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Abstract

This technical report presents the initial proposal and renewal proposals for an LDRD project
whose intended goal was to enable applications to take full advantage of the hardware available
on Sandia’s current and future massively parallel supercomputers by analyzing various ways of
combining distributed-memory and shared-memory programming models. Despite Sandia’s enor-
mous success with distributed-memory parallel machines and the message-passing programming
model, clusters of shared-memory processors appeared to be the massively parallel architecture
of the future at the time this project was proposed. We had hoped to analyze various hybrid
programming models for their effectiveness and characterize the types of application to which
each model was well-suited. The report presents the initial research proposal and subsequent
continuation proposals that highlight the proposed work and summarize the accomplishments.
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Programming Paradigms for Massively Parallel

Computers: LDRD Project
Final Report

1 Initial Proposal

The goal of this project is to enable applications to take full advantage of the hardware available on Sandia’s
current and future massively parallel supercomputers. Currently, nearly all Sandia codes on the Intel Paragon
and ASCI Red [8] machine use only one of the two processors available on each node with only a single thread
of execution. On ASCI Blue and the Computational Plant (Cplant™) [2] machines, this shortcoming will
be exacerbated. More generally, the future of high-end computing appears to be clusters of SMPs, i.e. a
mixture of distributed and shared memory hierarchies is exposed to the user. Learning how to program such
machines effectively to achieve maximum impact (both inside and outside Sandia) with simulations is a must.
The best model for each of the different types of applications will be discovered through implementation and
exploration of several programming paradigms from both the system and application perspectives. More
specifically, the following programming paradigms which are described in more detail in the body of this
proposal will be examined:

1. Virtual nodes (VN)
Each processor on a node is treated as a single node

2. Multiple virtual nodes (MVN)
Simulation is decomposed into more nodes than physical processors

3. Single-node threads (SNT)
One node contains multiple threads of execution running on only its processors

4. Multi-node threads (MNT)
Threads of execution can migrate between nodes

For each of these models, (a) the user interface that the programmer sees will be defined, (b) the necessary
system software to support the interface will be implemented, and (c) kernel computations will be modified
or applications will be rewritten to conform to this new interface. These steps will provide the ability to
contrast and compare the performance of various prototypical applications using the different programming
models. The outcome of this effort will be two-fold:

a. It will provide insight into how to easily and effectively parallelize codes for clustered SMPs.

b. It will provide robust programming models for clustered SMP machines of the present and future and
allow them to take full advantage of the hardware capabilities.

Note that it has become apparent that vendor support cannot be relied upon for (b) and that it must
be done independently. Thus, this project fills a void that exists in the current hardware acquisition and
software development plans.

There are five major goals for the first year:

(i) Survey parallelization methodologies that are appropriate for networks of SMPs.
(ii) Evaluate the feasibility of various parallelization methodologies.
(iii) Evaluate current thread implementations within Linux.
)

(iv) Develop preliminary implementation of threads that can support fine-grain message passing within
Linux.

(v) Determine the basic requirements of the tools that will support the four programming paradigms.



1.1 Technical Problem

Sandia has enjoyed a long and fruitful history of extracting maximum performance from distributed-memory
parallel machines with hundreds to thousands of nodes. Sandians have become experts at writing parallel
applications in a particular programming model known as single-program multiple-data (SPMD) that is
ideally suited to these kinds of machines. Almost all of Sandia’s large-scale applications have been designed
for this model with great success.

It is clear that massively parallel machines of the future will no longer have a purely distributed memory
architecture. Single nodes of these machines will have many processors that share a large memory address
space. The entire machine will expose a complex memory hierarchy to the user: multiple levels of cache on a
processor, shared memory across a few processors, and possibly even distributed memory across nodes. Ad-
ditionally, these machines introduce a communication hierarchy, since interprocessor communication differs
between processors on a single node and processors on different nodes.

