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Executive Summary 
 

This study developed new analytical models for predicting the temperature distribution 
within a geothermal reservoir following reinjection of water having a temperature different from 
that of the reservoir.  The study consisted of two parts: developing new analytical models for the 
heat conduction rate into multi-dimensional, parallelepiped matrix blocks and developing new 
analytical models for the advance of the thermal front through the geothermal reservoir.   

In the first part of the study, a number of semi-empirical models for the multi-
dimensional heat conduction were developed to overcome the limitations to the exact solutions.  
The exact solution based on a similarity solution to the heat diffusion equation is the best model 
for the early-time period, but fails when thermal conduction fronts from opposing sides of the 
matrix block merge.  The exact solution based on an infinite series solution was found not to be 
useful because it required tens of thousands of terms to be included for accuracy.  The best 
overall model for the entire conduction time was a semi-empirical model based on an exponential 
conduction rate.   

In the second part of the study, the early-time period exact solution based on similarity 
methods and the semi-empirical exponential model were used to develop new analytical models 
for the location of the thermal front within the reservoir during reinjection.  These equations were 
based on an energy balance on the water in the fracture network.  These convective models 
allowed for both dual and triple porosity reservoirs, i.e., one or two independent matrix domains.  
A method for incorporating measured fracture spacing distributions into these convective models 
were developed.  It was found that there were only minor differences in the predicted areal 
extend of the heated zone between the dual and triple porosity models.  Because of its simplicity, 
the dual porosity model is recommended.   

These new models can be used for preliminary reservoir studies.  Although they are not as 
accurate as numerical simulators, they are simple, easy, and inexpensive to use.  These new 
models can be used to get general information about reservoir behavior before committing to the 
considerably greater expense of numerical simulation.   
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1.0  Introduction 
 
The ability to accurately predict the future performance of geothermal reservoirs is an 

important element in the economic success of geothermal energy projects.  A critical element in 
predicting such performance is the ability to predict heat and fluid flow through geothermal 
reservoirs.  A variety of performance models for nonfractured reservoirs are available 
(Bodvarsson, et al., 1986).  Most of these models are of limited accuracy because they do not 
account for the effect of natural fractures that are commonly found in most geothermal reservoirs 
(Brook, et al., 1978).   

Most studies of the effects of fractures in geothermal reservoirs are conducted using 
numerical simulators that have been derived from the dual porosity assumption (Pruess, et al., 
1996).  In its simplest form, this assumption treats the fracture network as a continuum through 
which fluid (and thermal energy) flows and the associated matrix blocks as sources and sinks of 
both fluid and energy.  The crossflow of fluid and energy between the fractures and the matrix 
blocks is modeled through an appropriate transfer function (Pruess and Narasimhan, 1985 and 
Bodvarsson, et al., 1985).   

While numerical modeling is a valuable tool for predicting geothermal reservoir 
performance, it is not suitable for all cases.  One limitation to numerical modeling with existing 
simulators is the cost required to obtain useful information.  Numerical simulation requires 
access to a suitable simulator, training on how to use the simulator, and a significant amount of 
reservoir data.   

A set of analytical models for geothermal behavior are presented in this report that 
complements existing simulator technology.  These new models are simpler and less costly to use 
than traditional simulators.  These models also extend current technology for reservoir modeling 
by allowing the effect of a realistic fracture spacing distribution to be explicitly modeled instead 
of using the normal assumption that all fractures are evenly spaced and all matrix blocks are the 
same size and shape.   

This study was conducted in two parts.  During the first part, analytical models were 
developed for the crossflow of energy by thermal conduction into three-dimensional matrix 
blocks.  Those models formed the basis of the transfer function for the crossflow of thermal 
energy between the fractures and matrix blocks.  During the second part, those models were 
incorporated into new models for the advance of the thermal front in a fracture system having a 
realistic fracture spacing distribution.   
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2.0  Classical Thermal Conduction Models 
 
In this section, existing analytical models for thermal conduction will be reviewed.  These 

models are based on the solution to the heat diffusion equation. The heat diffusion equation can 
be written as 

 
d

dx
K

dT
dx

�
�
�

�
�
�
+

d
dy

K
dT
dy

��
��
��

��
��
�
+

d
dz

K
dT
dz

��
��
��

��
��
�
= ρcp

dT
dt

 , (2.0.1) 

 
where K, ρ, and cp are the thermal conductivity, density, and specific heat of the rock, 
respectively, T is the local temperature, x, y, and z are the spatial dimensions, and t is the time.   

Although the thermal properties of geological formations vary somewhat with 
temperature (Somerton, 1992), this variation is relatively small and will be neglected. For the 
case of a constant thermal conductivity, Eq. 2.0.1 simplifies to the following equation: 

 
d2T
dx2 +

d2T
dy2 +

d2T
dz2 =

1
α

dT
dt

 , (2.0.2) 

 
where α is the thermal diffusivity and is given by 

 

α =
K
ρcp

 . (2.0.3) 

 
 

2.1  One-Dimensional Conduction 
 
For the case of one-dimensional conduction, Eq. 2.0.2 simplifies to 
 
d2T
dx2 =

1
α

dT
dt

 . (2.1.1) 

 
The initial and boundary conditions relevant to this study are a uniform initial 

temperature throughout the matrix block, Ti, and a step change in the surface temperature to its 
final value at time zero, Ts. The geometry assumed in this study is shown in Fig. 1.  Carslaw and 
Jaeger (1959) presented several solution methods to this equation that are discussed below.   
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2.1.1  Square-Root Solution 

 
For the case of conduction into a semi-infinite solid, Eq. 2.1.1 can be solved using 

similarity methods (Carslaw and Jaeger, 1959) to yield the following temperature profile: 
 

T x,t( ) = Ti + Ts −Ti( ) 1− erf
x

2 αt
ℜ
ℜ

ℜ
ℜ

�ℜ

�ℜ�ℜ �ℜ, (2.1.2) 

 
where  

 

erf v( ) = 2
π

e−u2

du
0

v
. (2.1.3) 

 
The heat transfer rate into the matrix block can be found by differentiating the 

temperature profile with respect to position at the surface: 
 

q = −KA
dT
dx x=0

. (2.1.4) 

 
Substituting Eq. 2.1.2 into 2.1.4 and evaluating yields the following expression for the 
conduction rate: 

 

q =KA Ts −Ti( ) 1
παt

. (2.1.5) 

 
This model for one-dimensional conduction assumes a semi-infinite solid.  A more 

realistic one-dimensional geometry for geothermal applications would be parallel fractures from 
which a slab-shaped matrix block is simultaneously heated from opposite sides as shown in Fig. 
1.  For this case, the total heat conduction rate into a matrix block is the sum of the heat transfer 
rates from the two opposing sides: 

