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ABSTRACT 

This is the first annual report for contract DE-AC26-99BC 152 1 1. The report describes 
progress made in the various thrust areas of the project, which include internal drives for 
oil recovery, vapor-liquid flows, combustion and reaction processes, instabilities and 
upscaling and the flow of fluids with yield stress. The report is mainly a compilation of 

previous topical reports published in the first year of the project, which ended on May 9, 

2000. Advances in multiple processes and at various scales are described. 

In the area of internal drives, significant progress was made in the modeling of gas-phase 
growth driven by mass transfer, and in the contexts of drying, evaporation and solution 
gas-drive processes at the pore-network and continuum scales. In the area of vapor-liquid 
flows, we describe steady-states and the stability of counter-current vapor-liquid flows, 
driven by buoyancy. The propagation of a gravity finger in a gas-liquid displacement is 
also analyzed. In the area of combustion, we report on two studies, one involving pore- 
network scale modeling, and another involving the propagation of combustion fronts in 

porous media at the large scale. Finally, in the area of viscous instabilities, upscaling and 
identification, we report on two studies, one involving the stability of displacements in 
heterogeneous media, and another on the identification of the permeability heterogeneity 
from the injection of a passive tracer. On-going work in the area of flow of fluids with 
yield stress will be reported in future reports. 
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INTRODUCTION 

This project is an investigation of various multi-phase and multiscale transport and 
reaction processes associated with heavy oil recovery. The thrust areas of the project 
include the following: Internal drives, vapor-liquid flows, combustion and reaction 
processes, fluid displacements and the effect of instabilities and heterogeneities and the 
flow of fluids with yield stress. These find respective applications in foamy oils, the 
evolution of dissolved gas, internal steam drives, the mechanics of conament and 
countercurrent vapor-liquid flows, associated with thermal methods and steam injection, 
such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous 
media and the flow of foams, Bingham plastics and heavy oils in porous media and the 
development of wormholes during cold production. Funding of the project is for three 
years, fkom May 9,1999 to M a y  8,2002. 

In this report, progress made in the various areas outlined above during tbe first year of 

the project is described. Work was conducted in all areas, with progress being greater in 
some areas compared to others, for a variety of circumstances. During the reporting 

period, a total of up to 8 students plus a post-doctoral associate were supported by the 
project. A number of publications and 6 topical reports have resulted fkom this effort. The 
publications are listed below. The report is essentialIy, but not exclusively, a compilation 
of the topical reports. 

This report is organized as follows: For each of the four first thrust weas, namely internal 
drives, vapor-liquid flows, combustion dynamics, and instabilities and heterogeneity, we 

provide a brief summary of the work perfiomed, followed by two reports each. Work in 
the thrust area of fluids with yield stress will not be reported here. Although progress was 

made, the results obtained are preliminary and fisther work is required before they can 

become conclusive. 





PUBLICATIONS 

Lajeunesse, E., Martin J., Rakotomalala, N., Salin, D., and Yortsos, Y.C., “The Threshold 
of Instability in Miscible Displacements in a &le-Shaw Cell at High Rates”, Phys. 
Fluids, submitted (2000). 

Yiotis, AG., Stubs, A.K., Bountouvis, A., and Yortsos, Y.C., “A 2-D Pore-Network 
Model of the Drying of Single-Component Liquids in Porous Media”, Adv. Water Res., 
special issue on Porescale Modeling, accepted (2000). 

Yortsos, Y.C., “Imiscible Displacement in Fractured Rocks: UpscaIing Issues”, Special 
AGU publication to honor Paul Witherspoon, accepted (2000). 

man, L., and Yortsos, Y.C., “Ideatification of the Permeability Field of a Porous Media 
from the Injection of a Passive Tracer”, Phys. Rev. E, accepted (2000). 

Tsimpanogiannk, I.N., Yortsoq Y.C., and Stubos, A.K., “Evaporation of a Stagnant 
Liquid”, Ind. Eng. Chem. Res. 39, 15054513 (2000). 

Zhan, L., and Yortsos, Y.C., “‘Identification of Permeability Heterogeneity fkom Tracer 
Displacement: Sensitiv&y Analysis”, proceedings of Conference Tracers and Modelling 
in Hydrogeology, Tram 2000, Liege, Belgium, pp. 63-73 (May 23-26,2000). 

Shariati7 M., and Yartsos, Y.C., “The EE& of Heterogeneity on the Stability of 
Miscible Displacements in Porous Media”, paper presented at the AGU Fall Meeting, San 
Francisco, CA (December 16, 1999). 

Zhan, L., and Yortsos, Y.C., “The Identification of the Permeability Heterogeneity of 
Porous Media fbm the Displacement of a Passive Tracer”, paper presented at the A P S  
@n>) Fall Meeting, New Orleans, LA (November 21-23,1999). 

h i l i ,  P. and Yortsos, Y.C., “Stability of Heat Pipes in Vapor-Dominated Systems”, 
paper presented at the ASME Fall Meeting, Nashville, TN (November 14-19, 1999). 

Kechagia, P., and Yortsos, Y.C., “A Model Stochastic Equation for Convection-Diffision 
Equation in Evolving Porous Media”, paper presented at the AICbE Fall Meeting, Dallas, 
TX (November 1-5, 1999). 





r. INTERNAL DRIVES 

h many processes associated with heavy oil recovery, internal drives, namely these 

driven by applied supersaturation in dissolved gases or heat content, are common. These 

include, but are not limited to the evolution of gas in foamy oils, internal steam drives, 

the evaporation of volatile components during gas injection or the injection of steam, and 
other processes. The main result is the growth of a gas phase, which is driven by mass or 
heat transfer, depending on the kind of the applied supersaturation. We have conducted 

various studies of this multifaceted problem. In this report, we will present results in two 
areas, both associated with the evaporation of a liquid in a porous medium. Among 
others, they find application in the recovery of volatile oil components fiom a liquid 

phase in a matrix block in a porous medium. They also find generic applications in 

drying. The first study describes an analytical mathematical model for the description of 
the evaporation fiont in a binary liquid, while the second is the porenetwork simulation 

of drying in a porous medium, driven by the flow of gas. The latter study was a 

collaborative effort with colleagues fkom the research institute Dmokritos in Athens, 

Greece. Not described in this report is the on-going effort in the dynamics of gas 

evolution as a knction of the rate of application of the supersaturation for both solution 

gas and internal steam drives, and the experimental effort under way for understanding 

the foamy oil process. Both of these are being studied and we hope to report soon on 
progress along these directions. The issue of the upscaling of the pore-network results to 

the continuum level will be addressed in the studies in the upscaling thrust area. 





A NOTE ON THE EVAPORATION OF A STAGNANT LIQUID 

Ioannis N. Tsimpanogiannis, Yanis C. Yortsos and Athanasios K. Stubos 

INTRODUCTION 

Of interest to certain reservoir engineering applications is the recovery of trapped or 

immobile oil by its evaporation and subsequent diffusion in a flowing gas. The typical 

application involves gas injection at high pressures in fractured reservoirs containing light 

oil (Le Gallo et al. [l]). Oil trapped inside matrix blocks of low permeability evaporates and 

diffuses in a gas injected at high pressures, which is flowing in the high-permeability fracture 

network surrounding the porous matrix (see schematic of Figure la). A similar problem, 

although at low pressures, arises in the remediation of contaminated soils, where trapped 

and immobile organic contaminants vaporize, diffuse and are convected away in a flowing 

gas (soil vapor extraction, Ho et al. [Z]). 

The problem involves a variety of processes: diffusion and convection in the gas phase, 

diffusion, capillary and viscous effects in the liquid phase, heat transfer and vapor-liquid 

equilibria, In a recent paper (Tsimpanogiannis et al. [3]) we analyzed in detail the motion 

of the liquid-gas interface in a porous medium, for the geometry described above, but under 

low pressure conditions and in the context of drying. In that work, emphasis was placed on 

the effect of capillarity and the pore structure on the scaling of the thickness of the drying 

front (Shaw [4]), using a thermodynamic description based on the dilute limit approxima- 

tion. Ignored were effects of dissolution of the injected gas in the liquid and of liquid-phase 

diffusion, both of which are expected at higher pressures. 

In this section, we consider a version of the more general problem, with main objective 

the understanding of the effect of higher pressures on the velocity of the gas-liquid interface. 

Experimental evidence (Le Romancer et al. 1151) suggests that high-pressure gas injection 

results under certain conditions in a decrease of the rate of the interface motion, a result that 

may be due to gas dissolution and diffusion in the liquid phase. To explore this possibility, 

we consider in this section a simple 1-D model of this process as illustrated schematically in 

Figure Ib. A liquid A, originally occupying a semi-infinite medium, is subject to evaporation 



and diffusion in a flowing gas B, the composition of which at the top of the medium (at 

z = 0) remains constant. Due to the possible high pressure in the gas, component B may 

solubilize and counter-diffuse in the liquid phase. For the sake of generality, the liquid is 

taken to consist initially of a binary mixture of A and B, of mole fraction Z A ~ .  Contrary to 

our previous work [3], we neglect effects of the pore microstructure, which give rise to 3-D 

fronts. Such effects can be included in a relatively straight forward analysis, but will not be 

considered here. 

The isothermal, one-dimensional evaporation and diffusion of a solute through a stagnant 

gas in a tube or a channel, is often referred to as Stefan diffusion. The problem analyzed 

here can also be considered as awariation of the Stefan problem, under somewhat different 

process and boundary conditions. We note that in the standard references (e.g. Bird et al. 

[6], Slattery [7], and Taylor and Krishna [SI) unsteady-state evaporation is treated in the 

dilute-limit approximation, under the assumption that the gas-liquid interface is stationary. 

Slattery and Mhetar [9] considered evaporation of a liquid in a long vertical tube by relaxing 

the assumption of a stationary interface, while Mhetar and Slattery [lo] modeled the problem 

of the evaporation of a binary liquid in the same geometry by also including diffusion in 

the liquid, Our problem is similar to the latter, although differences exist in the specific 

geometries considered, as well as in the fact that we consider solubilization and diffusion of 

component B in the liquid, which is expected at higher pressures. 

In the following, we present the mathematical formulation of the problem, in which the 

porous medium is treated as an equivalent continuum. Because the emphasis is on under- 

standing thermodynamic and transport effects, the formulation is relevant to the problem in 

a tube. It is certainly acknowledged that pore structure will affect diffusion, the formulation 

of the problem, and the motion and dimensionality of the interface. However, these efiects 

are not in the scope of this investigation. A similarity solution is derived, based on which we 

analyze the effects of the ratio of diffusivities, pressure, initial composition and temperature 

on the velocity of the gas-liquid interface. The analysis provides insight on the relevant 

mass transfer and phase equilibria mechanisms, and can be used to model the more complex 

interface dynamics in an actual porous medium, where pore-structure effects are important. 



MATHEMATICAL FORMULATION 

Consider the problem described schematically in Figure 1 b. The condensible component 

A in the gas phase satisfies the mass balance 

ac; 6N2,  -+-- - 0  
at dz 

where N:, is the z-component of the molar flux of A in the gas phase, expressed for a binary 

mixture as 

a Y A  N i z  = -.“Vis - + YA(  + Ngz)  a z  

Here, c i  is the molar concentration, YA is the molar fraction of A (c; = c v y ~ )  and D& is 

the binary diffusion coefficient in the gas phase. Species B is also conserved, hence 

By adding (1) and (3) and assuming that c” = c l +  cZ; is constant at a fixed pressure, we get 

N i z  + N& = N,”(t) (4) 

The assumption of spatially constant c” is quite reasonable for the systems and conditions 

considered below. Similar balances can be written for the liquid phase 

and 

where ca is the molar concentration and X A  the molar fraction of A in the liquid phase, 

(c; = c ’ q )  and DaB is the binary diffusion coefficient in the liquid phase. If, as in the gas 

phase, we were to also assume that the overall liquid molar concentration is constant, then 



where the latter equation reflects the boundary condition of no-flux in the far-field. However, 

this assumption is not valid, in general, especially at higher pressures or when B is highly 

soluble. For the sake of simplicity, we will proceed first with the assumption of a spatially 

uniform liquid molar concentration, as this approxirhation allows for an exact solution to be 

obtained. The more general problem will be analyzed in more detail in a subsequent section. 

It will be shown that the error induced does not affect significantly the major conclusions 

of the section. Implicit in the analysis to  follow is also the assumption of spatially uniform 

diffusion coefficients. While the similarity solution to be developed does not rely on this 

assumption, we decided to adopt it for simplicity in the calculations and because its effect 

was found not to be significant. 

(i). Spatially constant overall molar concentration 

With the assumption of constant overall concentration, the balances for components A 
and B, equations (1) and (5), respectively, become 

and 

Concentration fields are coupled at the interface (subscript e) by the following mass balances 

for the two species A and B 

where p a ,  and pfB, denote mass densities of A and B in the liquid phase, respectively, hence 

PAe I = Z ~ , C ! I M A  and pbe = Q,c‘MB; and pbe denote mass densities of A and B in the gas 

phase, respectively, hence p i e  = YA~C’MA and p i e  = Y B ~ C ~ M B ;  f ( t )  denotes the position of 



the interface, and vf is the velocity of the gas-liquid interface. Thermodynamic equilibrium 

calculations at the interface (Prausnitz et al. [ll]) or experimental data will be used to 

determine the interfacial compositions Y A ~  and Z A ~  as functions of P and T .  The molar 

densities in the gas and liquid phase can be calculated from standard equations of state (for 

example the Peng-Robinson equation of state; Peng and Robinson [la]). The problem is 

completed by specifying far-field conditions. At  the place where gas in injected ( z  = 0) we 

have YA = 0, while initially and far from the interface in the liquid, the molar fraction is 

fixed (zA = Z A ~ ) .  This results in the counter-diffusion of A and B in the liquid phase, in 

addition to their counter-diffusion in the gas phase. 

The solution of this problem admits a similarity solution using the similarity variable 

E We also take 'I = 2 p g  

where X is a dimensionless parameter to be determined, and p has dimensions of molar 

density (mol/volume). In terms of these similarity variables, the mass balances become 

and 

t I  2 1  X A + ~ C K  L C A ~  = 0 in X < 7 

where primes denote derivative with respect to and we have denoted 

(14) 

The two equations (14) and (15) are subject to the interfacial conditions (10) and (12 )  (in 

the appropriate dimensionless form) and the following boundary conditions 

IJA = 0 at q = 0 and 

X A = X A ,  at 'I= 00 and 



Note that because the integration interval in the gas phase is 0 < z < f ( t )  and f(0) = 0, 

there is no need to satisfy an initial condition for that phase (in contrast to the problems 

considered by Bird et al. [6], Cussler [13], and Slattery and Mhetar [9]). The interfacial 

conditions (10) and (11) can be recast in the form 

where is the ratio of the molar densities, E 5, and 

Away from the critical point, e << 1. 

The solution of the above system is readily found to be 

and 

where the unknown parameter X satisfies the following transcendent a1 equation 

yAeexP[-p2I - ( X A c o  - Z A e )  exp[-(vp)2] 
P(!#Ae - Z A e )  + 1/;;bf(P) - erf(p(1 - 4 1  - VJ;; erfc( up) 

and where p G 2 and Y e EQ, and erfc is the complementary error function. Equation (21) 

is the main result of this section. Its solution needs to be determined numerically. Before 

we proceed, however, it is useful to consider two special cases: 

(i) In the limit u >> 1, namely when cy >> E-', pv is at least of order 1. Using asymptotic 

properties, equation (21) simplifies to 

We note that the solution of this equation is independent of the mole fraction in the liquid at 

the interface, x A e ,  and in fact it coincides with the general equation (21) when Z A ~  = zA,. 

Therefore, this limit can be viewed as either infinitesimally slow diffusion in the liquid phase 

(CY >> 1) or, equivalently, as a problem in which B does not dissolve in the liquid phase (in 

which case we need to take z A m  = 1 for self-consistency). Thus, (22) also expresses the 

solution of the problem in the special case of negligible dissolution in the liquid. This can be 



further simplified by taking e << 1, as is typically the case, where a further expansion yields 

the  result 

From (23) we conclude that in the typical case, X is of order fi. Some further simplification 

leads to the dilute solution limit 

In this limit, the convective term vanishes and the concentration field is quasi-static, namely 

it satisfies a Laplace equation, the basestate profile for the mole fraction being linear. This 

result was used as the basis for a stability analysis presented in Tsirnpanogiannis et al. 131. 

(ii) In the other limit, v << 1, on the other hand, parameter p is small. Using asymptotic 

properties we find from (21) the result 

This equation shows a linear dependence on a, at small values of the latter. Given the 

definition of a2 as the ratio of vapor to liquid diffusivities, this case is not physically realistic. 

However, it serves to  illustrate the fact that p and A decrease (and vanish) as a decreases 

to zero (or as the mole fraction X A ~  decreases). Thus, accounting for diffusion in the liquid 

or for solubilization of the gas in the liquid will slow down the evaporation process, as 

originally conjectured. The specific extent of this decrease needs to be determined from the 

full equation (21) , however. 

(ii). Spatially variable overall molar concentration 

In the general case, where we need to account for the dependence of the overall molar 

concentration c' on the mole fraction XA, the previous system still admits a similarity solution 

in terms of the same similarity variable. Corresponding to (14) we now have a system of two 

equations 



where cz is a function of X A  (as well as T ,  and P ) -  These equations are to be solved subject 

to the boundary conditions (16) and (17) and the far-field condition 

N ~ = O  at r ) = m  

Because the dependence .'(.A) is generally non-trivial, an analytical solution of this two- 

point boundary-value problem is not possible, in general. For its solution we used an iterative 

approach. First, the unknown value of X was guessed. Results from the previous section 

were used as initial guesses. Then, the boundary value problem (26)-(28) wits solved by a 

shooting method, for which the solution at the far-field wits also provided by the previous 

analytical solution. The numerical result was then inserted in the interface boundary con- 

ditions (10) and (11). If these were satisfied to the desired accuracy, the guessed d u e  of 

A was accepted, otherwise, a new value was taken and the algorithm was iterated until a 

satisfactory convergence was reached. Numerical examples are shown below. 

Although the general problem does not admit an analytical solution, it is of interest to 

note that analytical results are possible in the limit a + 00. In this limit, it can be shown 

that the variation of ZA occurs only in a boundary layer around q = X of thickness 5.  In 
fact, the mole fraction varies in this boundary layer in a form that can be calculated exactly. 

After some manipulations, one can show that in this case, X A  is implicitly given from the 

following 

(q - X)a2 = 

Inserting the results from this equation in the interface conditions, one finds, after some 

(29) 

In other algebra, that X satisfies the same equation as (22), except that now E = m. 
words, at large Q, the analytical solution for A previously developed under the  assumption 

CU 

of a constant molar concentration holds, provided that the liquid molar concentration is 



evaluated at the far-field molar fraction Z A ~ .  This result will be used below to bound the 

variation of X as a function of the thermodynamic variables. 

RESULTS AND DISCUSSION 

Based on the previous results we explored the effects of the various parameters on the 

velocity of the interface. For numerical results, the following input data are needed: (i) 
the equilibrium molar fractions at the gas-liquid interface, for both liquid and gas phases, 

(xAe;  yAe); (ii) the molar concentrations of both liquid and gas mixtures, (c', c"), and their 

dependence as a function of composition, T and P;  and (iii) the ratio of the binary diffusion 

coefficient in the gas phase to the binary diffusion coefficient in the liquid phase, (%,)- 
DAB 

At high pressures, we used experimentally reported data for the equilibrium molar frac- 

tions x A e  and yAe.  These were obtained from Azarnoosh and McKetta [14] (n-decane/nitrogen); 

Poston and McKetta [15] (n-hexane/nitrogen); Sage et al. [16] (n-pentane/rnethane); and 

Besserer and Robinson [17] (n-pentane/carbon dioxide). At low pressures, ~ J A ~  was approxi- 

mated as a function of T using the expression YA= = +7 where P'(T) is the vapor pressure 

of the component A, obtained from published correlations (Prausnitz et al. [HI; Himmelblau 

[ 181). For liquid and gas molar densities, high-pressure vapor-liquid equilibrium calculations 

were performed using the Peng-Robinson [12] cubic equation of state. However, since the 

equation of state was mainly used for volumetric calculations, a modified version, which 

includes a volume translation to improve volumetric predictions, was selected (MagouIas 

and Tassios [19]). For the case in which the liquid overall molar concentration was assumed 

spatially constant, its value corresponding to ZA, was taken in the calculations. Reliable 

experimental data for the binary diffusion coefficients were obtained from Sigmund's corre- 

lation (Sigmund [20]; da Silva and Belery [21]). However we also considered the sensitivity 

of the results to various hypothetical cases in which ar was kept constant. 

P" T 

First, we examined the validity of the assumption of spatially uniform liquid molar con- 

centration. Figure 2 shows the variation of X with pressure at a fixed temperature, for the 

two different systems n-pentane/methane (Fig. 2a) and n-pentane/carbon dioxide (Fig. 2b) 

and for the two cases analyzed, one in which c1 = C'(ZA,) and another in which c' was al- 

lowed to vary with composition. Sigmund's correlation [20], [22] for the ratio of diffusivities 



was considered in both cases. As expected, the two solutions are close to each other at low 

pressures, but deviate at higher pressures. Their difference increases with pressure, but fals 

within the range of uncertainty of the diffusion coefficient variation, as will be shown below. 

Plotted in Figure 2 is also the theoretical result corresponding to cy >> 1. As anticipated, 

this curve bounds from above the velocity of the interface, with the curve corresponding to 

the uniform concentration assumption serving as a lower bound. Overall, the trend in all 

cases is an increase of X as P increases. 

Subsequently, we examined the validity ofthe two asymptotic limits (23) and (25). Figure 

3 is a plot of the parameter X vs. the square root of the diffusivity ratio, cy, for the system 

hexane-nitrogen at 310.93 K and 68.9 bar. Shown are results for both of the previous 

cases (assumption of spatially constant molar concentration and the more general case). 

The dotted lines represent the asymptotes described in the two equations (23) and (25), 

respectively, in the two limits of large and small CY, respectively. As expected, the asymptotic 

solutions represent quite well the behavior of the analytical solution as a function of the 

diffusivity ratio. The more general solution is also bounded at large a by the theoretical 

result (dah-dotted line), and is in general larger than the approximate analytical solution. 

At small values of a, the general solution follows a linear variation with CY, similar to the 

analytical result (25). This dependence can, in fact, be proved analytically, by following 

a scaling analysis of the general problem in that limit. However, calculating the specific 

prefactor requires the numerical solution of the full problem. Similar behavior was found 

for other conditions or systems tested. Figure 3 reveals two important aspects: That, in 

general, X is of order 1O-I or less; as expected from (23); and that in its expected range of 

variation (1, lo2),  the diffusivity ratio has an effect on X which is of the order of two or three, 

but not of an order of magnitude. This observation essentially provides the answer to the 

question we raised in the introduction concerning the effect of solubilization and diffusion 

of component B on the front velocity. In its absence, the rate of movement of the interface 

is faster. When it is taken into consideration, dissolution and diffusion will slow down the 

process. The amplification of this slowdown can be significant but it does not exceed an 

order of magnitude. 

An increase in pressure will lead in general to an increase of the rate of movement of 



the interface. Figure 4 shows plots of A vs. pressure for the system n-pentane/methane at 

310.93 K, where the initial liquid is pure n-pentane and where we used for simplicity the 

analytical solution. Plotted are predictions from (21) for various hypothetical cases: in some, 

parameter a was kept constant and in the range (1-oo), while in another it was taken from 

the correlation of Sigmund [ZO]. We note that the overall trend as the pressure increases is an 

increase in X and also an increase in its sensitivity to the diffusivity ratio. For the particular 

correlation of Sigmund [ZO], the maximum variation of parameter X is within a factor of two. 

Analogous results were found for the system n-pentane/carbon dioxide. For the latter, the 

sensitivity to the liquid diffusion is larger than for the n-pentane/methane shown in Figure 

4 in the same range of pressure. For example, for the pressure of 63 bar, where experiments 

were reported by Le Romancer et al. 151, the effect of diffusion was found to slow down the 

evaporation front by a larger extent than in the case of n-pentane/methane. This result is 

consistent with the experimental findings. 

The effect of the initial mole fraction of the liquid phase on the evaporation rate of the 

previous mixture at P = 103.4 bar is shown in Figure 5, where again the simpler analytical 

solution was used. As expected, the highest rate corresponds to’an initial liquid mixture 

at equilibrium ($4, = Z A ~ ) ,  since in this case there is no dissolution of I3 in the liquid. 

Increasing xA- leads to an increased dissolution and to an accompanying decrease in the 

evaporation rate. Consistent with the previous plots, the decrease is generally within a factor 

of two of the value at equilibrium, regardless of the value of the diffusivity ratio. 

More important is the effect of temperature, shown in Figures 6 and 7. Figure 6 shows 

high-pressure results for the two pairs, n-hexane/nitrogen and n-decane/nitrogen, over a 

range of temperatures, for various assumptions regarding a, and where the analytical solu- 

tion is used. We note that the sensitivity to temperature is larger than that of either the 

pressure or of the initial mole fraction discussed above. This trend is expected. Results 

in Figure 7 correspond to low pressures ( P  = 1 bar), for the pairs n-pentane/nitrogen and 

n-decane/nitrogen. The effect of temperature on X is quite significant. In fact, as the sys- 

tem approaches its boiling point, X becomes infinitely large (although, strictly speaking, the 

present analysis will break down near that point). Under these conditions, the dependence 

of A on temperature can be extracted by using (21) in the limit of large p. Then, it is not 



difficult to show the result 

where we have assumed xA, = 1. This equation describes the asymptotic behavior of X as 

the temperature approaches the boiling point (where IJA~ = 1). The latter equation appears 

to describe very well the behavior of X in this region (see Figure 7). 

CONCLUSIONS 

In this section we presented a simple I-D model of the evaporation of a liquid, immobilized 

or trapped in a porous medium, into a flowing gas outside the medium. The solution of this 

problem is useful as a building block for the treatment of the more general problem, where 

pore microstructure, and capillary and viscous effects are taken into account (see [3] for an 

application in the drying context). We have focused in particular on the effect of dissolution 

of gas B and its counter-diffusion in liquid A. It was found that the effect on evaporation 

is to  slow down the evaporation rate, as also noted in related experiments in porous media. 

However, in the typical applications the degree of this reduction is generally within a factor 

of two or three, but not of an order of magnitude. 
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(b) 
Figure 1: Schematic of the configuration considered. (a) Gas B flowing in a high permeability 

fracture network causes evaporation and diffusion of liquid A, trapped in matrix blocks (b) 

One-Dimension approximation, in which liquid A evaporates and diffuses in the gas phase, 

containing component B. The latter dissolves and diffuses in the liquid phase. 
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Figure 2: The effect of pressure on the velocity of the evaporation front for the systems: 

(a) n-pentane/methane at 310.93 K, and (b) n-pentane/carbon dioxide at 344.15 K. The 

dashed-dotted line corresponds to the analytical solution where c' = c l ( z A e ) ,  the solid line is 

the theoretical result at large cy, while * denotes the numerical results for the general case 

where ci = ~ ' ( x A ) .  
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Figure 3: The effect of the ratio of diffusivities a’ = !!.b (gas-to-liquid), on the velocity 

of the evaporation front for the system n-hexane/nitrogen at 310.93 K and 68.9 bar. The 

dotted lines are the asymptotes expressed by (23) and (25), respectively, the dash-dotted 

line is the theoretical prediction for the general problem at large a. 
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Figure 4: The effect of pressure on the velocity of the evaporation front for the system 

n-pentane/methane at 310.93 K. The two solid lines correspond to simulations where the 

ratio of diffusivities is equal to 00 and 1, respectively. These curves envelope various curves 

corresponding to ratio of diffusivities equal to 100, 20,lO and 2 (denoted with symbols +, A, 
0, and 0 respectively)? as well as a case (ref') using the correlation of Sigmund [20] (denoted 

by dashed-dotted line). 
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Figure 5: The effect of initial liquid composition on the velocity of the evaporation front 

for the system n-pentane/methane at 310.93 K and 103.4 bar. The various curves shown 
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Figure 7: The effect of temperature on the velocity of the evaporation front for the systems 

n-pentane/nitrogen and n-decane/nitrogen at P=l bar. The dotted line corresponds to the 

approximat ion (30). 





A 2D PORE-HETWORK MODEL OF THE DRYING OF SINGLE-COMPONENT 
LIQUIDS IN POROUS MEDIA 

A.G. Yiotis, A.K. Stubos, A.G. Boudouvis and Y.C. Yortsos 

Drying of porous solids is a subject of significant scientific and technological 

interest in a number of industrial applications including coatings, food, paper, textile, wood, 
ceramics, building materials, granular materials, electronic devices and pharmaceuticals 

[ 1,4,7,19,20,27,28]. In a different context, drylng in porous media i s  involved in distillation 

and vaporization processes associated with soil remediation [ 111, as well as in the recovery 

of volatile hydrocarbons &om oil reservoirs by gas injection [ 151. A variation of the latter i s  
the main problem addressed here. 

