. 0.
Linear CEP= .000958 VEP= .015466 TEP= .001296
MC CEP= .000957 VEP= .015507 TEP= .001299
MC Mean .000007 .000008 .000311 -.000049

MONTE CARLO N= 6 R= 1.000000 Lon= 315.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.00/3

----TSQBN----2 0. 0.
Linear CEP= .003616 VEP= .006445 TEP= .003808
MC CEP= .003602 VEP= .006414 TEP= .003788
MC Mean .000006 .000012 .000031 -.000002

MONTE CARLO N= 6 R= 1.000000 Lon= 189.100 Lat= 6.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.00/4

----TSQBN----2 0. 0.
Linear CEP= .001180 VEP= .009023 TEP= .004070
MC CEP= .001175 VEP= .008959 TEP= .004038
MC Mean -.000023 .000002 .000176 .000052
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Table 6b. EP for the TSQBN Method, R = 1.10 
(Minimum p Choice – Nonoptimal Weighting) 

MONTE CARLO N= 4 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.10/1

----TSQBN----2 0. 0.
Linear CEP= .009433 VEP= .071899 TEP= .049375
MC CEP= .009467 VEP= .072260 TEP= .049658
MC Mean -.000033 .000137 -.000638 -.001387

MONTE CARLO N= 4 R= 1.100000 Lon= 37.200 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.10/2

----TSQBN----2 0. 1.
Linear CEP= .010335 VEP= .073988 TEP= .021731
MC CEP= .010308 VEP= .073837 TEP= .021832
MC Mean -.000019 .000023 .000219 -.001370

MONTE CARLO N= 4 R= 1.100000 Lon= 120.000 Lat= -72.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.10/3

----TSQBN----2 0. 0.
Linear CEP= .094837 VEP= .045525 TEP= .043447
MC CEP= .094554 VEP= .045383 TEP= .043465
MC Mean -.002644 -.001334 -.000696 -.003898

MONTE CARLO N= 4 R= 1.100000 Lon= 252.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.10/4

----TSQBN----2 0. 0.
Linear CEP= .031456 VEP= .069251 TEP= .007511
MC CEP= .031699 VEP= .069750 TEP= .007801
MC Mean .000304 -.000520 -.000859 -.001749

MONTE CARLO N= 5 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.10/1

----TSQBN----2 0. 0.
Linear CEP= .002625 VEP= .013626 TEP= .009150
MC CEP= .002604 VEP= .013545 TEP= .009097
MC Mean .000006 -.000014 .000211 .000098

MONTE CARLO N= 5 R= 1.100000 Lon= 195.000 Lat= -36.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.10/2

----TSQBN----2 0. 0.
Linear CEP= .003134 VEP= .050851 TEP= .014951
MC CEP= .003102 VEP= .050441 TEP= .014928
MC Mean .000019 .000016 .000890 -.000869
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Table 6b. EP for the TSQBN Method, R = 1.10 
(Minimum p Choice – Nonoptimal Weighting) (continued) 

MONTE CARLO N= 5 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.10/3

----TSQBN----2 0. 0.
Linear CEP= .011161 VEP= .005635 TEP= .007149
MC CEP= .010950 VEP= .005515 TEP= .007014
MC Mean .000009 .000102 .000081 .000031

MONTE CARLO N= 5 R= 1.100000 Lon= 55.360 Lat= -30.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.10/4

----TSQBN----2 0. 0.
Linear CEP= .002311 VEP= .033524 TEP= .001193
MC CEP= .002387 VEP= .034831 TEP= .001266
MC Mean .000061 .000004 .001193 -.000304

MONTE CARLO N= 6 R= 1.100000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.10/1

----TSQBN----2 0. 0.
Linear CEP= .001063 VEP= .005832 TEP= .003053
MC CEP= .001071 VEP= .005883 TEP= .003080
MC Mean .000010 -.000030 .000198 .000086

MONTE CARLO N= 6 R= 1.100000 Lon= 16.360 Lat= 42.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.10/2

----TSQBN----2 0. 0.
Linear CEP= .001532 VEP= .020320 TEP= .006350
MC CEP= .001544 VEP= .020377 TEP= .006370
MC Mean .000037 -.000013 .000518 -.000264

MONTE CARLO N= 6 R= 1.100000 Lon= 310.000 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.10/3

----TSQBN----2 0. 0.
Linear CEP= .003237 VEP= .003923 TEP= .000869
MC CEP= .003252 VEP= .003940 TEP= .000877
MC Mean -.000004 .000022 .000031 -.000010