 

q = 2KA Ts −Ti( ) 1
παt

. (2.1.6) 
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The total amount of thermal energy that can be conducted into the matrix block after an 
infinite time is given by 

 
Q∞ = ρcpV Ts −Ti( ), (2.1.7) 

 
where V is the total volume of the matrix block, 

 
V = AL , (2.1.8) 
 

A is the surface area of one face of the matrix block, and L is the width of the matrix block.   
By substituting  Eqs. 2.1.7 and 2.1.8 into Eq. 2.1.6 the following equation is obtained for 

the heat conduction rate into both faces of the matrix block: 
 

q
Q∞

=
2
π

α
L

1
t

. (2.1.9) 

 
If a characteristic time for thermal conduction is defined as 
 

t cl =
πL2

64α
, (2.1.10) 

 
the resulting conduction rate can be expressed as 

 
qtcl

Q∞

=
1
4

tcl

t
. (2.1.11) 

 
As discussed in a later section on the Linear Temperature-Profile Model, this characteristic time 
is an estimate for the time it takes for the thermal fronts to reach the centerline of the matrix 
block.  

The normalized cumulative amount of thermal energy conducted into the matrix block 
can be obtained by integrating Eq. 2.1.11 over time: 

 
Q
Q∞

=
1
2

t
tcl

. (2.1.12) 

 
Equations 2.1.11 and 2.1.12 are valid as long as heat transfer from the two opposing faces 

can be individually modeled as heat transfer into a semi-infinite solid, i.e., the thermal fronts 
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from the opposing faces have not interfered with each other at the centerline of the matrix block.  
This condition is met during the early times of heat conduction.   

 
 

2.1.2  Series Solution 

 
A different model can be obtained for the temperature distribution in a one-dimensional 

matrix block using the method of separation of variables to solve Eq. 2.1.1 (Carslaw and Jaeger, 
1959).  The temperature profile for this case is given by 

 

T x,t( ) = Ts − Ts −Ti( )4
π

1
2n +1( )exp − 2n +1( )2 απ2 t

L2
�
�
�

�
�
�

sin 2n +1( ) π
L

x��
��
��

��
��
�n=0

∞

. (2.1.13) 

 
The heat conduction rate into the matrix block can be obtained by substituting Eq. 2.1.13 into Eq. 
2.1.4.  Because conduction is occurring into both faces of the matrix block, the conduction rate is 
twice that given by Eq. 2.1.4.  The resulting heat conduction rate into the matrix block is 

 

q = 8
KA Ts − Ti( )

L
exp − 2n +1( )2 απ2t

L2
�ℜ
�ℜ
�ℜn=0

∞

. (2.1.14) 

 
The normalized conduction rate into the matrix block can be obtained by substituting Eqs. 2.1.7, 
2.1.8, and 2.1.10 into Eq. 2.1.14 

 
qtcl

Q∞

=
π
8

exp − 2n +1( )2 π3

64
t
tcl

�

�

�n=0

∞

. (2.1.15) 

 
The cumulative amount of thermal energy conducted into the matrix block (from both faces) is 
obtained by integrating Eq. 2.1.15 over time: 

 
Q
Q∞

=
8
π2

1
2n +1( )2 1− exp − 2n+1( )2 π3

64
t

t cl

�
�
�

�
�
�

��

����

��

����n=0

∞

. (2.1.16) 

 
Unlike the square-root model previous discussed, the infinite series model is valid during 

the entire conduction period.   
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2.1.3  Discussion of One-Dimensional Models 

 
In the above sections, two analytical models have been presented for one-dimensional 

thermal conduction into a matrix block.  These models are based on theoretical solutions for 
thermal conduction available in the literature (Carslaw and Jaeger, 1959).  There models have 
been cast into a normalized (dimensionless) form for easy comparison.   

The normalized conduction rate and cumulative energy conducted for these two models 
are compared in Figs. 2 and 3, respectively.  The series model is presented for a variety of terms 
in the infinite series.   

The square-root model is simple and exact for the very early times, but fails for the later 
times when the conduction fronts entering the matrix block from the opposing faces meet and 
begin to interact with each other.  When this occurs, the semi-infinite geometry assumed to 
obtain this model is no longer valid.   

The series model is valid over the entire time of conduction, but is accurate only when a 
large number of terms are included in the series.  As seen in Fig. 3, if only a few terms are 
included, the amount of energy conducted between the matrix block and fractures is significantly 
underpredicted.  The cumulative energy conducted asymptotes to the wrong value at an infinite 
time if too few terms are used.  Although the conduction rate is accurately predicted for late 
times because the higher-order terms in the series have decayed, those higher-order terms 
contribute to the cumulative energy conducted and must be included.  To model the cumulative 
energy conducted to within 1%, at least 25 terms must be included in the series.   

These figures reveal the inadequacy of these one-dimensional analytical models for the 
practical modeling of thermal conduction between fractures and matrix blocks.  The square-root 
model is impractical because it is only valid during the early part of the conduction process.  The 
series model is impractical because of the computational requirements of including a sufficient 
number of terms in the series.   

 
 
 

2.2  Multi-Dimensional Conduction 
 
In the previous section, it was shown that the classical solutions to the one-dimensional 

heat diffusion equation were impractical for use in the geothermal reservoir modeling.  In this 
section the corresponding solutions to the three-dimensional equation will be presented and 
discussed.   



  10

For the case of multi-dimensional conduction, Eq. 2.0.2 gives the temperatures as a 
function of position and time: 

 
d2T
dx2 +

d2T
dy2 +

d2T
dz2 =

1
α

dT
dt

 . (2.0.2) 

 

2.2.1  Square-Root Solution 

 
For the case of conduction into a three-dimensional semi-infinite solid, i.e., into the 

corner of a rectangular parallelepiped, Eq. 2.0.2 can be solved using similarity methods (Carslaw 
and Jaeger, 1959) to yield the following temperature profile: 

 

T x,y,z, t( )= Ti + Ts −Ti( ) 1− erf
x

2 α t
	ℜ

ℜ

�ℜ
�ℜ

erf
y

2 α t
	ℜ

ℜ

�ℜ
�ℜ

erf
z

2 αt
	ℜ

ℜ

�ℜ
�ℜ

�ℜ

�ℜ�ℜ

ℜ

�ℜ�ℜ
. (2.2.1) 

 
Because the heat transfer rate varies with position along the surface of the semi-infinite 

solid, the simple application of Eq. 2.1.4 cannot be used for multi-dimensional geometries.  
There are two approaches that can be used to determine the heat conduction rate into the matrix 
block.  One approach is to integrate the heat flux form of Eq. 2.1.4, i.e.,  

 

q"= −K
dT
dξ ξ= 0

, (2.2.2) 

 
over all three surfaces of the semi-infinite solid, where ξ is direction normal to each respective 
surface.  This approach will not be used here.  

