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ABSTRACT 
 
 Arithmetic conditions relating particle masses can be defined on the basis of (1) the supersymmetric conservation of 
congruence and (2) the observed characteristics of particle reactions and stabilities. Stated in the form of common divisors, 
these relations can be interpreted as expressions of genetic elements that represent specific particle characteristics. In order to 
illustrate this concept, it is shown that the pion triplet (π±, πo) can be associated with the existence of a greatest common 
divisor do± in a way that can account for both the highly similar physical properties of these particles and the observed π±/πo 
mass splitting. These results support the conclusion that a corresponding statement holds generally for all particle multiplets. 
Classification of the respective physical states is achieved by assignment of the common divisors to residue classes in a finite 
field �  and the existence of the multiplicative group of units �* enables the corresponding mass parameters to be associated 
with a rich subgroup structure. The existence of inverse states in �  allows relationships connecting particle mass values to be 
conveniently expressed in a form in which the genetic divisor structure is prominent. An example is given in which the 
masses of two neutral mesons (K° and π°) are related to the properties of the electron (e), a charged lepton. Physically, since 
this relationship reflects the cascade decay K°→ π° + π°/ π° → e+ + e− , in which a neutral kaon is converted into four 
charged leptons, it enables the genetic divisor concept, through the intrinsic algebraic structure of the field, to provide a 
theoretical basis for the conservation of both electric charge and lepton number. It is further shown that the fundamental 
source of supersymmetry can be expressed in terms of hierarchical relationships between odd and even order subgroups of 
�*, an outcome that automatically reflects itself in the phenomenon of fermion/boson pairing of individual particle systems. 
Accordingly, supersymmetry is best represented as a group rather than a particle property. The status of the Higgs subgroup 
of order 4 is singular; it is isolated from the hierarchical pattern and communicates globally to the mass scale through the 
seesaw congruence by (1) fusing the concepts of mass and space and (2) specifying the generators of the physical masses.  
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I. Introduction 

It has been shown [1] that the construction of inverse states in a finite field ���� enables the 
organization of the mass scale with fundamental octets in an eight-dimensional index space that 
classifies particle mass states with residue class designations. Conformance with both CPT invariance 
and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two 
parameters (Pα and gα) that are anchored on a concordance of physical data embracing both large scale 
cosmic parameters and small scale couplings [2−4], this analysis leads to (1) prospective values of the 
masses for the electron and muon neutrinos of ~ 0.808 meV and ~ 27.68 meV, respectively, (2) a 
magnitude for the unified strong-electroweak coupling constant α* = (34.26)−1 that is physically defined 
by the electron and muon neutrino mass ratio, and (3) a seesaw congruence connecting the Higgs, the 
electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding 
supersymmetric Higgs pair revealed that both particles are superheavy (>1018 GeV). The stated values 
of this predicted set of fundamental parameters are consistent with both the ranges of their potentially 
expected magnitudes [5−10] and all currently available experimental data. No renormalization of the 
Higgs masses was necessary, since the theoretical approach using a finite field [11] intrinsically 
excludes the possibility of divergences. Further, the Higgs fulfills its conjectured role through the 
seesaw relation as the particle defining the origin of all particle masses, since the mass parameters of the 
electron neutrino and muon neutrino systems, together with their supersymmetric partners, are the 
generators of the particle mass scale and give the founding basis of the corresponding index space [1]. 
Finally, since the computation of the Higgs masses is entirely determined by the modulus Pα, which is 
fully defined by the large-scale parameters of the universe [1−4] through the value of the universal 
gravitational constant G and the requirement for perfect flatness (Ωtotal = 1.0), the cosmic seesaw 
congruence provides an explicit unifying statement for the concepts of mass [12,13] and space [14,15]. 
Indeed, the overarching conclusion that follows from the form of the seesaw relation is that fusion of 
these two physical concepts creates a single new archetype.  