Generally, in drying, a single- or mufti-component liquid phase gradually evaporates 

and is removed from the complex porous structure via combined heat and mass transfer 
processes. The traditional description relies on phenomenological approaches, in which the 
porous medium is a Continuum, the dependent variables, like moisture content, are vohme- 
averaged quantities and the relation of fluxes to gradients is through empirical coefficients 

[9,17,31,32,33]. Such approaches essentially ignore the effect of the pore microstructure 

which is of key importance for a quantitative understanding of the process. In fact, drying 
involves many pore-scale mechanisms, for example the motion of individual gas-liquid 

menisci residing in the pore space, diffision in the gas phase (fur a single-component liquid) 

and the liquid phase (for a multi-component liquid), viscous flow in both phases, capillarity 
and possibly liquid flow though connected films, d l  of which need to be accounted for. We 

should note that although it also involves the receding of liquid-vapor interfaces, drying is 

not a typical external displacement process, like external drainage, which has been well 

studied in the past. Rather similarities exist to processes like solution gas drive andor 
boiling in porous media, where the dispIacernent of the liquid phase is driven internally by 

mass or heat transfer and which have been only relatively recently investigated [ 16,251. 

The physical context of the problem considered here is schematically depicted in 

Fig. la, which shows an exaggerated schematic of a fiactwed network. Liquid is trapped in 

the matrix and may vaporize as a result of an injected purge gas flowing primarily in the 



(iii) 

fiactures. The actual overall problem is quite complex, requiring the consideration of the 
network of fractures and the matrix continuum, gas flow and mass transfer in the fracture 
network and the multi-dimensional mass transfer f'rom the matrix continuum to the fracture 
network. For simplicity, we will consider the much simpler geometry of the pore-network 
model shown in Fig. lb, which involves a 2-D rectangular matrix block, all but one 
boundaries of which are impermeable to flow and mass transfer. We will also neglect 
gravity. Extension to 3-D geometries is, in principle, straightforward, although 
computationally costly, while equally feasible is the consideration of gravity effects. We 
consider isothermal conditions, under the asmrnpticm that heat transfer in the solid operates 
much faster than mass transfer in the gas phase. Finally, a single-component liquid phase is 
assumed. It is of note that this approach applies also to the vaporization of trapped NAPL's 
in low-permeability layers or regions [I I]. 

At any time during the process, evaporation of the liquid leads to the receding of the 
liquid (drymg) fiont, leaving behind disconnected clusters of liquid and liquid films (in 
corners of capillaries, or as thin films), the size ami locatiun of which change continuously 
with time. In genera four different spatial regions can be identified 1301 (Fig. IC): 

(i) a fa-field (fiom the fracture) region consisting of the initid liquid; 
(ii) a region where both liquid and gas phases are macroscopkdly connected (this 

region may be absent in certain 2-D square pore-networks for topological reasons); 
a region where the liquid phase is disconnected and consists of individual clusters of 

variable sizes (trapped islands of liquid); and 
a near-field (to the fracture) region consisting primarily of the connected gas, with 

the liquid phase in the form of penduiar rings, corner films or thin films on the d i d  
surface, the thickness of which is progressively reduced towards a "totally dry" 
regime. 

Evidently, the gas phase is macroscopically continuous in the last three regimes. On the 

basis of his experiments, Shaw [26] has postulated that liquid films may also provide 
hydraulic conductivity to the liquid phase in these regimes. We must point out that these 
four regimes only develop after the end of the Constant Rate Period (CRP). Prior to this, 
regions (iii) and (iv) cannot arise. Our model accounts for the full evolution of all these 

regimes, including the CRP, as will be shown below. 



The conventional approach to modeling drying is based on a continuum description, 
the simplest model for which involves only the two limiting regions (the far-field and the 

near-field), separated by a planar drying fkont. The latter recedes due to diffision-controlled 

mass -fer obeying a square-root time dependence. More sophisticated continuum models 

have also been developed, as discussed in Luikov [17f, and Whitaker 1331, among others. 

Recently, Tsimpanogiannis et al. [30] proposed a more complex I-D model using 
transverse-averages Their model involves various coefficients, which need to be evaluated 
fkom a pore-network study, however (see also Stubos and Poulou [29]). Tsimpanogiannis et 
al. 1301 also developed a theory based on pore-scale considerations, for the description of 

the scaling properties of the drying fiont. Specifically, they showed that consideration of 
viscous effects makes drying equivalent to Invasion Percolation in a Stabilizing Gradient 

(IPSG) (e.g. see Xu et al. 1341). In particular, they emphasized that liquid flow in the porous 

matrix is driven by capillary pressure gradients (the so-called capillary pumping or capillary 
wicking effect, Ceagkke and Hougen [2]). The allowance of film flow could be an essential 

element of that theory. Based on the fact that drying is controlled by both capillarity and 
diffision, in ccmtrast to external drainage which is controlled by the injection rate, a power 
law relation of the evaporating fiont width with a modified, diffUsion-based capillary 

number was obtained and shown to be compatible with the experimental data of Shaw [26]. 

However, other important features of the process, including the partition of the liquid phase 
in various regimes, the mass transfer rates, etc., were not explored. 

Following recent trends in describing processes in porous media, several studies in 
recent years used a pore-network approach to model drying. Key to these approaches is the 

consideration of mass transfer, elements of which were described by Li and Yortsos [ 161 

and Jia et al. [ 121, among others. Various porenetwork models with specific applications to 

drying were proposed originally by Nowicki et cd. [IS], and more recently in a series of 
papers by Prat and co-workers [ 23,14,22,23]. In parallel, Pot et al. [21] used lattice-gas 
automata to simulate evaporation in a 2-D lattice. Nowicki et al. [ 181 presented a numerical 

simulation of the process at the pore-network level. However, the authors did not expand on 
the particular patterns and regimes obtained or on the associated effects on drylng rates. 

Prat’s studies represent the first attempt to characterize theoretically drying patterns and 

their rate of change in porous structures. Prat [22] studied the formation of drying patterns 



assuming capillary control, neglecting viscous effects and considering mass transfer only by 
quasi-static dfision. Laurindo and Prat [I41 provided a macroscopic assessment of the 

importance of liquid films. Based on percolation patterns and isothermal conditions, they 

computed drying rates by solving a quasi-static W s i o n  equation in the gas phase. Prat and 

Bodwx [23] focused on dfisional mass transfer and the effect of gravity on the fbnt 
structure, but also commented on viscous effects. In earlier experiments using horizontal 

glass-bead packs (Shaw [26]), viscous forces were found to be important for explaining the 

formation of an evaporating fiont (separating continuous liquid fiom gas) of a finite size. 
More generally, we expect that advection and viscous effects will have an impact on 
pattern and drying rates. Existing pore-network models address mostly slow drying, 

controlled by CapilIarity and/or gravity and by difision, ignoring advection and/or viscous 
effkcts. We note that consideration of advection in the gas phase requires knowledge of the 
pressure field, which is coupled to viscous flow in the two phases and capillary effects. 
Thus, these two processes must be treated simultaneously. 

The present paper is motivated by the above lack of completeness and attempts to 

shed light to mass transfs and/or viscous effkcts on the development of drying patterns. It is 
also motivated by the need to provide reliable coefficients in the appropriate continuum 
models, and in a sense it represents a continuation of the work by Tsimpanogiannis et al. 
[30], except that film flows are ignored. We consider the isotherrnal drying (at room 
temperature) of a porous block, initially saturated with liquid (hexane), subject to flow of air 
in the fracture and in the absence of gravity, The paper is organized as follows: First, we 

present details of the pore-network approach. The various mechanisms described previously 

(diffusion in gas phase, viscous flow in both phases, capillarity and capillary wicking) are 

addressed. Then, simulation results are obtained for the drying patterns and rates, for various 
values of the dimensionless parameters governing the process. The latter involve a mass 

transfer-based capillary number and the Peckt number based on the gas velocity in the 
fracture, The results are subsequently analyzed using simpler statistical theories, such as 

Invasion Percolation (P). Various limiting cases are identified and analyzed. In particular, 

we pay attention to the trapped islands surrounding the drying fiont, which due to their 

screening effect on mass transfer play an important role in the problem. Scale-up issues as 



well as effects of various parameters not considered in the pore network are discussed in the 
last section. 

FORMULATION 
A discrete pore network model is used to simulate the drying of a porous block. The 

porous medium is represented by the standard approximation ofa 2-D network of spherical 
pore bodies connected through cylindrical pore throats [3,5] (Figure lb). The pore bodies 
serve as containers for either of the two phases and it is assumed that they have no capirlary 
or flow resistance. Therefore, when a liquid-gas interface lies within a pore body, the 
pressures of both phases are taken to be equal and the interface recedes without any 

capillary forces restraining its movement (Figure 2b). This simplification can be relaxed at 
the expense of higher computational cost and could be subject to the uncertainty of the 
precise pore body geometry. The throats serve as conductors of the flow and mass transfir 
and they act as capillary barriers. When a stationary liquid meniscus (interface) lies at the 
entrance of a throat adjacent to a liquid pore (Figure 2a), an interfacial pressure diEerence, 
roughly equal to 2p+, where y is the surface tension and r the radius of the throat, develops 
between the two neighboring pores. The meniscus remains stationary until the pressure 
difference between the two pores exceeds that capillary pressure threshold. Then the 
meniscus will recede instantly (Figures 2c and 2d), since it is assumed that the throat has no 
volume and the gas phase penetrates the pore. Tn our simulations, pore body and throat radii 
were uniformly distributed in the range 0.37-0.74 mm and 0.16-0.32 mm, respectively. The 
lattice length (pore center to pore center) was taken to be 2 mm. 

The 2-D network has three sides impermeable to flow and mass transfer. 
Alternatively, one could impose periodic boundary conditions at the sides. Along the fourth 
side m s  a fixture, which is represented as 1-D chain of pore bodies and throats. The two 

ends of the fracture are open to flow and mass transfer. Pore body and throat radii are taken 

equal to 0.77 mm and 0.275 mm, respectively. We note that the dimensions of the ftacture 
considered in the simulations are comparable to the mean dimensions of the network. This is 
rather unrealistic, since one would expect that a real fiacture would have larger dimensions 
than the network. However, it is adopted here, in order to emphasize viscous effects in the 
porous medium. Higher fkacture dimensions would require unreahtically high gas flows for 



the pressure drop along the fiachue to be sufficiently high to exceed the capillary pressure 
threshold at the thruats of the network in direct contact with the fixture. The study ofthe 

viscous effects is one of the objectives of this work- 
Initially the network is saturated by a single component liquid (hexane). me 

fracture, however, contains only air at the beginning of the dryrng process. At one end of the 
fracture a purge gas (air) is injected at a constant volumetric rate. The concentration of the 
liquid component vapors is assumed to be zero at the entrance and the exit of the &-e at 

a31 times. Perhaps, a more appropriate Dankwerts type boundary condition, in which the 
concentration gradient is zero at the exit, could be used. The present condition exaggerates 
slightly the drying rate. The pressure is assumed equal to atmospheric at the exif of the 

k a m e  and variable at the entrance of the flow, in order tu maintain the constant rate 
condition. The gas injection results to a pressure gradient along the fkacture, which 
eventually develops inside the porous block its well. As a r d t  of the gas flow, the liquid 
evaporates initially at the interface pore throats along the @actwe. Vapor flows by advection 
and diflbsion. 

Throughout the process, isothermal conditions are assumed, heat diffision in the 
solid being faster than mass dfision in the gas. This assumption will certainly not apply in 
the case of poorly conducting solids, however. The 2-D pore network is horizontal, thus 
gravity effects, which could be dominant, depending on the magnitude of the gravity Bond 
number [23], are not included. These can be readily implemented in the pore-network 
simulation. However, gravity can mask important mass transfer effects, while the 
understanding of the simpler drying process in its absence, is still incomplete, as noted 
above. Finally, the temperature is sufficiently far fiom the boiling point of the liquid, so that 
evaporation rates are diffusion-controlled and the binary &we in the gas phase can be 
assumed to be dilute. Thus, the physical properties of the binary gas phase do not depend on 
the concentration of the liquid component vapors and are assumed to be constant and equal 
to those of the purge gas. 

As a result of the ensuing drying process, the liquid will reside, in general, in two 
different and evolving regions (Fig. IC): a “continuous” cluster (CC), which is part of the 
initial liquid cluster and can be defined as being “sample-spanning” across the two lateral 
edges of the matrix block; and various “disconnected” clusters @C), which have become 



disconnected fiom the CC and .ficjrn one another, and they are not “sampIe spanning” (see 
below). Their geometry, size, configuration and location are important to drying patterns 
and rates. Of course, initially, the porous medium is only occupied by a CC. It is the 
subsequent rate of change of CC and the formation of DC clusters, which is a main 
objective of this work. Liquid m y  also reside in films (thicker comer films or thin films) in 
gas-occupied pores, that may provide hydraulic continuity between clusters and/or with the 
fi-acture. These are not considered here, although in all likelihood, they have non-trivial 
effects on drying patterns and rates, as will be discussed below. Receding of the liquid-gas 
interface in the various clusters occurs when the capillary pressure across a meniscus first 
exceeds the capillary threshold at the pore where the meniscus resides. Accounting for 
capillarity requires the consideration of pressure fields in the liquid and gas phases. Flow in 
the latter is assumed to be slow and viscous-controlledd. We will discuss this in more d e t d  
below. 

In drying applications we can distinguish three types of pore bodies Figure 2): 

Those l l l y  occupied by gas (belonging to the gas phase and denoted by G), those l l l y  
occupied by liquid (belonging to the liquid phase and denoted by L) and those at the gas- 

liquid interface (in which a meniscus resides, denoted by I). The latter may be further 
subdivided in completely empty (CE) and partly empty (?E) pores 1301, As noted above, 
this classification does not account for cumer films. 

Liquid evaporates at the gas-liquid intedace at rates determined by mass transfer in 
the gas phase, which are governed by advection and diffision. The evaporation rate at I-type 
pores is equal to 

ci -cj 
Fg =D ,e 

where E, is the evaporation flux through a throat connecting neighboring pares i and j, D is 
the diffision coefficient of the liquid component vapors in the gas phase through the porous 
medium, Ci is the concentration at the liquid pore L, which is by default equal to the 
equilibrium concentration Ce of the liquid component vapors and CJ is the concentration at 

the I pore of type CE. Equation (I) also applies to I pores of type PE, where the interface 



resides within the pore, the concentration in such pores also being equal to Ce, since they 

contain liquid. Then is the concentration of the adjacent G pore (See Figure 2d). 
Mass transfer of the vapor in the gas phase obeys the convection-diffision equation 

-+u.VC=DV2C dc 
a 

where C is the vapor concentration and u is the gas-phase velocity. In a G pure, this is 
firther discretized as 

where Y;: is the volume of pore i, ACi is the change in Ci during the elapsed time At, rii is the 

radius of the throat connecting pores i and j, is the gas viscosity, P is the pressure and C 
is the concentration at the pore. Note that the advection term is upstream weighted, namely 

In I pores of type CE the advection term of equation (2) is not accounted for 

The pressure fields are obtained fiom a separate computation to be discussed below. We 
note the use of a simplified Puiseuille-type approximation for the flow across two adjacent 
pores, and the assumption that mass transfer between the pores is by diffision and 
convection (namely, dispersion in a single pore is not considered). However, mass transfer 
between two adjacent pores, one of which resides in the fracture, is enhanced by considering 
a velocity-dependent mass transfer coefficient [24]. 



where the Peclet number, Pe, is defined as 

a is an exponent that depends on the geometry of the fhcture and 6 is the linear gas 
velocity through the fracture. Equation (5) introduces a quasicempirical macroscopic 
difision coefficient at the boundary between the matrix block (porous medium) and the 
free area of the fracture. This diffision enhancement is an attempt to model the influence of 
the gas flow rate to the mass transfer enhancement along the convective layer within the 
fracture. When a neighboring pore contains a meniscus @E), its concentration is the vapor 
equilibrium concentration. The boundary conditions for mass transfer involve zero flux at 

the lateral boundaries, a constant volumetric flux at the entrance of the ftacture and zero 
concentration at the entrance and exit of the fracture. The latter could be modified to a zero- 

concentration gradient condition, but this was not considered. 
The single-component liquid in the liquid phase and the non-condensable gas in the 

gas phase satisfy continuity equations. For their calculation, we solve for the pressure fields 
in G and L pores. Fluxes between adjacent pores of the Same type are computed by 
Poiseuille-law type flow resistances, where the viscosity is t iken constant 

= O  
i 

where p is the viscosity of either of the two phases. The volumetric flux Q between an I of 

type CE pore and a L pore depends on the pressure difference between the two pres  and the 
capillary pressure threshold of the connecting throat. We need to distinguish two cases: If 



the pressure difference between the two pores (capillary pressure) is not large enough for the 
gas phase contained at the I (CE) pore to penetrate the connecting throat, the meniscus 
remains stationary. However, as long as evaporation continues, there is a net liquid flow 
(but no non-condensable gas flux) in that direction. Then, in this pore we assign only a gas 

pressure value and zero mass flux rates of gas towards the L pore. In the next time step, the 
meniscus may be subject to a sufficiently high capillary pressure that can lead to the 

subsequent penetratiun of an adjacent pore and liquid displacement. Then, the meniscus 
recedes instantly and the L pore becomes of type I, partly empty (PE). In I pores, a mass 
balance of the evaporating liquid gives the liquid velocity zsen at the i n t d c e  as a bction 

of the rate of emptying of the pore and the diffusive flux in the gas phase, namely 1301 

where is the mass density of the liquid, zr, is the normal velocity of the meniscus and n 

denotes the normal to the interface. Likewise, conservation of mass of the non-condensable 
gas leads to [30] 

where ugn is the gas velocity at the meniscus. These were used as intdace conditions 
coupling the flow fields in the two phases. Therefore at liquid pores L adjacent to I pores of 
type CE, or at I: pores of tpe PE adjacent to G pores, eqyation (7) has the following form 
which takes *into account the above mentioned boundary conditions at the interface: 

The first term on the right accounts for hydraulic flows towards (or fiom) adjacent L pores 

and the' second term accounts for the evaporating volumetric flux towards the adjacent G 

pores or I pores of type CE. Taking into account the volumetric evaporation rate at all 



interface pores from equation (1) and the boundary conditions imposed to the interface by 
equations (9) and (10) results to the well-known phenomenon of capillary pumping or 
wicbng. This consponds to a liquid viscous flow from I pores of type PE, where there is 
no capillary resistance to the receding of the interface, towards L pores adjacent to I pores of 
type CE, where the menisci remain stationary due capillary effects. The volumetric rate of 
flow is equal to evaporation flux so that the menisci remain stationary and the mass balance 
is satisfied. We note that the above treatment of mass transfer applies in the dilute limit. In 
the case of non-dilute mixtures, counter-diffision in the gas phase needs to be considered as 
well. Finally, the gas saturation at I pores of type PE is calculated by the following mass 
balance 

where $+' is the gas saturation inside the pore at the next time step, Si' is the gas saturation 
at mat time and At is the time step during which we assume constant flow rates Q. 

For completeness, we provide a schematic of the way our algorithm accounts for the 

capillary pumping mechanism. As shown in figure 3, where two areas A and B along the 
interface are highlighted, if the; throats R of the interface at area A have smaller radii than 
those of area €3, they will result in higher capillary pressures Pc at the interfaces in area A. If 
the pressure in the gas phase is taken to be constant then we will have the logical sequence 

namely, due to the difference in radius, between the two sections of the intdace, there 
results a capillary-induced liquid flow fiom area B to area A. In fact, during drying, the 
menisci in area A usually remain stationary and the evaporation flux fiom the interface of  

this section is balanced by the liquid ff ow towards section A from section B. 
The simulation procedure in the network, the updating of interfaces and the 

marching in time is described in the Appendix A and can be qualitatively summarized as 
follows. At any given time, sites have the designation, G, L or I, and pressure and 



concentration fields are known. The L sites can be part of the original liquid cluster (CC) or 
they belong tu disconnected finite-size clusters @C), which become trapped through the 

evaporation process. In the subsequent time step, the overall rate of evaporation fiom each 
of the liquid clusters is evaluated. Pressure fields are calculated and PE pores of type I are 

emptied according to the appropriate mass balances. The time step is selected such that it 
equals the minimum time required to empty completely any of the available PE pores. Eat 
the current time, no PE pres are available to any (or all) of the clusters (namely all 1 pores 
are of the CE type) the throat with the smallest capillary threshold in the perimeter of any 
given cluster is the next throat to be invaded, at which time, the corresponding invaded pore 
becomes an I: pore of the PE type. To determine this throat the liquid pressure is lowered 
uniformly in space inside the cluster, until the capillary pressure exceeds for the first time 
the smallest capillary threshold. Equivalently, th is  can be obtained by invading the throat 

with the smallest difference between the gas pressure in the pore and the con-esponding 
capillary pressure threshold of the throat. Implicit to the above is the absence of hydraulic 
continuity between disconnected clusters, namely the absence of liquid films. Nonetheless, 
invasion must occur, since due to evaporation there is a Continuous loss of mass from the 

liquid clusters. At the conclusion of the time step, Concentration fiefds in the gas phase are 
computed and the process continues. This algorithm is essentially the same one used by Li 
and Yortsos [I61 and Sa& and Yortsos [25] in the refated problems of phase change by 
solution gas-drive or boiling. AI1 calculations are done explicitly in time. Pressure fields are 
computed using Successive OVer-Refaxatim, while concentration fields are obtained from 
(3) and (4) in a straightforward manner. 

From a dimensional analysis of the problem, there are three main dimensionless 
groups: (i) a diffbsion-based capillary number, Ca, defined as 

where p ,  is the viscosity of the liquid phase, expressing the ratio of viscous to capillary 

forces, based on a difision-driven velocity; (ii) a Peclet number, Pe, defined by (6), 

expressing the ratio of advection to diffusion in the gas phase, based on the linear velocity 

assuming only flow in the fracture; and (iii) the viscosity ratio, A4, between liquid and gas 



viscosities. The latter is typicdly large and will not be considered in the sensitivity analysis 
to follow. We point out that one may also define a capillary number based on the &acme 
velocity. Clearly, the latter would control high-rate processes at early stages, while the 
diffision-based capillary number controls the process at later times. These two capillary 
numbers are linearly related through the Palet number, thus only two of these parameters 
are linearly independent. In the presence of gravity, an additional dimensionless number, the 
Bond number 

expressing the ratio of gravity to viscous forces, must also be considered, where k is the 
permeability of the porous medium. Geometric parmeters include the number of pores in 
the linear dimension N = U ,  where I is the typical pore length, the aspect ratio between mean 
pore size and pore length, as well as between mean pore size and mean throat size, a scaled 
variance of the size distribution, and the aspect ratio of the matrix block (here taken equal to 

1). In this study, all geometric parameters are taken fixed, the aspect ratio of the matrix 
block is equal to 1, and emphasis is placed on the eE& of the capillary and Peclet numbers. 
The effect of Nwill be addressed in the discussion on scale-up. 

RESULTS 
A number of runs were conducted to simulate drylng of liquid hexane in a matrix 

block of size 50x50. The corresponding physical parameter values are shown in Table 2.  To 
carry out a sensitivity study, we varied the injection rate in the fixture, the interfacial 
tension and the diffision coefficient. Table 2 shows the set of runs conducted. The 
characteristic time t* denotes the time at which the matrix block empties at the maximum 
drying rate (which occurs at the first time step at which all liquid-gas interfaces are at the 
fixture-matrix boundary) and it is used to non-dimensionalize time. All simulations 
correspond to a fixed realization of the pore network, which allows studying the sensitivity 
of drying patterns and rates to the other parameters. Results on drying patterns, 
concentration profiles, transversely-averaged saturation profiles and drying rates were 



obtained. We note that in order to demonstrate strong advection effects, the values of the 
Peclet number used in certain runs in the above table are high (perhaps unrealistically high). 

We will use run 2 and run 15 to illustrate typical features fiom the simulation. These 
runs are typical of two limiting regimes, one in which capillary forces are dominant and 

mass transfer occurs by difision, and another in which viscous forces dominate and mass 

transfer is by advection. In addition, we will discuss a case (run 12) involving capillary 

control in the phase partition, but advection control in mass transfer. As schematically 
depicted in Fig. IC, the results show that the liquid phase consists of a main cluster (CC) and 
a number of discontinuous @C) chsters at the perimeter of the CC (see Figs 4 and 5 for 
runs 2 and 15, respectively). These result &om trapping of the liquid as the gas invades the 

liquid-occupied region. The patterns of the CC and/or the DCs depend on the value of the 
capillary pressure across the perimeter of each of these clusters as follows. 

If viscous forces are not sufficiently strong across a given cluster (for example, as in 
run 15, Fig. 5), the capillary pressure variation is negligible, and the cluster takes the pattern 
of Invasion Percolation (IP), in which the next throat to be invaded by the gas is tbat with 
the smallest capillary threshold (here, the one with the largest size) among all perimeter 

throats of that cluster. This condition depends on the value of the capillary number, the rates 

of drying (which also set viscous pressure gradients 1301) and the size of the cluster. Under 

otherwise similar conditions, small DCs are more likely to follow an IP pattern. A detailed 
check of the sequence of invasion showed that run 15 followed IP rules at my time during 
the process, while run 2 did not. Patterns corresponding to IP and diffision-only mass 

transfer were obtained in run 16, where Pe=O. The corresponding saturation patterns are 

shown in Fig. 6.  Comparison with Figs. 4 and 5 shows substantial differences in the patterns 

between runs 2 and 15 (or 16) and some diffkrence (at early times) between m s  15 and 16. 

The latter reflects mass transfer effects, due to the different Peclet numbers in the two runs. 
Because of their relevance to real problems and the fact that capillary-dominated 

patterns eventually appear as late-time regimes, we provide here some additional discussion 

of their properties. We first recall that all simulations in this paper were conducted assuming 
the absence of film flows, thus DCs are hydraulically disconnected fiom each other and the 
CC. Under these conditions, in a capillary-controlled pattern (such as run 15 and 16), while 
each cluster obeys locally IP d e s ,  the sequence of penetration is dictated by the mass 



transfer rates across the perimeter of each cluster. In the related study of Li and Yortsos [ 161 

this process was termed localpercolarion. Clusters closer to the open boundary are subject 
to it faster evaporation, compared to those fiuther away, and are emptied faster. The end 
result is the development of gradients in the size of the isolated liquid clusters, with clusters 
closer to the fracture having smaller size (see also below). These gradients reflect mass 
transfer, rather than viscous effects. Nonetheless the pattern of the CC is still dictated by Ip 
rules. Clearly, however, the overall pattern would be a ~ U R G ~ ~ O I I  of the drying rates, namely 

of the value of the Pe. We must note that under this regime of local percolation, different 
ciusters may have different-size throats being invaded at the same time. In other words, it is 
possible that the drying of a given DC OCCUTS by the emptying of a throat i, which is smaller 
than the largest perimeter throat,& of another cluster, which due to negligible mass transfer 
is not being invaded (of course, as a result of capillary controf, throat i is the largest among 
all perimeter throats of the first chstef). 

The above analysis of capillary-contded patterns is based on the assumption of 
negligible film flow. E, on the other hand, hydraulic continuity exists among all clusters (for 
example through liquid films) then, in the small Ca limit, the next throat to be penetrated 
will be the throat with the smallest threshold among uZi perimeter throats of all clusters, In 
the liquid-to-gas phase change study of Li and Yortsos [16], this was termed global 
percoZufimz. In the absence of viscous or gravity gradients, such a process could lead to a 

deep penetrating fiont of a fiactal nature, and liquid saturation gradients will not develop, in 
the sense that the proximity of a particular h n t  site to the open boundary cannot iduence 
the time at which it is invaded. Gradients in saturation will develop in the case of the 

viscous-capillary-gravity competition. This regime was implied in p~any previous studies, 
including the work of Tsimpanogiannis et al. [30]. We also note that deep penetrating fionts 
of fractal nature were not observed in the experiments of Ho and Udell [lo]. Nonetheless, 

because of possible qualitative differences, it is evident that establishing hydraulic 
continuity is an important role played by liquid films and needs to be fhther explored. 

In the limit when capillarity is negligible (as in run 2), the pattern deviates 

substantially from 3p and almost follows a piston-like displacement (PD) (Fig. 4). Under 
these conditions, the capillary resistance of a throat is negligible, and the pattern is 

exclusively determined by mass transfer considerations, much like in the dissolution of a 



solid. The rate of generation of DCs and their size are smaller and the liquid phase consists 
mostly of a CC. Such conditions are not likely to persist for a long time in the typical case, 

however, where late-time drying patterns are likely to be of the Ilp type. We need to add that 
when viscous forces in the gas phase are important in setting the pattern (as is the case in 

run 2, for example), the receding of the CC has some of the properties of PSG in a fiactlue- 
matrix system (Haghighi et al. [SI). In such cases, the higher capillary pressure upstream 
leads to a prefbrential invasion in the matrix in the upstream direction, thus leading to 

pattern that appear to be slanted (from the upstream to the downstream direction) as shown 

in run 2 pig. 4). 