The heat conduction rate into the matrix block will be determined from the time 
derivative of the thermal energy content in the matrix block: 

 

q =
dQ
dt

=
d
dt

ρcpV T −Ti( )[ ], (2.2.3) 

 
where T  is the average temperature in the matrix block.  If the parallelepiped matrix block has 
dimensions of Lx, Ly, and Lz, the total volume is 

 
V = LxLyLz . (2.2.4) 
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Because Eq. 2.2.1 applies to only one corner and there are eight corners in a parallelepiped 
matrix block, the volume associated with one corner is 

 

Vcorner =
LxLy Lz

8
. (2.2.5) 

 
The average temperature in one corner of the matrix block is obtained by integrating the 

temperature, given by Eq. 2.2.1, over the volume of the corner: 
 

T =
1

Vcorner

T x,y,z( )dx dydz
0

L x
2

0

Ly
2

≠

≠
�≠

0

Lz
2

. (2.2.6) 

 
If the following approximations are made for the early-time period, i.e., before the 

thermal fronts from opposing sides begin to interfere with each other,  
 

exp −
Lx

2

16α t
�
�
�

�
�
�
≈ exp −

Ly
2

16α t
��
��
��

��
��
�
≈ exp −

Lz
2

16αt
��
��
��

��
��
�
≈ 0 (2.2.7) 

 
and 

 

erf
Lx

4 α t
�
�
�

�
�
�
≈ erf

Ly

4 α t
��
��
��

��
��
�
≈ erf

Lz

4 αt
��
��
��

��
��
�
≈ 1, (2.2.8) 

 
the average temperature in one corner becomes  

 

T = Ti +
4 Ts − Ti( )
LxLyLz

α t
π

LxLy +LyLz +Lx Lz( )− 4
αt
π

L x +Ly + Lz( )+ 16
α t
π

ℜ
ℜ

ℜ
ℜ

3�ℜ

�ℜ
�ℜ

ℜ

ℜ
�ℜ

. (2.2.9) 

From symmetry, this is also the average temperature in the entire matrix block. 
The total heat conduction rate (into all eight corners) can be found by substituting Eqs. 

2.2.9 and 2.1.7 into Eq. 2.2.3:   
 

q =Q∞ 2
1

Lx

+
1
Ly

+
1

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

α
πt

−16
1

LxLy

+
1

LyLz

+
1

LxLz

�ℜ

�ℜ
�ℜ

�ℜ

ℜ
�ℜ
α
π
+ 96

1
Lx LyLz

t
α
π

�ℜ
�ℜ

�ℜ
ℜ

3�ℜ

�ℜ
	ℜ

ℜ

ℜ

ℜ
. (2.2.10) 

 
If a characteristic time for multi-dimensional thermal conduction is defined as 
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t cl =
Lx

2

576α
DL , (2.2.11) 

 
where a dimensionless geometry factor has been defined as 

 

DL =
4LxL y + 4LxLz + 36LyLz − 5Lx

2( )
Lx Ly +Lx Lz + LyLz( ) , (2.2.12) 

 
the normalized conduction rate can be written as 

 
qtcl

Q∞

=
1

12
1+

Lx

Ly

+
Lx

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

DL

π
tcl

t
−

1
36

Lx

Ly

+
Lx

Lz

+
Lx

2

L yLz

�

�ℜ
�ℜ

�ℜ

ℜ
�ℜ

DL

π
+

1
144

Lx
2

LyLz

DL

π
�ℜ
�ℜ

�ℜ
ℜ

3 t
t cl

. (2.2.13) 

 
and the normalized cumulative energy conducted can be written as 
 

Q
Q∞

=
1
6

1+
Lx

Ly

+
Lx

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

DL

π
t
tcl

−
1
36

Lx

Ly

+
Lx

Lz

+
Lx

2

LyLz

�ℜ

�ℜ
�ℜ

�ℜ

ℜ
�ℜ

DL

π
t
tcl

+
1

216
Lx

2

LyLz

DL

π
�ℜ
�ℜ

�ℜ
ℜ

3 t
tcl

�ℜ

�ℜ
�ℜ �ℜ

ℜ
�ℜ

3

. (2.2.14) 

 
For simplicity, Eqs. 2.2.13 and 2.2.14 will be referred to as the extended-square-root model.  As 
will be discussed in a following section on the Linear Temperature-Profile Model, the 
characteristic time given by Eq. 2.2.11 is an estimate for the time it takes for the thermal front to 
reach the centerline of the matrix block.   

The early-time behavior, i.e., the time before the thermal fronts from opposing sides 
begin to interact, does not follow the simple square-root behavior observed for one-dimensional 
geometry.  The difference arises because of interference from adjacent sides of the matrix block.   

For very early times, i.e., before interference from adjacent sides becomes significant, the 
extended-square-root model can be simplified to 

 
qtcl

Q∞

=
1

12
1 +

Lx

Ly

+
Lx

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

DL

π
tcl

t
 (2.2.15) 

 
and 

 
Q

Q∞

=
1
6

1 +
Lx

Ly

+
Lx

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

DL

π
t

tcl

. (2.2.16) 
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These equations show that for very early times, the thermal conduction rate for multi-
dimensional matrix blocks still follows a square root of time behavior.  This very early-time 
behavior will be referred to as the square-root model.   

For the case of one-dimensional matrix blocks, e.g., Ly and Lz are much larger than Lx, 
both the extended-square-root and the square-root models simplify to the one-dimensional 
models given by Eqs. 2.1.11 and 2.1.12. 

 
 

2.2.2  Series Solution 

 
A different model can be obtained for the temperature distribution in a three-dimensional 

matrix block using the method of separation of variables to solve Eq. 2.0.2 (Carslaw and Jaeger, 
1959).  The geometry used is simultaneous conduction into all six sides of a parallelepiped 
matrix block having a dimensions Lx, Ly, Lz.  The temperature profile for this case is given by 
 

T x,y,z, t( )= Ts −
64
π3 Ts −Ti( )

1
2l +1( ) 2m + 1( ) 2n +1( )

*exp −
2l +1( )2

Lx
2 +

2m +1( )2

Ly
2 +

2n+ 1( )2

Lz
2

�

���

�

���
π2αt

��
��
��

�
�
�

*sin 2l +1( ) π
Lx

x
��
��
��

��
��
�
sin 2m +1( ) π

Ly

y
��
��
��

��
��
�
sin 2n +1( ) π

Lz

z
��
��
��

��
��
�

	�


�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

n =0

∞

m=0

∞

l=0

∞ . (2.2.17) 

 
The average temperature is obtained by substituting Eq. 2.2.17 into Eq. 2.2.6: 

 

T = Ts −
512
π6 Ts −Ti( )