 
 

II. Determination of the Physical Masses 

A. General Conditions 

The determination of the set of representatives of the residue classes {[B]   } that corresponds to the 
physically observed masses requires the incorporation of information on particle interactions and 
stabilities. Previous analysis based on this theoretical picture has shown that exact arithmetic 
relationships representing the conservation of congruence [16] must be satisfied for open reaction 
channels. Specifically, for a general 4-body reaction  

   Mo → mx + my + mz                                               (1) 
 

involving particles with the corresponding integer mass numbers Bo, Bx, By, and Bz, these conditions are 
given [16] by the expression governing the conservation of energy 
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and the corresponding statement of momentum conservation 
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in which dx, dy, and dz respectively represent the appropriate divisors of 2
xB , 2yB , and 2

zB , the squares 

of the corresponding mass parameters. Founded on the conservation of energy and momentum [16] for 
flat space (Ωtotal = 1.0), these two statements define explicit conditions on the three sets of divisors {dx}, 
{dy}, and {dz} in relation to the mass parameter Bo of the initial particle. Since the theoretical structure 
[1] is comprehensively expressed with a finite field [11], Eqs. (2) and (3) represent relations among the 
residue classes [x]

αP
of the governing field � . Hence, the divisors dx, dy, and dz are corresponding 

representatives of the appropriate residue classes. 

The nature of the constraints embodied in Eqs.(2) and (3) and their consequences on the particle 
mass spectrum can be illustrated by comparing the properties of the proton and the neutron. Since the 
proton is physically stable [17], the process 
       p → e+ + e++ e−                 (4) 
 
has a vanishing amplitude; the channel is closed. The corresponding mathematical statement is achieved 
by requiring that the mass parameter [8] of the proton Bp and the respective divisors of the square of the 
mass number of the electron Be be such that Eqs.(2) and (3) admit no solution [16].  Since we know 
from CPT invariance that the mass parameters of the electron and positron are equal, the computational 
scale of the analysis of this condition on the proton decay channel given by Eq.(4) is considerably 
reduced over the general case for which the particles in the exit channel have unequal masses.  

Conversely, the commonly observed reaction of neutron decay [17] 
 

      n → p + e− + 
_
ν e           (5) 

 

represents an open channel which yields a broad distribution of particle energies.  In this case, the 
constraints on the mass number of the neutron Bn and the mass numbers and divisors associated with the 
proton, the electron, and the electron neutrino must be such that the number of representations N(2Bn) of 
the integer 2Bn, given by the form of Eq.(2) and consistent with satisfaction of Eq.(3), is high [16]. A 
large multiplicity of solutions must exist for correspondence with the wide distribution of particle 
energies physically observed in neutron decay.  

Taken together, Eqs.(2) and (3) establish a complex mutual arithmetic dependence on the mass 
numbers and divisors of the five participating particles in the reactions given by Eqs.(4) and (5). 
Consequently, the physical mass states correspond to that set of residues which, under the conditions 
specified by Eqs.(2) and (3), conform to the observed properties of open channel reactions and particle 
stabilities [4].  

Since the squares of suitably smooth integer mass parameters for typical particles like the electron 
and proton are estimated to have more than 1012 divisors [18], the determination of the general solution 
of Eqs.(2) and (3) for arbitrary mass numbers is an overwhelmingly massive computation. However, it 
is known [16] that there exists a physically significant subclass of reactions of considerably reduced 
complexity that is identified by the condition 
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      Bz = 1 ,            (6) 
 

namely, the category that corresponds to two-body decay amplitudes [16] of the observed form 
 
      Mo → mx + my  ,                 (7) 
 
an example of which is the pion decay process 
 
              π+ → µ+ + νµ  .            (8) 
 
Specifically, with Bz =1, Eqs.(2) and (3) are respectively modified to read 
 
 

                           dx + dy + 
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and 

       dx − dy − 
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2
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d
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2
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d
B

 = 0 ,                             (10) 

 
results which lead immediately to the statement 
 
     2

xB − 2
yB  = (dx − dy)(Bo − 1) .         (11) 

 
With the identification of the factor (dx − dy) with the modulus index 
 
      k = dx − dy,                                            (12) 
 
Eq. (11) can be written as the congruence  
 

                                    2
xB  ≡ 2

yB (mod(Bo− 1)).                                          (13) 
 
Significantly, this form is identical to Eq.(14) in Ref. [16] under the transformation of the modulus  
Bo → Bo − 1.  