Regardless of the magnitude of the capillary forces, the presence of discontinuous 
clusters is very significant in the development of the pattern. These clusters result in the 
screening of a part of the CC fiom the fracture, hence fkom the region of high concentration 
gradients, and lead to a balanced rate of drylng between the two types of clusters, through 
the following stabilizing feedback mechanism. For example, if the mass transfer rates fiom 
the CC are too large, they will result in a faster rate of consumption of the CC, leading to the 
generation of a larger number of DCs, which in turn screen the CC fiom hrther mass 

transfer and slow down its rate of drying. Conversely, if the rate of drying of the CC is too 
small, most of the reduction in liquid saturation occurs fkom the DCs, the size and number 
of which decrease, leading to an increased mass transfer and a subsequent increased rate of 

consumption of the CC. It follows that for fixed values of the capillary and Peclet numbers, 

the statistics of the DCs, namely their number density and size distribution, remain 
approximately constant. In particular, the region where the DCs reside (which we may 
denote as the front region) is approximately of a constant width (Figs. 4-6). We should 
mention that similar findings were observed by Prat and Bouleux [23], although in the 

different situation where the gradients are provided by gravity rather than mass transfm. The 
size of the fiontal region can be estimated using arguments &om Invasion Percolation with 

Trapping (IPT) as described in the Appendix B. 
The screening of the CC from the region of high mass transfer is evident in the 

concentration profiles (Figs. 7-8). Depending on the value of the Peclet number and the 

location of the front, the concentration field in the gas phase may or may not be sensitive to 

the detailed structure near the fiont. For small values of the Peclet number (as in run 15, Fig. 



7), the process is almost diffusion-controlled and the concentration resembles the much 
smoother concentration field surrounding an effective continuum (as dso found by Li and 
Yortsos [Xi]). This despite the rather complex geometry of the kont (see Fig. 5), which i s  

rather complex (and in fact, fiactal, e.g. see Feder 161). Almost identical patterns were 
obtained for run 16 and they are not shown As advection increases and at early times, 
however, the region of concentration gradients is a m o w  boundary layer surrounding the 
fiont. At later times (panel 3 in Fig. 8), this is not Uniformly developed, as poorly accessible 
regions cannot be effectively probed by the flow field. This mass transfer effect is also 

evident in the simulations of run 12 (Fig. 9). This run has a Peclet number almost two orders 

of magnitude larger than in run 15, although the sequence of the liquid patterns is almost 
identical (and is not shown here for simplicity). However, because of the much stronger 
advection effects, concentration profiles are much steeper in most places in m 12, resulting 
in proportionally higher drylng rates (Fig. 9). At the same time, the effect is non-uniform 
spatially, and there exist regions in which diffision is controlling. Strong advection e&cts 

similar to these were also reported in a related problem of bubble growth driven by heat 
transfer [25]. 

Runs 2 and IS are typical of the two limiting regimes and can be analyzed in a 
relatively straightforward fashion. Intermediate patterns are more difficult to analyze, as 

they have features fiom both regimes. when both capillarity and viscous forces compete, 
the receding of the drying front does not follow Strictly IP or PD rules. Depending on the 
rates of evaporation as well as the size of the individual clusters, there may exist more than 
one pore of the PE type at the same time, and these pores may not necessarily correspond to 

the IP or the PD sequence. We mu@ point out that Tsimpanogiannis et d. 1303 estimated the 

spatial extent over which the fiont follows IP rules using scaling arguments, fiom which the 
following relation was developed for 3-D patterns 

where q, Xfi Care non-diiensiondised front width, frontal position and variance of the 

pore size distribution, respectively. Implicit to this relation was the assumption of global 



percolation (namely of hydraulic continuity via film flow). This result is not expected to 

hold here. Nonetheless, clusters of s m d  size will erode following local P rules. In larger- 
size clusters, however, the spatial extent over which IP rules apply would be limited. Thus, 

the problem acquires some of the characteristics of IPSG [30]. As time increases, drying 

rates decrease, as the front recedes further away, and the width of the fhnt, where Ip is 

exhibited, increases accordingly. One expects that after sufficiently long time, the process 
will approach a state where IP applies for all clusters. Some arguments fiom IPT are 

kmished in the Appendix €3 to estimate the size of the fkont in this problem. 
A typical case in which viscous and capillary forces compete is run 4, shown in Figs. 

10-11. The invasion pattern belongs to neither of the two limiting regimes. There is 

evidence of IPSG in the matrix, similar to run 2, but also a multiple number of DCs, similar 

to run 15. The Concentration profiles for this run (Fig. 11) are similar to those of run 12, and 

suggest substantid concentration gradients in boundary layer regions near the &mt. At the 
same time, regions far fiom the fracture are effectively being screened, despite the large 

Peclet number in this run, leading to m a ~ s  transfer similar to the difision-controlled case 

(run 15). 

h macroscopic continuum models a quantity of interest is the transverse-averaged 

saturation profiles. Results for runs 15, 12, 4 and 2 are shown in Figs. 12-15, respectively, 
for four different values of the fiaction of the liquid vohme occupying the matrix (and 
which corresponds EO the four panels of the previous figures). As expected, runs 15 and 12 
have almost: identical profiles (Figs. 12-23), their patterns being dictated by IP rules, even 
though their mass transfer characteristics are not the same. Differences due to the latter are 
reflected in their drying rates to be discussed below. Gradients in saturation develop, due to 
the continuous receding of the fkont. As discussed above and in the Appendix B, these 

gradients reflect the screening of inaccessible, deeper-lying parts of the liquid front fiom 
high concentration gradients, the resulting limited mass transfer, and the development of a 
fiontal region of finite width (which is constant in the absence of viscous effects, but 

increases with time in their presence). The profiles in runs 4 and 2 (Figs. 14-15) reflect a 

more uniform penetration, at early times, due to the preferential receding of the liquid in the 

upstream direction as a result of strong viscous effects. These are not unlike the profiles in 



the drainage of a matrix block [8]. As time increases, however, all profiles eventually 
approach a state which progressively becomes capillary- and diffusion-controlled. 

Fig. 16 shows drying curves for the various runs simulated. As discussed, the time 
was made dimensionless with the time f*  it would take to empty the matrix block under 
conditions of the maximurn rate. It then follows that the slope of the drying curves is the 
dimensionless rate of drying (rehtive to the maximum drying rate). Note that because the 
maximum rate depends on the Peclet number in the fracture (roughly as Pel") this plot 
emphasizes processes under convection control and should be interpreted with care, as far as 
the upscaling of the process is concerned. The figure shows clearly the existence of the 
conventional Constant-Rateperiod (CRP) (with the exception that film flow is not involved 
here) followed by a period of continuously declining rates. From an analysis of the patterns, 
we have found that the CRP lasts roughly until the time when the CC has lost continuity 
with the fkactwe. This is in qualitative agreement with indirect experimental findings fiom 
tests on chalk samples initially containing liquid pentane and dried by methane injection 

along the fi-e [15]. In addition, macroscopic arguments set forth by S t u b s  and Poulou 
[29] on the basis of the same experimental data have led to the same conclusion. Indeed, as 
long as the liquid is continuously connected to the fkacture, the combination of enhanced 
evaporation rate (through the coefficient given by equation (5)) and capillary gradients leads 
to a constant drying rate. This is evident when considering the low Peclet number run 15 or 

the IP run 16 in Fig. 16 where the CRP is very short due to the fast receding of the liquid 
phase &om the fracture. A close examination of the drying curves shows that the highest 
rate and the longest CRP are found in run 4. In this "critical" case the gas pressure 
developing close to the entrance of the fixture is high enough to cause the breaking of 
menisci in the left side of the matrix block. On the contrary, this cannot happen on the right 
side sustaining for relatively large times sufficient liquid contact with the fkacture (see 

patterns in Fig. 10). Thus the constant rate during the CFW reflects the detailed mass transfer 
characteristics during the process and is realization-dependent. By increasing the interfacial 
tension value in run 4 (runs 5 and 6 of Table Z), we find that the drying rate and the CRP 
drop to levels similar to the ones determined for the Iow Peclet number cases (Fig. 17). In 
fact, the gas pressure is not any more sufficient to overcome the capillary thresholds and the 

case resembles more and more to P. When y decreases on the other hand (run 3), all 



menisci in contact with the 6.a-e break at early times and the CRP is very short. The 
drying rate also drops accordingly (Fig. 17). For the case of IP-c~nbolled processes, the end 
of the CRP in terms of the anaount of liquid left can be readily estimated fiom the analysis in 
the Appendix B. 

DISCUSSION 
The above analysis was based on a number of simplifying assumptions, most of 

which were made to illustrate various effects. We single out the small size of the fhcture 
pores and throats take4 in order to allow for a study of the viscous-capillary competition at 

the rates mnsidered. At a larger contrast of fracturdmatrix capillary and permeability 
characteristics, the onset of it PD regime will be delayed as far as the flow rate is concerned. 
We also note that the Peclet number in some of the runs can be considered unrealistically 
high. Such simulations were purposely made to exaggerate the effect of advection in mass 

transfer. In general, flow rate-driven effects will dominate the process at early times, and 
particularly during the CRP, which will be controiled, as a result, by the detailed geometry 
and process characteristics. It is in this regime and time period, where pore-network 
simulations, such as these, can have a significant impact. At later stages, the fkont recedes, 
viscous effects and advective mass transfer become less important and the process becomes 
capillary- and diffision-controlled. In this regime, the analysis discussed in the Appendix B 
applies and v ~ o u s  results &om the theory of Invasion Percolation with Trapping can be 
used to describe the process. 

A key simplification made in the paper concerns the absence of liquid films. As 
discussed, these can be important in providing hydraulic continuity between clusters, which 

can drastically alter the patterns and the location and size of the DCs and the CC, and can 
possibly afFect macroscopic capillary pressure-saturation relationships. Work in this 

direction, in particular in the incorporation of film flows in the pore-network simulation, is 
currently under way. At present, their effect is difficult to assess. We also need to mention 

the restriction to single-component liquids, which eventually leads to the complete 
evaporation of the liquid clusters. In the presence of a non-volatile component, the 
disconnected liquid clusters will not disappear, but will affect adversely the mass transfer 

rates. Such effects need to be considered as well. 



The results can be used for upscaling to macrosopic continuum models. Following 

the CRP, where the process becomes capillary- and dimion-controlled, the theory of IPT 
discussed in the Appendix B can be used to elucidate the distribution of the liquid phase, 
and the size and extent of the DC region. This information can then be utilized to construct 

model difision problems, the solution of which can be implemented in the calculation of 

needed coefficients in macroscopic models (for example, as required in Tsimpanogiannis et 
al. [30]). Such work is also under way. On the other hand, the CRP is not necessarily 

amenable to such a statistical theory description, given that non-local effects of rate and 

viscous forces (or finitesize effects in the case of capillary control) are important. The 
sobtion of this problem must be sought by conducting extensive pore-network simulations, 

including the ensemble-averaging of results over mimy realizations, something that was not 

done here. 

CONCLUSIONS 
In this paper we presented a pore-network model for the drying of a single- 

component liquid in porous media. The model accounts for various processes at the pore- 
scale including mass transfer by advection and df is ion in the gas phase, viscous flow in 

liquid and gas phases and capillary effects at the gas-liquid menisci in the pore network. A 

2-D version of the model under isothermal conditions in a rectilinear horizontal geometry 

was formulated. Drying is driven by the flow of a purge gas injected at a constant rate. The 

problem is characterized by two bimensiodess parameters, a difision-based capillary 

number? Ca, and a Peclet number, Pe, in additivn to the various geometrical parameters of 
the pore network Results on the evolution of the liquid saturation, the trapped liquid islands 

and the drying rate were obtained as 8 findion of time and the dimensionless parameters. In 
the absence of liquid film flow, the importance of trapped liquid islands in screening mass 
transfer to the continuous liquid cluster was emphasized. This results in saturation gradients, 

and the development of patterns which are different than in the case of flow continuity 

between the different clusters. For fixed parameter values, the drying front does not in 

general obey invasion percolation rules. However, as drying progresses, and depending on 
the relative magnitude of the capillary and Peclet numbers, a transition to a percolation- 
controlled problem occurs. In fact, it is likely that such is the case in many realistic 



situations. Effects of capillarity and mass transfer on saturation profiles and drying rates 
were discussed. The results provide insight on the process. The pore network simulation can 
dso be used to provide expressions for various coefficients in macroscopic continuum 
models, cumntly treated empirically. Work in this direction is in progress. 
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APPENDIX A 

The essential elements of the algorithm are described below: 
1- A random network of pores and throats is created using a uniform size distribution 
between the specified values. 
2. The pressure drop dong the fracture is calculated using equations (7) and (8). 
3. All liquid-gas interfaces of isolated liquid clusters @C’s and the CC) are located and the 
type (I-CE or I-PE) of their interface pores is identified. 
4. Flow cunductivities at all network throats are calculated. When a liquid meniscus within a 

throat is found to be stationary then a zero hydraulic conductivity is assigned to the gas 
phase adjacent to it. 
5. All throats where gas penetration occurs as the local capillary pressure exceeds the 
capillary pressure threshold are identified. Ifthere is no such throat at a specific cluster, then 
the gas penetrates the throat that has the lowest capillary threshold along the interface, Le. 
the one with the largest radius. 
6. The evaporation rate through every throat across all interfaces is calculated using 
equation (1). 

7, The pressure fields in both liquid and gas phases are solved, using equations (7) md (8) 

and (11). 
8. The I pore of type PE that will be emptied first at the current flow rates is located and the 

conespanding time required is identified, These pores loose mass due to both evaporation 
and the viscous flows of the capillary-pumping phenomenon (as shown by equation (1 I)). 



9. The time step is selected taking care not to allow the concentration value at a gas pore to 

drop bellow zero or exceed the equilibrium concentration. 
10. The concentration field is calculated in the gas phase using equations (3) and (4) for the 
cment time step. This calculation is straightforward based on the values of concentration at 

the end of the previous time step. 
11. The gas saturation is calculated through quation (12) at a l l  I pores of type PIE for the 
current flow rates using the arrent time step. 

12. If at the end of the anent time step a pore becomes fully filled with gas (I pore of type 

CE) at any of the liquid clusters, the algorithm returns to step 3. If, despite the fact that gas 
saturation at all penetrated intdiice pores increases, there is no pore completely filled with 
gas at the current time step, then the return is to step 6. 

The above procedure is repeated until all liquid in the porous media has evaporated. 

APPENDIX B 
Discontinuous clusters form as the perimeter of the CC recedes, due to gas invasion, 

and the receding phase becomes trapped. In the absence of mass transfer considerations and 
under capillary control, this is the well-known mechanism of Invasion Percolation with 
Trapping. In the latter, the statistics of the trapped clusters can be determined from 
knowledge of the percolation probability, q, at which the defending phase (here the liquid) is 
being invaded. In the particular process under consideration, the invasion of the CC is a 

drainage process in which the invading (gas) phase percolation probability is near its 
percolation threshold 

p -pc (=1/2 for a 2-D square lattice) 

Then, the defending phase is at percolation probability q=l-p --+. Knowledge of q allows 
one to estimate various statistics of the disconnected, trapped clusters, since the latter can be 
accurately approximated by the finite-size clusters of a mixed site-bond percolation process 

at percolation probability q. For example, the size of the largest DC follows the percolation 
scaling 



where vis  the correlation length exponent. Statistics are also available (or can be obtained) 

for other properties of these finite-size clusters. In the above, it is implicitly assumed that pc 
W 2 ,  and that &<N. When the latter condifion fails, as is the case in the simulations here, 
wherep, = 1/2, the largest (cut-of€) size is set by the width of the lattice A? The above 
analysis can be used to estimate the statistics of screened DCs around the front, which are 
not subject to substantial drying rates, although not of the DCs at the fiontier with the gas 
phase, which are being exposed to strong concentration gradients and a time-varyitlg size. 

In the presence of viscous effects, the invasion process is similar to IPSG, in which, 
in the absence of mass transfer effects, the largest size of the DCs is set by the Bond number 
of the process, namely 

In drying, an equivalent Bond number can be defined as follows [30] 

However, the incorporation of an IPSG theory in the trapping problem is yet to be done. In 
general, we expect that such a theory would lead to the result that the average size of the 
DCs becomes smaller as viscous forces increase, as is the case with the problem without 
trapping [30], and also as shown in the simulations. 

We also conjecture that the same length scale, namely the average size of the largest 
DC, is also the scale for the width of the fkontal region, namely the region containing the 

trapped clusters @c). Indeed, as we argued in the main text, the mass transfer screening 
&om the DCs sets the balance between them and the CC. We expect that at least for 
diffusion-controlled problems, this screening will be effectively set by the distance between 
DCs, which are all sources of constant concentration. Given that the only characteristic 
length in the problem is the average size of the DCs completes the argument in support of 

this conjecture. 
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Figure legends 

Figure la Schematic representation of fi-a-4 porous media. 
Figure 1 b Pore-network model representation of a porous medium. 
Figure IC Classification of typical saturation patterns. 
Figure 2 The evolution of drying at an isotated liquid cluster @C) consisting of two l ipid 
pores. (a) Initially the cluster is surrounded by I pores of type CE. (b) When the pressure 
difference at the upper throat exceeds its capilrary resistance, the meniscus recedes a d  the 
pore is penetrated by the gas phase. The same transition takes piace between (c) and (d). 
Figure 3 Schematic representation of the capillary pumping phenomenon. 
Figure 4 Phase distriiutiun patterns far run 2 Ip-596, Qco.45*10 m 1s) at four difkent 
gas saturation fiactions corresponding to 20%, 40%, 60% and 80% of the total pore volume. 
The liquid phase is black and the gas phase is white. 
Figure 5 Phase distribution patterns for run 15 (Pd.66 ,  Q=OS*IV9 m3S) at four different 
gas saturation fractions corresponding to 20%, 40%, 60% and SO% of the total pore volume. 
The liquid phase is black and the gas phase is white. 
Figure 6 Phase distribution patterns for run 16 ( P H ,  e O . 0  m3/s) at fuur different gas 
saturation fractions corresponding to 20%, 40%, dob? and 80?! of the total pore volume. 
The liquid phase is black and the gas phase is wbite. 
Figure 7 Concentration patterns for run 15 (PH.66, Q = o S * l O  m /s) at the four different 
occupation fiactions. Darker colors indicate smaller concentr&ons. 
Figure 8 Concentration patterns for run 2 (Pe596, Q=0.45*10 m /s) at the four different 
occupation fiactions. Darker colors indicate smaller concentrations. 
Figure 9 Concentration patterns for run 12 (3'66, Q=O.05*10 m /s) at the four different 
occupation &actions. Darker colors indicate smaller concentrations. 
Figure 10 Phase distribution patterns for run 4 (Pe=33 1, Q=O.25*10 m /s) at four different 
gas saturation fkctions corresponding to 20%, 40%, 60% and SO% of the total pore volume. 
The liquid phase is black and the gas phase is white. 
Figure 11 Concentration patterns for run 4 (Pe=331, Q=0.25*10 m 1s) at the four different 
occupation fiactions. Darker colors indicate smaller concentrations. 
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Figure 12 Transversely-averaged saturation profiles for run 15 at the four different 
occupation fractions. 
Figure 13 Transversely-averaged saturation profiles for run 12 at the four different 
occupation fractions. 
Figure 14 Transversely-averaged saturation profiles for run 4 at the four different 
occupation Bactions. 
Figure 15 TrasverseIy-averaged saturation profiles for run 2 at the four different 
occupation &actions. 
Figure 16 Drying curves (gas volume &action vs. dimensionless time) for various runs. 
Figure 17 Drying curves (gas volume fiation vs. dimensionless time) for runs 3-6. 

Tables 

TabGe I :  Values ufphysidproperties used 
~~ 

Parameter Value 
Volumetric gas flow rates 
SdaceTension I 19*1U3 N/m 
Diffision Coefficient 6.38*10 m/s  
Equilibrium concentration 0.266 kg/m3 
Liquid phase viscosity 2.85' lo4 Pa* s 
Gas phase viscosity 1,71*10-~~a*s 
Liquid phase density 650 k@m3 
Gas phase density 4.4 kg/m3 

o.o-1.0*106 m / s  

a 2  

Table 2: Set of simlbtion mns. 

Run Q Y D a Cu Pe t* 
(m3/s)*1~4 ( N / ~ ) * I O ~  (m2/s)*lo" (SI 

1 1.00 19 6.38 0.33 1.68*106 1325 14238 
2 0.45 19 6.38 0.33 1.68*106 596 17983 
3 0.25 1.9 6.38 0.33 1.68*1V5 331 21340 
4 0.25 19 6.38 0.33 1.68*106 331 22340 
5 0.25 60 6.38 0.33 5.33*10-' 331 21340 
6 0.25 IO0 6.38 0.33 3.20*1V7 331 21340 
7 0.25 19 6.38 1.00 1.68*10d 331 500 
8 0.25 19 63.8 0.33 1.68*1V5 33 4002 
9 0.20 19 6.38 0.33 1.68*1V6 265 22742 
10 0.10 19 6.38 0.33 1.68*106 132 27645 
11 0.05 1.9 6.38 0.33 1.68*10" 66 33325 



12 0.05 19 6.38 0.33 1.68*10a 66 33325 
13 0.015 19 6.38 0.33 1.68*106 19 45611. 
14 0.005 19 6.3 8 0.33 1.68*104 6.7 57819 
15 0.0005 19 6.38 0.33 1.68*104 0.66 88752 
16 0.0 19 6.38 0.33 1.68*10a 0.0 166132 



Figure 5a Schematic representation of hctured porous media. 

lmpemteabIe #amduly 

Figure 1 b Pore-network mode1 representation. 
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Figure IC Classification of typical saturation pattern. 

L pore 

Figure 6 The evolution of drying at an isolated liquid cluster (DC) consisting of two liquid 
pores. (a) Initially the cluster is surrounded by I pores of type CE. (b) When the pressure 
difference at the upper throat exceeds its capillary resistance, the meniscus recedes and the 
pore is penetrated by the gas phase. The same transition takes place between (e) and (d)- 



Figure 7 Schematic representation of the capillary pumping phenomenon. 
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Figure 4 Phase distribution patterns for run 2 at four different liquid fractions corresponding 
to 20%, 4O%, 60% and 80%. The liquid phase is black and the gas phase is white. P-596, 

Q=0.45*10 m /s. - 6 3  
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Figure 5 Phase distribution patterns for run 15 at four different liquid fra,ctions 
corresponding to 20%, 40%, 60% and 80%. The liquid phase is black and the gas phase is 

white. P d . 6 6 ,  Q=O.5*10 rn /s. -9 3 
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Figure 6 Phase distrr'bution patterns for run 16 at four different liquid fractions 
corresponding to 20%, 40%, 60% and 80%. The liquid phase is black and the gas phase is 

white. PeQ, Q4.0 m3/s. 
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Figure 7 Concentration patterns for run 15 at the four different occupation fractions. Darker 
colors indicate smaller concentrations. PM.66, Q=0.5* 10 -9 m 3 /s. 
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Figure 8 Concentration patterns for nm 2 at the four different occupation fkactions. Darker 
4 3  colors indicate smaller concentrations. Pe596, Q=O.45*10 rn /s. 
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Figure 9 Concentration patterns for run 12 at the four different occupation %actions. Darker 
a 3  colors indicate smaller concentrations. Pe=66, Q=O.05*10 m /s. 
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Figure 10 Phase distribution patterns for m 4  at four different liquid fractions 
corresponding to 200/0,40%, 60% and 80%. The liquidghase is black and the gas phase is 

white. Pe=33 1, Q=0.25*10 m3/s. 
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Figure 11 Concentration paaerns for run 4 at the four differwt occupation fkactions. Darker - 6 3  colors indicate smaller concentrations. Pe=331, Q=0.25*10 m /s. 

distance from fracture 

Figure 12 Transversely-averaged saturation profiles for run 15 at the four different 
occupation fiactions. 
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Figure 13 Transversely-averaged saturation profiles for run 12 at the four different 
occupation fractions. 
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Figure 18 Transversely-aver%& saturation profiles for run 4 at the four different 
occupation fiactions. 
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Figure 15 Transversely-averaged saturation profiles for run 2 at the four different 
occupation &actions. 
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Figure 16 Drying curves (gas volume fiaction vs. dimensionless time) for various m s .  
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Figure 17 Drying curves (gas volume &action vs. dimensionless time) for runs 3-6. 



11. VAPOR-LIQUID FLOWS 

The simultaneous flow of vapor and Iiquid phases is common to steam injection. 
Counter-current flows are encountered in S t ~ = A s s i s t e d - G n ~ g e  (SAGD), and 
in steam injection in horizontal wells. They also appear in the context of heat pipes in a 
variety of processes (from geothermal to high-level numclear waste disposal). Concurrent 
flows are found in typical displacements, in sohtion gas-drives near wells, and various 
other contexts. The interadon between heat transfer, heat flux, buoyancy and fluid flow 
affects the occupancy of phases and the flow characteristics, such as relative 
pemeabilities. In this section we report on two studies, one dealing with the steady-state 

and stability of vapor-liquid counterflow in a context typical of SAGD, but in the absence 
of a third phase, md another providing an analytical result, using conformal mapping 
theory, for the shape of a gravity finger, for example in the displacement of a liquid by a 
gas. Not included in the latter, however, are effects of heat transfer. On-going work, also 

not reported here, includes the extension of the counterflow problem to a third phase, 
namely of a draining oil phase, the description of three-phase flow at the porescale and 
the effect of heat transfer on the relative pemeabilities of vapor-liquid systems. Progress 
in these areas will be reported in fitwe publications and reports. In parallel, we must 
mention that we have initiated a new effort using a new approach, based on what we term 

Darcian Dynamics, to describe the dynamics of the flow of a disconnected phase, in the 

form of ganglia, in the flow field of a displacing continuous phase. This effort, which 
parallels the analogous effort in Stokes flows, called Stokesian Dynamics, is currently 
under way. 





STABILITY OF HEAT PIPES IN VAPOR-DOMINATED SYSTEMS 

Pouya Amili and Yanis C .  Yortsos 

INTRODUCTION 

Heat pipes are steady-state, steam-water, countercurrent flow regimes in porous media driven 

by the application of a heat flux and gravity (White et al., 1971). Main characteristics of heat 

pipes are that their temperature is constant, and equal to the vapor saturation temperature at 

the prevailing pressure and that their liquid saturation is spatially constant (Udell, 1985). In 
theory, their spatial extent can be infinitely large, under the condition that the porous medium 

is homogeneous and that the temperature decrease due to the pressure drop is not significant 

(Satik et al., 1991, Stubos et al., 1993, Pestov, 1998). For a constant heat flux directed 

against the gravity vector, there are two possible steady-states, determined by the solution of 

the following equation, in the absence of heat conduction or capillary effects (Bau and 

Torrance, 1982, UdelI, 1985, Stubos et al., 1993) (See schematic of Fig. 1). 
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Fig. 1. The saturation of the base state 

Here o is a dimensionless parameter expressing the magnitude of the applied heat flux, 

and q, v, k, g, Ly, p and kr denote heat flux, kinematic viscosity, permeability, gravitionat 



acceleration, latent heat of vaporization, density and the relative permeability, respectively. 

Subscript 1 and v denote liquid and vapor, respectively. 

In the illustration of Fig. 1, straight-line relative permeabilities with zero residual 

saturations were taken. The straight line corresponding to a constant heat flux, o, intercepts 

the heat flux-saturation curve at two points, A and By provided that the flux is smaller than a 

critical value, mmax (equal to about 0.8 in the figure). The two steady states correspond to a 

vapor-dominated or to a liquid-dominated heat pipe? depending on whether the liquid 

saturation is small (point A) or large (point B), respectively. Above the critical value, a heat 

pipe per se, in the sense of a constant saturation region, does not form. Instead, a two-phase 

zone of considerably smaller extent forms, governed by the competition of capillary and 

gravity forces, where the saturation varies in the range (1,O) see Stubos et al, (1 993). 
The heat pipe regime can be connected to single-phase flow regimes above or below it. 

In applications when the liquid-dominated branch exists, a (subcooled) liquid layer overlies 
the heat pipe region. The point of transition between the heat pipe and the liquid depends on 
a variety of factors, including the heterogeneity of the medium (Stubos et al., 1993, Mc 
Guiness, 1 996% 1996b, Pestov, 1998). Typically, this application is encountered in boiling 

at low rates in porous media, where a liquid layer above the two-phase region is maintained, 

for example by keeping its temperature below boiling (Ramesh and Torrance, 1990, 1993). 

Conversely, a vapor-dominated heat pipe develops when a superheated vapor Iies below the 

two-phase region. This situation, often referred to as CLdTy~~t” ,  requires that superheated 

conditions exist below the two-phase regime. In either case, the transition between single- 

phase and two-phase flow regimes is also controlled by capillary forces (Stubos et d. 1993). 