One of the greatest technical challenges that needs to be overcome is the development of programming
models for this architecture that enable applications to achieve maximum performance. The SPMD pro-
gramming model is not sufficiently powerful to encompass the more complex memory and communication
hierarchy of these machines. For example, the options now provided by the operating systems on Sandia’s
Intel Paragon and the ASCI Red machine only provide SPMD-parallelism at the node level. Thus, almost
all of Sandia’s parallel codes only use one of the two processors on each node; half of the purchased compute
power is essentially wasted. On the two ASCI Blue machines, there are many processors per node. This
may be true for the nodes of the Computational Plant machine as well, at least in the out years. The
compute potential of these machines will be woefully underutilized if applications are limited to the current
programming model.

1.2 Technical Issues

The goal of this project is to develop one or more new programming paradigms that will enable full paralleliza-
tion of applications for hybrid distributed/shared memory machines (e.g. clusters of SMPs). Specifically,
the following four programming models will be implemented and tested.

Virtual Nodes (VN) On a machine with P nodes each with M processors, allow the user to specify at
run-time that the application should execute on P x M “virtual” nodes, rather than the standard P nodes.
Since SPMD codes are typically designed to run on an arbitrary number of nodes, this requires no additional
coding by the user. However the OS must be modified substantially to enable this to occur transparently.
In particular, message-passing must be allowed to occur between processors on a node, and a variety of OS
system calls (e.g. I/O, malloc) must be modified to be called by multiple processors simultaneously. Multiple
copies of the program’s data will be stored in the node’s shared memory.

Multiple Virtual Nodes (MVN) This model is somewhat analogous to the data-parallel model provided
by the Connection Machine. If VN can be implemented, it should be possible to allow a physical processor
to execute (and store) more than one “node” of the problem decomposition. Thus, the user could partition
the problem into a large number of nodes N without even considering the number of processors P on which
it will run. The OS would assign multiple virtual nodes to each physical processor. Like VN, the MVN
option should be transparent to the application, requiring no code modifications.

Single-node threads (SNT) This is the traditional approach provided by vendors and the emerging
POSIX standard for exploiting shared-memory parallelism on a single SMP cluster. However, implementing
the POSIX standard on a cluster of SMPs within a node-level OS such as Puma [9] presents new challenges
that will be addressed by this project. In particular, many key parts of the OS and its supported extensions
will have to be re-coded to be made thread-safe — e.g. message-passing libraries, numerical and language
libraries, I/O routines, etc. On the application side, there are also many issues that must be addressed to
enable the programmer to code at both the message-passing and thread levels simultaneously.



Multi-node threads (MNT) The most general kind of thread implementation on a cluster of SMPs
would allow for threads to communicate and migrate across nodes. This will be difficult to implement, but
will allow the sophisticated user maximum control over how parallelism is exploited in the application. This
will require substantial modification to the node-level OS, as well as exposing portions of the OS to the user.

Clearly, the paramount issue is performance. Each of these different models has factors that influence
the ability to achieve the desired level of performance. Some of these factors are:

Memory The amount of memory needed to support each model is different. For example, VN and MVN
may require duplicate copies of the operating system and executable image to exist in memory that is
shared between processors, possibly wasting large amounts of memory. Each of these models may differ
in the opportunity to take advantage of the features of the memory hierarchy. It may be easier to keep
cache hit rates high for an application that is memory bandwidth intensive or synchronize memory
accesses for processors in one model over another. The utility of demand-paged virtual memory may
be exploitable by certain models.

Scheduling The ability to schedule threads of execution and provide the application with mechanisms
to control the scheduling policy impacts performance. The capability to gang schedule heavyweight
processes across a set of processors for VN is desirable. Similarly, for SNT, it is desirable to have the
application determine when threads of execution should obtain compute resources.

Application Interface The current model of MPI [6] may be insufficient for some of these models. While
a mixture of threads and message passing might be a good approach, current research has exposed
some limitations. Message passing implementations may not only need to be made thread-safe, but
also thread-aware. Explicit message passing may also not be the correct approach. There are other
mechanisms, such as one sided communications or compiler directives, that may offer some distinct
advantages.

Portability Ultimately the ability to achieve performance from any of these models is dependent upon
the underlying hardware. An implementation of MNT is best suited to an SMP with greater than
two processors. Conversely, an implementation of VN is better suited to an SMP with fewer than
three processors. The ability to easily adapt an application from one model to another, or to move an
application from one implementation of that model to another implementation is desirable. Obtaining
portability while still maintaining performance is a critical issue.