MONTE CARLO N= 6 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.10/4

----TSQBN----2 0. 0.
Linear CEP= .001445 VEP= .014921 TEP= .001182
MC CEP= .001456 VEP= .015048 TEP= .001192
MC Mean -.000016 -.000039 .000484 -.000035
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Table 7a. EP for the LPTOA Method, R = 1.00, 1L  Norm 

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .009648 VEP= .074636 TEP= .052399*
MC CEP= .009684 VEP= .075019 TEP= .052709
MC Mean -.000037 .000151 -.000787 -.001514

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .008602 VEP= .074176 TEP= .010797
MC CEP= .008610 VEP= .074262 TEP= .011125
MC Mean -.000156 .000062 -.001076 -.001713

MONTE CARLO N= 4 R= 1.000000 Lon= 37.860 Lat= -18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .030489 VEP= .053017 TEP= .032360
MC CEP= .030354 VEP= .052790 TEP= .032200
MC Mean .000087 .000583 -.000814 -.001356

MONTE CARLO N= 4 R= 1.000000 Lon= 309.190 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .010310 VEP= .068388 TEP= .024297
MC CEP= .010287 VEP= .068229 TEP= .024262
MC Mean .000102 -.000005 .001078 -.000873

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.00/1

----LPTOA---- 2.6964 .3000 LPNORM=1
Linear CEP= .002685 VEP= .014144 TEP= .009723
MC CEP= .002801 VEP= .014491 TEP= .010003
MC Mean -.000026 .001017 -.003801 -.002808

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.00/2

----LPTOA---- 2.5650 .3000 LPNORM=1
Linear CEP= .006497 VEP= .058479 TEP= .008403
MC CEP= .006758 VEP= .060757 TEP= .009161
MC Mean -.001634 .000793 -.014899 -.003279

* Note: LEP for least squares.
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Table 7a. EP for the LPTOA Method, R = 1.00, 1L  Norm (continued) 

MONTE CARLO N= 5 R= 1.000000 Lon= 318.680 Lat= 54.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.00/3

----LPTOA---- 2.2781 .3000 LPNORM=1
Linear CEP= .004179 VEP= .010251 TEP= .005483
MC CEP= .004233 VEP= .010332 TEP= .005485
MC Mean .000011 .000025 .000112 .000022

MONTE CARLO N= 5 R= 1.000000 Lon= 296.570 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.00/4

----LPTOA---- 2.4937 .3000 LPNORM=1
Linear CEP= .003326 VEP= .043521 TEP= .006887
MC CEP= .003363 VEP= .043887 TEP= .007124
MC Mean -.000151 -.000897 -.010833 -.002217

MONTE CARLO N= 6 R= 1.000000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.00/1

----LPTOA---- 2.5250 .3000 LPNORM=1
Linear CEP= .001077 VEP= .005957 TEP= .003238
MC CEP= .001182 VEP= .006069 TEP= .003308
MC Mean -.000054 .000129 -.001079 -.000603

MONTE CARLO N= 6 R= 1.000000 Lon= 297.600 Lat= 12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.00/2

----LPTOA---- 2.3663 .3000 LPNORM=1
Linear CEP= .000957 VEP= .015464 TEP= .001296
MC CEP= .001034 VEP= .016061 TEP= .001387
MC Mean -.000199 -.000219 -.004409 -.000429

MONTE CARLO N= 6 R= 1.000000 Lon= 315.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.00/3

----LPTOA---- 2.5687 .3000 LPNORM=1
Linear CEP= .003601 VEP= .006420 TEP= .003793
MC CEP= .003724 VEP= .006633 TEP= .003912
MC Mean .000071 -.000885 -.001564 -.000909

MONTE CARLO N= 6 R= 1.000000 Lon= 189.100 Lat= 6.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.00/4

----LPTOA---- 2.5778 .3000 LPNORM=1
Linear CEP= .001180 VEP= .009023 TEP= .004070
MC CEP= .001295 VEP= .009773 TEP= .004401
MC Mean .000389 .000190 -.003370 -.001562
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Table 7b. EP for the LPTOA Method, R = 1.10, 1L  Norm 

MONTE CARLO N= 4 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.10/1

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .009433 VEP= .071899 TEP= .049375
MC CEP= .009467 VEP= .072260 TEP= .049658
MC Mean -.000033 .000137 -.000638 -.001387

MONTE CARLO N= 4 R= 1.100000 Lon= 37.200 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.10/2

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .010335 VEP= .073988 TEP= .021731
MC CEP= .010308 VEP= .073837 TEP= .021832
MC Mean -.000019 .000023 .000219 -.001370

MONTE CARLO N= 4 R= 1.100000 Lon= 120.000 Lat= -72.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.10/3