While transitions between single-phase and two-phase flow regimes are possible, a transition 

between the two different heat pipe regimes, namely from liquid-dominated to vapor- 

dominated or vice-versa, is not possible (Mc Guiness et al., 1993, Stubos et al., 1993). 
Regardless of the particular application, the existence of a heat pipe regime either below 

an overlying liquid or above an underlying vapor raises questions of stability. Consider, for 

example, the case of a liquid-dominated heat pipe. Given that the heat pipe is of a lower 

(although not by much) density than the overlying liquid, the possibility of a Rayleigh-Taylor 

type gravitational instability is apparent (Drazin and Reid, 1981). The onset of natural 

convection in the overlying liquid layer, due to its variable temperature, is also an important 



factor. In porous media, the onset of natural convection under single-phase flow conditions 

requires that the single-phase Rayleigh number, defined as: 

k N g p A T  
Ra = 

f f V  

exceeds the critical value of 4x2 (Lapwood, 1948, Gebhart et al., 1988). Here, H is the 

thickness of the single-phase region, across which a temperature difference, AT, is applied, p 
is the thermal expansion coefficient of the liquid and a is the effective thermal difi ivity.  

Stabilizing factors, on the other hand, include conduction, the phase change at the liquid-heat 
pipe interface, and capillary effects. 

The stability of liquid-dominated heat pipes was explored by Ramesh and Torrance 

(1 990,1993) in the context of boiling in porous media. They also reported the existence of a 

critical Rayleigh number above which the 1-D configuration is unstable to 2-D disturbances, 
and is a fimction of wave length and dimensionless heat flux. However the minimum critical 

value found was about half of that for the onset of natural convection in single-phase flow, 
suggesting that the underlying two-phase region is destabilizing the flow. Stability at large 
wavelengths is associated with viscous flow, while that at smaller wavelengths is due to 

conduction. A window of unstable wave numbers exists for Rayleigh numbers larger than 

the critical. Pestov (1 998), examined the stability of the two-phase region overlying a vapor- 
dominated heat pipe, which she found to be stable. However the stability of the combined 

vapor-dominated heat pipes has not been explored at this time. 

Vapor-dominated heat pipes find applications in similar contexts as liquid-dominated 

heat pipes. A most interesting visualization was provided recently by Kneafsy and Pruess 

(1999), who studied the flow mechanisms in heat pipes in a fracture, such that superheated 

conditions were maintained below the two-phase region. Although that study focused mainly 

on the mechanics of liquid flow, many issues related to flow instability and possibility that 

downwards-percolating liquid may “penetrate” the superheated region, were raised. At 

present, the stability features of this configuration are not known. Some of these features 

should be similar to the liquid-dominated case. For example, we should expect the onset of a 

natural convection mechanism for the vapor underlying the two-phase region, and a 

gravitional instability due to the two-phase region above being heavier (although only by a 



small amount) than the underlying vapor. The effect of the phase-transition at the interface is 
unclear, however, just as it has been unclear for the liquid-dominated heat pipes studied by 

Ramesh and Torrance (1990). In the context of other problems involving phase change in 

porous media, for example in steam injection processes for the recovery of heavy oil, we 

know that the condensation of steam at an advancing steam front is less destabilizing, than in 
non-condensing flows, due to the associated volume reduction. Conversely, the vaporization 

of liquid is more destabilizing, due to the associated volume expansion. 

In this section, we study the linear stability of vapor-dobated heat pipes by following a 

linear stability approach similar to Ramesh and Torrance (1990, 1993). In addition to the 
base-state confllguration, however, other differences exist between the present approach and 
that of Ramesh and Torrance. We consider an infinitely long two-phase zone (heat pipe), as 
there are no compelling reason to restrict the two-phase region to a given length. The same 

difference applies also between our work and Pestov’s (1998). Also our stability analysis is 
done using analytical methods, which allow for an asymptotic treatment of the problem. On 

the other hand, in our analysis the compressibility of the vapor is not being considered, 

except for driving the natural convection (a Boussinesq type approximation). This section is 
organized as follows: First, we present a dimensionless formulation of the base state and 

discuss the properties of the vapor-dominated solution. Then, the linearized perturbation 

problem is presented based on normal modes. The stability analysis follows. 

THE BASE-STATE 

We consider the following base state. Due to the application of a heat flw, a dryout 

region of thickness H, consisting of a superheated vapor of almost constant pressure, P,, 

underlies a two-phase region of infinite extent. The boundary between the two regions is a 

planar interface, with saturation temperature corresponding to Pv, denoted as bat. The two- 

phase region (heat pipe) corresponds to the vapor-dominated branch of the solution of 
equation (1). We assume that the heat flux is sufficiently small so that equation (1) has a 

solution (namely o < omax). At base state conditions, the vapor is stagnant, and heat transfer 

is by conduction only. The two-phase zone, on the other hand, is a region of a constant 

temperature and constant saturation counter-current flow, where heat transfer is by 



convection. 

equations governing the problem are: 

Under base-state conditions (denoted by subscript 0), the dimensionless 

a. Vapor Region 

b. Two-Dhase Region: 

v,o = M o  

= O  

s = o  

where P and T are dimensionless pressure and temperature, y is a dimensionless spatial 

coordinate directed upwards, V is velocity, the liquid saturation S is determined from 
equation (1)  and we have made use of a Boussinesq type approximation. In the above we 

have also introduced the dimensionless two-phase Rayleigh number : 

where C,, is the vapor heat capacity and is the effective thermal conductivity of the porous 

medium. Note that our definition for the two-phase Rayleigh number is a factor of pJpV 

larger than in Ramesh and Torrance (1 990). In the above, we have neglected capillary 
effects. 

STABILITY ANALYSIS 

1 .  The Eigenvalue Problem 



Subsequently, we carried out a linearized stability analysis of the problem by assuming that 

ail dependent variables are perturbed in the transverse direction, x, and seeking the rates of 

growth of these disturbances in terms of normal modes. Thus, we take disturbances of the 
form 

T = +- ~ t ? ( y ) e x p ( i m + o t )  (10) 

where E is a small parameter, 9 is the eigenhction, K is the wavenumber and B is the rate of 

growth of the disturbance, and x and t denote transverse coordinate and time, all 
dimensionless. Similar expansions are taken for the pressure, the saturation and the interface 
position. These expansions are then substituted in the governing equations and the boundary 
conditions, and the system is linearized. The details of this process are considerable and will 
not be presented in this section. The final results for the eigenvalue problem are shown 
below- 

a. Vapor region 

(denoted by superscript - where appropriate) 

d0 d 2 x -  
# K 2 7 T + R * - - - - -  - 0  

4 &2 

where G*=P~ cr, and 

PI= f( 1-4) pr C,, + $ pv C,] ’ (pv C,) is the ratio of the heat capacities for rock and vapor 

(and it is of the order of 1000). 

b. Two-phase region 

(denoted by superscript + where appropriate) 



+ aS d2n+ 
c p  +czs-c,---- - 0  

4 4v2 

d9 d2x+ 
c y +  -c,s+c,---- - 0  

4 &2 

(13) 

(14) 

where the constants are defined as, 

2 c, = K  

The differential equations in these regions are to be solved subject to boundary conditions of 
constant temperature and zero vapor flux at y=O, no-flux conditions for vapor and liquid at 

y=co, and continuity of mass, energy, temperature and pressure at the interface (y=S). 

The eigenvalue problem was then solved analytically. By incorporating the boundary 

conditions we obtained a fourth-order homogeneous linear system, the determinant of which 

must vanish for a non-trivial solution to exist. We note that because we have neglected the 
compressibility of the vapor, the saturation disturbance in our problem tums out to be zero 
(in contrast to Pestov, 1998). The vanishing of the determinant provides the solution for the 

rate of growth 0 (or o*) as a function of the wavenumber K and the various dimensionless 

parameters, among which key roles are played by the Rayleigh number and a. Details of this 

calculation will not be presented here. 

2. Results 



Numerically accurate results were obtained by imposing the condition of vanishing of the 

fourth-order determinant. There are basically two parameters, that can vary independently, o, 

which contains the dimensionless heat flux, and the two-phase Rayleigh number M. Note that 

the conventional Rayleigh number is related to these parameters via 

Ra = w M 2 N  (1 5 )  

where we introduced the additional dimensionless parameter N=(L, e) /[C, (PI- pv) tsat]. 

Typically, we find that the long waves are stable (see inset of Figs. 2 and 3 below). An 

asymptotic analysis shows that in the limit K + 0, we have 

d,.tan(J--) = K 

where K >> 1.  This equation admits infinitely many solutions (which were confirmed 

numerically as well) the largest algebraically of which is (-n2/4). This is indeed confirmed in 
Fig.2b and Fig.3. The behavior is similar to the boiling problem of Ramesh and Torrance 
(1993). Intermediate wavenumbers can be unstable, depending on whether or not the 

Rayleigh number is larger than a critical number, as discussed below- Sufficiently small 

wavelengths are stable, as in Ramesh and Torrance (1 990). 
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Fig. 2. (a) The CP-K relation for different values of co at constant M=50. (b)The plot at small K. 



Figure 2. shows the rate of growth vs. the wavenumber curve for fixed M and variable o. 

It is to be noted that o cannot exceed a maximum value, for a heat pipe region to exist. It is 

shown that as o decreases, the configuration is less unstable, reflecting the facts that the 

density of the heat pipe region diminishes at smaller o and that the overall Rayleigh number 

is also smaller 

Figure 3.shows corresponding result for the case of fixed o and variable M. The 

configuration is shown to be more destabilized as the two-phase Rayleigh number M 
increases. In all these calculations the other pameters affecting the Rayleigh number 
definition above, for example the latent heat of vaporization, were held constant. Under this 

- 1000 

condition, it was found that the data collapsed on the same curve, if the variables o and M 

were combined so that the Rayleigh number was constant. However, this should not be 

interpreted to imply that the Rayleigh number is the only relevant parameter of the problem 

(see below). 
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Fig. 3. The O*-K relation for different values of M at constant 0=0.5, and inset of the plot at small K. 

As in Ramesh and Torrance (I  990), a critical Rayleigh number, R k ~ t  exists which i s  a 

hc t ion  of the other parameters of the problem, and particularly o. Fig. 4 shows a plot of 



R&,it vs. o obtained assuming a constant N. It is shown that R%,it is considerably smaller 

than the critical number corresponding to either single-phase natural convection or the liquid- 
dominated problem treated by Ramesh and Torrance(l990). Furthermore, is found to 

increase as o decreases. 
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To test the effect of the phase change process, we considered the sensitivity of the results 

to the latent heat, by keeping the Rayleigh number constant, namely we considered variable 

L, but kept the product o N (and M) constant. Resdts are shown in Fig. 5.  It is shown that 

the problem becomes more unstable as the latent heat decreases, indicating the smaller 

energy requirements to sustain a destabilizing heat pipe above the vapor region as the latent 

heat is smaller. 
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Fig. 5. The effect on stability of the variation in latent heat. 



CONCLUSIONS 

In this section, we studied the linear stability of a two-phase heat pipe zone (vapor-liquid 

counterflow) in a porous medium, overlying a superheated vapor zone, It was found that the 

problem has similarities with the liquid-dominated case, in that long and short waves are 

stable, but intermediate wavelengths can be unstable, depending on the parameter values. A 

critical Rayleigh number was identified and shown to be different than in natural convection 

under single-phase conditions in two respects: The critical value is significantly smaller 
(even smaller than liquid-dominated case), while the critical value is shown to also depend 

on the other parameters of the problem. In particular, we found that the latent heat affects the 

stability of the problem. The results find applications to geothermal systems, to enhanced oil 

recovery, as well as to the conditions of the proposed Yucca Mountain nuclear waste 

repository. 
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THE SHAPE OF A GRAVITY FINGER 

Lang Zhan and Yanis C. Yortsos 

INTRODUCTION 

Displacing a more viscous fluid from a reservoir by a less viscous fluid results in unstable 

viscous fingers. Saffman and Taylor made a historical discovery in a narrow Hele-Shaw cell 

experiment in which they found that the ratio of width of finger to width of channel X is 

close to 3 [8]. They also developed an analytical expression for the finger interface in which 

X serves as a free parameter. If X equals $, the analytical expression fits the developed finger 

shape of the experiment quite well. From then on, extensive studies have been performed 

to understand the selection of the parameter X and its relationship to the instability of fluid 

displacements [ 71. 

When the density of the resident fluid is different from that of the displacing, gravity will 

complicate the analysis because it may improve or deteriorate the stability of displacement. 

Craig et al. [3] used five-spot and line-drive experiments to demonstrate the significant 

effects of gravity fingers on oil recovery. Greenkorn and colleagues [5]  studied the interface 

of the two phase immiscible flow by using Hele-Shaw cell experiments. They proposed a 

series solution to describe the interface shape of the finger as follows 

00 nnGy m y  
Ah G9 }cos- X =  - - h x A n e x p { - -  

Ah 
n=l  

A 

where G is the gravity dimensionless number, h is the height of the cell and A is the finger-cell 

width ratio. However, they did not specify how to determine these infinite coefficients A, 

in (1). They also extended their research into a glass bead porous medium and observed 

that gravity can damp out some of the instability of the fingers and that the width of the 

developed finger depends strongly on the velocity, height of media and other fluid properties 

[9]. Fayers and Muggeridge provided a model €or calculating gravity finger between miscible 

fluids in tilted reservoirs [4], based on the numerical solution of a partial differential equation 



to obtain the finger width. More recently, Brener et al. [l, Z] proposed a three-parameter 

expression for describing the stable gravity finger shape, which reads as follows 

W 
x = - [(I - X)lnsin(2a) + 2yJntan(c~)] 

7r 1 (tan a')"da' . 1 [ ; 2Acos(m/2) cy y = w  y o - - +  
7r 

where X is the relative width of finger, yo denotes the y coordinate of the center position of 

the finger departed from the center of a channel, E = 1 - 2/@, p = arctan(l/CgA), a takes 

values from 0 to n/2, W is the width of the channel and f ig  is the gravity number that is 

defined as follows 

A (gpsinw)b2 Ng = 
12pv (4) 

where w represents tilt angIe, pand  p are the density and viscosity of the resident fluid, V 

is the fluid velocity far ahead of interface, and b is the thickness of a Hele-Shaw cell. Like in 

[5, $1, they neglected the density and viscosity of displacing fluid. 

In the following, we propose a new gravity finger model for two-phase fluid displacement 

in absent of interfacial tension. It has the advantages of the equations by Greenkorn et al. 

[5] and Brener et al. [I,  21 but without their drawbacks: (a) the model considers density 

and viscosity of both resident and displacing fluids; (b) it only involves one free parameter 

(as (1)); (c) it provides B closed form solution of the interface shape of a developed gravity 

finger (as (2) and(3)). 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

A typical schematic of a gravity finger is shown in Figure 1. The displacement occurs in 

a vertical cross-section of a channel of width H ,  where the flow direction is perpendicular to 

that of gravity, The displaced fluid, with subscript 1, has larger density, thus, the displacing 



U Fluid 2 

Fluid 1 

E D 

Figure 1: Schematic of a gravity finger 

fluid (subscript 2) wilt evolve into a fully-developed single finger along the upper wall. Dis- 

placement at constant injection velocity V is considered. The interface of the two fluids will 

be denoted as AB,  while the bottom wall is denoted as EL?. The coordinate of the x axis is 

along ED. Because the injected fluid occupies less than the entire space, fluid 2 moves with 

velocity U for upstream, while the displaced fluid 1 moves with velocity V ,  far downstream. 

Without loss in generality, the streamfunction is zero along the bottom wall. 

If we now define the relative finger width as X E 9, where Hz is the finger width at 

infinity upstream, the mass balances of two fluids read 

U v = xu+(l-X)M 
V u =  A+!$' 

Here, we can see that if M 2 I ,  U 2 V, and vice-versa. 

Assuming incompressible fluids, we can write the following governing equations: 



k 
PI 
k 

1-12 

?TI = --(Vp1 - PlG) 

i i 2  = --(T7P2-PzG) 

V 4 ~  = 0 

0 4 2  = 0 

(7) 

where Zj, p j , p j , p j  and k denote fluid velocities, fluid viscosities, fluid pressures, fluid densi- 

ties and porous media permeability, j = 1,2 represent the two fluids, and 3 is the acceleration 

of gravity vector. A solution of this problem is 2 ~ 2 ~  = U and = 0 inside fluid 2, namely, 

Integrating (12), we obtain the pressure in fluid 2 as 

p2 = -p2gy + c(3) (13) 

where c (5 )  is a constant of integration obtained by substituting (13) into (ll),  and integrating 

where 6 is a constant. Combining (13) and (14), the pressure in fluid 2 is 



Inside fluid 1, we do not have a simple solution for the pressure. Because of continuity of 

pressure on the interface, we have at any point 

+ &  P 2 U X  
P1 = p2 = -p2gy - 7 

We can also deduce certain properties upstream and downstream. Far upstream, uly = 0, 

Integrating the above equation, the far upstream pressure in fluid 1 is 

where e(z) is a constant of integration. We note that at that limit 

- = e’(x). dP1 
dz 

Also far upstream, the interface is parallel to the x-axis, the y component velocities are null 

and in the absence of capillarity, the pressures in the two fluids satisfy 



Combining equations (IS), (19), and (20), the coefficient e(z) can be found 

P2U e’(zj = -- 
k 

or 

+ ?  p2ua: e(z)  = -- 
k 

where 6 is another integration constant. Thus, the pressure of fluid 1 far upstream is 

+; Pl = -p1gy - - 
P2UX 
k 

Far downstream, the condition of a constant fluid velocity at steady-state gives 

Up to now, we have solved the pressure in displacing fluid 2 and have found certain 

pressure boundary conditions in the displaced fluid 1. To proceed further, we will transform 

the above equations in the streamfunction and potential domain to solve for the fluid interface 

explicitiy. Define the potential in displacing fluid 1 as 

k 
Pl % = --(PI + p1gy + 2) 

where d is a constant, or using the pressure as a dependent variable 

P A  
PV3Y - 2 p 1 z  -- - 

k 

(25) 



At the interface between the two fluids, the potential can be obtained from equations (16) 

and (26), 

Far upstream, equations (23) and (26) give 

Using the conventional definition M 

pressed as 

E, the condition on upstream can also be ex- 

and in differential form 

(x + -03) 

Far downstream, the  differential condition from (24) and (26) gives 

= v7 3% 
i 3 X  

(x 3 +m) 

To make further progress and under steady-state conditions7 we define the traveling 

coordinate, X = x - U t 7  and re-write Y = y. Then equations (27), (30) and (31) become 



U 
d X  M 
- -  - - 

= v  0% 
dX 

( X  + -00) 

( X  + +m) 

(on AB)  

(33) 

(34) 

and @1(X = 0,Y = W )  = 0. 

To obtain the interface function, we need the information on the streamfunction. Along 

the interface AB, the normal velocity can be written as follows 

Because of the Cauchy-Riemann condition, 2 = -+, we also have 

- u cos 8 8% 
d S  

--- 

Now knowing the relationship cos 8 ds = -dY, [Y=H = V H ,  and Slly=O = 0, we integrate 

in equation (36) to give streamfunction on AB 

Q1= UY + H ( V  - U) (37) 

Thus, our objective is to find two harmonic functions and lP1 subject to the following 



boundary conditions 

iP1 = V H ;  o n Y = H  (38) 

Q1 = ( V - U ) H + U Y ;  on AB 

Without loss the generality, we take H = 1, and transform equations (38) - (43) using the 

transformation 

Then, we normalize the transformed equations by V - 5, use @ and 9 as the normalized 

potential and streamfunction respectively, replace X and Y by x and y, and define the  

gravity segregation number 

Equations (38) t o  (43) are further simplified to 



!V = 1; o n y = l  

KP = 0; o n y = O  

- = 0; x + - m  da) 
dX 

- 1; x + + m  aa) 

d X  
- -  

THE INTERFACE SHAPE USING COMFORMAL MAPPING 

To seek the solution of interface, we consider application of conformal mapping. Figure 

- !@ domain where @ and KP need to be solved. With the definition of a new 2 shows the 

pseudo-s t reamfunct ion 

x = Q - y  

equations (47) and (48) can be rewritten as 

x = (1 - @)(1 - A) (on AB)  

Then our task changes to finding the solution of the Laplace equation for x 

( 5 3 )  

0 2 x  = 0 (54) 



x = o  y = l  C 

A 
Y 

B 

y ( A B )  = 1 -h( l  - Y >  

x ( A B )  = ( I  - & ) ( I  - Y )  

x = o  y = o  D 
t 

@ 

Y(")  = 

Figure 2: Potential - streamfunction plane 

with boundary conditions 

x = 0; o n @ = ] .  

x = 0; o n @ = O  

x = 0; o n @ + + m  

x = (1 - S ) ( l  - A ) ;  on AB 

To solve this problem, we use a Schwarz-Christoflel transformation [6] for mapping the 

upper half plane, as illustrated in Figure 3. strip domain in the @ - @ plane into the E - 
Here, we let d E 1 and a E arctan($). Then, the transform angles are (see Figure 3) 

4 7  



Z plane 
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A4 

plane 

Figure 3: Schwarz-Christoffel transformation 



The Schwarz - Christofel transform can be obtained as follow 

dZ 
- = a(( + l):-l([ - l)+, 

or in integral form 

where a and b are constants of integration to be determined by the appropriate choice of the 

corresponding transformed points between the 2 and planes. Before we determine these 

constants, we first derive a relationship for the boundary values in the segment A2A3 between 

the two planes. From (47) and (48), we know that Q, = d(1 - Q) ,  thus, the transformation 

(61) becomes 

1 
u d [ + b  I' (( - l ) E ( (  + q1-7 

d ( 1 -  Q )  + i 9 = a 

and provides 'xl(t) on A',Ai. Hence, the relation x = (1 - A)(1  -XI!) in Zmaps onto x = F ( J )  

in <. Also, equation (52) gives the ordinate in 2 by il? and x, thus, 

If we find w ,  the harmonic counterpart of x, the relation between the boundary position 

AzA3 in Zand the harmonic functions on ALA: in 5 can be obtained, namely 

z = x + iy = !I) + ZQ + w  + ix+ c (64) 

The harmonic functions x and w are obtained by 



where all integrals are understood to be principal value integrals. Substitrrting equations 

(65), (47) and (48) into (64), we establish the interface shape as 

where 

F ( 5 )  = ( 1  - X ) ( l -  Q) 

( is related to y through the following transformation (formula (61)) 

2 = @ + i Q  
d(l  - A) 1-Y - - + i ( l -  -) x x 

c 1 
0 (C - 1)%(C + 1y-7 = U J  u d S + b  

and Kl? is related to €, through (62). Therefore, ( 6 6 ) ,  (68) and (62) provide the equations for 



solving the interface shape. To determine the coefficients a and b in (62) and (68), we fix 

the corresponding points between Zand 5 as 2 = i 5 = -1 and 2 = d M ( = 1. After 

some algebraic manipulations, the coefficients are given by 

d - i  
a = -  

I 

where 117 1 2  and I . .  are the following integrals 

Upsn  substitution of equations (67)? (69) and (70) into (62), a solution for F ( ( )  is obtained 

where the I ( f )  is 

The principal value of (66) can be simplified as shown in the Appendix A. The final result 

is 



Note that there is an  integration constant c in the above equation. To determine c, we let 

lime+-1 IC = 0 at the upper channel boundary y = 1 in (66). The following value is obtained 

Thus, using expression (74), z can be written as 

The characters of two integrations in the above x expression are analyzed in the Appendix 

A. Upon substitution of (69) and (70) into (68), y is 

equations (78) and (79) represent the final results of the interface functions. When ( takes 

values between -1 to 1, (78) and (79) provide the interface positions between two the fluids. 

THE SAFFMAN-TAYLOR LIMIT (Ng  + 0) 

To verify that equations (78) and (79) recover the Saffman - Taylor’s solution [8] when 

gravity is absent, we consider Ng = 0, and cy = ;. Then, I ( ( )  can be obtained as 

dt  /; &Ji? 
7-r 

= - + arcsin[ 
2 

From this, equations (75) and (79) are simplified to 



arcsint - arcsine 7r + arcsint .='-"[.I, d t  + (z + arcsin[) log 
7r2 t - t  

A T  

7 r 2  
ZJ = 1 - -( - + arcsin() 

The principal values in equation (30) are evaluated as follows 

1 

L 1  = s_, 
= lim 

E+O 

dt arcsint - arcsint 
t - S  (1:' arcsint - arcsine arcsint - arcsinc 

t - E  

which is 

7T l + t  = - log( 1 - t2 j + arcsine log - 
2 1 - c  

+ arcsint 

' 2 + arcsint 

IX2 = di 
t + l  

dt 

(83) 
1 

= -lim 

di=Fdt 

Substituting Izl and Ir2 into equation (SO), we are able to simplify the expression for x as 

follows 

1 4  1 
2 = -log+l - e )  + 

7 i  



After a considerable amount of algebraic manipulation, the sum of the last three integrals 

turns out to be zero in the limit e 3 0. Thus, the final result for x is 

Combining the 5 and y expressions, we obtain the interface shape when gravity is negligible 

as follows 

1 - x  1 7r 
x=- log +l + cosx(1- y)] 

7r 

which is the Saflman - Taylor solution. 

NUMERICAL RESULTS 

Numerical results for equations (79) (78) are shown in Figures 4 and 5 .  The unstable 

displacement interface corresponding to of A = 0.1, iVg = 0,0.1,5,10 ( p 1  > p2, p l  > p2, 

Ng > 0) is illustrated In Figure 4(a). The shapes of the fingers are almost identical to zero 

gravity curve when iVg < 0.1. As the effect of gravity increases, the interfaces near the center 

of the channel moves faster than those of small gravity number. This indicates that gravity 

tends to stabilize the finger tongue. When N’ is very large, the lower portion of the finger 

moves ahead of the upper part (not show). Although this result recovers the experimental 

observations in [5], we suspect that it may represent a mathematical rather than a physical 

reality, because there is an undetermined parameter X in equations (79) and (78). Figure 4(b) 

shows interface shapes for X = 0.1,0.3,0.5,0.7 and value of gravity number equals Ns = 0.3. 

It indicates that the larger the A, the flatter the head of a finger calculated from the solution 

at the condition of same gravity number. Due to the consideration of different density and 

viscosity between displacing and resident fluids in (79) and (78) ,  one of the advantages of 

this work is that it reflects both unstable and stable displacement interfaces. Figure 4(c) 

shows the stable finger shapes (p1 > p 2 ,  p1 < p2, Ng < 0) along the upper wall for X = 0.1 



and value of gravity number N g  = 0,0.1,5,10. For this group of fingers, the finger heads 

become sharper as the magnitude of the gravity number increases. 

The solutions can also represents the fingers developed along the bottom wall of the 

channel. This group of fingers is plotted in Figure 5(a) with X = 0.1 and Ng = 0,0.1,5,10 

(p l  < p2 and ,ul < p a ) ,  and Figure 5(b) with X = 0.1,0.3,0.5,0.7 for the same Ng = 0.3. 

These represent stable gravity fingers. When the magnitude of Ng increases, the finger heads 

tend to be sharper. The results are similar to the solution of conditionally stable gravity 

tongues reported by Fayers and Muggeridge [4], although there are different underlying 

fundamentals between the two works. Figure 5(c)  shows the unstable fingers (pl < p 2 ,  

,ul > pz) developed along the bottom wall with N g  = 0, -0.1, -5, -10 and X == 0.1. The 

finger interfaces are exactly same with the corresponding upper wall fingers in Figure 4(a). 

The equations (79) and (78) are also comparable with the Brener et al. solution (2) 

and (3) .  As we pointed out before, their solution involves three parameters, but without 

considering the density and viscosity of displacing fluid. Thus, (2) and (3) do not obtain 

the stable displacement. With taking W = 1, E = 0 and yo = 0.45, we can compare (79) 

and (78) with equations (2) and (3). The results are shown in Figure 6. We could see that 

when for X = 0.1 the two solutions results provide very similar interface shapes except there 

is difference in starting positions for the two solutions. 

CONCLUSIONS 

We have provided a new exact solution €or the description of the interface shape of 

gravity segregated fingers. The solution considers the finite density and viscosity of the 

displacing fluid. Thus, it is able to represent both stable and unstable displacements, and 

finger development along either the upper wall or bottom wall of B channel. The solution 

has closed forms so that there is no need to determine the coefficients as the solution of 

Greenkorn et al. [5]. This solution is able to recover the Saflman - TayEur solution [SI if 

gravity is neglected. Computational results of equations (79) and (78) are very similar to 

the solutions (2) and (3) of Brener et al. [l] for the gravity number up to  10. However, 
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Figure 4: Upper wall finger interfaces: (a) unstable fingers, X = 0.1, Ng = 0,0.1,5,10; 
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Figure 5: Bottom wall finger interfaces: (a) stable fingers, X = 0.1, Ng = 0,0.1,5,10; 
(b) stable fingers, X = 0.1,0.3,0.5,0.7, Ng = 0.3; (c) unstable fingers, X = 0.1, Ng = 
0, -0.1, -5 ,  -10. 
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the solution proposed in this work only has one free parameter while the solution of Brener 

et al. has three. The (79) and (78) also provide interface shapes similar to conditionally 

stable fingers calculated by the finger model of Fayer and Muggeridge [4], however, they are 

different by the underlying fundamentals. 
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APPENDIX: USEFUL TRANSFORMATIONS FOR PRINCIPAL VALUE 

INTEGRALS 

In equation (66), E (-1, l), thus, when f integrates from -1 to 1, the integration has 

a singularity for each c. To find the principal value of the integral we us the following 

rnanipulat ion 

This result was used to simplify (66) to (76). Using (74), the above integration can be 

expressed by I ( t ) .  