1
2l +1( )2 2m + 1( )2 2n +1( )2

*exp − 2l +1( )2
Lx

2 + 2m +1( )2
Ly

2 + 2n+1( )2

Lz
2

�

�
��

�

�
��π

2α t
��
��
��

�
�
�

��

��

��

��

��

��

	�


�

��

��

��

��
n =0

∞

m=0

∞

l=0

∞
. (2.2.18) 

 
The conduction rate is found by substituting Eq. 2.2.18 and 2.1.7 into Eq. 2.2.3: 
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q =
512
π4 αQ∞

1
2l +1( )2 2m +1( )2 2n +1( )2

2l +1( )2

Lx
2 + 2m + 1( )2

Ly
2 + 2n+ 1( )2

Lz
2

�

���

�

���

*exp − 2l +1( )2
Lx

2 + 2m +1( )2
Ly

2 + 2n+1( )2
Lz

2

��

��
��

��

�
��π

2α t
��
��
	�

�
�
�

��

��

��

��

��

��

��


�

��

��

��

��
n =0

∞

m=0

∞

l=0

∞ , (2.2.19) 

 
Using the characteristic time for multi-dimensional thermal conduction defined by Eq. 2.2.11, the 
normalized conduction rate can be written as 
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The cumulative amount of thermal energy conducted is obtained by integrating Eq. 2.2.20 

with respect to time: 
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2.2.3  Discussion of Multi-Dimensional Models 

 
In the above sections, two models have been presented for multi-dimensional thermal 

conduction into a matrix block.  These models are based on theoretical solutions for thermal 
conduction available in the literature (Carslaw and Jaeger, 1959).   

The normalized conduction rate and cumulative energy conducted for a cubic matrix 
block for these two models are compared in Figs. 4 and 5, respectively.  The series model is 
presented for a variety of terms in the infinite series.  The number of terms presented, one, eight, 
1,331, and 17,576 correspond to including all terms in the infinite series for values of l, m, and n 
less than or equal to 0, 1, 10, or 25, respectively.   
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At the very early times, the extended-square-root and square-root models agree with each 
other.  However, at dimensionless times greater than about 0.05, they begin to deviate 
significantly from each other.  This deviation is from the failure of the square-root model to 
account for interference from adjacent sides of the matrix block.  Thus, the square-root model 
can be considered valid only for dimensionless times less than about 0.05, or for only a very 
small fraction of the conduction transient.  The extended-square-root model is considered 
accurate through much later times.  At dimensionless times greater than about five, the extended-
square-root model shows an unrealistic behavior because it (like the square-root model) assumes 
conduction into a semi-infinite medium and does not account for interference from opposing 
sides.  Neither the extended-square-root or the square-root models are valid during the late 
conduction times.   

The series model is exact during the entire conduction period, as long as a very large 
number of terms are used.  As seen in Fig. 4, over 15,000 terms are required to agree with the 
square-root models at dimensionless times less than 0.01.  At dimensionless times greater than 
about 1, all of the higher order terms in the series can be neglected for the conduction rate and 
only one term is required.  However, neglecting the higher order terms results in the cumulative 
energy conducted to be significantly underpredicted.  Even including 17,576 terms in the infinite 
series, there are only enough number of terms to converge to within about 2% of the true value 
after an infinite conduction time.   

These figures, like those for one-dimensional conduction, reveal the inadequacy of these 
analytical models for the practical modeling of thermal conduction between fractures and matrix 
blocks.  The extended-square-root and the square-root models are impractical because they are 
only valid during part of the conduction period.  The series model is impractical because of the 
computational requirements of including tens of thousands of terms in the series for convergence.   

 
 

2.3  Closure 
 

An important step in accurately predicting the performance of geothermal reservoirs is to 
accurately model the crossflow of thermal energy between the matrix blocks and the fluids in the 
fractures.  There are two classical models for the crossflow of thermal energy that can be 
obtained from the direct solution of the heat diffusion equation, the square-root and infinite series 
models.  Unfortunately, these models do not provide a practical way to predict the crossflow of 
thermal energy and are of limited value in predicting the performance of geothermal reservoirs.   
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In the following section, a number of additional models are developed.  These models, 
originally developed for the mathematically-similar problem of capillary imbibition of water into 
an oil-saturated, water-wet matrix block, will be rederived for application in predicting heat 
conduction in fractured geothermal reservoirs.   
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3.0 New Models For Thermal Conduction 
 
In the previous section, it was demonstrated that the classical solutions to the heat 

diffusion equation do not yield simple models for the exchange of thermal energy between the 
matrix and fractures in geothermal flow, and therefore, are not practical for modeling geothermal 
processes.  In this section, new semi-empirical models are presented that overcome some of the 
limitations of classical models.  These new models are based on the mathematically-similar 
problem of capillary imbibition into water-wet matrix blocks.   

When water is injected into a naturally fractured petroleum reservoir having water-wet, 
petroleum-saturated matrix blocks, the water flowing through the fractures will be spontaneously 
imbibed into the matrix blocks from capillary pressure.  The water saturation (volume fraction of 
water in the pores) in the matrix block is governed by the following diffusion equation (Handy, 
1960; Dutra and Aziz, 1992; Beckner, et al., 1988; Bech, et al., 1991; and Chen, et al., 1995a): 
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, (3.0.1) 

 
where Sw is the local water saturation, Di is the diffusion coefficient defined as 

 

Di =
k

krwkro

µwµo

k rw

µw

+ kro

µo

�

���
�

���

dPc

dSw

, (3.0.2) 

 
φ is the matrix block porosity, k is the absolute permeability, krw and kro are the relative 
permeabilities of the water and oil in the matrix block, respectively, PC is the capillary pressure 
between the water and oil, and µw and µo are the water and oil viscosities, respectively.   

For the case of a constant diffusion coefficient, Eq. 3.0.1 simplifies to 
 
d2Sw

dx2 +
d2Sw

dy2 +
d2Sw

dz2 = −
φ
Di

dSw

dt
. (3.0.3) 

 
Comparing Eq. 3.0.3 for capillary imbibition to Eq. 2.0.2 for thermal conduction reveals 

that the two processes are mathematically similar.  Because of this similarity, the many models 
developed for capillary imbibition may be adapted for use in the thermal processes in geothermal 
reservoirs. The negative sign in the water-saturation diffusion equation arises from assumptions 
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made in its initial derivation.  In particular, the water-flow-rate equation (Darcy's Law) that is 
analogous to the conduction rate given by Eq. 2.1.4 by convention does not include the negative 
sign.  This different is not significant to this study.   

A variety of models for capillary imbibition have been developed.  These have been 
summarized by Reis and Cil, (1999 and 2000).  Although these models are semi-empirical, i.e., 
they are not necessarily rigorous solutions to the diffusion equation, their validity has been 
verified by comparing them to laboratory data. These models are rederived in the following 
sections in terms of temperature and heat conduction instead of water saturation and capillary 
imbibition.  These models are then compared to the exact classical equations for heat conduction.   