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .094837 VEP= .045525 TEP= .043447
MC CEP= .094554 VEP= .045383 TEP= .043465
MC Mean -.002644 -.001334 -.000696 -.003898

MONTE CARLO N= 4 R= 1.100000 Lon= 252.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.10/4

----LPTOA---- 1.0000 .3000 LPNORM=1
Linear CEP= .031456 VEP= .069251 TEP= .007511
MC CEP= .031699 VEP= .069750 TEP= .007801
MC Mean .000304 -.000520 -.000859 -.001749

MONTE CARLO N= 5 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.10/1

----LPTOA---- 2.6928 .3000 LPNORM=1
Linear CEP= .002625 VEP= .013624 TEP= .009149
MC CEP= .002737 VEP= .013955 TEP= .009412
MC Mean -.000025 .000997 -.003658 -.002652

MONTE CARLO N= 5 R= 1.100000 Lon= 195.000 Lat= -36.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.10/2

----LPTOA---- 2.5772 .3000 LPNORM=1
Linear CEP= .003134 VEP= .050849 TEP= .014950
MC CEP= .003100 VEP= .050776 TEP= .014965
MC Mean -.000147 -.000156 -.003723 .000462
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Table 7b. EP for the LPTOA Method, R = 1.10, 1L  Norm (continued) 

MONTE CARLO N= 5 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.10/3

----LPTOA---- 2.5253 .3000 LPNORM=1
Linear CEP= .011137 VEP= .005612 TEP= .007135
MC CEP= .011476 VEP= .005857 TEP= .007380
MC Mean -.000492 -.002404 -.001270 -.001807

MONTE CARLO N= 5 R= 1.100000 Lon= 55.360 Lat= -30.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.10/4

----LPTOA---- 2.4526 .3000 LPNORM=1
Linear CEP= .002311 VEP= .033521 TEP= .001193
MC CEP= .002389 VEP= .034353 TEP= .001364
MC Mean -.000875 -.000120 -.010767 -.000727

MONTE CARLO N= 6 R= 1.100000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.10/1

----LPTOA---- 2.5128 .3000 LPNORM=1
Linear CEP= .001063 VEP= .005829 TEP= .003051
MC CEP= .001166 VEP= .005936 TEP= .003118
MC Mean -.000053 .000127 -.001046 -.000564

MONTE CARLO N= 6 R= 1.100000 Lon= 16.360 Lat= 42.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.10/2

----LPTOA---- 2.4301 .3000 LPNORM=1
Linear CEP= .001532 VEP= .020320 TEP= .006350
MC CEP= .001603 VEP= .020880 TEP= .006522
MC Mean -.000347 .000095 -.004060 .001207

MONTE CARLO N= 6 R= 1.100000 Lon= 310.000 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.10/3

----LPTOA---- 2.3811 .3000 LPNORM=1
Linear CEP= .003235 VEP= .003922 TEP= .000868
MC CEP= .003386 VEP= .004037 TEP= .000918
MC Mean .000111 -.000672 -.000757 -.000154

MONTE CARLO N= 6 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.10/4

----LPTOA---- 2.3950 .3000 LPNORM=1
Linear CEP= .001445 VEP= .014920 TEP= .001182
MC CEP= .001544 VEP= .015561 TEP= .001304
MC Mean .000100 .000286 -.003620 -.000367
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Table 7c. EP for the LPTOA Method, R = 1.00, L∞ Norm 

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .009648 VEP= .074636 TEP= .052399
MC CEP= .009684 VEP= .075019 TEP= .052709
MC Mean -.000037 .000151 -.000787 -.001514

MONTE CARLO N= 4 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .008602 VEP= .074176 TEP= .010797
MC CEP= .008610 VEP= .074262 TEP= .011125
MC Mean -.000156 .000062 -.001076 -.001713

MONTE CARLO N= 4 R= 1.000000 Lon= 37.860 Lat= -18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .030489 VEP= .053017 TEP= .032360
MC CEP= .030354 VEP= .052790 TEP= .032200
MC Mean .000087 .000583 -.000814 -.001356

MONTE CARLO N= 4 R= 1.000000 Lon= 309.190 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .010310 VEP= .068388 TEP= .024297
MC CEP= .010287 VEP= .068229 TEP= .024262
MC Mean .000102 -.000005 .001078 -.000873

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.00/1

----LPTOA---- 2.4544 .3000 LPNORM=inf
Linear CEP= .002685 VEP= .014144 TEP= .009723
MC CEP= .002692 VEP= .014249 TEP= .009808
MC Mean -.000059 .000267 -.002036 -.001477

MONTE CARLO N= 5 R= 1.000000 Lon= .000 Lat= -24.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.00/2