Classification The characteristics of an application that influence performance will need to be discovered
for each of the different models. Also, the boundaries associated with these characteristics (i.e., the
definition of memory bandwidth intensive) will also help to determine the classes of applications suitable
for each model.

Programming with multiple lightweight threads offers developers additional flexibility and modularity
currently not available with single, heavyweight process programming models. The decomposition of soft-
ware using multiple threads offers the possibility of greater utilization of parallel hardware by enabling
processors to flexibly switch between tasks that need to wait for external resources or interthread commu-
nication. Finally, software reuse can be achieved with thread libraries that provide basic services to parallel
computations, thereby facilitating the development of parallel software.

1.3 Technical Approach

For each of the programming models described in the previous section, the following tasks will be performed:

(a) The interface to the programming model that is exposed to the user will be defined. A good interface
is critical if the model is to be widely used and appropriate for a wide range of applications.

(b) The system software will be modified to fully support the interface. Sandia is in a unique position
to be able to control the system software due to experience in developing and designing the system
software for many current and future parallel machines.



(c) Prototypical applications and kernels with which to test the programming model will be selected. Codes
will be modified to use the defined programming interface. Planned applications which already exist in
parallel SPMD form and with which the team members are already familiar include: optimization codes,
molecular modeling and electronic structure codes, FFTs, and linear solvers. In order to determine
the efficacy of these models, each of these applications will be implemented in more than one model.
The criteria used to make this determination are performance, portability, ease of use.

1.4 Expected Results

The two most important outcomes of this project are as follows:

1. Applications programmers will be provided with the needed insight as to how to parallelize codes for
clustered SMPs most effectively and easily.

2. Clustered SMP machines of the present and future, such as ASCI Red, ASCI Blue, and the Computa-
tional Plant, will have robust programming models in place that are fully supported by the OS. This
will allow programmers to choose the most appropriate model(s) for an application and will allow for
experimentation with different styles of parallelism.

1.5 Creativity and Innovation

This research will develop a suite of global optimization algorithms that will complement Sandia’s local
optimization suite OPT++. This research will also serve to extend the optimization capabilities of the
SGOPT library. Although both OPT++ and SGOPT include global optimization algorithms, the algorithms
in these libraries have been primarily applied to computationally expensive engineering science problems that
preclude a truly global optimization. A focus on inexpensive to moderately expensive objective functions
will enable the development and application of algorithms that address a fundamentally different class of
problems.

The algorithmic issues addressed by this research will lead to innovative optimization algorithms that
represent a practical trade-off between the degree of optimality achieved and speed. Although there is
prior research that examines the algorithmic issues considered, research into global optimization is still
in the early stages. Little is known about factors that affect the appropriate trade-off between global
and local optimization, especially for adaptive global optimization sampling methods. Few stopping rules
have been developed for global optimization algorithms, and most of those that have been developed have
been developed for simple optimization methods like uniform random sampling. Global optimization has
traditionally been applied to unconstrained optimization, and constrained global optimization problems
have only recently begun to receive significant attention. Finally, parallelization is typically performed by
parallelizing the objective function evaluations in a straightforward manner, which is a different type of
parallelism than that which is proposed.

The system software issues addressed by this research may lead to new approaches to achieving high
performance in multithreaded message passing environments. The previous operating systems developed
at Sandia, SUNMOS [5] and Puma, have clearly addressed and overcome many of the issues affecting the
ability of applications to achieve TeraFLOPS performance on distributed memory MPP systems. Similarly,
this research may help to identify obstacles and solutions to scalability in other programming models.

The risks involved in developing new global optimization methods are somewhat mixed. It is often not
difficult to tailor global optimization methods to effectively solve a particular application or closely related
class of applications. Consequently, confidence in the ability to develop effective optimization methods for the
defined application areas is high. It is generally much more difficult to devise global optimization algorithms
that are both robust and efficient on a broad range of objective functions. Consequently, the proposal to
develop global optimization algorithms with broad applicability is the risky component of this proposal. The
trade-offs between global optimization algorithms can be difficult to quantify, especially since the level of
accuracy needed to find near optimal solutions can affect the relative performance of different algorithms.