To evaluate x when + -1, it is necessary to estimate the value of the logarithmic term 

in (78).  We proceed as follows. Let 

= 1 - €  1 4  
2 

Then, I ( ( )  can be expressed as 

d.r 
r-(1 - T)1+ 

Using the change of variables 7 = 1 - w, and taking the limit E 3 0 the above becomes 



Thus, we have 

( E  + -1) 

This gives an approximation for the second integral term in equation (78), namely 

Since lim,,o x: log 5 = limz+o :xz = 0, we have the foIlowing final estimate of this term 

lim I ( [ )  log - l - E + o  
t+-l 1 + 1  

This shows that the logarithmic term in (78) is bounded and approaches zero as E + 0. 

Same additional manipulations are needed for estimate of two integrals in (78) in order 

using a series expansion, then the first to calculate interface. If we expand I ( t )  around 

integral of (78) becomes 



where I is given in equation (75). The integral above is dependent on the character of the 

derivatives of I ( c )  in the domain [-1, I]. The first derivative of I ( t )  is 

It is obvious that singular points, for I ' ( s )  and other higher derivatives of I ( [ ) ,  occur only 

at E = H. Thus, equation (91) is not singular when E (-1, 1) (In this work, we define 

=I: = 0 when [ = -1. Also, we do not calculate the integral at E = 1 since it corresponds to 

the interface at negative infinity of z). 

The second integration in equation (78) should be considered carefully, because the inte- 

gration is singular when t = -1, i-e. 

The integrand of the above expression is 

Since 8 + 0, when E + 0, and I ( 0 )  = 0, then 

(93) 



1 
f ( t> (1--t)% (1+t)1-% lirn - = lim 

t+-1 gCt) t+-1 (1 + t)'-9 

Because J:l g(t)dt is convergent, -I, is also convergent. With the use of the estimate in (89), 

Is can be calculated as 

= Id  + Is2 

where 

and 

(94) 

Finally, Is can be obtained as follows 





111. DYNAMICS OF IN-SITU COMBUSTION AT VARIOUS SCALES 

A well-established method for the recovery of heavy oils is in-situ Combustion. Despite 
its long history, however, many aspects of the process are not well understood. Two 
particular aspects are analyzed in this project: The description of the process at the pore 
network scale, and its upscaling at the large scale for field applications. A pore-network 
simulator is briefly described in the first study. It is the first of its kind, as far as we 
know, &d although at a preliminary stage, it gives results consistent with previous 
findings. We present the basic aspects of the simulator, although further work is on-going 
for its fine-tuning. In the second study, we apply an asymptotic approach to describe the 
movement of combustion fionts in porous media as gas-dynamic discontinuities. This 
approach is essential for the upscaling of the process ai the field scale and for the 

assessment of the effect of heterogeneity on issues such as stustained front propagation, 
extinction, efficiency, etc. This effort is on-going and we wrrently investigate the 
development of appropriate upscaling schemes, the ef fd  of heat losses and the 
incorporation of low-ternperature-oxidation reactions. In parallel, combustion 
experiments in micromodels, such as a Hele-Shaw cell are under way. 





A PORE-NETWORKS MODEL FOR IN-SITU COMBUSTION 

Chum Lu, Y.C.Yortsos 

INTRODUCTION 
Combustion in porous media is an important problem in a variety of contexts. In-situ 

combustion is a useful technique for the recovery of heavy oils and has been investigated 

in the past several decades’. More recently, a number of articles have been published 

dealing with smoldering and filtration combustion*’, which is important to self- 

propagating high-temperature synthesis of materials, and to a host of other applications. 

Compared to conventional flame propagation, combustion in porous media involves a 

simplification in the fluid mechanics, where Darcy’s law applies, but an added 

complication in the heat transfer, due to the presence of the solid phase, where 

conduction occurs. A variety of nonlinear phenomena, dealing with ignition, extinction, 

sustained propagation and patterns arise. So far, the majority of studies have addressed 

the problem at the continuum level, by treating the porous medium as an effective 
continuum. It is well known, however, that the reaction zone could be quite narrow, of 
the order of cm or less, and significant temperature, composition and depth of conversion 

changes may occur over equalIy short distances. This brings the issue of the effect of 

pore-scale phenomena on the overall process and on their upscaling. Recently, interesting 

fingering patterns were observed in Hele-Shaw cell experiments involving the reverse 

cornbustion of thin paper sheets4. In some way, this problem is related to viscous 

figering in porous media (but not for the same reasons). The finger width and the 

distance between adjacent fingers of the obtained patterns were interpreted based on 
scaling argumentss* To assess pore-scale effects and ultimate to scale-up the process for a 

continuum description, we develop in this section a dual pore-network model for 

modeling combustion in porous media. 

Pore-network models are useful tools for understanding pre-scale phenomena and their 

integration in continuum descriptions. The approach to be implemented is analogous to 
an earlier effort in modeling thermal processes at the pore-network scale, for example in 



heat-transfer driven bubble growth6, where heat transfer in the solid must be considered. 

The important difference is that here the exothermic combustion reaction at the pore 

surface must also be included. We discuss the fornulation of the pore-network problem, 
the method of solution and results obtained in specific cases, 

t 

Cold injection 

Oxidizer c) 
Inert Gas 

I 
Backward Forward 

Ignition position Ignition position 

Figure 1. Sketch of the dual network and of the forward and reverse cornbustion Process, 

THE PORE-=TWO= MODEL 

The pore-network model consists of a dual network of pores and throats, which is 

embedded in a network of solid sites, representing the solid matrix, The pores (sites) are 

the place where reaction occurs and contain fuel of constant composition. They are 

interconnected via throats (bonds), which control transport of mass, momentum and heat, 

and which have distributed sizes. The network of solid sites is needed to account for heat 
transfer in the solid. The coupling of solid and pore-space occurs through heat transfer 

between pores and solid sites. A schematic is shown in Figure 1. In the 2-D simulations 

reported below, both networks are square lattices, each solid site communicating with 4 

pore sites. Injection of a mixture of oxidant and inert gas occurs at one end, at constant 

pressure, temperature and composition. The outlet end is at constant pressure. Forward 

and reverse combustion are differentiated by controlling the ignition point, which is the 



first row in the inlet for the case of forward combustion, and the row before the last in the 

outlet, for the reverse (see Figure 1). The following heterogeneous reaction 

Solid Fuel + p Gas Oxidizer+pl Solid Product + p2 Gas Product 

is assumed, where p, pl, p2 stand for the mass stoichiometric coefficients, the reaction 

rate expressed by the one-step kinetic model 

R = k, PX, H ( V f )  exp(--) E a  

RT 

where H is the step function, Vf is the volume of fuel, P is the total pressure, l~ is the 

kinetic constant, Xo the mass fiaction of the oxidant and Ea the activation energy. The 

oxidizer in the gas phase is delivered by gas phase diffusion and convection, the flow in 
the pore throats controlled by Poiseuille's law. Within a pore site, thermodynamic 

equilibrium is assumed, such that concentrations, pressure and temperature are uniform. 

This also implies that fuel and gas are also at thermal equilibrium. However, heat transfer 

does take place between adjacent pore sites, between pore and solid sites and between 

solid adjacent solid sites. A heat transfer coefficient is used to model the pore-solid 

exchange. Thermodynamic and transport parameters are taken constant. The equations 

describing the process are listed below. 

Pore Site I, Adjacent to Pore-Site j: 

Gas Phase Component k Mass Balance 

Af 

Solid Fuel Conservation 

(5.3) 



Energy Balance 

where, we defined the energy content of a site by 

Ei = E,,i + 
9 

Momentum Balance 

Solid Site Energy Balance 

* the notation being self-evident. The sum in the energy balances express heat exchange 
between pore and solid sites, while hLs denotes heat loss to the surroundings. In addition, 

ideal gas behavior was assumed. Finally, the bond radius was correlated to the depth of 
conversion. 

A dimensionless version of the above equations was solved using a standard implicit 

scheme. Because of the stiffness of the problem, a small. time step is required. At the 
same time, the spatial scale needs to be large enough to investigate pattern development, 

which results in prohibitively long computations. In previous studies, but in 

homogeneous systems, various schemes were de~eloped”~ to circumvent this difficulty. 

Unfortunately, these techniques do not apply in our system. Explicit schemes, even at 

very small time steps, do not lead to acceptable performance. To speed up the 
computation procedure, we implemented two simplifylng assumptions, one regarding 

pressure and another regarding a quasi-steady state for the gas. 



Since the gas viscosity is very small, the pressure variation could be ignored in all the 

governing equations except for the momentum balance. This technique has been widely 

used in the simulations of laminar flame propagation in open space. In our l-D results, 

the total pressure difference is less than lo3 Pa compared to pressures of the order of 
105Pa (1 atm). As a result, the pressure variation effect on thermodynamic properties can 

be neglected. Likewise, because of the difference in the densities of gas and solid, the 

respective time scales are greatly different for the gas and the solid, Thus, one can 
proceed with the assumption of quasi-steady state for the gas. This assumption has been 

widely used for these kinds of processes and its validity was verified in our 1D 
simulations. Use of these two assumptions was found to improve significantly the 

computation speed (5-7 times faster from the first, and 2-3 times faster from the second 

assumption) 

RESULTS 

1-D SIMULATIONS 

To test the validity of the model, we conducted l-D simulations of forward combustion. 

Theoretically, we expect three possible situationsg, depending on the value of the 

parameter & ( c $ ~ p & ~ ,  which expresses a heat capacity ratio: a reaction-trailing pattern 

(&I), where the reaction front trails the thermal front, a reaction-leading pattern (SA), 
where the reaction front leads the thermal front, and a wave with maximum energy 

accumulation (&l), in which the two fronts coincide and the temperature at the front 

increases with time, according to the equation Tb -To =eAaO Jx. our numerical 

results plotted in the left panel of Figure 2 are in good agreement with the theoretical 

predictions. In the first two cases, it is apparent that a traveling front solution is reached, 

which propagates asymptotically at a constant speed. It is worth to point out that in time- 

dependent problems, the speed and extent of the separation between the fionts also 
depend on other parameters, such as injection rate, the heat conductivity and capacity, 

etc, The capability of our simulation allows us to study the sensitivity of the results to 

heat losses. The right panel of Figure 2 shows the temperature profiles corresponding to 



the three cases, but with heat losses included. Although parameter 6 appears to still 

remain the determining factor in the classification of patterns, the heat loss is shown to 

decrease the fiont temperature, which at least in the reaction-trailing problem, appears to 
also decrease in time. 

2-D SIMULATIONS 

Results from 2-D simulations for reverse combustion are shown in Figure 3. In the cases 

studied, concentration, temperature and velocity patterns are rough, but generally 

compact. The patterns with the most interesting behavior are those of the extent of fuel 
conversion. Reverse combustion gives rise to fingering patterns. These patterns show 
behavior very similar to that observed in the typical viscous fingering problem, namely 

tip splitting, merging and shielding. The patterns appear to have some similarity to those 

reported by Zik and Moses' in Hele-Shaw cell experiments, which were explained based 

on Rayleigh convection. Our model is in fact different, yet the numerical results 
demonstrate similar results. The patterns were found to be affected by the Peclet number 

and to be very sensitive to the initial condition of the system. 
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front, €3: Reaction front leading the temperature front. C: Maximum energy 
accumulation, 

U=0.005 Yd.25 
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Figure 3. Fingering patterns of the depth of conversion in reverse combustion for 
different values of the injected composition Y and the injected velocity U. 
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DYNAMICS OF COMBUSTION FRONTS 

i. Yiicel Akkutlu and Yanis C. Yortsos 

INTRODUCTION 

The propagation of combustion fronts in porous media is a subject of interest to a variety 

of applications, ranging from the in-situ combustion for the recovery of oil [l], to filtration 

combustion [5] and to smoldering cornbustion [7]. While these problems may differ in appli- 

cation and context, they share a common characteristic, namely that the main combustion 

reaction involves the burning of a stationary solid fuel, which in the first two applications is 

part of the initial state of the system, while in the second it is created by a preceding Low- 

Temperature-Oxidation (LTO) process. In-situ combustion for oil recovery has been studied 

quite extensively since the mid 1950s. The two texts by Prats [l] and Boberg [2) summarize 

the relevant literature on the subject until the late 1980s. A large number of experimental, 

analytical and numerical studies have been reported on a variety of in-situ combustion topics. 

Of interest to this section is a particular but important issue of in-situ combustion, specifically 

the dynamics of combustion fronts. They are influenced by a number of factors, including 

Auid flow of injection and produced gases, mass transfer of the injected oxidant, heat transfer 

in the porous medium and the surroundings, the rate of reaction(s), the heterogeneity of the 

medium and possibly the evolution of the pore morphology due to the combustion reaction. 

Understanding the dynamics is important to a number of issues, including front stability, 

the sustained propagation of cornbustion, the effects of heterogeneity, and the scale-up of the 

process. A specific feature that distinguishes combustion fronts from other front propagation 

problems is that due to the strong temperature dependence of the reaction rate, the com- 

bustion reaction occurs within a thin reaction zone, the extent of which is quite small, and 

certainly much smaller than the typical grid in field simulation. As a result, it is almost im- 

perative to treat the reaction zone as a surface of discontinuity (a thin layer) within which the 

combustion reaction occurs, and across which appropriate conditions must apply. The prop- 

agation of frontal discontinuities makes the scale-up of the process a problem qualitatively 

different than ordinary displacement processes in porous media, for instance waterflooding. 



The treatment of combustion fronts as frontal discontinuities has been studied extensively in 

the literature of combustion and flames. Among the great deal of articles published in this field 

we will refer to the earlier work of Matalon and Matkowsky [3], the monograph of Pel& [4] and 

the more recent work of Schult and co-workers [7]. Ref. [3] discussed the propagation of flames 

in the combustion of premixed gases, in the absence of a porous medium, and treated the 

flame front as a surface of discontinuity, which separates two regions of different temperature 

and chemical composition. To capture phenomena occuring within the thin flame region, 

the methods of singular perturbation and matched asymptotic expansions were used. Pel& 

[4] presents an interesting compilation of studies on combustion and flame propagation in it 

variety of geometries. In his work, common aspects are shown to exist between the seemingly 

different problems of viscous displacements in a Hele-Shaw cell (which gives rise to viscous 

fingering), dendritic solidification and flame propagation. This connection, and particularly 

with the viscous fingering problem, is of particular interest to our problem of combustion in 

porous media, as they are both subject to the effects of the medium heterogeneity and other 

factors. More recently, Aldushin and Matkowsky [5] have used this analogy to argue about 

the problem of the selection of the width of the Saffman-Taylor finger. We note in passing 

that the growth of a new phase in a porous medium, driven by diffusion, for example bubble 

growth in solution gas-drive processes, also shows common aspects with viscous displacements 

e.g. see Li and Yortsos [6]. 

In a recent series of papers, Schult et al. [7, 81, studied the combustion of a solid fuel em- 

bedded in a homogeneous porous medium. This problem, known as smoldering or filtration 

combustion, appears in a variety of applications. It differs in many respects from in-situ com- 

bustion, particularly on the lack of liquid flow ahead of the combustion front and the various 

physicochemical changes that accompany it, the fact that the solid fuel is a priori available, 

rather than being generated as a result of LTO, as is the case with in-situ combustion, and the 

existence of heterogeneities. At the same time, the two problems have the common feature 

of the propagation of a high-temperature reaction zone in which a gas-solid reaction process 

takes place. Schult et al. [7, 81, provided an asymptotic analysis of the problem following 

an approach essentially similar to the flame analysis of Ref. [3]. An analogous approach was 

attempted earlier by Britten and Krantz [14, 151 who examined the structure of the reaction 



zone in reverse combustion in the context of gasification. 

In this section, we will proceed to analyze the problem of in-situ combustion, by working along 

very similar lines. We must note that few related theoretical studies exist in the literature of 

in-situ combustion. Gottfried [9] modeled in-situ combustion by focusing on heat transfer and 

representing the combust ion front as a discontinuity involving a point heat source, represented 

as a delta function. Beckers and Harmsen [lo] detailed the propagation of various regimes 

in in-situ combustion and its variants (such as wet combustion). Burger and Sahuquet [ll] 

analyzed the chemical aspects of the reaction processes. Agca and Yortsos [E] proposed 

a simplified description, which takes into account the heat losses to the surroundings and 

discussed issues of sustained propagation and extinction. The stability of combustion fronts 

was analyzed by Armento and Miller [13] using a simplified front analysis. 

The section is organized as follows: First, we provide a simplified approach using the method 

of characteristics, to define the large-scale features of the temperature profile and delineate 

the main heat transfer regimes in in-situ combustion. Then, we present the framework of 

the analysis and proceed with a detailed asymptotic treatment of the reaction front. The 

jump conditions derived are subsequently used to analyze the properties of planar combus- 

tion fronts. Finally, we comment on effects of heterogeneity and scale-up. Our model is a 

continuum model, in which effective values are used for the kinetic and transport parameters. 

A parallel effort is curently being conducted to model cornbustion at the pore-network scale 

(Lu and Yortsos, [16]), in order to understand the process at the small scale and to explain 

the formation of patterns in recent combustion experiments in Hele-Shaw cells [17]. 

Large-Scale Features of the Temperature Profile 

Before we proceed, we consider a simplified analysis to derive some large-scale features of the 

typical temperature profile expected in in-situ combustion. For this, we formulate the energy 

balance in 1-D, when heat conduction is considered negligible compared to convection and 

consider the solution of a simple case in which the heat of reaction is a Dirac delta function. 

A justification of this assumption will appear later in this section. Assuming a constant flow 



velocity ij and neglecting heat conduction we have 

where the right-hand side involves the heat of reaction, due to combustion, and a convective- 

type expression €or heat losses to the surroundings. In this notation, expresses heat released 

per unit area and unit time. Initial conditions involve constant temperature Po, initially and 

at injection (5 = 0). 

Consider, first, the case where heat losses are negligible. Equation (1) is a hyperbolic equation 

with a singular source term at the combustion front 2 = Z j ( t ) .  Outside of the front, the source 

term is negligible, and the solution of (1) is given using the method of characteristics, which 

in the present case are straight lines with a constant slope 

Along the characteristics the temperature is constant. In general, there would be two char- 

acteristic velocities, one upstream (denoted by subscript 111) and one downstream (denoted 

by subscript I) of the front, as the consumption and/or production of gases at the reaction 

front will affect the mass flux. Let the combustion front move with constant velocity V .  If 
conditions are such that 

the characteristics from the initial condition (the Z-axis) will intersect the front trajectory 

(Figure l)? while those from the boundary (the t"-axis) will not, creating an expanding simple 

Figure 1 : Characteristics Diagram for Combustion 



wave region (region I1 in Fig. 1). In this case, the (f- 5) plane consists of three regions, 

one corresponding to the initial (region I, of temperature Po),  another corresponding to the 

simple wave (region 11, of a temperature to be determined), and a third corresponding to 

the injection (region 111, of temperature Po). The temperature across the front jumps to the 

value pj, obtained by integrating the energy equation (1) across the combustion front, 

A more rigorous expression will be obtained later. Under condition (3), the simple wave 

region is also spanned by characteristics of slope U I I I ,  except that these now emanate from 

the combustion front (as shown in Figure l), hence they carry temperature 5?j. Thus, the 

temperature profile at any time consists of two far-field regions with temperature Po and 

an intermediate expanding region of temperature pf. This profile is sketched in Figure 2. 

Accounting for conduction will smoothen the discontinuities at the fronts. 

In realistic cases, heat losses cannot be neglected. If we take the simple linear heat loss term 

shown in (l), the temperature in region I1 is not constant any longer, but decreases with 

time. We can readily show that the solution in this region is 

suggesting an exponential decay. The resulting profile is sketched schematically in Figure 3. 

Note that the temperature at the trailing edge of the region, pt, declines exponentially in 

1 't 

Figure 2: Temperature Profile for the Adiabatic Case 



Figure 3: Temperature Profile for Adiabatic Sytem 

time as 

pt = R + (Pi  - T+xp 

The situation is reversed, if the two inequalities (3) are reversed. Now the front moves slower, 

and it is the temperature downstream, which increases to Pf. Region I1 precedes, rather than 

trailing the combust ion front, the simple wave expanding ahead of it. Analogous conclusions 

can be reached if one only of the inequalities in (3) is valid, etc. 

Having obtained a qualitative understanding of the problem, we will now proceed with a 

more rigorous analysis. 

FORMULATION OF THE PROBLEM 

Typically, combustion react ions have large activation energies. A dimensionless measure is 
E F* the Zeldovich number, 2 = .y, where E is the activation energy and pf denotes the front RT c 

J 

temperature (a simple expression for which was given in (4)). Typically, 2 is large. Because 

of this condition and the fact that the reaction rate is strongly temperature dependent, 

all combustion reactions are confined to a thin reaction-dominated zone at the combustion 

front. It is within this zone, where reactions occur at a high rate, temperature, pressure 

and concentrations being approximately constant. The reaction zone is embedded within the 

heat transfer layer, as shown in Figure 4, where thermal and molecular diffusion are equally 



Figure 4: Definition of Reaction and Combustion Zones 

important with convection. If IT  is the characteristic length of the heat transfer layer, the 

reaction zone has a thickness equal tu ZT/Z. Expressions for IT will be derived below. 

The reaction zone and the heat transfer layer combine to form the combustion zone, Figure 

4. Outside this zone, the problem is controlled by convective transport of energy and mass 

(and also by heat losses to the surroundings, if applicable). It is outside the combustion 

zone, where fluid dynamics and permeability heterogeneity are dominant. In the simplified 

example given previously, these would be regions I and I11 of Figure 1. Now, in all practical 

applications, the reaction zone has a sufficiently small width, so that it can be viewed as a 

front. Appropriate jump conditions can then be derived across it. In addition, it is likely that 

the heat transfer layer width is small compared to the fluid dynamical scale of the problem, 2s. 

If that is the case, we can define the small parameter 6 = I$s,  and consider the combustion 

zone as a discontinuous front as shown in Figure 5. For such a description, additional jump 

conditions, now across the combustion front must be derived. 
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Figure 5: Combustion Front as a Discontinuity 



Before we proceed further, let us recall some basic notions related to front propagation. For 

simplicity, we will restrict our discussion to two-dimensional problems, although an extension 

to 3-D is straightforward. Consider a front propagating in the positive 5 direction and 

described by 

as shown in Figure 5. In our context, this equation separates a burned region ( F  < 0) from 

an unburned region ( F  > 0), where fresh solid fuel resides in the pore structure. Define the 

velocity of the surface by v. Then, from definition, the normal velocity with respect to a 

fixed frame of reference, v,, is 

where ft = &ff& and f- = af/aij,  and TZ is the unit vector normal to the front pointing in 

the direction of the unburned region 
Y 

In the flame propagation literature, a useful quantity is the net normal velocity with respect 

to the moving front, 

where .ito- is the average gas mixture velocity evaluated at F = 0-. In the case of porous 

media, however, the above must be modified, due to the presence of the porous medium, to 

read as 

where # is porosity. This and related quantities will be encountered below. 

In the following, we will consider in sequence, first a reaction front, and then a combustion 

front. Using asymptotic expansions, the structure in both fronts will be analyzed and ap- 

propriate jump conditions across the fronts will be derived. To proceed, we need first to 

formulate the governing equations of the problem. 



Governing Equations 

Consider the combustion in a porous medium of a solid fuel, of known initial composition 

and concentration. In in-situ combustion, this fuel is in reality produced as a result of the 

LTO step, preceding the combustion front. Given that the two processes are coupled, the 

concentration and composition of the fuel is, in principle, not known a priori and must be 

determined as part of the solution of the overall problem. In the following, we will assume 

that the initial density of the fuel per unit total volume is known and given by p ; .  

At any time, the system consists of two phases, a solid phase including the solid matrix 

and the fuel, and a gas mixture of injected oxygen and reaction products. The matrix is 

non-reactive, stationary and its thermodynamic properties do not change during the process. 

The solid fuel reacts with injected oxygen, according to  the following one-step heterogeneous 

reaction model 

[Fuel] + + [Oxygen] + qsp [Gaseous Product] 

where we used pseudo-components for the fuel and the produced gases, and where 7 are 

stoichiometric coefficients. This simplification allows for a simple treatment of a complex 

problem. In formulating the conservation equations we will assume the following: locally, 

pore space and solid matrix are in thermal equilibrium, hence a one-temperature model is 

used for the energy balance; heat transfer by radiation, and energy source terms due to 

pressure increase, and work from surface and body forces are negligible; the ideal gas law 

is the equation of state for the gas phase; thermodynamic and transport properties, such as 

conductivity, diffusivity, heat capacity of the solid, heat of reaction, etc. remain constant. 

We also define a conversion depth q(5 ,& t " )  = 1 - p&, such that 7 = 0 corresponds to the 

initial state and r)  = 1 to the case of complete fuel conversion. 

Conservation equations are written for the following quantities: the total energy, the oxygen 

mass, the total gas mass and the fuel mass, in terms of the temperature p(5, i j ,  i), the oxygen 

mass fraction Y(5 ,  g, t " ) )  the average gas density ps( f ' ,@)  and the fuel conversion depth. We 

also use Darcy's law for the flow of the gas phase, in terms of the pressure $(?,ij,t"). The 

dimensional form of these equations (superscript tilde) is shown below 



energy 

a?- 
(1 - #)cspsz + cspg6 * V F  = 27 - ( A m )  + Qp;w - Q h  

oxygen mass 

total gas mass 

and depth of conversion 

where, Q h  is a heat loss term and we introduced the rate of reaction W .  Using the law of 

mass action we will take 

where 

(17) k(?) = k,e -EjRp 

E is the activation energy, ko the pre-exponential factor, and n the exponent in the dependence 

on oxygen concentration and gas pressure. The dependence on q is through the dimensionless 

function $, the evaluation of which requires a more elaborate pore-level study [lS]. Clearly, 

$(1) = 0. 

In the above, ci is the average specific heat capacity of species z (gas or solid) at constant 

pressure, p ;  is the volumetric density of species i, and we assumed that the solid heat capacity 

is much larger than that of the gas. The average thermal conductivity, A, is an effective value 

including the effects of gas and solid phases on conduction. Q represents the heat release of the 

fuel combustion reaction and is also assumed to be independent of temperature variations, 

Variable Y is the mass fraction of oxygen in the gas phase, DM is an effective diffusion 

coefficient, while fig and are mass-weighted stoichiometric coefficients, T&?&Wj. The net 



gas production due to reaction is determined by the sign of ,Gg = jisp - so that fig > 0 or 

F9 < 0 corresponds to gas production or consumption, respectively. Finally, we have Darcy’s 

law 

where k(q) is the permeability and qg is the gas viscosity, and the equation of state, assuming 

ideal gases 

$Mg = p,RF (19) 

The expression for heat losses can take the simple form shown in (1) or the more elaborate 

expression 

reflecting heat conduction to a semi-infinite overburden and underburden (Yortsos and Gavalas 

[IS)). Here subscript h refers t o  the surroundings and H is the reservoir thickness. 

In the next section, we will proceed with a scaling and non-dimensionalization of the above 

equations. 

Scaling and Non-dimensionalization 

As described earlier, also shown in Figures 4 and 5, the problem includes three spatial scales, 

each associated with different dominant processes: the scale of a reactive-diffusive reaction 

zone, ZR, the scale of a convective-diffusive combustion zone, I T ,  and the convective scale 

1s. In the combustion zone, convection and conduction are of the same magnitude, namely 

the Peclet number, Pe = v*Z~c,p,/A is of order I, where the reference velocity v* is to be 

determined. This defines I T .  If the front temperature of a planar combustion layer is $?j, also 

to be determined from the solution of the problem, then we have 

IT - where Z = z [$I ’ 



The characteristic parameters to  be chosen depend on what is the focus of the analysis. If it 

is the reaction zone, the characteristic time is based on the reaction kinetics 

and the characteristic length is the combustion zone length I T .  If the focus is on the 

combustion zone, then we rescale both the characteristic time and length by 6-l, where 

S = l~ /Zs  << 1. Then, t ,  = 6 - ' t ~  and x* = S - l l ~ .  In either case, we have the reference 

velocity vu E 2 = F. This further implies the relation 1 
R 

v* = ti". (1 - #)CsPstR 

Scaling temperature with Po and density with the initial density pg; and using the combustion 

zone formulation, we obtain the conservation equations in dimensionless form 

and 

where 

pVY) - dp@ 

In addition, we have 

v p  = --Kv 

and 

p o  = 1 + nP. 