It follows directly from Eqs.(9) and (10) that 
 
               Bo = dxo + dyo + 1,                                         (14) 
 
in which dxo and dyo respectively represent specific residue class members of the sets of divisors {dx} 
and {dy} of the integers Bx

2 and By
2. On physical grounds, since the conservation of energy and 

momentum legislates a single kinetic distribution of these quantities for two-body decay, Eq.(14) must 
also be the unique solution corresponding to the appropriate particle energies of the reaction. Hence, a 
strong constraint on the sets of divisors {dx} and {dy} for the existence of an open two-body decay 
channel is established. Conversely, if Eq.(14) cannot be satisfied by any of the respective members of 
the sets {dx} and {dy}, the corresponding process represents a closed channel. Consequently, this 
outcome defines an explicit condition of stability against two-body decay for the system with mass 
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parameter Bo. 

 B. Divisor Residue Class Relations among Two-Body Decay Amplitudes 

 An examination of the five allowed mesonic decay reactions [17] 
 
      K°→ π° + π° ,                  (15) 
     
      π° → e+ + e−  ,          (16) 
 
                 K° → π+ +  π− ,          (17)   

π− → e− + 
_
ν e  ,             (18) 

and       

π− → µ− + 
_
ν µ          (19) 

 
illustrates several important consequences concerning the divisors that immediately flow from Eq.(14). 
Since CPT invariance demands that particles and corresponding antiparticles have identical masses, by 
inspection, we obtain from Eqs.(15) through (19) 
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1  B  d  d πνe e −=+′
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and 
1  B  d  d πν −=+ −µ µ ,                    (24)

         
in which ed  and ′

ed  are potentially distinct )d d( ee
′≠  divisors of the square of the electron mass 

parameter Be .  

We observe from Eqs. (20) and (22) that the Ko decay channels establish the condition 
 

            
2

1  B
  d   d

oK
o ππ

−
== − .        (25) 

 
Therefore, although the physical π° and πœ masses exhibit [17] a considerable splitting (~ 4.6 MeV), the 
corresponding mass parameters of these three particles must possess a common arithmetic divisor   
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             oπo d   d <± ,          (26) 

 
 
since the kaon/pion mass ratio is considerably greater than two.  Subject to the constraint expressed by 
Eq.(26), let ±od  be defined as the greatest common divisor (gcd) of the πo and π± mass parameters 
derivable from oπd . In this sense, a specific residue class identity is explicitly expressed for the pion 

triplet (π±, πo) by an element of the internal structure ( ±od ) of the corresponding mass parameters that 
arises from the common coupling to the Ko meson. Indeed, if the integer ±od  is composite, it defines a 
set of common divisors {dε} ±o  for the corresponding πo and π±

 mass parameters. Each of the elements 
dε of the set {dε} ±o specifies a respective residue class designation [4].  

In recapitulation, the existence of the Ko decay channels [17] given by Eqs.(15) and (17) leads to the 
statement  
 

   ±±− ��

−
== oo    ππ }{d   d2

1  B
  d   d ε

oK
o ,     (27) 

              
 
a sequence which defines a divisor set {dε} ±o  that is commonly shared by the mass numbers of all three 
pions. We will consider the elements dε of this set as genetic components (genes) that identify the 
common properties of these particles. Simultaneously, the nonequivalence of the masses of the members 
of the pion triplet (π±, πo) can also be expressed. For example, since different supplementary factors can 
be present in the respective mass numbers, this mode of identification through residue classes does not 
require that the π±/πo mass splitting vanish. Accordingly, this mass difference is free to be established by 
other considerations. 