----LPTOA---- 2.6515 .3000 LPNORM=inf
Linear CEP= .006497 VEP= .058479 TEP= .008403
MC CEP= .006496 VEP= .058372 TEP= .008504
MC Mean -.000165 .000070 -.001220 -.001141
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Table 7c. EP for the LPTOA Method, R = 1.00, L∞ Norm (continued) 

MONTE CARLO N= 5 R= 1.000000 Lon= 318.680 Lat= 54.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.00/3

----LPTOA---- 2.4634 .3000 LPNORM=inf
Linear CEP= .004179 VEP= .010251 TEP= .005483
MC CEP= .004249 VEP= .010462 TEP= .005592
MC Mean .000052 -.001240 -.002829 -.001538

MONTE CARLO N= 5 R= 1.000000 Lon= 296.570 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.00/4

----LPTOA---- 2.0808 .3000 LPNORM=inf
Linear CEP= .003326 VEP= .043521 TEP= .006887
MC CEP= .003364 VEP= .045055 TEP= .007160
MC Mean -.000019 -.000100 -.000868 -.000712

MONTE CARLO N= 6 R= 1.000000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.00/1

----LPTOA---- 2.3999 .3000 LPNORM=inf
Linear CEP= .001077 VEP= .005957 TEP= .003238
MC CEP= .001133 VEP= .006153 TEP= .003353
MC Mean .000002 .000050 -.000900 -.000516

MONTE CARLO N= 6 R= 1.000000 Lon= 297.600 Lat= 12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.00/2

----LPTOA---- 2.2859 .3000 LPNORM=inf
Linear CEP= .000957 VEP= .015464 TEP= .001296
MC CEP= .001001 VEP= .016000 TEP= .001359
MC Mean -.000065 -.000142 -.003188 -.000338

MONTE CARLO N= 6 R= 1.000000 Lon= 315.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.00/3

----LPTOA---- 2.4338 .3000 LPNORM=inf
Linear CEP= .003601 VEP= .006420 TEP= .003793
MC CEP= .003655 VEP= .006549 TEP= .003860
MC Mean .000085 -.000900 -.001547 -.000941

MONTE CARLO N= 6 R= 1.000000 Lon= 189.100 Lat= 6.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.00/4

----LPTOA---- 2.4231 .3000 LPNORM=inf
Linear CEP= .001180 VEP= .009023 TEP= .004070
MC CEP= .001224 VEP= .009198 TEP= .004148
MC Mean .000185 .000106 -.001780 -.000785
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Table 7d. EP for the LPTOA Method, R = 1.10, L∞ Norm 

MONTE CARLO N= 4 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.10/1

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .009433 VEP= .071899 TEP= .049375
MC CEP= .009467 VEP= .072260 TEP= .049658
MC Mean -.000033 .000137 -.000638 -.001387

MONTE CARLO N= 4 R= 1.100000 Lon= 37.200 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.10/2

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .010335 VEP= .073988 TEP= .021731
MC CEP= .010308 VEP= .073837 TEP= .021832
MC Mean -.000019 .000023 .000219 -.001370

MONTE CARLO N= 4 R= 1.100000 Lon= 120.000 Lat= -72.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.10/3

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .094837 VEP= .045525 TEP= .043447
MC CEP= .094554 VEP= .045383 TEP= .043465
MC Mean -.002644 -.001334 -.000696 -.003898

MONTE CARLO N= 4 R= 1.100000 Lon= 252.000 Lat= 48.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.10/4

----LPTOA---- 1.0000 .3000 LPNORM=inf
Linear CEP= .031456 VEP= .069251 TEP= .007511
MC CEP= .031699 VEP= .069750 TEP= .007801
MC Mean .000304 -.000520 -.000859 -.001749

MONTE CARLO N= 5 R= 1.100000 Lon= .000 Lat= -84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.10/1

----LPTOA---- 2.4514 .3000 LPNORM=inf
Linear CEP= .002625 VEP= .013624 TEP= .009149
MC CEP= .002631 VEP= .013726 TEP= .009229
MC Mean -.000058 .000261 -.001959 -.001392

MONTE CARLO N= 5 R= 1.100000 Lon= 195.000 Lat= -36.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.10/2

----LPTOA---- 2.2580 .3000 LPNORM=inf
Linear CEP= .003134 VEP= .050849 TEP= .014950
MC CEP= .003133 VEP= .050468 TEP= .014917
MC Mean -.000049 .000000 .000045 -.000637
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Table 7d. EP for the LPTOA Method, R = 1.10, L∞ Norm (continued) 