 
 

3.1  One-Dimensional Models 
 
In this section one-dimensional models for thermal conduction will be presented that 

were originally developed for the problem of capillary imbibition.  The analysis presented here 
gives an original derivation of these models in terms of thermal conduction.  In some cases, the 
models have been extended beyond the forms developed for capillary imbibition.   

 

3.1.1  Linear-Temperature-Profile Model 

 
The linear-temperature-profile model is based on the corresponding linear-saturation-

profile model first presented by Reis and Cil (1993). In this model, conduction is divided into 
two periods.  During the early-time period, conduction fronts advance into the two opposing 
faces of the matrix block without being affected by each other, i.e., each is advancing into a 
semi-infinite medium.  During the late-time period, the two conduction fronts have merged and 
interact with each other.  These two time periods are modeled separately.   

During the early-time period, the temperature profile is assumed to vary linearly from the 
surface temperature to the leading edge of the thermal front, which is at the initial temperature.  
During the late-time period, the temperature is assumed to vary linearly from the surface 
temperature to the temperature at the matrix block centerline.  During the early-time period, 
conduction occurs through the advance of the thermal front.  During the late-time period, 
conduction occurs through a changing temperature at the matrix block centerline.   
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Early-Time Period 
 
During the early-time period, this model assumes that the temperature varies linearly 

from the temperature at the surface of the matrix block to the initial temperature at the leading 
edge of the thermal front.  This temperature profile can be written as 

 

T x( ) = Ts + Ti −Ts( ) x
L'
�

�

�

�

, (3.1.1) 

 
where L' is the distance from the edge of the matrix block to the leading edge of the thermal 
front.   

The heat flow at any point in the matrix block is given by the heat transfer rate equation: 
 

q = −KA
dT
dx

. (3.1.2) 

 
Substituting Eq. 3.1.1 into Eq. 3.1.2 yields the following expression for the conduction 

rate at one face of the matrix block: 
 

q = −
KA
L'

Ti −Ts( ). (3.1.3) 

 
The cumulative energy conducted into one face of the matrix block during the early-time 

period is found from an energy balance: 
 

Q = ρcp T x( ) −Ti( )Adx
0

L'

. (3.1.4) 

 
Substituting Eq. 3.1.1 into Eq. 3.1.4 and integrating yields the following expression for the 
cumulative energy conducted into the matrix block: 

 

Q =
Ts −Ti( )ρcp AL'

2
. (3.1.5) 

 
A second expression for the energy conduction rate into one face of the matrix block can 

be obtained by differentiating Eq. 3.1.5 with respect to time: 
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q =
Ts −Ti( )ρcpA

2
dL'
dt

. (3.1.6) 

 
Equating Eqs. 3.1.3 and 3.1.6 and solving the resulting differential equation for the 

position of the leading edge of the thermal front yields:  
 
L' = 4α t . (3.1.7) 
 
Substituting Eq. 3.1.7 back into Eq. 3.1.6 yields the following expression for the 

conduction rate: 
 

q =
Ts −Ti( )A Kρcp

2
1
t

. (3.1.8) 

 
The cumulative energy conducted into one face of the matrix block is obtained by 

integrating Eq. 3.1.8 with respect to time: 
 
Q = Ts −Ti( )A Kρcp t . (3.1.9) 

 
The above equations are valid for one-half of the matrix block.  Since conduction is 

assumed to occur into both sides simultaneously, the conduction rate and cumulative energy 
conducted into the matrix block are twice those values: 

 

q = Ts −Ti( )A Kρcp
1
t

 (3.1.10) 

 
and 

 
Q = 2 Ts − Ti( )A Kρcp t , (3.1.11) 

 
respectively.  This square-root-of-time behavior during the early times is similar to that of the 
classical square-root model described earlier.   

A comparison of the conduction rate given by Eq. 3.1.10 to the exact rate given by Eq. 
2.1.6 reveals that that the linear-temperature-profile model underpredicts the true heat conduction 
rate by a factor of 2 / π≈ 1.13.  This difference arises because the actual temperature profile is 
not linear.  To match the proper conduction rate, the linear-temperature-profile model, with its 
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assumed temperature profile, will be adjusted so that the early-time conduction rate matches the 
true value.  This adjustment will be made by simply multiplying Eqs. 3.1.10 and 3.1.11 by a 
factor of 2 / π: 

 

q =
2
π

Ts −Ti( )A Kρcp
1
t

 (3.1.12) 

 
and 

 

Q =
4
π

Ts −Ti( )A Kρcp t . (3.1.13) 

 
This correction can be considered as an increase in the effective thermal diffusivity for this 
model by a factor of 4/π.   

By dividing Equation 3.1.13 by Eq. 2.1.7, the cumulative fraction of energy conducted 
can be written as 

 
Q

Q∞

=
4
π

α
L

t . (3.1.14) 

 
For the linear-temperature-profile model this cumulative fraction is one-half when the thermal 
front reaches the centerline, i.e., at the centerline time.  The centerline time can be obtained from 
Eq. 3.1.14 when the thermal front reaches the centerline: 
 

1
2
=

4
π

α
L

tcl , (3.1.15) 

 
or 
 

t cl =
πL2

64α
. (3.1.16) 

 
This is the characteristic time used for thermal conduction in Eq. 2.1.10. 

Substituting Eqs. 2.1.7 and 3.1.16 into Eqs. 3.1.12 and 3.1.13 yields the following 
expressions for the normalized conduction rate and cumulative energy conducted: 
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qtc

Q∞

=
1
4

tc

t
 (3.1.17) 

 
and 

 
Q
Q∞

=
1
2

t
tc

, (3.1.18) 

 
respectively.  As expected, these equations are identical to the true values given by Eqs. 2.1.11 
and 2.1.12, respectively.  Thus, the linear-temperature-profile model can accurately represent the 
early-time period behavior as long as it is modified to reflect the proper conduction rate.   

It is noted that an alternate method for calculating the centerline time is to solve Eq. 3.1.7 
directly:  
 

t cl' =
L2

16α
. (3.1.19) 

 
This alternate centerline time is longer than that given by Eq. 3.1.16 because it reflects the 

lower effective conduction rate of the unmodified linear-temperature-profile model.  This time 
will be referred to as the unmodified centerline time, while Eq. 3.1.16 will be referred to as the 
modified centerline time.   
 

 
Late-Time Period 

 
During the late-time period of the linear-temperature-profile model, the temperature 

profile is assumed to remain linear.  To account for the changing thermal energy stored in the 
matrix block, the temperature at the centerline of the matrix block changes with time.  The 
temperature in the remainder of the block decreases in a way to maintain the linear connection 
between the fixed surface temperature and the changing centerline temperature.  This 
temperature profile for one face of the matrix block is given by 

 

T x( ) = Ts + Tcl −Ts( ) x
L
2

ℜ
ℜ

ℜ
ℜ
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�ℜ
, (3.1.20) 
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where Tcl is the temperature at the centerline of the matrix block and L/2 denotes the half-width 
of the matrix block, e.g., the centerline.   