 C. Role of Inverse States 

 The existence of inverses in a finite field �  facilitates the construction of important additional 
relationships among particle masses [1]. Specifically, for any prime integer P, we recall [11] that a field 
�P consists of the set of residue classes 

 

     {[0]P, [1]P, [2]P, �[P −1]P}  .     (28) 

 

Computations performed with elements [x]P of �P are conducted with the customary rules of arithmetic 
and reduction modulo the prime P. Further, since all primes possess primitive roots [18], power residue 
systems of enumeration in �P can be established [19]. In particular, the existence of the operation of 
division [11] in a finite algebraic field �P enables the definition of an inverse 1

P]x[ − for every element [x]P 
of  �P except [0]P. Hence, the operation 

P
1

PP [1]  ]x[ ]x[ =−              (29) 
 

is defined for all nonvanishing values of x. The inverse is generally computed [20] by  
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 2P

P
1

P [x]  ]x[ −− = ,       (30) 
 
a relation that follows immediately from Fermat�s little theorem and explicitly shows that an inverse 

1
P]x[ − generally depends on both the value of x and the modulus P.  

The existence of inverse states enables relationships among particle masses to be constructed in 
which the divisor structure is prominent. Consider the ooK πm/m  mass ratio which is given by 

    

αPo

αPoK

o

oK

]B[
]B[

      m
m

ππ
= ,          (31) 

 
a statement in which the residue class designations of the respective mass numbers are explicitly 
identified. Evaluation of the right hand side of Eq.(31) with the Ko and π° mass parameters would yield 
the physically measured ooK πm/m  mass ratio [17], a non-integral value with a magnitude of ~ 3.687. 

 The use of inverses in the field  �  enables the physical quantity represented by Eq.(31) to be 
presented in a more informative alternative integral form. Specifically, from Eqs.(20), (21), and (22) we 
can reexpress the sense of Eq.(31) as    
       
   1

PePπ
1

PePπ
2P

P
1

P ααααoα
α

oπαP
oKα

oπαP
oK ]1  d2[]1  d2[  ]1  d2[]1  d2[  ]B[]B[   ]B[]B[ −−−− ++=++== −  ,  (32) 

 
a statement that relates the masses of two neutral mesons (K°and π°) to a property (de) of a charged 
lepton (e−). Since Eq.(32) involves the divisors associated with the respective mass parameters, it is a 
specific relation that couples corresponding genetic elements. Moreover, since the physical basis of the 
relationship is the existence of the cascade decay K°→ π°+ π° / π° → e+ + e− ,  in which the neutral kaon 
is transformed into charged leptons, we are thereby presented with the conclusion that the conservation 
of both electric charge and lepton number must be embedded in the intrinsic divisor structure expressed 
through the modular algebra of Eq.(32). Further, the dependence of Eq. (32) on the modulus Pα, a 
parameter fully determined by the large-scale parameters of the universe [1−4], also couples these three 
particles (Ko, π°, e−) to the cosmic dimension and, consequently, to the Higgs system which designates 
the generators of the mass scale through a seesaw relation [1]. Hence, the finding stated in Eq.(32) is an 
explicit mathematical expression that establishes a direct connection between the cosmic and micro 
scales. Therefore, by firmly linking the big and the small, the consolidation illustrated by Eq.(32) 
recreates in modern mathematical form an ancient and everlasting idea that has undergone repeated 
origination, independent of cultural origin, throughout the entirety of human history [21−25].  

  
III. Group Theoretical Organization of Genetic Residue Classes 

 A. Group and Subgroup Structures 

The concept of genetic divisors introduced in Section II.B above can be organized in a group 
structure. The set of units of a finite field �P with P a prime defines a cyclic group [11,20,26−30] of  
P − 1 elements designated as �*P . It is a general and elementary property of finite groups that the order 
of any element of the group must be a divisor of the number of elements comprising the group. 

Pα 



 

 

10 
 
 

Accordingly, the order δ of any [x]P É �*P divides P − 1 and the divisors of  P − 1 constitute the orders of 
the subgroups contained within �*P . Further, each subgroup has a generator [αδ]P from which all 
elements of the subgroup can be produced.  