MONTE CARLO N= 5 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.10/3

----LPTOA---- 2.4447 .3000 LPNORM=inf
Linear CEP= .011137 VEP= .005612 TEP= .007135
MC CEP= .011070 VEP= .005536 TEP= .007084
MC Mean -.000041 -.000600 -.000248 -.000408

MONTE CARLO N= 5 R= 1.100000 Lon= 55.360 Lat= -30.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.10/4

----LPTOA---- 2.2329 .3000 LPNORM=inf
Linear CEP= .002311 VEP= .033521 TEP= .001193
MC CEP= .002433 VEP= .035278 TEP= .001297
MC Mean -.000110 .000013 -.001603 -.000398

MONTE CARLO N= 6 R= 1.100000 Lon= 300.000 Lat= 84.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.10/1

----LPTOA---- 2.3920 .3000 LPNORM=inf
Linear CEP= .001063 VEP= .005829 TEP= .003051
MC CEP= .001118 VEP= .006021 TEP= .003161
MC Mean .000002 .000049 -.000881 -.000487

MONTE CARLO N= 6 R= 1.100000 Lon= 16.360 Lat= 42.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.10/2

----LPTOA---- 2.4818 .3000 LPNORM=inf
Linear CEP= .001532 VEP= .020320 TEP= .006350
MC CEP= .001686 VEP= .021333 TEP= .006637
MC Mean -.000283 .000150 -.005005 .001489

MONTE CARLO N= 6 R= 1.100000 Lon= 310.000 Lat= -12.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.10/3

----LPTOA---- 2.4889 .3000 LPNORM=inf
Linear CEP= .003235 VEP= .003922 TEP= .000868
MC CEP= .003513 VEP= .004142 TEP= .000965
MC Mean .000347 -.000967 -.001327 -.000333

MONTE CARLO N= 6 R= 1.100000 Lon= 302.880 Lat= 18.000
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.10/4

----LPTOA---- 2.1490 .3000 LPNORM=inf
Linear CEP= .001445 VEP= .014920 TEP= .001182
MC CEP= .001480 VEP= .015115 TEP= .001202
MC Mean .000061 .000089 -.001142 -.000155
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Table 8a. EP and Mean Errors, Conditioned 
TOA – CBTOA (N = 4, R = 1.00, Rc = 1.001, Wc = 0.01) 

U=Unconditioned, L=Linear, C=Conditioned, M=Monte Carlo
Conditioned Monte Carlo N=4 R=1.0000 Lon= .00 Lat=-84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1
----CBTOA---- 3.17 Rc=1.0010 Wc= .0100
U/M Mean -.000037 .000151 -.000787 -.001514
C/L Mean .000031 -.000124 .000992 .000696
C/M Mean .000026 -.000116 .001003 .000701
U/L CEP= .009648 VEP= .074636 TEP= .052399
C/L CEP= .001189 VEP= .000599 TEP= .000561
C/M CEP= .001189 VEP= .000602 TEP= .000563

Conditioned Monte Carlo N=4 R=1.0000 Lon= .00 Lat=-24.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2
----CBTOA---- 3.16 Rc=1.0010 Wc= .0100
U/M Mean -.000156 .000062 -.001076 -.001713
C/L Mean .000104 -.000048 .000992 .000144
C/M Mean .000093 -.000045 .001002 .000138
U/L CEP= .008602 VEP= .074176 TEP= .010797
C/L CEP= .000817 VEP= .000603 TEP= .000376
C/M CEP= .000819 VEP= .000602 TEP= .000378

Conditioned Monte Carlo N=4 R=1.0000 Lon= 37.86 Lat=-18.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3
----CBTOA---- 3.47 Rc=1.0010 Wc= .0100
U/M Mean .000087 .000583 -.000814 -.001356
C/L Mean -.000077 -.000560 .000984 .000601
C/M Mean -.000064 -.000552 .000976 .000588
U/L CEP= .030489 VEP= .053017 TEP= .032360
C/L CEP= .001112 VEP= .000837 TEP= .000691
C/M CEP= .001113 VEP= .000833 TEP= .000692

Conditioned Monte Carlo N=4 R=1.0000 Lon= 309.19 Lat= 18.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4
----CBTOA---- 3.02 Rc=1.0010 Wc= .0100
U/M Mean .000102 -.000005 .001078 -.000873
C/L Mean .000147 -.000026 .000990 .000352
C/M Mean .000144 -.000015 .000997 .000347
U/L CEP= .010310 VEP= .068388 TEP= .024297
C/L CEP= .000857 VEP= .000653 TEP= .000441
C/M CEP= .000864 VEP= .000650 TEP= .000442
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Table 8b. EP and Mean Errors, Conditioned 
TOA – CBTOA (N = 5, R = 1.00, Rc = 1.001, Wc = 0.01) 