In the above, we introduced the following variables and parameters 

where and Pinj are the initial and the injection gas pressure in the system. Note that 

the spatial coordinates are nondirnensionalized based on the system length, Is, which in the 

limit 6 << 1 allows to approximate the combustion zone as a thin layer. To focus on the 

combustion zone, we simply change the scaling, which is equivalent to taking 6 = 1 in the 

above equations. 

The boundary conditions depend on the extent of the combustion process. If we assume that 

the fuel is fully consumed, we will take for 2 0: 

e = e j  Y =  1, 7 - 1  

Y = yb, 0 = 1, q = O  

where Of and yb are to be determined. This is the fuel-deficient case. Otherwise, we have 

Y = 1, e = of ’I = ‘ I b  1 

(33) Y = 0, e = 1, q = o  7 

where Of and 

we will consider only the fuel-deficient case. 

are to be determined. This is the oxidant-deficient case. In the following, 

Moving Coordinates 

The final step in the formulation of the problem is to convert to moving coordinates, moving 

with the combustion front, which in the fuel-deficient case can be defined as the position at 



which 

equations take the form: 

= 1/2. If we denote II: = i - f(c,i!), y = $ and t = t", then the non-dimensional 

ae de a0 
- + (aps - ft) - + u p , -  = 6A9 + Sq@ - Q h D  
dt  d X  dY 

a P  
d X  

KV, = -- 

p o  = 1 + np 

Here, 

af 
dY 

s f 21, - vy-, 

(34) 

(35) 

is the longitudinal velocity of the gas mixture in the moving frame and we defined the Laplace 

operator in moving coordinates 

d2 d2 d2f a af d2 -+----- 2-- * = ( l +  f h 2  dy2 dy2 ax dy dxdy' 

For simplicity in the presentation, the density term in the diffusion of oxygen was approx- 

imated as constant. However, this approximation is not made in the subsequent analysis. 

Having obtained the desired formulation, we proceed next with the analysis of the structure 

of the reaction zone and then with that of the combustion zone. 



THE REACTION ZONE 

Under the condition 2 >> 1, the reaction zone thickness, ZT/Z, is much smaller than I T .  To 

analyze the structure of the zone, we stretch the longitudinal moving coordinate, X = Zz, 

and expand the dependent variables in asymptotic series in 2-l. Following [8] it can be shown 

that, to leading order, temperature, concentration, pressure and density axe independent of 

X. Thus, we take 

v y  v;(y,t) + * * * , 
f - f " ( y , t ) +  . - * -  

The respective leading-order terms are obtained after substitution in the governing equations. 

Combining the energy equation with the fuel balance, shows that the leading-order terms are 

O(Z-l), in which case only conduction in the X direction and reaction participate, namely 

(note that the heat loss term vanishes to leading order). For the oxygen m a s  balance, a 

similar analysis shows that the leading-order terms are convection, diffusion and reaction, 

hence 

where we have taken into account that po is constant, while the total gas mass balance reads 



The equation for the fuel mass is expressed to leading-order as 

where we used a power series expansion for the exponential term. Finally, to leading-order, 

pressure is constant within the reaction zone. 

Integrating equations (43- 45) across the reaction zone determines the jumps in heat, oxygen 

mass and gas mass fluxes across the front in terms of the jump in depth of fuel conversion, 

The depth of conversion equation (46) can also be integrated across the reaction zone. For 

this, we first integrate equation (43) using the boundary conditions dO1/aX = 0, 7" = 1 as 

X += -00, to give 

s1-t.f; [ "1 a- - -qfP(l - ?f) 

Then, multiplying equation (50) by (46) yields 

This equation can be now integrated across the reaction zone, to give the following result for 

the square of the normal front velocity 

We note that the expression for the normal front velocity is primarily related to the unknown 

mass fraction of the oxidant at the completion of the reaction and the pressure at the front. 

Conditions (47-49) also express the jump of the corresponding quanities across the reaction 

zone. Namely, if we define the jump in a quantity of the combustion zone ; r ~  across the 



reaction front as [TI! = T (z = O+) - T (x = 0-), we obtain for the deficient-fuel case (where 

Tfl:m = 0 - 1 = -1) 

[Y]: = [e]+ = [lo]: = o, [VI+ = -1, (53) 

and 

In the above we have assumed full consumption of the fuel at any point of the front. 

THE COMBUSTION ZONE 

Consider, next, the combustion zone structure. Outside the reaction zone, the chemical re- 

action rates are insignificant. To analyze this problem, we must consider the conservation 

equations to either side of the reaction front, across which the jump conditions derived pre- 

viously apply. For this, we need to consider an expansion valid inside the combustion zone, 

in which conduction and diffusion, but not chemical reaction, are taken into account. 

In the context of the overall problem (Figure 5), the combustion zone has a dimensionless 

extent of order 6, hence we must introduce the stretched coordinate E = x / 5  and seek inner 

expansions of the following form 

e - e,+6e1+ ..., 

Y - Y , + S K + . . . ,  



These expansions are then introduced in the equations in moving coordinates. Under the 

condition 

the energy balance reads 

QhtR << 1, the heat loss term does not contribute to leading order, thus 
(1 - + ) c , P S T ,  

where 

and 

a f o  
dY 

s, = v,, - vyo- 

Oxygen, total gas and fuel mass balances become, respectively, 

where 

.so([, Y, t )  = so - # j o t -  

Darcy’s law gives 

and the ideal gas law reads 

poOo = const. 

(57) 

Parameter a, representing the ratio of gas to solid heat capacities is small, thus, we expect 

A, < 0. Also, for a propagating front along the positive 5 direction, we must have so > #fo , t 
hence Bo > 0. Experimental data obtained in combustion tube experiments (e.g. see Martin 



et al. [19], or Mamora and Brigham [20]), confirm these assumptions. We can then proceed 

to integrate the above equations. 

Because A, < 0, the only possible solution for 8, in the region 

of 5 (otherwise, 8, will become unbounded its 6 + -00). To find the solution for 

integrate (55) and make use of the jump condition at the reaction front 

< 0 is a constant independent 

> 0, we 

to obtain the result 

: ( < O  

showing that the temperature decays exponentially fast downstream of the combustion front. 

Working similarly, equation (58) shows that because Bo > 0, the solution for Y in > O must 

be a constant independent of t. Equation (59) also shows that poBo is a constant. Then, 

by integrating (58) in the region E < 0, where po is constant, and making use of the jump 

condition across the reaction front, 

we obtain the final result 

I Yo = I 
r 1 

: O<( 

This equation gives the profile of the mass fraction upstream of the reaction front. Fianlly, 

equation (60) gives the expected result 

1 : e < o  
0 : o < t  5Jo= { 
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*f I Front 

Figure 6: Schematic Profiles of Temperature, Oxygen Mass Fraction and Fuel Conversion in the Combustion 

Zone. 

assuming, again, complete fuel combustion. Figure 6 show schematic profiles of temperature, 

mass fraction and conversion across the combustion zone. 

Note that A, in the temperature equation involves the mass flux poso downstream of the 

reaction front (although its contribution to A,, may be very small due to a << I), while Bo in 

the mass fraction expression involves the mass flux upstream of the reaction front. The two 

fluxes axe related to each other through the jump condition 

derived in equation set (54). The above equations represent the leading order “inner” expan- 

sion to the large scale problem, for which the cornbustion front appears as a discontinuity. 

In the section to follow we will consider the “outer” problem, on either side of the front (see 

Figure 5) by keeping only the convective transport term in the equations. To match the outer 

expansions we use the jump conditions derived from the inner problem, namely the problem 

in the combustion zone. These were derived previously to leading-order, and are summarized 

below. 



These equations must be considered along with equation (52) for the normal front velocity, 

where Y"(y,t)  = yb. 

THE CONVECTIVE TRANSPORT REGION 

The scale of the outer problem is the scale of the originally derived equations. Here, conduc- 

tion, diffusion and reaction (but not heat losses) are negligible, and we seek expansions of 

the form 

6 N Oo+SO1+ ..., 
Y - Y0+ST1+ ..., 

p - P O + d P I + . . . ,  

p N R,+J.&+...,  

s - so+dsl+ ..., 
vy - vyo + sv,, + . . . . 
Direct substitution in the original equations shows that the leading term of the expansions 

satisfy the following 

dO, 80, a@, - t (aR,So - fo )- + a&V,,- - - -QhD 
at t ax dY 

apo 
KV,, = -- 8s ' 

ROO, = 1 + rIP,, 



s, = v,* - vyo (2). (74) 

The fuel mass balance shows that the convective derivative of qo in the moving coordinate 

system vanishes, implying that the depth of fuel conversion is constant in both regions, as 

expected, 

The solution of the outer problem must be considered in the two regions on either side of the 

combustion front, itcross which the jump conditions previously derived apply. The solution 

can be attempted using the method of characteristics, or the method of streamlines depending 

on the complexity of the geometry and heterogeneity in permeability. In the general case, 

the problem must be solved numerically. 

In the following section, we illustrate the application of the previous results by considering 

the particular example of a planar front. 

CASE OF A PLANAR FRONT 

For the case of a planar front, we have A, = amzD - Vo, where mTD is the dimensionless mass 

flux downstream of the front and V ,  is the dimensionless front velocity. Using the expression 

for the temperature profile inside the combustion zone, in conjunction with the continuity of 

temperature at E = 0, [BO]f = 0, gives an expression for the dimensionless temperature at the 

front, which reads as follows 

Note that rnZD = mLD + psVo where miD is the incoming mass flux. Equation (75) is a. more 

rigorous dimensionless expression for the temperature jump across the front, compared to 

equation (4). Note that if am:' << 1, then B j  is the adiabatic temperature rise 



Table 1: Typical Values of Porous Medium and Fluid Parameters for Combustion 

Parameter 

Q 
E 
R 
ko 

T o  
n 

Pi 

A 
9 

P gi 

Cg Psi 
p7 

(1 - 4 ) C S P S  

Mf 
*(?I) 

H/C Ratio 
P 

Pi? 

Source: References [ 13, [2] and [ 121 

Value 

17,000 Btu/lbm fuel 
3 1,600 B tu/lbmole 
1.987 Btu/lbmole-R 
498 s-latrn-l 
212 F 
1 
10 atm. 
12 Btu/€t-D-F 
0.3 
0.0765 Ibm/ft3 
0.0184 BCu/ft3-F 
1.2 lbm/ft3 
30 Btu/ft3-F 
235 lbm/lbmole 
1-7) 
1.65 
51.2863 
16.9935 

However, as shown later, this is not generally the case. 

In the planar case, the dimensionless velocity is given from 

the calculation of which requires an expression for &. This is obtained from the expression 

for the oxygen mass fraction within the combustion zone, along with the requirement of 

continuity at = 0, hence 

Note that for 6 > 0, the condition mLD > ($po + p)Vo must apply, namely the total gas 

mass flux should be sufficiently large. 

Expressed in dimensional form, equations (75), (77), (78) and equation (22) form a system 

of four algebraic equations in the four unknowns, Tj,  V', and w*. The problem was solved 



numerically for the parameter values shown in Table 1. Before we proceed, let us note that for 

a burning temperature of 934°F (1394"R), we have IT =0.26 inch (0.66 cm) for the combustion 

zone thickness, and ZR -0.041 inch (0.12 cm) for the thickness of the reaction zone. The very 

small thickness of these zones should be carefully considered in the implementation of direct 

numerical simulation of in-situ combustion, particularly at the field scale. Results for the 

dimensionless velocity of the front V" , unreacted oxygen concentration K, combustion front 

temperature Tj and the reference velocity are shown in Figures 7 through 10 as a function 

of the injection velocity. As expected, the variables increase with the injection velocity. The 

results show that the temperature and velocity of the reaction zone increase monotonically 

as the gas flux increases. 

The analysis based on the model demonstrates the importance of gas flow on the combustion 

dynamics of forward combustion in porous media. For instance, equation (76), which is 

the adiabatic temperature in the absence of flow is equal to 1350.4"R for the reference data 

of in Table 1. Figure 9 shows that the actual front temperature is higher than this value, 

the difference increases with increasing gas velocity. Hence, the temperature in the reaction 

zone significantly exceeds the combustion temperature predicted by solely thermodynamic 

arguments. 

CONCLUDING REMARKS 

In this section, we proposed a method for modeling the propagation of combustion fronts in 

porous media, by treating the reaction region as a place of discontinuities in the appropriate 

variables, which include, for example, fluxes of heat and mass. It was shown that reaction 

and combustion fronts have a spatially narrow width, estimated to be of the order of cm, 

within which heat release rates, temperatures and species concentrations vary significantly, 

The narrow width calls for an approach in which these fronts are treated as surfaces of 

discontinuity. 

Using a rigorous perturbation approach, similar to that used in the propagation of flames 

[3] and smoldering combustion 171, we derived appropriate jump conditions that relate the 

change in these variables across the front to leading order. The conditions account for the 



kinetics of the reaction between the oxidant and the fuel, the changes in the morphology of 

the pore space and the heat and mass transfer in the reaction zone. Then, the modeling of 

the problem reduces to the modeling of the dynamics of a combustion front, on the regions 

of either side of which convective transport of momentum (fluids), heat and mass, but not 

chemical reactions, must be considered. Properties of the two regions are coupled using the 

derived jump conditions. This methodology allows to explicitly incorporate permeability 

heterogeneity effects in the process description, without the undue complexity of the coupled 

chemical reactions. 

For the case of 1-D planar fronts, we derived explicit expressions, which allow to obtain the 

burning temperature, the front velocity and the amount of oxygen left unreacted, in terms 

of the process variables, such as injection rates and pressure. We showed that the front 

temperature and velocity increases monotonically with increasing injected gas flux, and the 

combustion fronts can propagate in porous media due to non-trivial effect of heat convection. 

For the case of fronts in two and three dimensions, particularly in heterogeneous porous 

media, a numerical method must in general be implemented. The analysis described must 

be extended to include higher-order terms in the small parameter 6. In progress is a stability 

analysis of the front, which also includes higher-order terms. Also neglected in the examples 

were heat losses. In any case, however, the proposed treatment of the front as a discontinuity 

calls €or a different approach in the simulation and upscaling, when coarse grids, such as 

those at the field scale, must be used. Because of the hyperbolic nature of the equations in 

the outer regions, methods based on characteristics and, more generally, on front tracking 

would appear to be appropriate. However, a direct implementation of existing methods, for 

instance of streamline simulation, is not feasible, because fluid and temperature streamlines 

are generally not the same, due to the difference in the volumetric heat capacities of gas 

and solid. In addition, the reacted mass fraction are to be obtained from the solution of the 

overall problem. Further research is needed in this direction. 
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IV. INSTABILITIES, HETEROGENEITY AND UPSCALING 

Displacements of heavy oil are typically subject to viscous instabilities, given the adverse 
mobility ratio in most such applications. While viscous instabilities are well understood, 

their interaction with heterogeneity is not. In this section we report on a study which 

addresses the effect of a longitudinal heterugeneity in permeability on the stability of 
displacements with non-monotonically varying mobility. While the study nominally 

addresses miscible displacement in the absence of dispersion, it also applies by a simple 
extension to immiscible displacements, where non-monotonicit y in mobility is the result 

of relative permeabilities. A non-trivial effect is found &om the ifiteraction of these two 
effects. Experimental work is under way with collaborators fiom the University of Paris, 
to test the theory. The section also reports on a project supported by this contract on the 

identification of the permeability heterogeneity of a porous medium by the injection of a 

passive tracer. It is worthwhile pointing out that this method is based on direct inversion, 

and also allows the estimation of the components of the permeability tensor in anisotropic 

porous media. Continuous on-going work is being done on the interaction between 

instabilities and heterogeneities and on the upscaling of unstable processes. 





DISPLACEMENT IN HETEROGENEOUS POROUS MEDIA 

WITH NON-MONOTONIC PROFILES: STABILITY ANALYSIS 

Maryam Shariati and Yanis C. Yortsos 

INTRODUCTION 

Almost without exception, porous media are heterogeneous both at the Micro-scale (pore- 

scale) and the macro-scale. Fluid displacements will consequently be affected by this hetero- 

geneity. Currently, simulation of flow and displacements in porous media is invariably based 

on heterogeneous permeability fields, the influence of which on flow and transport has been 

found to be fundamental. In this paper we address a specific aspect, namely the effect of 

permeability heterogeneity in porous media on the stability of displacement fronts. We will 

show that interesting results are to be found when the profile is non-monotonic. 

In the  conventional stability analyses of displacement processes the porous medium is 

assumed to be homogeneous. The typical problem posed is to examine the frontal stability 

of a slightly perturbed base-state, the perturbation being imposed either externally or as a 

result of small fluctuations in permeability. In this sense, the analysis of the problem is similar 

to the classical Saffman-Taylor [ 17 problem of displacement in a homogeneous Hele-Shaw cell. 

As is well known, in the absence of gravity, and in the long-wave limit, displacements are 

stable, if the ratio of the end-point viscosities is smaller than one, M = E < I ,  and unstable, 

otherwise. Here, subscripts 1 and 2 refer to the initial (downstream) and injected (upstream) 

fluids, respectively. Viscous Fingering (VF) emerges as the unstable pattern under conditions 

of instability. 

Heterogeneity will interfere both with the onset and the development of the instability. 

Many numerical studies have focused on its effect on fully-developed instability. Based 

on numerical simulations, Waggoner and Lake [ 21 classified fully-developed displacement 

pat terns in three regimes, Viscous Fingering, Dispersion and Channeling, depending on the 

values of M ,  the variance and the correlation length of the heterogeneity. In this classification 

VF is the unstable regime when both the variance and the correlation lengths are very small. 

Analogous ideas were expressed in an earlier work by Araktingi and Orr [3]. In these studies, 



heterogeneity is modeled as a stationary, spatially correlated random field. Many studies 

since have expanded on the properties of these regimes. 

The fully-developed interplay between heterogeneity and viscous inst ability has also been 

addressed analytically. WeIty and Gelhar [4] derived effective equations for miscible dis- 

placements (including gravity) based on small-perturbat ion theory. They showed that a 

convection-dispersion equation is applicable when displacements are long-wave st able, but 

that in the unstable case the effective dispersion coefficient diverges with time. Lenormand 

[5] proposed a model that captures instability and heterogeneity through the additive con- 

tributions of a modified convective term, that follows the empirical Koval model, and of a 

dispersion term that follows the Gelhar and Axness [4] passive tracer dispersion. Recently, 

Zhang and co-workers [6] have applied small perturbation theory to a variety of displacement 

processes to derive equations for ensemble-averaged quanti ties. 

The effect of heterogeneity on the stability of displacement fronts has also been con- 

sidered. Using numerical simulation, Tan and Homsy [7] inferred that resonance between 

the most dominant wavelength of the instability, as determined by a stability analysis in 

a homogeneous medium, and the heterogeneity can enhance the instability. This idea was 

revisited several years later by de Wit and Homsy [8], [9], who provided a stability analysis 

of miscible displacement with dispersion in a sinusoidal, periodic permeability field. Using a, 

small amplitude expansion they showed that unstable wavelengths are amplified when they 

are in resonance with the underlying heterogeneity, the effect being largest at higher values of 

M and when the heterogeneity is transverse to the direction of displacement, for example in 

a displacement in a layered system, where the layers are parallel to the main flow direction. 

Numerical evidence confirming these results was reported in Chen and Meiburg [lo]. Essen- 

tially the opposite case, where the displacement is in a direction perpendicular to a layered 

system, was studied numerical by Chen and Neuman [ll]. These authors investigated the 

stochastic evolution of instabilities of a wetting front in a random permeability field. 

In this paper we consider the latter problem but in the context of miscible displacement. 

Miscible displacements find applications in various areas such as enhanced oil recovery, chan- 

neling in packed columns and in-situ solvent injection techniques for groundwater remedi- 

ation. The specific question we address is what is the effect of a longitudinal variation in 



permeability on the stability of displacement fronts. Heterogeneity is assumed only in the 

direction of displacement, m would be the case in displacements perpendicular to a layered 

system (Figure 1). This restriction is made in order to isolate a specific heterogeneity effect, 

although applications involving displacements under such conditions are not uncommon in 

natural porous media and soils, many of which are layered. The analysis follows the asymp- 

totic approach of Hickernell and Yortsos [12] €or uncovering the stability of perturbations of 

long- and short- wavelengths. Although this approach assumes the absence of dispersion, 

the latter can be readily incorporated in the results, as described in Loggia et a1 1171. 

We find the surprising result that longitudinal heterogeneity can affect qualitatively (in 

addition to quantitatively) the long-wave instability. Namely, we find that displacements 

which are predicted to be either stable or unstable, based on end-point stability criteria 

(such as the SaEman-Taylor), can in fact become unstable or stable, respectively, by appro- 

priate changes in permeability. A particularly simple such variation is a sudden discontinuity 

in the permeability. Interestingly, in the absence of gravity, this change of stability occurs 

only if the base-state mobility profile is non-monotonic (otherwise, the effect is only quan- 

titative, there being no change of sign on the rate of growth of the disturbance). However, 

in the presence of gravity, the effect exists for monotonic profiles as well. This effect is 

not due to the change in the total mobility, but rather arises from the fact that mobility is 

concentration-dependent, hence it can be convected, in contrast to the permeability hetero- 

geneity, which remains frozen. We note that non-monotonic mobility profiles arise in various 

applications, €or example in oil recovery as a result of the dependence of the total mobility 

in immiscible displacement on relative permeabilities (Chikhliwala et al. [14]), and in in-situ 

solvent injection for soil remediation due to the non-monotonic dependence of viscosity on 

the local concentration [15]. The stability of non-monotonic profiles in porous media has 

been analyzed by Manickam and Homsy [lS] (see also Loggia et al. [17]). In a sense this 

chapter extends the discussion of non-monotonic profiles, but now at the macro-scale, where 

flow in the porous medium is assumed to obey Darcy’s law. 

FORMULATION 

Consider the miscible displacement of fluid 1 by fluid 2 at constant rate qT,  in a layered 



system of constant porosity #, in a direction x perpendicular to the heterogeneity, as shown 

in Fig. 1. Without loss in generality, the displacement can be characterized by the concen- 

tration (volume fraction) of the injected fluid, C, which we take to be equal to 1 at injection 

and 0 initially. Viscosities and densities are functions of C. We follow Hickernell and Yortsos 

[12] and write in the absence of diffusion, dispersion and gravity 

v-q = 0 

dC 4- d t  + q-vc = 0 13) 

where q is the flow velocity, P is the pressure, k(x) the permeability of the porous medium, 

varying in the direction of displacement x and p(C) is the fluid viscosity, a function of 

concentration, to be specified in more detail below. Effects of density are also described in 

a later section. Under the above assumptions, there exists an one-dimensional base-state 

satisfying 

in terms of the moving coordinate = 5 - ut, where 

( 5 )  
QT v = -  
4 

In view of ( 5 ) ,  equation (4) admits an arbitrary solution for the base-state concentration 

profile. In fact, however, the analysis can be extended to account €or the effect of dispersion, 

by separately including longitudinal dispersion in the base state, and transverse dispersion in 

the perturbation, as suggested by Loggia et al. [17], as will be further elaborated below (Fig- 

ure Ib). Hence, without loss in generality, we can assume that the base state concentration 

has an erfc-type profile, and this will indeed be used in the numerical simulations below. The 

base state viscosity profile varies according to the specified viscosity-concentration relation. 

A schematic, that accounts for a non-monotonic dependence, is shown in Fig. IC.  



We next introduce appropriate dimensionless variables, denoted by subscript D, and 

transform the equations in dimensionless moving coordinates 

where i is the unit vector in the x direction. Then, we perform a linearized stability analysis 

by taking small perturbations and normal modes. Denoting the base state by overbar and 

dropping the subscript L? for convenience, we have 

where a and w denote the wavenumber and rate of growth of the disturbance, respectively. 

Substitution in the governing equations and linearization leads after some manipulations to 

the following equation 

To further proceed, we introduce the streamfunction 

a 2 k p  
Pw 

= o  

perturbation +, defined by 

- kP - -  - 
d t  Fi 

Substitution in (12) and integration leads to the final equation 



where for simplicity we also removed the overbar from the base-state viscosity profile. This is 

the final eigenvalue problem to be solved. Before we proceed, we make the following remarks: 

1. In the above k is a function of the moving coordinate (, where the tacit assumption was 

made that the permeability is frozen during the subsequent evolution of the perturbation. 

Freezing of the base-state is a common assumption in related stability problems (for example, 

see Tan and Homsy [IS]). 

2. The effect of Permeability does not enter in the eigenvalue problem solely as a total 

mobility ( k / p )  effect, but there is a decoupling of the two mobility contributions (of k and of 

p ) .  This reflects the fact that viscosity is only a function of concentration, the perturbation 

of which is convencted with the flow and also diffuses, while the permeability heterogeneity 

is posit ion-dependent only. 

3. The above can be modified to account for transverse (but not longitudinal) dispersion, 

which exerts a stabilizing effect. Indeed, by following a similar analysis as in Loggia et al. 

[17], we can show that accounting for lateral diffusion is equivalent to making in (14) the 

substitution 

where DT is a normalized transverse dispersion coefficient. In this approximation, transverse 

dispersion can be linearly added to the solution of the eigenvalue problem (14). On the other 

hand, incorporating longitudinal dispersion will raise the order of the eigenvalue problem to 

fourth (e.g Tan and Homsy [18], Manickam and Homsy [IS]), and will not be considered 

here. 

In the subsequent we will provide asymptotic solutions of (14) in the two limits of smaIl 

and large cy, respectively, which will be verified by the full numerical solution of the problem. 

Asymptotic Analysis at Large Wavelengths 

We follow an a analysis similar to Hickernell and Yortsos [12]. We consider the limit 

0 = a 2 / w  3 0 

and take the expansion 



from which it follows that 

(18) a2 2 w = ala + -a + - - -  
a1 

In this limit we consider an inner region, >> lnw. The 

solution in the inner region is denoted 4 and in the outer &'I, where s is the sign variable 

( f ) .  We then expand all in terms of powers of 0 

<< &, and two outer regions, 

Under the assumption that the permeability approaches constant far-field values ks, in the 

far fields, which will be assumed here, the outer solutions are exponential functions 

The inner expansion has a leading-order solution which is constant, 

4 0  = 1 

and a first-order solution which reads after one integration 

Expanding (21) and matching with (22) and (23) allows the determination of a1 (and K1). 

The result reads 

and 



(a1 + l > P  - IC1 = 
k- 

Equation (24) can also be re-written as 

$-”, ;&E 
Z+E CY1 = (26) 

Working likewise for the higher-order terms, we can determine the next order in the expan- 

sion. The final result is 

where 

and where we defined the €ar-field inverse mobilities Ms = e and the integral I = s-”, $$dJ. 

From an analysis of (24) we remark the following: 

1. In the case of a homogeneous medium, Equation (24) reduces to the well-known result 

(29) 
P + - P -  - M - 1  - 

CY1 = 
p + + p -  M + 1  

as expected. 

2. The effect of heterogeneity on the long-wave limit is due to the additional term 

s-”, f i $dc .  As shown in (24) and (26), this is not merely a total mobility effect. Compared to 

the end-point mobility values, instability is enhanced if permeability increases in the direction 

of displacement, and weakened in the opposite case. However, equation (26) indicates that 

this effect remains quantitative, namely it does not affect the sign of a1, if the base-state 

viscosity profile is monotonic, in which case the derivative of viscosity has a constant sign. 

3. The effect can be non-trivial when the base-case viscosity is non-monotonic, in which 

case, an appropriate form of heterogeneity may lead to a change in the sign of a1 from what 

is predicted based on the end-point ratio (29). 



4. It must be also noted that as in E121 in the absence of dispersion, the eigenvalue 

problem admits an infinite family of eigenvalues, one of which scales with a! in the long-wave 

limit, all others scaling with a2. In the presence of dispersion, however, the latter become 

sub-dominant, and it is only the mode scaling with a! that dominates the system response. 

A simple example that demonstrates the heterogeneity effect corresponds to the case of 

a variable mobility profile and a sharp discontinuity in permeability at E = 0, where the 

expression for a1 becomes 

where po = p(( = 0). Now, for an end-point unstable displacement, M = EL > 1, and a cc- 

non-monotonic profile with po > p- ,  p+, the displacement will actually be stabilized if the 

permeability decreases in the direction of displacement, such that 

Conversely, for an end-point stable displacement, M = EL P- < 1, and a similar non-monotonic 

profile, the displacement will actually be destabilized if the permeability increases in the 

direction of displacement, such that 

- >  k+ P + - P o ,  
k- p -  -po  

Additional numerical results will be shown below. A similar analysis of is not as easy, 

due to its complex dependence, and requires a numerical evaluation. Before we proceed, 

however, we will briefly comment on the short-wave limit. 