1.6 Programmatic Impact

This research has the potential for high impact on a wide variety of existing Sandia programs and throughout
DOE because of the fundamental role that parallel computation has begun to play. Parallel software is utilized
in a wide range of application domains at Sandia, including agent-based simulation, molecular dynamics,
physics simulations, discrete optimization, simulations of chemically reacting flows, and materials aging.

The new programming models that will be developed will impact both software development on San-
dia’s existing MP computers as well as future MP computers within DOE. Although the message-passing
programming model used for Sandia’s Intel Paragon and the ASCI Red machine has provided an effective
programming model for MP machines, it has proven insufficient to provide good utilization of even small-
scale SMP nodes. With few exceptions, the second processor on the Sandia’s Intel Paragon is not utilized for
basic computations (it’s typically treated as a communication co-processor), and a similar underutilization
is expected for many applications that run on the ASCI Red machine.

In the short term, the software tools developed will provide support for advance programming method-
ologies at Sandia. The operating systems group at Sandia will be able to integrate these tools into the OS
used for Cplant™ and can provide Intel with additional capabilities for the Cougar OS, which runs on the
ASCI Red machine. It is expected that this investigation will lead to insights that would provide a basis
for developing a common DOE standard for parallelization methodologies. The parallel machines at DOE
labs are increasingly becoming a common resource of DOE, so this goal is quite important. Similarly, it
is expected that experience with these tools will enable the ability to provide feedback to OS vendors (e.g.
SGI) concerning the utility of various parallelization methodologies and the possible weaknesses of the OS
standards being developed.

Finally, the evaluation of these software tools with specific applications will lead to immediate impact
parallel codes for (a) discrete optimization, (b) molecular dynamics and (¢) quantum electron structure
prediction.

2 FY99 Renewal Proposal

2.1 FY 98 Accomplishments

The first year of this LDRD was intended to jumpstart Sandia’s use of SMPs. During the past fiscal year
Sandia has purchased large SMP boxes from DEC and SGI and has gained access to SMP IBM boxes at
LLNL. We have worked to understand the nature and peculiarities of both the architecture and programming
models for these machines. Further, we have surveyed parallelization methodologies that are appropriate
for SMP clusters and developed conclusions concerning where our research efforts would be productively
spent. Based on this survey, we have evaluated four programming models, and we have noted the need for a
general programming environment within which users can tailor their application to a particular machines
hardware. We have also evaluated thread implementations in Linux, and have identified a new scheduling
method that seems appropriate for scientific computing applications. We are working on a thread-aware
implementation of message passing interface (MPI) which can take advantage of the extended capabilities
that threads provide. Finally, we have begun to explore how we can leverage the application programming
interface and constructs of MPI to provide the functionality needed by a hybrid cluster environment. We have
expanded the expertise by collaborating with SGI/Cray and U. of Maryland to provide hybrid SMP libraries,
models, and applications codes. In conjunction with this work, we have given two panel presentations and
four seminars with day long discussions.

As described in the project proposal, the primary end product of the project is a better understanding
of effective programming models for clusters for SMPs. For F'Y98, the focus of the project was on an initial
evaluation of existing programming models as well as development of thread support, which we expect to be
necessary to implement some of the programming models we have identified.

We satisfied the first three milestones of the project by surveying and evaluating programming models
for SMP clusters. Also, while surveying programming models, we investigated the manner in which threads
are managed and scheduled.

Our survey and evaluation of programming models focused on models which would be most useful for
SMP clusters that are contained in a dedicated compute partition. This model is the same design that is
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used in ASCI Red and Cplant™, and it avoids issues relating to CPU resource contention which require
additional work-arounds (e.g. gang scheduling).