The mathematical scale invariance of the general group properties permits illustration of the relevant 
subgroup structure with a small prime (P = 37) of the form P ≡ 1(mod 4), the physically motivated class 
[1−4, 16] of groups �*P . Since P − 1 = 36 = 22⋅32 in this case, the divisor set of P − 1 contains the nine 
members given by  

{dx}P−1 = {dx}36  = {1,2,3,4,6,9,12,18,36}.                  (33) 

We note that {dx}P−1 plays the role in this example of the special subset of residue classes {Bx} 
identified in a previous study [1] analyzing the properties of inverse states and that the restricted set of 
primitive roots {gx} therein defined [1] is not empty. The outcome that {gx} ≠ φ is also physically 
motivated [4]. In the divisor set given by Eq.(33), only 2 and 18 are primitive roots of 37, hence,  
{gx} = {2,18}. 

We present in Table I for P = 37 the explicit subgroup structures for orders 2,3,4,6,9,12, and 18 in 
order to exhibit the organizational pattern that emerges.  

Order (δδδδ) Group Elements {x}δδδδ Generator {xδδδδ}P 

2 {1,36}2 [36]37 

3 {1,10,26}3 [10]37 

4 {1,31,36,6}4 [31]37 

6 {1,11,10,36,26,27}6 [11]37 

9 {1,7,12,10,33,9,26,34,16}9 [7]37 

12 {1,8,27,31,26,23,36,29,10,6,11,14}12 [8]37 

18 {1,3,9,27,7,21,26,4,12,36,34,28,10,30,16,11,33,25}18 [3]37 
 

Table I: Structure of subgroup elements, written in order of ascending power index, and corresponding 
generators for orders 2,3,4,6,9,12, and 18 for the modulus P = 37. The group {  }36 of order 36 is trivial, 
since it contains by definition all primitive roots of the modulus and, as a consequence of Fermat’s little 
theorem, all remaining non-primitive elements. Any primitive root can serve as the generator of this 
group. 

 The odd and even order subgroups appearing in Table I illustrate contrasting structures if the 
concept of supersymmetry [31] developed in earlier work [1,3,4] is considered. For two residues x and 
y, the condition of supersymmetric pairing is expressed by the statement  

      x + y ≡ 0 (mod P).         (34) 
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B. Odd Order Subgroups  

By definition of a group, every residue [α]P is accompanied by its inverse 1
Pα][ − . It is seen from 

Table I, however, that no supersymmetric pairs are present; Eq.(34) is unfulfilled for each individual 
element of the odd order subgroups. However, the sum over all subgroup elements respects the 
condition 

    P) 0(mod  ]α[ Pi
elements

≡=� .         (35) 

Physically, the odd subgroups are comprised of particles and inverses with no representation of 
corresponding supersymmetric states. Explicit verification of these relationships can be made by 
reference to the entries in Table I for the subgroup orders 3 and 9.  

C. Even Order Subgroups 

The elements of even order subgroups form two associative structures grouping into both  
(a) supersymmetric and (b) inverse state pairs. Specifically, for each residue [α]P , both 1

P]α[ −  and [β]P 

are present with [α]P  + [β]P  ≡ 0(mod P); Eq.(34) is satisfied. With the exception of order 4, which 
represents the unique case of the Higgs degeneracy [1] 

     P
1

P β][α][ =−  ,          (36) 

the condition 

      P
1

P β][α][ ≠−           (37) 

holds. Eq.(35) is again respected and [1]P and [P − 1]P  serve as self-inverses. In physical terms, particles 
P, supersymmetric partners Pss, and corresponding inverse states Pin and (Pss)in form a group. These 
characteristics are explicitly represented in Table I for the subgroups with the even orders 2, 6, 12, and 
18.  

D. Supersymmetric Relations Between Odd and Even Order Subgroups 

 The condition for supersymmetry stated in Eq.(34) links subgroups of odd and even order. For 
example, it is evident from Table I that the supersymmetric partners to all elements of the subgroup { }3 
of odd order 3 are members of the even subgroup { }6 of order 6, since 

   

      { }6 Á  { }3 .         (38) 

 

Accordingly, the supersymmetric residues corresponding to subgroup { }9 in Table I are contained in  
{ }18 , an outcome that is also readily apparent. Further, for every odd order subgroup there exists at 
least one even order subgroup containing it for a prime modulus P ≥ 3, since 2 will always be a divisor 
of P − 1.   