Asymptotic Analysis at Small Wavelengths 

By following the analysis of Hickernell and Yortsos [12], it can be readily shown that in 

the limit of small wavelengths and in the absence of dispersion, the largest eigenvalue of the 

rate of growth w,,, is dictated by the maximum in the logarithmic derivative of the viscosity 

profile, namely 



w,,, = max [TI (33) 

This result 

state has a 

is independent of the heterogeneity and suggests instability any time the base 

segment of increasing viscosity, as is the case with a non-monotonic profile. Of 

course, transverse dispersion, which scales at large a (small wavelengths) as -DTa2 (compare 

with (15), will dominate over (33) in this limit. Thus, in its presence, the most dominant 

wavelength is approximately the one corresponding to the maximum of w ( a )  - &a2, where 

w ( a )  is the solution of the dispersionless eigenvalue problem (14). Thus, the effect of a 

longitudinal heterogeneity in permeability on the stability is a long-wave effect. 

NUMERICAL RESULTS 

To verify the analytical predictions, the eigenvalue problem (14) was solved numerically 

using a shooting method as described in Chikhliwala et al. [14]. For convenience we consid- 

ered a dispersion-like base-state concentration profile 

1 C = -erfc(t) 2 (34) 

and the non-monotonic model of Manickam and Homsy, the parameters of which are the 

ratio in end-point viscosities, M ,  and the maximum (or minimum) viscosity. To model a 

monotonic change in permeability we took the two-parameter model 

where a > 0, or a < 0, indicates a permeability increase, or decrease, respectively, and b 

scales the region over which a permeability change occurs. 

We first show the predictions from the asymptotic analysis. Fig. 2-3 shows the variation 

of al. as a function of a for the case b = 1 and for two different base-state viscosity profiles, 

one corresponding to an end-point stable displacement ( M  = 0.2 < 1) (Fig. 2), and another 

to an end-point unstable displacement (M = 5 > 1) (Fig. 3), respectively. The base- 

state profiles are also shown in the respective figures. We note that the large intermediate 

viscosity values in these examples were only taken for convenience and are not indicative 



of any strong restriction on viscosity. As predicted, heterogeneity can alter the end-point 

predictions: For the stable end-point case (M = 0.2), the displacement becomes unstable 

above a critical value of a = 0.5. Conversely, for the unstable end-point case ( M  = 5), there 

is a corresponding critical value a = -0.5, below which the displacement is stabilized. 

These predictions were tested against the numerical solution of the eigenvalue problem. 

These predictions were tested against the numerical solution of the eigenvalue problem. Fig. 

4 shows the full dispersion relation w ( a )  for the case M = 0.2 and a = 0.5, for which 

the asymptotic theory predicts instability (al = 0.3366). Clearly, the theory is in good 

agreement with the numerical solution. At small a,  the behavior is linear, with a slope 

close to the predicted, while the large a behavior asymptotes the limiting value (33), which 

for this particular example is 0.9671. Fig. 4 shows the full dispersion relation w ( a )  for 

the case M = 5 and a = -0.7, for which the present long-wave theory predicts stability 

(al = -0.1613). The corresponding curve in Fig. 5 is the one corresponding to the smallest 

eigenvalue ~ 3 ,  as noted above. It is shown to satisfy well the theoretical predictions. 

We have also numerically studied the stability of various other forms of longitudinal 

heterogeneity, including sinusoidal and random perturbations. The results obtained were 

consistent with the previous analysis. Heterogeneity affects the stability only as long as it is 

coupled with mobility changes (compare with (24) or (26)). For example, in the case where 

the viscosity varies in the range <-, e+, then equation (24) becomes 

p -  + St+ E&&) ($$ - rc(s-) -<- k2 d t  
cy1 = F + E  

Multiple changes in permeability (for example a two-step variation) tend to enhance the 

effect considered, if both steps are in the same direction and to diminish i t  otherwise. 

A MECHANISTIC INTERPERTATION 

For a mechanistic interpretation of this interesting heterogeneity effect we consider the 

vortices formed at large wavelengths. It is in this limit, where the effect of longitudinal 

heterogeneity is strongest, as found above, and where we can benefit from the asymptotic 

analysis. At large wavelengths, there is a single row of (either stabilizing or destabilizing) 



vortices formed. The center of each vortex is the place where the streamfunction is maximum, 

which from (23) is the place 5' where 

To understand the effect of heterogeneity in a non-monotonic viscosity profile, consider, 

first, a homogeneous displacement. Then, use of (25) in (37) leads to 

namely the vortex center is at the place where the viscosity is the harmonic average of the 

end point viscosities, or, equivalently, where the mobility is the arithmetic average of the 

end-point mobilities. This interesting result is independent of whether or not the profile is 

non-monotonic. Consider, next, a heterogeneous field with a sharp discontinuity at = 0, for 

the sake of simplicity. The vortex center will shift as a function of the imposed heterogeneity, 

By a simple manipulation of (37) and (25), it is shown that the new position is determined 

from the following two equations: If E* < 0, then 

2(M - a ( M  - M*))  
M + 1 - a ( M  - 1) 

M* = 

and if e* > 0, then 

2M(1 + u - Moa) M* = 
M + 1 - a ( M  - I )  

(39) 

where we defined M* = e and Mo = &. As a varies, the vortex center, hence the 

corresponding M", moves along the base-state profile, in a direction determined from the 

two parameters M and Mo. Interestingly, the different branches of the non-monotonic profile 

(where there exists multiplicity of viscosity, for example the regions 5 < 0 and E > 0 in the 

profiles of Fig 2) are reached by different forms of heterogeneity. Indeed, Mo is the limit of 

both (39) and (40), however it is reached from the left (( + 0-, equation (39)) when a + 1 

and from the right (5 +- 0+, equation (40)) when a + -1. 

CL- 

To be more concrete, consider non-monotonic profiles of the type shown in Fig. 2, and 

take first, the case of an end-point stable displacement, where M < 1 but Mo > 1 > M 



(Fig. 6a). In the homogeneous case (a = 0), M* is the harmonic average of I and M ,  and 

consequently the vortex center is located somewhere in > 0 (point I in Fig. 6a). As a 

decreases to negative values, the vortex center shifts in the direction of increasing p,  which 

here is the direction of decreasing E (points I to 0 in Fig. 6a). However, we can show that 

it always stays in the branch corresponding to [ > 0, namely that which has a decreasing 

viscosity in the direction of displacement. Indeed, equation (40) shows that M* 5 Mo as a 

decreases, the equality reached in the limit a + -1 (where IC+ + 0). Because the vortex 

remains in a region of decreasing mobility in the direction of displacement, the displacement 

remains stable (see below for further elaboration of this point). On the other hand, when a 

increases to positive values, the vortex center shifts in the opposite direction of decreasing 

p ,  which is now the direction of increasing (points I to P, in Fig. 6a). Larger values of a 

result in the vortex moving further to the right. If large-wvalength instability conditions do 

not hold, namely if the profile is monotonic, Mo < 1, the vortex center will reach a limiting 

point (P in Fig. 6a) where M* = M ( 2 -  Mo), and the displacement remains stable. However, 

if the profile is non-monotonic, the vortex moves further and further away, as a increases, 

and at the limiting value 

(41) 
1 - M  

2 M ( ) - M - l  a- = 

it approaches P,. This moving away from the region where mobility changes occur, weakens 

the stabilizing influence of the profile and at the limiting point the displacement is neutrally 

stable. As can be shown by a direct comparison with (30)-(32), this is the point where het- 

erogeneity qualitatively affects the stability (01 = 0) and renders the displacement unstable. 

From this point on, further increases in a can only be accomodated if the vortex center jumps 

to  the other branch of the profile, where now an increase in a makes the vortex center to 

move in the direction from M, to 0 (Fig. 6a). Since the vortex resides in the region where 

the viscosity increases in the direction of displacement, the displacement is now unstabZe. 

A similar interpretation holds for the other case, where the displacement is end-point 

unstable (A4 > 1 with A40 > M > 1, Fig. 6b). In the homogeneous case ( a  = 0), the 

vortex is located somewhere in < 0 (point I in Fig. 6b). As a increases, the vortex center 

shifts in the direction of increasing p ,  which here is the direction of increasing ( (points I 



to 0 in Fig. 6b). As with the analogous case, the vortex always stays in the branch with 

< 0, namely that with increasing viscosity in the direction of displacement, the value 

Ado being approached in the limit a +- 1 (where k- + 0). Because the vortex remains in a 

region of increasing mobility, the displacement remains unstable. On the other hand, when a 

decreases to negative values, the vortex shifts in the opposite direction of decreasing p,  which 

is now the direction of decreasing g (points I to Mm in Fig. 6b). If the profile is monotonic, 

Mo < M ,  the vortex center will reach a limiting point M*, where M* = 2 - %, and the 

system remains unstable. However, if the profile is non-monotonic, the vortex moves further 

and further away, as a decreases, and at the limiting value am, it approaches M,. Again, 

this moving away from the region where mobility changes occur, weakens the destabilizing 

influence of the profile and at the limiting point the displacement is neutrally stable. From 

this point on, further increases in a can be accomodated if the vortex center jumps t o  the 

other branch of the profile, where now a decrease in a makes the vortex center to move in the 

direction from f, to 0 (Fig. 6b). Since the vortex resides in the region where the viscosity 

decreases in the direction of displacement, the displacement is now stable. 

A few additional remarks are needed to strengthen the above arguments. First, we need 

to show that vortices in a region of decreasing viscosity profiles are stabilizing, and vice 

versa. For this we borrow arguments similar to Manickam and Homsy [19] (although in 

this long wavelength limit, there is only one row of vortices in contrast to the pair of rows 

considered in the short wave analysis of Manickam and Homsy). In the region of decreasing 

viscosity in the direction of displacement, any two adjacent counter rotating vortices bring 

low viscosity fluid from the downstream to the upstream direction and high viscosity fluid 

from the upstream to the downstream direction (Fig. 7a). This will increase the flow 

resistance in the direction of the basic flow and will lower it where flow is not preferred, 

thus stabilizing the flow. Conversely, in the region of increasing viscosity in the direction 

of displacement, two adjacent vortices will bring high viscosity fluid from the downstream 

to the upstream direction and low viscosity fluid from the upstream to the downstream 

direction (Fig. 7b). This will decrease the flow resistance in the direction of the basic flow 

and will increase it where flow is not preferred, thus further destabilizing the flow. 

It  is of interest to note that the previous arguments also hold when the base-state profile 



has more complex non-monotonic segments in the two regions considered. For example, 

for the profile shown in Fig. 8a, which is the counterpart of Fig. 6a, application of the 

previous arguments and equations (39) and (40) shows that the vortex center will move 

in a monotonic fashion following the arrows indicated, thereby bypassing the regions of 

multiplicity. Likewise for the profile of Fig. 8b. We note an interesting hysteretic feature 

in the way the base-state profile is visited, which is dictated by the overall features of the 

displacement. This is probably worth of future analysis. 

To demonstrate the previous analysis we plot a single vortex its obtained from the numer- 

ical solution of the eigenvalue problem for a fixed value of the wavenumber (a  = 0.001) and 

for two different cases. Fig. 9 shows three snapshots corresponding to the end-point stable 

profile of Fig. 6a (where M = 0.2 and Mo = 3) for three different values of a (0,-0.5 and 

0.5). Here, urn = 0.1667, thus the second case corresponds to stable displacement, while the 

last case to unstable displacement. It is clear from Fig. 9 that the vortex shifts to the left 

as a decreases and that for a > am, it jumps to the destabilizing branch e < 0. Conversely, 

the case corresponding to an end-point unstable profile is shown in Fig. 10 (where M = 5 

and Mo = 10) for a = 0, -0.5 and 0.5. The first two values of a correspond to unstable 

displacement, while the last to a stabilized displacement. It is clear that the vortex stays in 

the unstable branch for the first two cases, moving in the direction predicted from above, 

while it jumps to the stabilizing branch in the latter case, as a decreases below the limiting 

value uoo = -0.2857. 

EFFECT OF GRAVITY 

The above analysis can be readily extended to account for effects of gravity, when the 

density is allowed to vary with concentration. We consider the case in which gravity acts 

only in the direction of displacement, as for example, in 2-D inclined systems, where the 

transverse direction,-y, is the horizontal. The analysis also covers the important case of a 

vertically stratified system, where the displacement occurs in the vertical direction. 

When density is a function of concentration the governing mass and momentum equations 

are given by 



3 + v - ( p q )  = 0 
at 

(43) 
k 
r)  

q = --(VP - P d 7  

where g is the acceleration of gravity and p the density of fluid. We proceed as before and 

in parallel with [12]. After considerable manipulations, the final eigenvalue problem reads 

where all variables are dimensionless, the density is normalized with a reference density po, 

and we have defined the gravity number G = kopOgs. Proceeding as before, we can obtain 

the solution of (44) in the two asymptotic limits of small and large a. 
4 T P -  

In the limit of small a, the leading coefficient a1 is given by 

Q1 = (z + F) - 
(45) 

where (p+ - p - )  is the normalized density difference of the initial to the injected fluid. We 

note that heterogeneity can have an important effect on the onset of instability, which in 

its absence will occur when M - 1 - G(p+ - p - )  = 0. However, unlike the previous case, a 

qualitative effect and the change of the sign of a1 do not necessarily require that the viscosity 

profile is non-monotonic. This can be readily seen by rewriting (45) as 

a1 = (46) 

Then, it is the variable p-G J k d p  that plays the role of an effective viscosity profile (compare 

with (26)), and which, therefore, can become non-monotonic by a suitable choice of G, k or 

p .  We will illustrate this effect with a simple example shortly below. For completeness, we 

also give the asymptotic result for the short wave limit. Here, 

d lnp  k d p  
w,,, = max[- - G---] 

d t  P 4 (47) 



It is clear that in the presence of gravity, heterogeneity will also affect the short-wave rates 

of growth. However, in view of the dominant effect of dispersion in that limit, we elect to 

not consider this limit any further. 

We demonstrate the longitudinal heterogeneity effect by considering a step change in 

permeability at E = 0 and a monotonic viscosity profile, in which case (45) reads 

N >  
Po-P- Po-Pt  

a1 = (r--- k+ (e + F) - 
where we introduced N = C(p+ - p-).  For simplicity, we will consider an exponential 

viscosity dependence on concentration (see Chen and Meiburg [lo], de Wit and Homsy [8], 

[9]), which allows us to identifyp- = 1, p+ = M and po = M1/' (recall that C(c  = 0) = l /2) .  

Then, (48) becomes 

 CY^ - a 2 N  - a ( M +  1 - 2 a )  + M - 1 - N (49) 

We will use (49) to study the effect of heterogeneity a on the shift of the onset of instability. 

For a homogeneous displacement, the onset of the long-wave instability occurs when M - 1 = 

N .  Using the latter to eliminate N from (49) we find 

a1 - .(a - 1 ) [ U ( v %  + 1) - (m - l)] 
Equation (50) has a different behavior depending on the value of M .  For M > 1 (in which 

case N > 0 at the neutral stability condition), a1 is positive in the intervals -1 < a < 0 
and a* < a < 1, and negative in the interval 0 < a < u*,  where a* = .* V f E 1  (Fig. lla). For 

M < 1 (in which case N < 0), a1 is positive in the interval a* < u < 0, and negative in 

the intervals 0 < a < 1 and -1 < u < a* (Fig. Ilb). Thus, a jump in permeability can 

promote or suppress the onset of instability, depending on the specific conditions. This can 

be physically translated as follows: 

In the case when a less viscous and lighter fluid is displacing downwards a more viscous 

and heavier fluid (or a heavier fluid is displacing upwards a lighter fluid, N > 0) gravity is 

stabilizing. An increase in permeability in the direction of displacement will further stabilize 

the displacement, provided that the permeability ratio does not exceed the value a (for 



the present case of an exponential viscosity-concentration dependence). If it does, or in the 

case of a Permeability decrease in the direction of displacement, the displacement will be 

destabilized. 

Conversely, in the case when a more viscous but heavier fluid is displacing downwards a 

less viscous but lighter fluid (or a lighter fluid is displacing upwards a heavier fluid, N < 0) 

gravity is destabilizing. A decrease in permeability in the direction of displacement will 

destabilize the displacement, as long as the permeability ratio is larger than a (for the 

exponential viscosity-concentration dependence). If it does, or in the case of a permeability 

increase in the direction of displacement, the displacement will be stabilized. 

CONCLUSIONS 

This linear stability analysis allowed for the derivation of short and long wavelength 

asymptotic expansions of the growth rate of disturbances with non-monotonic viscosity pro- 

files with longitudinally varying permeability. It is found that heterogeneity introduces a 

qualitatively different effect only in the case when the viscosity depends in a non-monotonic 

way on the concentration of the miscible displacement process. In this case, the Saffman- 

Taylor criterion fails to address the onset of instability which is now additionally dependent 

on the heterogeneity of the permeability field. 

Numerical solutions indicate that at long wave asymptotic expansions, for a fluid with 

a non-monotonic viscosity profile, a permeability increase in the direction of displacement 

enhances the propensity for viscous fingering instability to occur even though the end point 

viscosity ratio is smaller than one. By contrast, nominalIy unstable displacements can be 

stabilized if the permeability decreases in the direction of displacement. This behavior is 

possible only if the viscosity profile is non-monotonic. Short wave stability analysis remain 

unchanged regardless of the nature of the viscosity dependence. 

Future investigation should extend the stability analysis on the effects of heterogeneity in 

both longitudinal and transverse to further generalize the contributions and compared with 

previous findings [$I, [SI. 
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Figure 1: Physical Characteristics of the System: (a) Displacement in a Stratified Medium, 

(b) Base State Concentration, ( c )  Non-monotwi-c viscosity concen_tration profile. 
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Figure 4: Stability Dispersion Relation for M= 0.2 and pm = 3. The heavy solid line is the 
analytical prediction. - -  
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Figure 5:  Stability Dispersion Relation for M= 5 and p m  = 10. The heavy solid line is the 

analytical prediction. 



Figure 8: Evolution of Vortex Motion in the Direction of Displacement for : (a) an Endpoint 

Stable Displacement ,( b) an Endpoint Unstable Displacement. 
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IDENTIFICATION OF THE PERMEABILITY FIELD OF A POROUS 

MEDIUM 

FROM THE INJECTION OF A PASSIVE TRACER 

Lang Zhan and Yanis C. Yortsos 

INTRODUCTION 

Permeability heterogeneity is a most important feature of natural porous media, as it 

affects significantly flow and fluid displacement properties. These dictate flow paths, and 

the migration and dispersion of in-situ or injected fluids in porous media, with applications 

ranging from the recovery of in-situ fluids to the fate of environmental contaminants in the 

subsurface [l]. Heterogeneity is manifested at various scales, from the laboratory (core) to 

the megascopic (field) scale. Its ubiquitous and multi-scale nature has attracted the interest 

of many investigators, and a variety of studies have been devoted to its characterization and 

identification [2]. 

The classical approach for identifying permeability heterogeneity i s  based on the inversion 

of pressure data, under single-phase flow conditions [3]. Given that the transient flow of 

slightly compressible fluids in porous media obeys the diffusion equation, a variety of field 

tests (well tests) have been devised to infer Permeability features by matching pressure 

data at well locations to the solution of the diffusion equation. Pressure transient methods 

have also been applied to characterize the heterogeneity of laboratory cores, using mini- 

permeameters [4]. These devices essentially conduct mini-well tests on the surface of a 

laboratory core (by injecting a small pulse of air and monitoring the resulting pressure 

transient), which are used to infer a map of the permeability heterogeneity at the external 

surface of the sample. 

An alternative approach to permeability identification is based on the analysis of the 

arrival times during the injection of passive tracers (namely of tracers which do not affect 

the fluid viscosity and density). Various efforts have been made at the field scale to relate 

the arrival times to the permeability, and to match assumed permeability fields to such data 

[5]. These techniques are usually indirect, based on optimizing arbitrary (or constrained) 



initial guesses to match data at various, usually sparse, locations. As a result, they suffer 

from non-uniqueness. Nonetheless, useful information can be extracted, which can be used 

to constrain images of the subsurface permeability field. 

When knowledge of the displacement front at successive time intervals is available, for 

example through visual or tomographic techniques, arrival time methods should in principle 

be able to provide direct maps of the heterogeneity. Brock and Orr [6] reported one such 

attempt, based on the visualization of displacements in a 2-D heterogeneous bead pack. 

Withjack et al. [7] proposed a model to infer the permeability heterogeneity of laboratory 

samples from the analysis of concentration contours obtained from X-ray Computerized To- 

mography (CT). Their model is based on a number of simplifying assumptions, the main of 

which is that each flow streamtube has constant (but unknown) permeability and porosity, 

which is thus tantamount to  an assumption of a layered structure. Although restrictive, the 

work of Withjack et al. [7] was the first to point out the potential of CT in identifying the 

permeability heterogeneity. CT techniques are now routinely applied to monitor displace- 

ment fronts in porous media at. the laboratory scale. Advances in field scale tomography, 

for example by seismic methods or cross-hole tomography, are also likely to lead to analo- 

gous results at the field scale [8]. Yet, well-defined methods to invert such information to 

determine the permeability heterogeneity are currently lacking. 

In this section, we propose a new method which focuses on this question, namely on how 

to invert data on arrival times at various (and numerous) points in the porous medium to 

map the permeability field. The method, elements of which were briefly described in [9], is 

based on a direct inversion of the data, rather than on the optimization of initial random (or 

partly constrained) guesses of the permeability field. It is based on two basic premises, that 

Darcy’s law for single-phase flow in porous media is valid, and that the dispersion of the 

concentration of the injected tracer is negligible. Based on these conditions, we formulate 

a non-linear boundary value problem, the coefficients of which depend on the experimental 

arrival time data. Combined with information on the permeability or the pressure at the 

bounding (no-flow) surface of the porous medium we obtain a solution of the boundary-value 

problem, from which the permeability field can be directly calculated. The requirement that 

pressure or permeability values at a boundary must be known makes the method more 



suitable to laboratory applications. An important feature of the method is that it can be 

applied to determine the heterogeneity of anisotrop-ic media, where the permeability field is 

a tensor, as is often the case in many natural porous media. For this, displacements in two 

(for 2-D) or three (for 3-D) different directions must be conducted, as described below. 

As described below, the experimental information on arrival times enters in the technique 

in the form of spatial derivatives. As a result, the solution method is sensitive to errors 

in their estimation, which are expected to increase when variations in the permeability 

are sharper and larger. The errors are magnified around certain limiting streamlines, the 

width of which increases in the downstream direction, and may lead to poor estimates 

of the permeability in some regions. To circumvent the problem in such cases, we have 

modified the inversion method by considering a forth-and-back hybrid approach, in which 

arrival times are recorded a second time by repeating the tracer displacement in the reverse 

direction. This approach is then combined with an optimization technique to improve the 

resulting estimates. The need to repeat the displacement in two directions in such cases, is 

an additional limitation on the applicability of the method to field cases. 

The section is organized as follows: In subsection I1 we describe the inversion method for 

the case of isotropic media. Subsection 111 shows numerical examples which test the appli- 

cability of the method to various forms of permeability heterogeneity and its sensitivity to 

permeability variation and spatial correlation. Subsection IV describes the hybrid approach 

for inverting permeability fields with sharp and large contrasts. A sensitivity study of the 

effect of measurement errors is also provided. The extension of the method to anisotropic me- 

dia of known and fixed principal axes is presented in subsection V. We close with concluding 

remarks . 

DIRECT INVERSION ALGORITHM: ISOTROPIC MEDIA 

Consider the injection of a passive tracer in a heterogeneous and isotropic porous medium. 

In the absence of dispersion, the concentration C(x, t )  satisfies the equation 

dC 
at 

+(x)- + v - vc = 0 



where +(x) is the porosity of the medium and v is the superficial fluid velocity. Under slow, 

viscous flow conditions, the latter satisfies Darcy’s law 

v = -K V@ 

and the continuity equation 

v - v = o  (3) 

assuming incompressible fluids. Here, K(x) is the (symmetric) permeability tensor, and is 

a flow potential, V@ = ‘ ( V p  - p g ) ,  where p is viscosity, taken as a constant, p is pressure, 

p is density, also assumed constant, and g is the acceleration of gravity. For isotropic media 

we take K(x) = k(x)I, where I is the identity tensor. The anisotropic case is discussed in 

subsection V. In the absence of dispersion, we define a front location by the equation 

F 

F ( x ,  t )  = t - f(x) = 0 (4) 

where, assuming constant or monotonic injection rates, the function f(x) is single-valued, 

thus associated with a given point x is a single arrival time. Then, the concentration is given 

by 

( 5 )  C ( w )  = Ci( t )H( t  - f ( x ) )  

where Ci(t) is the injection concentration, and H is the Heaviside step function. 

The direct algorithm is based on the following. First, we equate the two expressions for 

the normal velocity at the front, given by the kinematics and by Darcy’s law, respectively. 

Noting that the normal at the front is given by 

VF - Of 
IVFI - IVf l  

n-=- -- 

we combine ( 5 )  and (6) with (1) to obtain a kinematic expression for the normal velocity 

there, namely 



Darcy’s law (equations (2) and (6)) gives another expression for the same quantity 

k(x)V@*V f 
IVPl 

21, = 

From (7) and (8) we obtain the following result for the permeability 

which, in principle, can be evaluated 

in Darcy’s law and making use of the 

for @, which reads 

in terms of and f- Substituting the above expression 

continuity equation (3) we obtain it non-linear equation 

The two equations (9) and (IO) constitute the keys of the direct inversion method. Equa- 

tion (10) i s  a partial differential equation which determines @, given appropriate boundary 

conditions, and information on the porosity, +(x) ,  and the arrival time function, f(x). From 

its solution, the permeability field can be directly calculated using (9). 

The following remarks are in order: 

1. For the solution of (lo), the porosity must be a known function of the spatial coordi- 

nates. For applications using CT, this is readily available. 

2. Although, at first glance, equation (10) appears to be an elliptic (Laplace type) 

equation, it is in fact a system of first-order hyperbolic equations. This can be readily 

shown, e.g. in 2-D, by introducing 

in which case (10) becomes 

where subscripts indicate partial derivatives. (A similar analysis holds for 3-D). The two 

equations (11 )  and (12) form a pair of first-order hyperbolic equations. For their solution, 

and thus for the solution of ( lo) ,  information on the potential @ at the (no-flow) boundaries 



is necessary* Equivalently, this information can be furnished from a knowledge of the per- 

meability at the boundaries (which, for instance, can be obtained for a laboratory sample 

by a mini-permeameter, as previously noted). At no-flow boundaries (where in the normal 

direction = 0), equation (9) becomes a partial differential equation for the variation of 

along the boundary, which can be integrated, given k and f at the boundary, to yield the 

required profile. In this way, the numerical method utilizes information from all boundaries, 

essentially solving an elliptic-like, rather than a hyperbolic system. In the applications to  be 

shown below we solved (10) assuming known pressure profiles at all boundaries. 

3. A notable feature of (9) and (10) is that they depend on the gradient of the front 

arrival time rather than on the arrival time itself. On the positive side, this reflects a desir- 

able sensitivity of the method to heterogeneity. However, this dependence also introduces 

numerical instability which can lead to problems when the permeability contrast is sharp and 

large, A technique to circumvent these problems and its sensitivity to error measurements 

is described later in subsection IV. 
In summary, supplied with boundary conditions on the potential, equations (9) and (10) 

can be solved directly to yield the permeability field in a heterogeneous porous medium 

based on information on arrival times and the porosity heterogeneity. The resolution of 

the inverted permeability field depends, among others, on the resolution of the arrival time 

contours. 

A Streamfunction Approach for 2-D Geometries 

Before proceeding, it is worthwhile to note that in 2-0 geometries, an alternative inversion 

method is possible, based on the use of the streamfunction Q ,  where 2 = v, and = -vy. 

Streamfunction-based methods were proposed by Brock and Orr [6] and Withjack et al. [7], 

using heuristic arguments, as noted previously. To proceed with such an approach, we first 

rearrange (7) to read 

afaq a faQ 
dy a x  a x  dy 
------ - -$(XI 

This is a first-order, hyperbolic differential equation for q, the characteristics of which are 



curves of constant f, namely of constant arrival time, which are available experimentally. 

Hence, the streamfunction can be computed by integrating along these contours, for example 

where: in the case of a rectilinear sample with a no-flow boundary at yo = 0, we can take 

qio = 0 without loss. To estimate the permeability we also need to compute the potential. 

In the isotropic case, we make use of the fact that equipotentials are orthogonal to the  

streamlines, thus 

Equation (15) is also a hyperbolic equation, which can be integrated subject to appropriate 

boundary conditions. Then, the permeability can be estimated from (9), or from the alter- 

native expression k = %/%. This approach does not rely on the restricitve approximations 

made by the previous authors. Illustrative examples will be discussed below. 