A distinguishing feature of parallel programming models concerns whether data is communicated between
processors using message-passing or shared-memory. Message-passing is the dominant programming method
for distributed memory (DM) and non-uniform memory access (NUMA) architectures. Although OpenMP
has emerged this year as a potential standard for shared-memory parallelism, it seems unlikely that this
programming model can be used to develop software which scale to the large-scale ASCI applications that
Sandia needs to solve. Shared-memory methods may, however, prove a valuable component of a hybrid
programming model which utilizes message-passing between SMP nodes and shared-memory communication
within a node.

Another distinguishing feature of parallel programming models concerns how threads of execution are
managed. For example, in a DM model, it is generally assumed that each thread of execution is a process
that always resides on the same processor. In an SMP, there is often a distinction between processes (which
maintain an independent data store) and threads (which share a data store), and it is often useful to migrate
threads between processors within an SMP. In our survey, we noted that issues of thread management such
as thread migration (within an SMP) and thread scheduling have been identified and addressed in specific
contexts. However, this work has not addressed the use of threads in the context of scientific computing.
For example, prior work has not adequately addressed issues of (1) thread communication across nodes, (2)
explicit assignment of thread-processor affinities by users and (3) whether standard scheduling algorithms
are appropriate for scientific computing applications.

These considerations lead to the following critiques of the four programming models that we described
in our proposal:

e VN and MVN: These models should be generally applicable to SMP clusters. However, they are un-
likely to take advantage of locality of processes, except through mechanisms in the message-passing in-
terface which recognize when inter-process communication can be performed through a shared-memory
operation. The development of numerical libraries which perform basic parallel operations and which
take advantage of shared-memory operations may offset this disadvantage, however.

e SNT: This model offers the lowest level of interaction with the hardware, and consequently offers
the best opportunity for developing highly efficient software. However, it is also a more complicated
programming model than VN and MVN. The use of shared-memory programming primitives within
for the SMP hardware may hide some of this complexity. Another issue is that this model imposes
stronger requirements on the ability of the operating system. Programming models like VN and MVN
do not require the management of light-weight threads, since all threads of execution are processes.

e MINT: This model offers the additional ability beyond that of SNT for migrating threads across SMP
hardware. However, current methods for providing this technique provide the entire machine with a
single OS image. This methodology for running the operating system implies a centralization which
will make it difficult to scale up to very large machines.

Our investigation into threads packages found that they do not provide the ability for the user to mod-
ify the scheduling mechanism except through standard, predefined choices. Thus adapting the scheduling
mechanism will require modifications which are not portable to other systems.

Our work on the last two milestones for F'Y98 is still in progress. First, we are working on a thread-aware
implementation of MPI which can take advantage of the extended capabilities that threads provide. Most
current vendor implementations of MPI are made to be thread safe, allowing for the message passing in a
multithreaded application to function correctly. However, few implementations of MPI exist that have been
specifically designed to work with threads. This void can be attributed to several factors. At the time the
model implementation of MPI (MPICH [4]) was being developed, a standard API for threads was still under
development. Once a standard API for threads was established, the developers of MPICH could not leverage
it due to the complexities and peculiarities of each vendor’s implementation of threads. Thus, it was left
to each vendor to design threads into the existing MPI source. Of the vendors who undertook the task of
developing a threaded MPI (and other message passing libraries), most were reluctant to release it to users
because the combination of threads and message passing resulted in a significant performance degradation.
Essentially, vendors realized that their threads package wasn’t designed for a message passing environment
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and their message passing package wasn’t designed for a threads environment. We are not only working on a
message passing environment designed to function in a threaded environment, but also a thread environment
designed to function in a message passing environment.

For the last milestone, we have begun to evaluate the requirements for implementing the different pro-
gramming models. In particular, we have begun to explore how we can leverage the API and constructs
of MPI to provide the functionality needed by a hybrid cluster environment. MPI provides objects and
operations which encapsulate the elements of a distributed memory system. When dealing with clusters
of SMP nodes, MPI will always be utilized for internode communication. Folding shared memory opera-
tions and semantics into the MPI environment can provide a common, portable APT with which application
programmers are already familiar.