The cumulative energy conducted into one face of the matrix block during the late-time 
period (including that conducted during the early-time period) is given by 

 

Q = ρcp T x( )−Ti( )Adx
0

L
2

. (3.1.21) 

 
Substituting Eqs. 2.1.7 and 3.1.20 into 3.1.21 yields 

 

Q =
ρcpAL

2
Ts −Ti( )− Ts −Tcl( )

2
��

����
��
��. (3.1.22) 

 
The conduction rate can be obtained by differentiating Eq. 3.1.22 with respect to time: 
 

q =
dQ
dt

=
ρcpAL

4
dTcl

dtlate

, (3.1.23) 

 
where tlate is the time since the beginning of the late-time period: 

 
t late = t − tcl . (3.1.24) 

 
The conduction rate can also be obtained from Eq. 3.1.2: 
 

q = −KA
Tcl −Ts( )

L
2

ℜ

ℜ

ℜ

ℜ

. (3.1.25) 

 
Equating Eqs. 3.1.23 and 3.1.25 and solving the resulting differential equation for the 
temperature at the centerline of the matrix block yields: 

 

Tcl t( ) = Ts + Ti −Ts( )exp −
8α
L2 t − t cl( )�

�

�

 . (3.1.26) 

 
Substituting Eq. 3.1.26 into Eq. 3.1.25 yields the following equation for the conduction 

rate: 
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q = 2
KA Ts −Ti( )

L
exp −

8α
L2 t − tcl( )�

�

�

. (3.1.27) 

 
This is the conduction rate for one-half of the matrix block.  The total conduction rate is twice 
this value.  After combining this equation with Eq. 2.1.7, the conduction rate is 

 
q
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=
4α
L2 exp −

8α
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�

�

�

�

�

. (3.1.28) 

 
The cumulative energy conducted into the matrix block is found by integrating Eq. 3.1.28 

from the centerline time to the desired time and adding the energy conducted from the early time.  
After some algebra, this becomes: 

 
Q
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If Eq. 3.1.16 is used to replace the thermal diffusivity with the centerline time, the 

normalized conduction rate and cumulative energy conducted become 
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 (3.1.30) 

and 
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, (3.1.31) 

 
respectively.  These equations are based on the modified centerline time. i.e., a centerline time 
that is based on modifying the conduction rate during the early-time period to match the exact 
square-root model.   

If the unmodified centerline time is used to eliminate the thermal diffusivity, the 
normalized conduction rate and cumulative energy conducted become 

 
qtcl '
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t
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 (3.1.32) 

and 
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Q
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=1−
1
2

exp −
1
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t
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. (3.1.33) 

 
These two versions of the late-time, linear-temperature-profile model are compared in 

Figs. 6 and 7, for the normalized conduction rate and cumulative energy conducted, respectively.  
For Eqs. 3.1.32 and 3.1.33, the dimensionless time is the time divided by the unmodified 
centerline time, tcl'.  These figures show that both versions of the late-time model are very poor 
during the early-time period, i.e., at dimensionless times less than one.  In particular, they show a 
finite amount of conduction has already occurred at time zero.  These figures also show that 
using the unmodified centerline time, Eq. 3.1.19, provides a better match to the exact series 
solution during the late-time period than does the model using the modified centerline time, Eq. 
3.1.16, which provides a better match during the early-time period.  This suggests that the 
adjustment to the early-time conduction rate equation to match the exact equation may not be 
appropriate during the late-time period.   

Thus, the one-dimensional linear-temperature-profile model that best matches the exact 
series model is given by Eqs. 3.1.17 and 3.1.18 during the early-time period and by Eqs. 3.1.32 
and 3.1.33 during the late-time period.  The centerline time, i.e., the time when the early-time 
ends and the conduction front effectively reaches the centerline of the matrix block is given by 
Eq. 3.1.16 when using the early-time model and 3.1.19 when using the late-time model.  
Transition from the early- to the late-time period should be modeled using Eq. 3.1.16, because it 
yields the best model through the early-time period to transition.   
 

 

3.1.2  Exponential Model 

 
The exponential model is an empirical fit of a single-term exponential decline to the 

cumulative energy conducted.  The exponential model assumes that the normalized cumulative 
energy conducted after an infinite time is unity and that the normalized cumulative energy 
conducted at the centerline time, i.e., the characteristic conduction time, is one-half.  This latter 
assumption is consistent with both the classical models and the linear-temperature-profile model.   

The exponential model is expressed as 
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= ln 2( )exp − ln 2( ) t
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 (3.1.34) 

and 
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Q
Q∞

=1− exp −ln 2( ) t
tcl

�

�

�

�

�

�

, (3.1.35) 

 
for the normalized conduction rate and cumulative energy conducted, respectively.  The 
appropriate expression for the characteristic conduction time is given by Eq. 3.1.16.   

The exponential model is compared to the infinite series model in Figs. 8 and 9 for the 
normalized conduction rate and cumulative energy conducted, respectively.  From this figure, it 
can be seen that the exponential model yields a poor match for the conduction rate during the 
early-time period, but yields a fair match to the cumulative energy conducted over most of the 
conduction period.  This model is superior to the linear-temperature-profile model because it 
does not predict a finite amount of conduction having already occurred at time zero.   
 

 

3.1.3  Two-Term Exponential Model 

 
Dutra and Aziz (1992) presented a model for capillary imbibition that is similar to the 

exponential model presented above, except that they included two exponential terms in their 
model.  They determined the model parameters through a curve fit.  After converting their model 
to the problem of thermal conduction, the normalized conduction rate and cumulative energy 
conducted become  
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and 
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��   , (3.1.37) 

respectively, with 
 

ξ1 = 0.8147   (3.1.38) 
 
and 

ξ 2 = 2.2910    . (3.1.39) 
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The appropriate expression for the characteristic conduction time is given by Eq. 3.1.16.  If Eq. 
3.1.36 is evaluated at the characteristic conduction time, the fraction of the total volume imbibed 
at that time is essentially one-half, a result consistent with the other models.   

This model is compared to the infinite series model and to the exponential model in Figs. 
8 and 9 for the normalized conduction rate and cumulative energy conducted, respectively.  The 
two-term exponential model predicts provides a better match then the exponential model to the 
infinite series model during the late-time period and is virtually equal to the exponential model 
during the early-time period.  Judgement is required to determine whether the added 
computational costs of the two-term exponential model are worth the increased accuracy.   
 