APPLICATIONS USING SIMULATED DATA 

The direct inversion method was subsequently tested based on simulated data. We used 

a high-resolution finite-difference simulator (the main features of which are described in 

[lo]), or a strearnline-based method, to simulate tracer displacement at constant-rate and 

in the absence of gravity and provide data on arrival times and the pressure profile at the 

boundaries. Parenthetically, we note that the forward problem belongs to the general class 

of problems recently discussed by Sethian [ll], and can also benefit from the application 

of a Fast Marching Technique. Such was not implemented here, however. The numerical 

results thus obtained, were considered “error-free’’ data to be used as input for the solution 

of (10). The boundary value problem (10) was solved using a standard SOR finitedifference 

formalism, which was suitably iterated until convergence. For example, for the 2-D geometry 

we used the five-point scheme 



where is the conductivity coefficient at block ( i , j )  at iteration level rn. All other coeffi- 

cients were evaluated using the harmonic average between Orj and its nearest neighbor. An 

interpolation routine was used to interpolate the arrival times, when necessary. The spatial 

derivatives of f were calculated using three-point differences. Equation (16) was solved using 

prescribed pressure profiles on the two no-flow boundaries. 

Figs. 1-3 show results of the application of the inversion method in three 2-D hetero- 

geneity fields of a moderate permeability contrast, corresponding to a layered medium, a 

medium with a smoothly varying heterogeneity and a permeability distribution following 

fBm (fractional Brownian motion) statistics. Each figure shows true and directly inverted 

permeability fields, along with true and directly inverted and potential profiles. In all these 

examples, the direct inversion was found to give very good results. 

Fig. 1 shows that the method handles well permeability contrasts transversely to the 

direction of displacement, with some expected dispersion around the discontinuity. Potential 

profiles are also reproduced well, again with some differences noted around the discontinuity. 

We must emphasize that, particularly in this example, the success of the method rests on 

the availability of the potential profile at the boundary, which removes the non-uniqueness 

of the problem. (Indeed for a 1-D displacement at constant injection rate in a piecewise 

constant permeability, equation (30) becomes indeterminate.) Likewise, good results were 

found when the permeability contrast was in the direction parallel to the displacement. The 

ability of the method to invert the permeability field in the presence of an arbitrary closed 

region of sharp permeability contrast is discussed later. 

The permeability field of Fig. 2 is smoothly varying and contains two peaks and one 

valley, with a permeability contrast of about 2. It was generated in a 64x 64 grid using 

Franke's test function from MATLAB [12]. This function often serves as a test for the 

interpolation of scattered data. We first note that the arrival times are more sensitive to 

the heterogeneity, than the pressure profiles, which are essentially parallel to  the transverse 

direction. This feature was also noted in all other cases, where the permeability variation 

is relatively smooth. Fig. 2 shows that the comparison between actual and inverted fields 

(in permeability and potential profiles) is very good. This example is characteristic of the 



success of the method in smoothly varying permeability fields. 

A more stringent test is shown in Fig. 3 involving a similar permeability contrast. The 

permeability field is of the fBm type with a Wurst exponent H = 0.8, and it is a typical 

example of a self-affine field, containing large-scale correlations [13]. f8m statistics with a 

Hunt exponent larger than 0.5 are often taken to describe the heterogeneity in the horizontal 

permeability of natural rocks [14]. Fig. 3 shows that the match between actual and inverted 

data is also quite good. Potential profiles are closely matched. The inverted permeability 

reproduces well the main features of this field, specifically the regions where the permeability 

is high, medium or low. However, discrepancies do exist in the detailed point-by-point 

variation of the permeability, the inverted field being somewhat smoother than the actual. 

The ability to capture long-wavelength, as opposed to high-frequency, variations is typical of 

this technique and was noted in other examples, as well. Fig. 4 shows a statistical analysis 

of actual and inverted permeabilities. Histograms and the correlation structure (the semi- 

variograms) match quite well, and the scatter plot is satisfactory. The dispersion around the 

45" line indicates a small degree of point-by-point mismatch, as also evidenced in Fig. 3. 

The direct inversion technique can be equally well applied to 3-D geometries. Before we 

proceed, however, it is instructive to compare inversion results using the 2-D streamfunction 

method described in the previous subsection. Figs. 5 and 6 show the resulting perme- 

ability estimates, along with the associated streamfunctions, corresponding to Figs. 2 and 

3, respectively. The streamlines are well reproduced, and the inverted permeability fields 

maintain the large correlation features. However, it is evident that the inverted fields miss 

many details. There itre also apparent defects extending along slice-shaped regions, which 

arise from the integration along the arrival time contours. A statistical analysis, not shown 

here for lack of space, shows that the inverted permeability reproduces reasonably well the 

semi-variograms. However, the histograms, and to a greater degree, the scatter plot, have 

large errors in several places. The streamfunction method is prone to relatively large numer- 

ical errors, as it involves a threefold interpolation for spatial derivative estimation and the 

integration of hyperbolic equations (for determining the streamfunction). These weaknesses 

make the method unfavorable compared to the direct solution of (9) and (10) (as seen in 

the comparison of Figs. 2 to 5 and 3 to 6). Advantages of the method, on the other hand, 



are that the permeability is inverted fast, compared to the previous, while one also readily 

obtains streamfunction and streamline profiles. These may be useful in certain applications, 

particularly in the field. 

To demonstrate the applicability of the direct inversion method to three dimensions, we 

considered the 3-D permeability field shown in Figs. 7a and 7b, consisting of a log-normal 

distribution generated by Sequential Gaussian Simulation, with a natural logarithmic mean 

of 2.0, a standard deviation of 0.2 and a dimensionless correlation length (with respect to 

the sample size) of 0.5. The permeability variation is somewhat larger than before. Char- 

acteristic arrival time contours from the simulation of the forward problem in a 16x16~16 

lattice are shown in Figs. 7c and 7d. The direct inversion algorithm was applied by using a 

3-D version of (16) along with boundary conditions supplied from the forward problem. The 

results of the permeability inversion are shown in Fig. 8. They appear t o  be in relatively 

good agreement with the actual (Fig. 7a and 7b). A more quantitative comparison is shown 

in the statistics of Fig. 9, calculated by GSLIB [15]. In general, the comparison is good. 

The. inverted field shows a smaller range of variation than the actual, as reflected in both 

the semi-variogram and the histogram. We note that the spatial correlation structure of 

the former is well captured in the inverted data. The scatter plot indicates a somewhat 

larger dispersion, compared to the fBm field of Figs. 3-4, which is expected, given the larger 

permeability contrast here. 

In the above examples, where the permeability contrast is not too large, or where the 

permeability has relatively large spatial correlations, the direct inversion method gives good 

results. When the contrast increases and variations in permeability are sharper, however, 

the method is subject to increased errors. These arise primarily from the approximation 

of the spatial gradients of the arrival time in regions where the latter varies sharply. Fig. 

10 shows arrival time contours, calculated analytically (see Appendix), for flow around an 

embedded sphere of lower permeability. Even though the Permeability contrast is relatively 

modest (0.6:1), there exist two thin layers, extending downstream of the sphere and centered 

around the two limiting streamlines tangent to the sphere, where the arrival times exhibit 

sharp spatial variations. In these regions, the evaluation of the coefficients of (10) is likely 

to introduce errors and accordingly poor estimates for the permeability in certain places. 



These limiting streamlines also exist in any other fields containing regions of sharp perme- 

ability contrast. Because the respective layers extend downstream of the region of the sharp 

contrast, however, the associated errors in permeability estimates are different depending 

on the direction of displacement. We have conjectured, therefore, that the estimates of the 

direct method could be improved substantially? if we were to combine information from two 

different displacements, one in the forward and the other in the reverse direction. 

A HYBRID ALGORITHM 

To circumvent the problems posed by high permeabiiity contrasts we implemented the 

following hybrid procedure: 

1. Carry out a tracer displacement in the forward direction and directly invert to obtain 

one permeability estimate, kj (x). 

2. Carry out a tracer displacement 

a second permeability estimate, kb (x) . 
3. Retain the estimates in those PI. 

n the reverse direction and directly invert to cibtain 

ces, where they differ in absolute value by no more 

than a prescribed value, and discard in all others. Assign estimates in these regions by an 

interpolation algorithm (known in the geostatistics literature as kriging). 

4. Use an optimization algorithm (to be briefly described below) to fine-tune the so 

obtained composite permeability estimates. 

The optimization algorithm is based on standard gradient methods [16] and will not be 

discussed here in detail. We briefly note that we used the following objective function 

1 
2 

3 = -{ [f (k) -f"]T*W,*[f(k)-f']+ [k-kP]T-W,*[k-kP]+[9b-@r]T.W, -[@b-@T]} (17) 

consisting of three inner product terms. The first is the weighted sum of the squares of 

the differences between the current estimates of the front arrival times, f ? obtained from the 

simulator response, and the "error-free" data, f". The weight W1 is a diagonal matrix whose 

elements are the inverse of the variances of the errors of the measured arrival times. The third 

term is the analogous inner product for the differences between the current estimates for the 

potential at the no-flow boundaries, Qeb, and the data, @r, with W3 being the corresponding 



diagonal matrix. The second term represents the mismatch between the current permeability 

estimate, k, and its prior, k P .  It is a regularization term, as required by Tikhonov's theory 

[17], and restricts the parameters being optimized to not deviate greatly from the prior 

information. Here, W2 denotes the inverse of the covariance matrix of the prior. NumericaI 

experience has demonstrated its necessity for stable and convergent solutions. However, the 

accuracy of the initial guess plays a pivotal role in the convergence to the true solution. It is 

in this context, that the hybrid algorithm offers an important advantage. In our method, the 

prior information is supplied using the direct inversion method, outlined in steps 1-3 above, 

which is generally close to the true permeability field. As a result, in many of the cases 

tried, the optimization method converges close to the true values. By contrast, in other 

related inverse problems, the prior permeability is typically generated by a geostatistical 

algorithm constrained to (usually) sparse measurements, and its convergence to the true 

solution is generally uncertain (e.g. see [lS]). At the same time, we must stress that we 

have also encountered many problems involving sharp permeability contrasts, which cannot 

be successfully handled even with the hybrid algorithm, as shown below. For completeness, 

we mention that in order to match arrival times and boundary pressures as well as possible, 

we often had to increase their weights in the objective function by multiplying with a large 

number. 

Applications of the hybrid algorithm using simulated data are illustrated in Figs. 11-14 

for three different examples. The medium in Fig. 11 contains two blocks of low permeability 

with a 1:5 contrast. This particular configuration corresponds to the experimental Hele-Shaw 

cell used in [19], and was discretized by a 22 x 10 lattice. The top of Fig. 11 (panels a,b) 

shows the prior estimate fed to the optimization algorithm, following steps 1-3. Due to the 

sharp permeability contrast between low and high permeable regions, the spatial derivat'ives 

of the arrival times have significant numerical errors in certain regions, and lead after steps 

1 and 2 to a mismatch between true and inverted values in various places. Through step 3 

(where estimates were discarded when they differed by more than 30%), these errors have 

been minimized, The directly inverted field, after step 3, (Fig. 11, a,b) has the main trends 

of the true field, although it is obvious that the contrast is not as sharp as the actual, and 

is in need of fine-tuning. Results following the application of the optimization algorithm of 



step 4, using 40 iterations, and based on the initial guess after kriging (Figs. l la ,  Ilb), is 

shown in the middle of Fig. 11 (panels c,d). The results are much improved and, with a 

few exceptions, they are very close to the actual. Although not shown, potential and arrival 

time profiles are also matched very well. By contrast, if in the optimization algorithm we 

used a uniform initial guess, instead of that corresponding to the direct method (panels a, 

b in Fig. 11), the resulting estimate (after the same number of iterations) is poor in many 

places, as shown in the bottom of Fig. 11 (panels e,f). This is despite the fact that arrival 

times and potential profiles are also matched very well. We conclude that, at least for this 

example, the application of the hybrid method gives a substantial improvement. 

Fig. 12 shows the application of the algorithm to a correlated log-normal distribution 

with a logarithmic mean of 2.0, a standard deviation of 0.5 and a dimensionless correlation 

length of 0.25. In this example, the block-to-block permeability variation is much larger than 

in the fBm field of Fig. 3 or the 3-D field of Fig. 7, the largest contrast being of an order of 

magnitude. The application of the direct inversion method followed by kriging leads to the 

results shown in the middle of Fig. 12 (panels c,d). Although capturing the general features 

of the true field, the estimates are generally coarser and smoother than the actual values. 

Comparison of arrival times and potential profiles based on the inverted field (not shown for 

lack of space) indicates a mismatch with the actual in certain places. To fine-tune the results 

and recover some of the high-frequency variations, we applied the optimization algorithm 

of step 4. Results after 40 iterations are shown on the right of Fig. 12 (panels e,f). The 

algorithm does not fully reproduce the actual field, and some errors around large variations 

of permeability are detectable. However, it is obvious that a significant improvement has 

been achieved. Fig. 13 shows the corresponding statistical comparison. The mean and the 

variance from the hybrid algorithm agree very well with the actual- (By contrast, in results 

that are not shown here, the variance from kriging is underestimated by about 20%, although 

the mean is the same.) The two histograms are roughly equal, while the semi-variograms 

have the same correlation structure. The scatter plot shows that good agreement exists over 

a good range of lower permeabilities, allthough an increasing scatter can be seen at larger 

permeabilities. In this example, these are typically associated with large contrasts. We 

need to reiterate that the success of the hybrid algorithm depends to a large extent OA the 



accuracy of the initial guess, which is here provided by the direct method and positions the 

optimization scheme close to the true solution. By contrast, the estimates resulting from 

the application of the same optimization algorithm after bypassing steps 1-3 and utilizing 

a uniform initial guess were quite poor, even though arrival times and potential matched 

nearly perfectly with the true values. 

At the same time, we must point out that we have also encountered several cases where 

the hybrid algorithm was not as successful as desired. Fig. 14 (panels a.,b) is an example of 

a “checkerboard”-pattern heterogeneous field, with a permeability contrast of 1:4. A pattern 

similar to this was used in some previously reported tracer displacement experiments [ZO]. 

The results of the algorithm at the end of the kriging step are shown in the middle of Fig. 14 

(panels c,d). The mismatch with the true data is quite apparent. The 2-D projection in the 

middle of Fig. 14 reproduces roughly the places of maximum permeability variation) but the 

picture is clearly “out of focus’). The results of the application of the Optimization method 

are shown in the right of Fig. 14 (panels e,f). We note a clear improvement, compared to the 

previous step, and a better focused image. Yet, there is also clear evidence of mismatches in 

various places, including a smoothing of the sharp contrast around the edges of discontinuity, 

and of other defects, which altogether preclude an exact matching. Thus, although overall 

the hybrid algorithm appears to be a promising alternative in cases involving large contrasts, 

we caution that this is not uniformly true and that many counter-examples can readily be 

constructed where.this algorithm will not be as successful. 

SENSITIVITY STUDY 

The sensitivity of the algorithm to sharp permeability contrasts is a reflection of its relatively 

weak robustness to errors in arrival time and/or boundary pressure. To asses the latter, 

we studied the sensitivity of the directly-inverted permeability values to random errors in 

the arrival time and the boundary pressure, using again synthetic data. For this purpose, 

the forward numerical solutions for the arrival time and boundary pressure, f” and @bm, 

respectively, assumed to  represent true (error-free) results, were randomly perturbed as 

follows 



f, = f” + B,min[fm] 

and 

where 8, is a random Gaussian noise with mean equal to zero and standard deviation equal to  

E. The minimumtaken in (18) and (19) reflects the assumption that in a realistic experiment, 

the resolution of the measuring device is independent of the value of the quantity being 

measured. The results from (18) and (19) were then used in (9) and (10) to invert the 

permeability field following the hybrid algorithm. 

Shown in Fig. 15 are the sensitivity results for the permeability field of Fig. 12 (inversion 

error vs. E ) .  Two curves are shown, one corresponding to the full hybrid algorithm (steps 1-4) 

and another corresponding to the results after only steps 1-3 were completed, namely after 

kriging the direct estimates from the forward and backward displacements. As a measure of 

the inversion error, we used the standard deviation of the inverted from the true permeability, 

normalized with respect to the mean, the error in the input data being proportional to E .  

For each e, a total of 10 realizations were performed. The curves in Fig. 15 represent the 

mean values of the results obtained, with the standard deviation also denoted. First, we 

observe that even in the case of “err~r-free~’ input, the inverted data have a residual error. 

This was already noted in the discussion of Fig. 12, and was attributed to the relatively 

sharp changes in permeability for that field. We also note that inversion errors, following the 

full hybrid algorithm, are considerably smaller than those based on kriging, as also discussed 

before. As the error in the input data increases, however, the inversion errors for the hybrid 

algorithm, both in mean and variance, increase faster than those based on kriging. In fact, 

the latter is actually not very sensitive to errors in the input data, and in a sense is quite 

robust compared to the full hybrid algorithm. The latter outperforms kriging at small values 

of input error. However, it is subject to increasing inversion errors beyond a certain level 

of input error. The origin of this discrepancy is due to the two different objectives satisfied 

by the two algorithms. In the hybrid algorithm, the optimization aims to match arrival 

time and pressure data (even if they are inaccurate). In kriging, this matching is ignored, 



after the completion of steps 1-2. Similar behavior ww found with other types of synthetic 

permeability fields used. We conclude that the successful implementation of the technique 

proposed relies on input data of good accuracy. 

DIRECT INVERSION ALGORITHM: ANISOTROPIC MEDIA 

On the other hand, a strong attribute of this technique is that it can be applied to 

anisotropic porous media. In this subsection, we consider for simplicity 2-D geometries, 

where the principal directions of the permeability tensor are constant and coincide with the 

rectangular coordinates 5 and y, namely we take 

An extension to the more general case is under consideration and will be presented elsewhere. 

Under these conditions, the equations analogous to (9) and (10) read as follows 

(K-V@)-Vf = -#(x) 

and 

V(*K*V@) = 0 

Using scalar notation, and substituting from (20), we further have 

d @ d f  a w f  
ax ax kz-- + h d y d y  - - -# (23) 

and 

Equations (23) and (24) constitute a pair of two equations in three unknowns (kz, k, and 

@) and require additional information for their solution. One possible approach, by which 

this information can be obtained, is by conducting two tracer displacements, one in the 5- 

direction with no-flow boundaries perpendicular to the y-axis, and another in the y-direction 



with no-flow boundaries perpendicular to the z-axis. If we denote the arrival time functions 

and the potentials of the two displacements by f” and f r r ,  and and @ ~ l ,  respectively, Eq. 

(23) becomes 

for the respective displacements. Then, the permeability components can be determined 

from the two equations 

# kz = -- 
A 

and 

where 

given the data fr and f ~ ,  and the calculated potentials @ I  and @II.  The latter can be 

obtained by solving equation (24), with kz and ky given by (27)-(29), and with the appro- 

priate boundary conditions corresponding to the two different displacements. The following 

iterative algorithm was implemented to solve the resulting coupled system: 

1. Based on the v-level estimates for the potentials and @ y I ,  use Eqs. (27) and (28) 

to estimate the v-level iterates kz and ki- At the initial level (v = 0 ) ,  an initial guess, 

typically in the form of it linear variation, was supplied for the potentials. 

2. Based on explicit (v-level) estimates for kl and ki, integrate (24) twice, using SOR 

and a;:’. finite differences to calculate the potentials at the next iteration leve1, 

This aIgorithrn was found to work well for the various cases tested. 

The method was subsequently applied to the anisotropic permeability field shown in the 

left of Figs. 16-17 (panels a,b). Its statistics are similar to Fig. 7, and involve a log-normal 



spatially correlated distribution with the same mean and standard deviation. By simulating 

a forward tracer displacement in the two directions, 2 and y, respectively, we obtained 

arrival time functions and potentials at the no-flow boundaries, which were then used for 

the inversion according to the above scheme. The directly inverted fields (in the absence of 

optimization or kriging) are shown in the right of the two Figs. 16-17 (panels c,d), Given 

the coupled nature of the problem, the reconstruction of the two permeability components 

can be considered generally good. The method reproduces relatively well the regions of 

high and low permeability. Compared to the isotropic case under the same permeability 

contrast, however, the reconstruction is not as sharp, and the projections of the inverted 

images appear slightly “out of focus” in certain places. This mismatch reflects an underlying 

mismatch in the arrival times and the potential profiles, which is not shown here. Further 

work is under way to improve the algorithm and fine-tune the direct inversion method, 

including the implementation of a hybrid algorithm, as in the isotropic case. 

CONCLUDING REMARKS 

In this section we presented a method for the direct inversion of the permeability of 

porous media, based on arrival time contours and information on the pressure profiles at the 

boundaries. In real systems, the former can be obtained using techniques of visualization, 

computerized tomography (or seismic and cross-hole tomography €or field applications). The 

method utilizes Darcy’s law for flow in porous media in combination with the kinematics of 

flow, as expressed in the arrival times, to derive a boundary-value problem, the solution of 

which leads to a direct reconstruction of the permeability field. An important feature of the 

technique is that it requires information from the pressure at the boundaries, to solve an 

elliptic-like formulation, rather than the two hyperbolic equations, which formally describe 

the problem. The algorithm developed is a rigorous, although not necessarily robust, tool 

for the analysis of arrival time contours. 

Using simulated data, the method was found to work well for cases, where the permeabil- 

i ty contrast is not very large, and the field is spatially correlated. In general, the technique 

captures well variations corresponding to larger wavelengths, but not as well fine-scale de- 

tails. For sharper contrasts, a hybrid version of the algorithm was developed, in which the 



direct method is used to generate the initial guess in an optimization algorithm. The hybrid 

version minimizes the sensitivity of the method to errors in spatial derivatives, which are 

augmented in the presence of sharp contrasts. Numerical examples in two and three dimen- 

sions using simulated (assumed “error-free”) data demonstrated that the hybrid algorithm 

works well and that it is superior to the more conventional case, where the initial input is 

a uniform distribution. However, other examples can also be constructed, involving sharp 

contrasts and/or errors in the input data, where the inversion technique is not as satisfactory 

and requires further improvement. A sensitivity analysis showed that the method is prone 

to increasing inversion errors, as the quality of the input data deteriorates. On the other 

hand, a non-trivial advantage of the direct inversion technique is its potential to invert the 

permeability tensor in anisotropic porous media. Preliminary results for the case where the 

principal axes of anisotropy are fixed and known were presented and found to be promising. 

Further work is currently under way to fine-tune the method and to also extend it to the 

more general case, where the permeability tensor is full. 

The various requirements for its implementation suggest that the technique proposed is 

best suited for laboratory applications. Even then, its applicability relies on several con- 

ditions: the availability of pressure profiles at the system boundaries? the absence, or the 

minimization, of dispersion during the tracer displacement and the adequate resolution in 

arrival time contours. The first requirement appears to be the most difficult to meet, in 

view of the demand for adequate spatial resolution, which presently available tools may not 

possess, and the need to enforce Darcy’s law near no-flow boundaries. Alternatively, this 

profile can be obtained by locally probing the surfaces with a mini-permearneter to con- 

struct a surface permeability map, from which the pressure profile can be computed. A 
certain amount of pore-scale dispersion in real porous media is also unavoidable, given that 

the dispersion coefficient is proportional to the velocity? thus leading to it constant Peclet 

number and a finite amount of dispersion. However, for relatively small dispersivities, such 

dispersion effects could be minimal. Sufficient spatial resolution on arrival times would al- 

low to capture fine-scale variations, at the expense of increased computational time in the 

optimization routine of the hybrid algorithm, and possible instabilities as the degree of res- 

olution increases and the input error increases. However, it must also be remarked that in 



our experience, so far, a coarse-grid reconstruction can adequately capture the large-scale 

features of the permeability field, both in the isotropic and the anisotropic cases. 

Regarding field applications, the absence of boundary pressure data and the difficulty in 

conducting displacements in different directions, impose constraints that make difficult the 

application of the present technique. One could still use arrival time contours, if available 

through seismic or cross-hole tomography, to reconstruct streamfunctions and streamtubes, 

as outlined in the text for a 2-D problem. However, such information is not sufficient for the 

inversion of the permeability field, although it may be useful for other purposes. 

APPENDIX: ARRVIAL TIMES FOR CIRCULAR PERMEABILITY 
HETEROGENEITY 

In this appendix, we provide analytical solutions for a simple 2-D problem involving 

tracer displacement in an infinite domain of constant permeability 1, in which a circular 

inclusion of radius r = I and permeability K is embedded. Hence, the permeability is the 

step function 

k = (1 - K ) H ( T  - 1) + K (A-1) 

To solve this problem, we subtract the homogeneous solution (-z) from the potential, and 

thus consider the problem 

v - [kV(Z + +)] = 0 

where $ = -@ + =c. In view of (30) this further reads 

X v - (kV+) = - ( K  + l)6(?- - 1)- r (A-3) 

where 6 denotes the Dirac delta function. To solve (A-3) we use polar coordinates ( T ,  0) and 

the following interface conditions at the place of permeability discontinuity 

(A-4) 



and 

The solution follows readily 

1--K, 
I + &  

II, = (-) rcose ; r < l  

$ =  (i--) 1 - K  ;cos0 1 ; r >  1 

from which the velocity components can be calculated. We find, 

2 K  

I + &  
21, = - ; r < l  

v, = 1+(*) y2 - x2 
1 +)E ("2+y2)2 

; r > l  

and 

; r > l  

Thus, the streamlines are the solution of 

- = o  dY 
dX 

; r51 
2(1 - K ) X Y  

( 1  + K ) ( G  + y2)2 + (1 - .)(Y2 - x2) 
- =  dY - ; r > l  
dX 

from which the arrival times are obtained by integrating along the streamlines 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

where 4 is the porosity. These results were used to compute the streamlines and the arrival 

time contours of Fig. 10 in the text. 
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Figure 1: Application of the direct inversion method to the layered system: (a)-(b) actual 

permeability plots; ( c )  actual arrival times; (d) actual (solid lines) and inverted (dotted lines) 

potential profiles; (e)-(f) inverted permeability plots. 



1 

0.8 

X 

x 
1 0  

0.6 
5. 

0.4 

0.2 

0 
0 0.5 

X 

Y 

0 
0 0.2 0.4 0.6 0.8 1 

x 

.: .. . . .  . ._ 

0 0.2 0.4 0.6 0.8 1 
X 

Y 

1 

Figure 2: Application of the direct inversion method to a smoothly varying field: (a)-(b) 

actual permeability plots; (c) actual arrival times; (a) actual (solid lines) and inverted (dotted 

lines) potential profiles; (.>-If) inverted permeability plots. 
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Figure 3: Application of the direct inverse method to an fBm field with H = 0.8: (a)- 

(b) actual permeability plots; (c) actual arrival times; (d) actual (solid lines) and inverted 

(dotted lines) potential profiles; (e)-(f) inverted permeability plots. 
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inverted permeability plots; (c) actual (solid lines) and inverted (dotted lines) streamlines, 
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meability field in different cross-sections; ( c )  the arrival time distribution; (d) arrival time 

isosurface at t = 0.07. 
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Figure 8: Application of the direct inversion method to the 3-D field of Fig. 7: (a)-(b) 

representation of the inverted data in different cross-sections. 
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Figure 9: Statistical comparison between actual and inverted permeabilities of Fig. 8: (a) 

histogram of actual permeability; (b) histogram of inverted permeability; (c) omni-direction 

sernivariogram of the actual (solid lines) and inverted [dash lines) data; (d) scatter plot of 

actual and inverted data. 
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Figure 10: Streamlines and arrival time contours corresponding to it medium of uniform 

permeability in which a circular inclusion of lower permeability is embedded (permeability 

contrast is 0.6: 1).  The contours are calculated analytically (see Appendix). Displacement is 

from left to right. 
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Figure 11: Application of the hybrid algorithm to a system with block discontinuities in per- 

meability (permeability contrast is 1 5 ) :  Top two plots (a)-(b) show permeability estimates 

after steps 1-3 (kriging). Middle two plots (c)-(d) show permeability estimates after step 4 

(optimization). Note the closeness to the actual data. Bottom two plots (e)-(f) show per- 

meability estimates using the optimization method but with a uniform permeability initial 

guess. 
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Figure 12: Application of the hybrid algorithm to a field with a log-normal distribution 

with maximum contrast of about 10: (a)-(b) actual permeability plots; (c)-(d) plots of 

permeability estimates after steps 1-3 (kriging); ( e ) - (€ )  plots of permeability estimates after 

step 4 (optimization). Note that the cut-off value of the colorbars in the image plots is set 

at 25. 
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Figure 13: Statistical comparison between actual and inverted (after steps 1-4) permeabilities 

of Fig. 12: (a) histogram of actual permeability; (b) histogram of inverted permeability; ( c )  

omni-direction semivariogram of the actual (solid lines) and inverted (dash lines) data; (d) 

scatter plot of actual and inverted data. 
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Figure 14: Application of the hybrid algorithm to a checkerboard permeability pat tern 

(contrast is 25): (a)-@) actual permeability plots; (c)-(d) plots of permeability estimates 

after steps 1-3 (kriging); (.)-If) plots of permeability estimates after step 4 (optimization). 

Note that the cut-off value of the colorbars in the  image plots is set at 8- 



Figure 15: Sensitivity of the inverted permeability field of Fig. 12 to errors in arrival times 

and boundary pressure data. Inversion based on the hybrid algorithm (steps 1-4) (thin line) 

and on the kriging algorithm (steps 1-3) (thick line). The error measure is the normalized 

standard deviation of the inverted from the actual permeahilities. The input error is as 

described in (18) and (19). 