For example, a key construct in MPI is the communicator, which represents the individual processes
within the application. An MPI process is initially aware of two default communicators: one representing
the individual process (MPI.COMM _SELF) and one representing the entire set of processes in the appli-
cation (MPI_COMM_WORLD). For those processes which may be running on a single SMP node, it may
be desirable to have a communicator which represents this set of processes which can share memory, say
MPI_COMM_SHARED. The semantics of the operations which occur on such “shared memory” communi-
cators may be different than those which represent disjoint processes. For example, the familiar send and
receive operations might move pointers rather than actual data when a shared memory communicator is
used. Alternatively, an additional set operations to perform this type of operation might be desired. It may
also be desirable to represent a grouping of threads rather than processes. This representation might result
in a construct analogous to the MPI group object, but which can be used to identify individual threads. A
set of operations to build communicators from this object would then be needed.

The ability to leverage and adapt some of the new operations and capabilities that the MPI-2 standard
[7] provides also needs to be examined. For example, MPI-2 provides for the ability to dynamically create
processes from within an existing MPI application. Extending the idea of a shared memory communicator,
such a spawn operation using this new type of communicator might spawn threads rather than heavyweight
processes. This combination of MPI threads and processes may provide a general-purpose methodology for
efficiently utilizing all of the processors in an SMP node.

2.2 Proposed Work for FY99

The following milestones are proposed for FY99:

e Complete development of a thread-aware MPI.

Develop and evaluate application passing interface (API) extensions to MPI for SMP clusters.

Develop and evaluate a work-proportional scheduler

Evaluate process and thread schedulers for SMP Linux

Develop complexity model and prototype primitives for a VN model.

e Demonstrate use of shared-memory phases for dynamic work allocation.

The proposed milestones for FY99 differ significantly from the milestones in the original proposal. In part,
these changes reflect the expected difficultly of developing a thread-aware version of MPI. These changes also
reflect a focus towards programming models for Cplant™. Unlike the ASCI Red machine, we can readily
affect the programming environment in Cplant™ at a very low level (e.g. the operating system). Many of
the issues relating to programming SMP clusters relate to the amount of flexibility the operating system and
message-passing environment provide, so we expect to make the most progress working with Cplant™.

The first two milestones concern the management of threads and processes. We believe that proportional
scheduling will be valuable in the context of scientific computing. It can facilitate gang-scheduling (on shared
CPU resources), as well as provide a mechanism for the fair distribution of work between threads within
a given application. Our evaluation of schedulers for SMP Linux will include an evaluation of policies for
processor-thread affinity.
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Finally, the last two milestones focus on the development and evaluation of tools and techniques for
specific programming models. First, we will develop efficient primitives and libraries, along with a program-
ming environment, which can support the effective use of SMP clusters for the VN and MVN programming
models (with a particular focus on the VN model). Our first phase of this work focuses on the development
and prototyping of a complexity model and the primitives. Second, we will develop methods to remedy load
imbalance problems by exploiting shared memory parallelism within distributed memory parallelism. This
can be done by reassigning processors to processes or by using a general shared-memory phase in which MPI
processes take work in a dynamic fashion. This work will help identify the requirements for the SNT and
MNT programming models.

3 FY00 Renewal Proposal
3.1 FY99 Accomplishments

For FY99, the initial focus of the project was to address the limitations of current run-time systems in
providing an environment flexible enough to support various combinations of threads and message passing.
The work planned for FY99 included the development of a thread-aware MPI library, API extensions to
MPI, and evaluation of thread schedulers in SMP Linux. Since these goals fall under the area of system
software development, the principal investigator was changed in December from Bill Hart to Ron Brightwell
and management of the project was moved to the Scalable Computing Systems department, Organization
9223.

Our first milestone, development of a thread-aware MPI implementation, required more effort than was
anticipated. As was mentioned in the FY99 proposal, few implementations of MPI exist that have been
specifically designed to work in a threaded environment. It was our initial intention to simply modify the
public domain version of MPICH to be thread safe. However, it became clear that this approach would be
a significant hindrance to the overall goals of this project. In order to fully understand the implications
and impacts of combining message passing, shared memory, and threads, an MPI implementation that is
fully integrated into a thread environment is required. It is not enough to have an MPI implementation
that does coarse-grain locking, or only allows a single thread to perform message passing. Ideally, the MPI
library needs to be aware of the threaded environment so that it can take advantage of it. For example,
the asynchronous message passing operations in MPI should not waste CPU cycles polling for completion,
but rather should allow for descheduling of the calling thread based on completion of the message passing
event. This tight integration between threads and MPI is lacking in not only MPICH, but also in most
vendor-supplied MPI implementations.