 

3.1.4  Power-Law Model 

 
A final one-dimensional model developed for capillary imbibition that has potential for 

use in thermal conduction is the power-law model.  In this model, the square-root model is used 
for the early-time period (a power-law behavior with an exponent of -1/2) and a different power-
law is used for the late-time period.  The mantissa and exponent for the power-law during the 
late-time period are obtained from a curve-fit of the exact solution.  This approach was originally 
presented by Chen et al. (1995b) and extended by Reis and Cil (1999) for the problem of 
capillary imbibition.   

During the early-time period, the conduction rate is given by Eq. 2.1.6.  The cumulative 
energy conducted during the early-time period is obtained by integrating this equation over time: 

 

Q = 4KA Ts − Ti( ) 1
πα

t . (3.1.40) 

 
During the late-time period, the conduction rate can be modeled as 
 
q = 2Aβt−γ  , (3.1.41) 
 

where the 2 denotes conduction into the two opposing faces of the matrix block, A is the area of 
one of the matrix block faces into which conduction occurs, and β and γ are power-law empirical 
constants.   
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If the conduction rate is assumed to be continuous between the early- and late-time 
periods, i.e., the conduction rates for the two periods are equal at the transition time between the 
two time periods, the following expression is obtained for the pre-exponential constant β: 

 

β =
Kρcp Ts −Ti( )

π
ttr

γ−1/ 2  , (3.1.42) 

 
where ttr is the transition time between the early- and late-time behavior.  The difference between 
the characteristic (centerline) time and the transition time will be discussed below.   

The cumulative energy conducted after the transition time is obtained by integrating Eq. 
3.1.42 with respect to time and adding the energy conducted during the early-time period: 

 

Q = 2Aβ t− γdt
t tr

t

+Qearly  , (3.1.43) 

 
where Qearly is the cumulative energy conducted prior to the transition time.  After evaluating, Eq. 
3.1.43 becomes 

 

Q = 4A
Kρcp

π
Ts −Ti( ) ttr 1−

1
2 1− γ( ) +

1
2 1− γ( )

t
ttr

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

1−γ�ℜ

�ℜ
�ℜ �ℜ . (3.1.44) 

 
After noting that γ=> 1, the cumulative energy conducted after an infinite time can be obtained 
from Eq. 3.1.44: 

 

Q∞ = 4A
Kρcp

π
Ts −Ti( ) t tr 1−

1
2 1− γ( )

�

��� ��
 . (3.1.45) 

 
The normalized conduction rate during the late-time period is obtained by combining Eqs. 

3.1.41, 3.1.42, and 3.1.45:  
 

qt tr

Q∞

=

t tr

t
ℜ
ℜ

ℜ
ℜ

γ

2 1+
1

2 γ −1( )
�ℜ

�ℜ�ℜ

ℜ

ℜ�ℜ

 . (3.1.46) 
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and the normalized cumulative energy conducted is obtained by combining Eqs. 3.1.44 and 
3.1.45: 

 
Q
Q∞

=1−
1

2γ −1( )
t
t tr

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

1−γ

 . (3.1.47) 

 
Several versions of the power-law model are possible.  First, it will be assumed that 

transition from the early- to late-time behavior occurs at the centerline time.  It will also be 
assumed that the cumulative fraction of energy conducted at the transition time is one-half.  
These assumptions match those in the linear-temperature-profile model.  Using these 
assumptions, Eq. 3.1.47 can be evaluated at the centerline time to obtain the late-time exponent, 
γ: 

 

γ =
3
2

 . (3.1.48) 

 
Substituting Eq. 3.1.48 into Eqs. 3.1.46 and 3.1.47 results in the following power-law 

model:   
 
qtcl

Q∞

=
1
4

tcl

t
ℜ

ℜ

ℜ

ℜ

3
2
  (3.1.49) 

 
and 

 

Q
Q∞

=1−
1
2

t
tcl

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ
−1

2
 , (3.1.50) 

 
for the normalized conduction rate and cumulative energy conducted, respectively.  These 
equations will referred to as the simple power-law model.   

The simple power-law model is compared to the infinite series model in Figs. 10 and 11, 
for the normalized conduction rate and cumulative energy conducted, respectively.  Figure 11 
shows that the simple power-law model provides a poor match for the late-time period.  From 
Fig. 10, it can be seen that the conduction rate drops too fast during the initial stages of the late-
time period.  The true conduction rate, shown by the series model, drops more slowly after the 
thermal fronts begin to interact at the centerline of the matrix block.  Thus, the assumption that 
transition from early- to late-time behavior occurs when the thermal front arrives at the centerline 
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of the matrix block is not good.  There is a time delay between the arrival of the thermal fronts at 
the centerline of the matrix block and when this arrival is reflected by the conduction rate into the 
matrix block at the matrix block surface.   

An improved power-law model can be obtained if an empirical relationship between the 
transition from early-to late-time behavior and the centerline time is obtained.  An examination 
of these models reveals that the following relationship provides a good match to these 
parameters: 

 

t tr =
16
9

t cl  , (3.1.51) 

 
The normalized fraction of cumulative energy conducted at this transition time can be 
empirically approximated as two-thirds of that conducted after an infinite time.  Using these 
empirical values, the exponent for the late-time conduction rate becomes 

 
γ = 2  (3.1.52) 

 
and the improved power-law model can be expressed as 

 
qtcl

Q∞

=
16
27

tcl

t
ℜ

ℜ

ℜ

ℜ

2

  (3.1.53) 

 
and  

 
Q
Q∞

=1−
16
27

tcl

t
ℜ

ℜ

ℜ

ℜ

 , (3.1.54) 

 
for the normalized conduction rate and cumulative energy conducted, respectively.  In this 
model, transition from the early-time square-root model to Eqs. 3.1.53 and 3.1.54 occurs at a 
dimensionless time of 16/9, as given by Eq. 3.1.51.  These equations will referred to as the 
improved power-law model.   

The improved power-law model is compared to the infinite series model in Figs. 10 and 
11, for the normalized conduction rate and cumulative energy conducted, respectively.  It can be 
seen that the improved power-law model provides a better match to the exact series solution than 
does the simple power-law model.  The improved power-law model, however, still does not 
accurately predict the late-time behavior.  The problem with the power-law model is that the 
exact late-time behavior does not plot as a straight line on a log-log plot, i.e., it does not have a 
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power-law behavior.  It is noted that for the case of capillary imbibition, the late-time behavior 
does follow a power-law behavior (Reis and Cil, 1999).  A key difference between the capillary 
imbibition and thermal conduction cases is that the variation in the water-saturation diffusivity 
with a changing water saturation is significantly greater than the variation in the thermal 
diffusivity with a changing temperature, particularly near the endpoint conditions found during 
the late-time period.   

 
 

3.1.5  Discussion of One-Dimensional Models 

 
In this section, four semi-empirical models for thermal conduction were presented.  These 

models were originally developed for the problem of capillary imbibition into matrix blocks but 
were adapted for thermal conduction transients.  In all cases, the models were rederived from 
basic principles using an approach that parallels that of the original imbibition problem.   