Conditioned Monte Carlo N=5 R=1.0000 Lon= .00 Lat=-84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #5/1.00/1
----CBTOA---- 3.13 Rc=1.0010 Wc= .0100
U/M Mean .000007 -.000015 .000218 .000106
C/L Mean .000021 -.000147 .000816 .000561
C/M Mean .000024 -.000130 .000850 .000575
U/L CEP= .002685 VEP= .014144 TEP= .009723
C/L CEP= .001065 VEP= .002602 TEP= .001813
C/M CEP= .001053 VEP= .002587 TEP= .001804

Conditioned Monte Carlo N=5 R=1.0000 Lon= .00 Lat=-24.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #5/1.00/2
----CBTOA---- 3.14 Rc=1.0010 Wc= .0100
U/M Mean .000006 -.000009 .000490 -.000894
C/L Mean .000099 -.000046 .000987 .000142
C/M Mean .000081 -.000039 .000991 .000136
U/L CEP= .006497 VEP= .058479 TEP= .008403
C/L CEP= .000726 VEP= .000761 TEP= .000337
C/M CEP= .000723 VEP= .000759 TEP= .000335

Conditioned Monte Carlo N=5 R=1.0000 Lon= 318.68 Lat= 54.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #5/1.00/3
----CBTOA---- 2.96 Rc=1.0010 Wc= .0100
U/M Mean -.000002 .000053 .000180 .000055
C/L Mean -.000034 .000280 .000700 .000373
C/M Mean -.000030 .000283 .000748 .000385
U/L CEP= .004179 VEP= .010251 TEP= .005483
C/L CEP= .001429 VEP= .003079 TEP= .001684
C/M CEP= .001409 VEP= .003062 TEP= .001669

Conditioned Monte Carlo N=5 R=1.0000 Lon= 296.57 Lat= 18.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #5/1.00/4
----CBTOA---- 3.01 Rc=1.0010 Wc= .0100
U/M Mean -.000003 -.000048 -.000248 -.000608
C/L Mean .000020 .000071 .000977 .000154
C/M Mean .000022 .000052 .000958 .000142
U/L CEP= .003326 VEP= .043521 TEP= .006887
C/L CEP= .000726 VEP= .001012 TEP= .000361
C/M CEP= .000721 VEP= .001011 TEP= .000356
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Table 8c. EP and Mean Errors, Conditioned 
TOA – CBTOA (N = 6, R = 1.00, Rc = 1.001, Wc = 0.01) 

Conditioned Monte Carlo N=6 R=1.0000 Lon= 300.00 Lat= 84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.00/1
----CBTOA---- 2.85 Rc=1.0010 Wc= .0100
U/M Mean .000010 -.000030 .000202 .000092
C/L Mean .000025 -.000051 .000440 .000238
C/M Mean .000029 -.000069 .000541 .000281
U/L CEP= .001077 VEP= .005957 TEP= .003238
C/L CEP= .000884 VEP= .003334 TEP= .001827
C/M CEP= .000885 VEP= .003351 TEP= .001836

Conditioned Monte Carlo N=6 R=1.0000 Lon= 297.60 Lat= 12.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.00/2
----CBTOA---- 2.96 Rc=1.0010 Wc= .0100
U/M Mean .000007 .000008 .000311 -.000049
C/L Mean .000026 .000035 .000841 .000069
C/M Mean .000024 .000032 .000866 .000061
U/L CEP= .000957 VEP= .015464 TEP= .001296
C/L CEP= .000646 VEP= .002454 TEP= .000344
C/M CEP= .000640 VEP= .002445 TEP= .000343

Conditioned Monte Carlo N=6 R=1.0000 Lon= 315.00 Lat= 48.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.00/3
----CBTOA---- 2.88 Rc=1.0010 Wc= .0100
U/M Mean .000006 .000012 .000031 -.000002
C/L Mean -.000026 .000262 .000477 .000281
C/M Mean -.000017 .000261 .000479 .000270
U/L CEP= .003601 VEP= .006420 TEP= .003793
C/L CEP= .001972 VEP= .003355 TEP= .002008
C/M CEP= .001958 VEP= .003336 TEP= .001993

Conditioned Monte Carlo N=6 R=1.0000 Lon= 189.10 Lat= 6.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.00/4
----CBTOA---- 2.92 Rc=1.0010 Wc= .0100
U/M Mean -.000023 .000002 .000176 .000052
C/L Mean -.000063 -.000035 .000643 .000290
C/M Mean -.000073 -.000026 .000688 .000300
U/L CEP= .001180 VEP= .009023 TEP= .004070
C/L CEP= .000796 VEP= .003217 TEP= .001475
C/M CEP= .000798 VEP= .003190 TEP= .001458
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Table 8d. EP and Mean Errors, Conditioned 
TOA – CBTOA (N = 6, R = 1.00, Rc = 1.001, Wc = 0.10) 