The relationships of the seven subgroups presented in Table I can be represented in the planar 
diagram [32,33] illustrated in Fig. (1). We see that a pattern with a two-fold axis is produced by the 
hierarchy of subgroup orders and corresponding inclusions. The inclusions involving the pairing of 
supersymmetric residues in accord with Eq.(34) are specified with the notation (ss). Hence, the principle 
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of supersymmetry [6,10,31], which rests on the hypothesized basis of individual particle  fermion/boson 
pairing [31], exhibits a complementary expression through the pairing of subgroups of even and odd 
order. In fact, the subgroup structure can be considered as the fundamental origin of the supersymmetric 
principle. Accordingly, supersymmetry becomes a group property and the fermion/boson pairing of 
particles is simply a reflection of the basic underlying subgroup structure. This pairing respects the 
condition that the order of the odd subgroup must be a divisor of the order of the even subgroup 
including it. It follows that the minimum even order of this pairing is twice the value of the odd order 
subgroup. A further important consequence is the isolation of the Higgs subgroup [1] from this mode of 
pairing, since it has order 4 and accordingly cannot contain a non-trivial odd subgroup of lower order. In 
contrast to a hierarchical relationship, the Higgs system is communicated globally to the mass scale 
through the seesaw congruence [1] which specifies the generators of all particle masses.  

 

 

 

 

 

 

 

 

 

Fig. (1): Two-fold hierarchical pattern of subgroup inclusion relationships for the seven subgroups 
given in Table I. The vertices identify the subgroup orders, the arrows indicate subgroup inclusion, 
and the symbol (ss) specifies the existence of supersymmetric pairing of the group elements. The 
directed graph (digraph) shown indicates that the concepts of supersymmetry expressed for 
individual residues by Eq.(34) can be based on relationships between even and odd order subgroups 
of  �*P . Supersymmetry then becomes a group rather than a particle property. 
 

 We note that the planarity of the graph presented in Fig. (1) is not a general property. On the basis of 
a theorem of Kuratowski [34,35], which can be demonstrated with the Euler polyhedral formula, the 
graph shown is planar, since it does not contain graphs of the type K5 or K3,3. Nonplanar configurations 
arise inevitably for a sufficiently large value of the arithmetic function d(P − 1), the function [36,37] 
which specifies the number of divisors of P − 1. For example, planarity is no longer possible for  
P = 181, a prime which gives d(180) = 18. The existence of this transition to nonplanarity connects the 
subgroup structure to the topology of discrete spaces [38,39].  

IV.  Conclusions 

The supersymmetric conservation of congruence and the observed properties of particle interactions 
and stabilities combine to establish an interlocking set of conditions defining the particle masses. Stated 
in the form of common divisors of the corresponding mass parameters, these relations can be interpreted 
as expressions of genetic elements that represent specific particle characteristics. It has been shown that 
the pion triplet (π±, πo) can be identified by the existence of a common divisor do± in a way that can also 
account for the observed π±/πo mass splitting. The results indicate that a corresponding statement would 
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hold for all properly classified particle multiplets. With the introduction of inverse states made possible 
by the use of the mathematical structure of a finite field �  , a relationship involving the Ko/πo mass ratio 
was expressed in a form that explicitly reveals the divisor structure and related those two neutral mesons 
to a property of a charged lepton, the electron. This finding (1) demonstrated the existence of relations 
among particle families based on the pattern of observed reactions, (2) illustrated how these 
relationships can be expressed in terms of genetic elements (divisors), (3) indicated how the genetic 
divisor concept can express the conservation of both electric charge and lepton number through the 
intrinsic algebraic structure of the field, and (4) made an explicit connection between the cosmic and 
microscales, an ancient universal idea that arose uniformly in human prehistory. Finally, it has been 
shown that the concept of supersymmetry can be expressed in terms of fundamental hierarchical 
relationships between odd and even order subgroups of the multiplicative group of units �*P .  
Supersymmetry is thereby identified as a group property from which the fermion/boson pairing of 
individual particle states follows as a necessary consequence. In contrast to all other subgroups, since it 
has order 4, the Higgs system is isolated from the hierarchical pattern and is expressed globally to the 
mass scale through the seesaw congruence. 
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