In order to facilitate such an MPI implementation, the underlying message passing layer upon which
MPT is built needs to be integrated with threads. We have designed a message passing API, Portals 3.0
[3], to provide this layer. Because Portals are designed to work in a threaded environment, they are ideal
not only for supporting MPI, but also for supporting the types of one-sided data movement that may be
needed to support a shared-memory style of message passing. In addition to completing the API, we have
completed a reference implementation on top of TCP/IP. This implementation is currently thread-safe, and
will be fully integrated into a multithreaded environment in Linux before the end of FY99. Portals will be
fully functional on Cplant™ on Myrinet [1] networking hardware before the end of CY99.

The design of an MPI implementation for Portals has been completed. This design allows for the MPI
library to take advantage of the integration of message passing with threads that Portals provides. Because
MPICH has yet to be designed to support threads, we decided to contract with MPI Software Technology,
Inc. (MSTI) to provide a thread-aware MPI for Portals. MSTI has a thread-aware MPI implementation
for several VIA-based networks using Windows NT. We have provided MSTI with our design of an MPI
implementation for Portals, and they have agreed to supply us an thread-aware MPI library for Cplant™ in
FYO00. They have also agreed to provide us with any extensions to this implementation that we would like
to investigate. MSTI may also provide us with the source to the MPI implementation, should they receive
ASCI Path Forward funding.

For the milestone that addresses the APT extensions to MPI for SMP clusters, we have begun to consider
the design of this approach. We hope to have completed an initial study of the constructs that MPI currently
provides that can be leveraged to work in clustered SMP environment.
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SMP Linux has made great strides during FY99. Any attempt at evaluating thread schedulers in Linux
before the current release of version 2.2 would not have been representative of the capabilities of the operating
system. We have been waiting for a stable SMP version of Linux to fully test, and plan to upgrade the
Cplant™ environment to take advantage of the latest Linux kernels.

We have also made modifications to the run-time environment tools for Cplant™ to allow for investigation
of the various programming models outlined in the original proposal. For example, the application launcher
(yod) and the compute node process manager (PCT) have been modified so that implementing a virtual
node mode (VNM) capability on Cplant™ will be easier.

3.2 Proposed Work for FY00

The proposed milestones for FY00 focus on continuing the development of the Cplant™ machine to support
clusters of SMP’s. A flexible runtime system that allows an application to choose between combinations of
heavyweight processes and threads is highly desirable.

The first three milestones involve extending the Cplant™ runtime environment to support two of the
originally proposed programming models. Support for VNM and MVN will allow the user to make a run-time
decision about mapping heavyweight processes to processors. The current Cplant™ run-time environment
maps a single process to a node, but the components of the run-time system have been redesigned to better
accommodate this capability. Support for SNT will be provided by a thread library for Cplant™ that can
be used to achieve node-level parallelism.

We will continue to explore how the API and constructs of MPI can be leveraged to provide the func-
tionality needed by a hybrid cluster. We will need to evaluate how our modifications to the semantics of
MPI affect the data locality features that MPI provides. Since MPI will always be utilized for internode
communication, folding shared memory semantics into the MPI environment may provide a well-known,
portable API for programming clusters of SMP’s.

With these new capabilities, we hope to demonstrate shared memory parallelism within distributed
memory parallelism in addressing load imbalance problems. By reassigning processors to processes or by
using a general shared memory phase in which MPT processes accept work in a dynamic fashion, we hope to
further identify the requirements for the SNT and MNT programming models.

3.3 FY00 Accomplishments

Due to severe understaffing, the work proposed for FY00 could not be undertaken. The people who were to
perform this research were required to dedicate their time to the urgent needs of the Cplant™ project.
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