Conditioned Monte Carlo N=6 R=1.0000 Lon= 300.00 Lat= 84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #6/1.00/1
----CBTOA---- 2.83 Rc=1.0010 Wc= .1000
U/M Mean .000010 -.000030 .000202 .000092
C/L Mean .000050 -.000103 .000887 .000480
C/M Mean .000050 -.000112 .000907 .000482
U/L CEP= .001077 VEP= .005957 TEP= .003238
C/L CEP= .000788 VEP= .000672 TEP= .000459
C/M CEP= .000785 VEP= .000675 TEP= .000461

Conditioned Monte Carlo N=6 R=1.0000 Lon= 297.60 Lat= 12.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #6/1.00/2
----CBTOA---- 2.84 Rc=1.0010 Wc= .1000
U/M Mean .000007 .000008 .000311 -.000049
C/L Mean .000030 .000040 .000981 .000080
C/M Mean .000028 .000037 .000984 .000072
U/L CEP= .000957 VEP= .015464 TEP= .001296
C/L CEP= .000644 VEP= .000286 TEP= .000280
C/M CEP= .000637 VEP= .000285 TEP= .000279

Conditioned Monte Carlo N=6 R=1.0000 Lon= 315.00 Lat= 48.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #6/1.00/3
----CBTOA---- 2.93 Rc=1.0010 Wc= .1000
U/M Mean .000006 .000012 .000031 -.000002
C/L Mean -.000048 .000494 .000901 .000530
C/M Mean -.000040 .000493 .000902 .000522
U/L CEP= .003601 VEP= .006420 TEP= .003793
C/L CEP= .000869 VEP= .000633 TEP= .000533
C/M CEP= .000864 VEP= .000630 TEP= .000526

Conditioned Monte Carlo N=6 R=1.0000 Lon= 189.10 Lat= 6.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #6/1.00/4
----CBTOA---- 2.86 Rc=1.0010 Wc= .1000
U/M Mean -.000023 .000002 .000176 .000052
C/L Mean -.000093 -.000052 .000948 .000426
C/M Mean -.000099 -.000041 .000953 .000422
U/L CEP= .001180 VEP= .009023 TEP= .004070
C/L CEP= .000717 VEP= .000474 TEP= .000353
C/M CEP= .000720 VEP= .000470 TEP= .000349
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Table 9. EP and Mean Errors for Conditioned TOA – CTOA 
(Configurations that Would Not Converge Unless Conditioned) 

U=Unconditioned, L=Linear, C=Conditioned, M=Monte Carlo
Conditioned Monte Carlo N=4 R=1.0000 Lon= 237.22 Lat=-42.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2
----CTOA ---- 3.97 Rc=1.0010 Wc= .0100
C/L Mean -.000033 .000090 .001000 .000121
C/M Mean -.000023 .000089 .000999 .000115
U/L CEP= 3.449598 VEP= 35.892991 TEP= 4.326352
C/L CEP= .000777 VEP= .000001 TEP= .000339
C/M CEP= .000780 VEP= .000001 TEP= .000340
Conditioned Monte Carlo N=4 R=1.0000 Lon= 352.92 Lat=-30.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3
----CTOA ---- 4.25 Rc=1.0010 Wc= .0100
C/L Mean .000331 .000499 .001000 .000604
C/M Mean .000320 .000500 .001001 .000596
U/L CEP= .194157 VEP= .324088 TEP= .195855
C/L CEP= .001113 VEP= .000139 TEP= .000473
C/M CEP= .001115 VEP= .000139 TEP= .000477
Conditioned Monte Carlo N=4 R=1.0000 Lon= 96.00 Lat= 60.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4
----CTOA ---- 4.05 Rc=1.0010 Wc= .0100
C/L Mean -.000151 -.000237 .001000 .000532
C/M Mean -.000140 -.000232 .000996 .000528
U/L CEP= .123571 VEP= .439490 TEP= .234044
C/L CEP= .001154 VEP= .000103 TEP= .000373
C/M CEP= .001161 VEP= .000103 TEP= .000372

Wc = 0.001
Conditioned Monte Carlo N=4 R=1.0000 Lon= 237.22 Lat=-42.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
2 *** FARTHEST *** Tailed #4/1.00/2
----CTOA ---- 4.13 Rc=1.0010 Wc= .0010
C/L Mean -.000033 .000090 .001000 .000121
C/M Mean -.000023 .000089 .000999 .000115
U/L CEP= 3.449598 VEP= 35.892991 TEP= 4.326352
C/L CEP= .000777 VEP= .000013 TEP= .000339
C/M CEP= .000780 VEP= .000012 TEP= .000340
Conditioned Monte Carlo N=4 R=1.0000 Lon= 352.92 Lat=-30.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
3 *** NEAR ONE+FAR *** Tailed #4/1.00/3
----CTOA ---- 4.65 Rc=1.0010 Wc= .0010
C/L Mean .000330 .000497 .000996 .000602
C/M Mean .000324 .000506 .001013 .000603
U/L CEP= .194157 VEP= .324088 TEP= .195855
C/L CEP= .001577 VEP= .001386 TEP= .000958
C/M CEP= .001571 VEP= .001381 TEP= .000955
Conditioned Monte Carlo N=4 R=1.0000 Lon= 96.00 Lat= 60.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
4 *** MIDDLE *** Tailed #4/1.00/4
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Table 9. EP and Mean Errors for Conditioned TOA – CTOA 
(Configurations That Would Not Converge Unless Conditioned) (continued) 

----CTOA ---- 4.25 Rc=1.0010 Wc= .0010
C/L Mean -.000151 -.000237 .000998 .000531
C/M Mean -.000137 -.000228 .000980 .000519
U/L CEP= .123571 VEP= .439490 TEP= .234044
C/L CEP= .001187 VEP= .001024 TEP= .000659
C/M CEP= .001196 VEP= .001022 TEP= .000655
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Table 10. Five Iterations of the CISQB Conditioning Method 
 

U=Unconditioned, L=Linear, C=Conditioned, M=MONTE CARLO
Conditioned Monte Carlo N=4 R=1.0000 Lon= .00 Lat=-84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1
----CISQB----1 Rc=1.0010 Wc= .0100 Wcq= .1143
U/M Mean -.000036 .000147 -.000765 -.001478
C/L Mean .000031 -.000124 .000993 .000697
C/M Mean .000049 -.000203 .001759 .001078
U/L CEP= .009648 VEP= .074636 TEP= .052399
C/L CEP= .001188 VEP= .000589 TEP= .000556
C/M CEP= .004009 VEP= .029893 TEP= .020946

Conditioned Monte Carlo N=4 R=1.0000 Lon= .00 Lat=-84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1
----CISQB----2 Rc=1.0010 Wc= .0100 Wcq= .1143
U/M Mean -.000036 .000147 -.000765 -.001478
C/L Mean .000031 -.000124 .000993 .000697
C/M Mean -.000007 .000015 -.000043 -.000061
U/L CEP= .009648 VEP= .074636 TEP= .052399
C/L CEP= .001188 VEP= .000589 TEP= .000556
C/M CEP= .001969 VEP= .012737 TEP= .008948

Conditioned Monte Carlo N=4 R=1.0000 Lon= .00 Lat=-84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1
----CISQB----3 Rc=1.0010 Wc= .0100 Wcq= .1143
U/M Mean -.000036 .000147 -.000765 -.001478
C/L Mean .000031 -.000124 .000993 .000697
C/M Mean .000016 -.000076 .000683 .000472
U/L CEP= .009648 VEP= .074636 TEP= .052399
C/L CEP= .001188 VEP= .000589 TEP= .000556
C/M CEP= .001334 VEP= .004723 TEP= .003308

Conditioned Monte Carlo N=4 R=1.0000 Lon= .00 Lat=-84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1
----CISQB----4 Rc=1.0010 Wc= .0100 Wcq= .1143
U/M Mean -.000036 .000147 -.000765 -.001478
C/L Mean .000031 -.000124 .000993 .000697
C/M Mean .000005 -.000033 .000336 .000231
U/L CEP= .009648 VEP= .074636 TEP= .052399
C/L CEP= .001188 VEP= .000589 TEP= .000556
C/M CEP= .001220 VEP= .002455 TEP= .001721

Conditioned Monte Carlo N=4 R=1.0000 Lon= .00 Lat=-84.00
Data error sigma= .001000 No. MC trials=10000 SEED= 573821
1 *** NEAREST *** Tailed #4/1.00/1
----CISQB----5 Rc=1.0010 Wc= .0100 Wcq= .1143
U/M Mean -.000036 .000147 -.000765 -.001478
C/L Mean.000031 -.000124 .000993 .000697
C/M Mean .000010 -.000052 .000489 .000340
U/L CEP= .009648 VEP= .074636 TEP= .052399
C/L CEP= .001188 VEP= .000589 TEP= .000556
C/M CEP= .001189 VEP= .000580 TEP= .000376
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