Two of the new models, the exponential and two-term exponential models, are simple 
curve fits to the exact infinite series model: one model fits a single exponential to the infinite 
series model and one fits a summation of two exponentials to the infinite series model.   

The other two models, the linear-temperature-profile and power-law models, divide the 
conduction process into two periods.  The first period is the early-time or infinite-acting period in 
which conduction occurs into the two opposing faces of the matrix block as if each face were a 
semi-infinite material.  This early-time period ends when the thermal fronts approach the 
centerline of the matrix block and begin to interact with each other.  The second period is the 
late-time period that occurs after the two opposing thermal fronts have begun to interact and the 
conduction behavior deviates from infinite-acting behavior.  The time when the behavior changes 
from early- to late-time behavior differs for the two models.   

No single equation provides a good fit to the exact infinite series model (as expressed 
using 25 terms) over the entire conduction period.  The two-equation, linear-temperature-profile 
model provided the best match if the proper early- and late-time equations are used for their 
respective periods.  Unfortunately, this model may not be practical for geothermal studies 
because the status of conduction relative to the transition time at every point in the reservoir must 
be monitored and the equation used for the conduction rate switched at the appropriate time.  The 
power-law model has this same limitation and yielded a worse fit to the infinite series model 
during the late-time period.   

The two exponential models provide the most promise for a general purpose model, 
although they are not accurate during the very early-time period.  During the late-time period, 
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including two exponential terms resulted in a closer fit to the exact solution.  Because the 
difference between the one- and two-term models may be exaggerated by the logarithmic scale of 
Figs. 8 and 9, the cumulative energy conducted from these models are compared to the infinite 
series model in Fig. 12 on a linear scale.  Although the two-term exponential model still provides 
a better fit than the exponential model, it can be seen that there is only a modest difference 
through the majority of the conduction period.   
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3.2  Multi-Dimensional Models 
 
In this section, semi-empirical models for multi-dimensional thermal conduction will be 

presented.  Some of these models were first proposed for the related problem of capillary 
imbibition into water-wet matrix blocks (Reis and Cil, 1999).  

 
 

3.2.1  Linear-Temperature-Profile Model 

 
The multi-dimensional linear-temperature-profile model is based on the corresponding 

linear-saturation-profile model first developed by Cil (1992) and reported by Reis and Cil (2000).  
The linear-saturation-profile model was first presented in its one-dimensional form by Reis and 
Cil (1993).   

In this model, conduction is divided into two periods.  During the early-time period, 
conduction fronts advance simultaneously into all six faces of the parallelepiped matrix block 
without being affected by the conduction fronts from the opposing sides.  Interference from 
adjacent sides is included in this model, however.  This early-time period behavior lasts until the 
first set of conduction fronts reach the centerline of the matrix block.  This first set of conduction 
fronts will enter the opposing faces of the matrix block that have the smallest spacing between 
them.  During the late-time period, the first set of conduction fronts have merged within the 
matrix block and interact with each other.  

During the early-time period, the temperature profile is assumed to vary linearly from the 
surface temperature at the edge of the matrix block to the leading edge of the conduction front 
within the matrix block.  The leading edge of the conduction front is at the initial matrix block 
temperature.  During the late-time period, the temperature is assumed to vary linearly from the 
surface temperature to the temperature at the center of the matrix block.  During the early-time 
period, conduction occurs through the advance of the conduction front.  During the late-time 
period, conduction occurs through a changing temperature at the center of the matrix block.   

 
 

Early-Time Period 
 
The conduction rate in the x-, y-, and z- directions into a parallelepiped matrix block can 

be written as 
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qx = −2KAx
dT
dx

, (3.2.1) 

 

qy = −2KAy
dT
dy

, (3.2.2) 

 
and 
 

qz = −2KAz
dT
dz

, (3.2.3) 

 
respectively, where the 2 in these equations accounts for the two opposing faces allowing 
conduction in each of the directions, and Ax, Ay, and Az are the respective areas of the individual 
matrix block faces.   

In this model, the temperature profile varies linearly from the temperature at the surface 
of the matrix block, Ts, to the initial matrix block temperature, Ti, at the leading edge of the 
conduction front.  The conduction fronts are assumed to advance at the same speed into all faces 
of the matrix block and are located a distance L' from each face.  For the x-direction, this 
temperature profile can be expressed as 

 

T x( ) = Ts + Ti −Ts( ) x
L'
�

�

�

�

. (3.2.4) 

 
The total conduction rate into the matrix block is the sum of the conduction rates in the 

three orthogonal directions; 
 

q = −KAo

Ti −Ts( )
L'

, (3.2.5) 

 
where Ao is the total surface area of the matrix block, 

 
A o = 2 Lx Ly +LxLz + LyLz( ), (3.2.6) 

 
and Lx, Ly, and Lz are the matrix block dimensions in the x, y, and z directions, respectively.   

The cumulative amount of energy conducted into the matrix block can be found from an 
energy balance, 
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Q = ρcp T x( )−Ti( )dV
0

V'

, (3.2.7) 

 
where V' is the volume of the matrix block between the leading edges of the conduction fronts 
and the faces of the matrix block.  This integral can be rewritten as 

 

Q = ρcp T x( ) −Ti( )A' dx
0

L'

, (3.2.8) 

 
where A' is the surface area of a parallelepiped block inside the matrix block that is a distance x 
from the surface.  This internal area can be written as 

 
A'= 2 Lx − 2x( ) Ly − 2x( )+ 2 Lx − 2x( ) Lz − 2x( )+ 2 Ly − 2x( )Lz − 2x( ), (3.2.9) 

 
or 

 
A'= Ao −8 Lx +Ly + Lz( )x + 24x2 . (3.2.10) 

 
Substituting Eqs. 3.2.4 and 3.2.10 into Eq. 3.2.8 and integrating yields the following 

expression for the cumulative energy conducted into the matrix block: 
 
Q = ρcp Ts −Ti( ) A o

2
L' −

4
3

Lx +Ly +Lz( )L' 2 +2L'3�

�

. (3.2.11) 

 
The conduction rate into the matrix block can be obtained by differentiating Eq. 3.2.11 with 
respect to time: 

 
q =

dQ
dt

= ρcp Ts − Ti( ) Ao

2
−

8
3

Lx +L y +Lz( )L'+6L' 2�

�

�

�

dL'
dt

. (3.2.12) 

 
Equating the expressions for the conduction rate given by Eqs. 3.2.5 and 3.2.12 yields the 

following nonlinear differential equation for the position of the leading edge of the conduction 
front:  

 
Ao

2
L'−

8
3

Lx +Ly +Lz( )L' 2 +6L'3�

�

�

�

dL'
dt

= αAo , (3.2.13) 
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where the thermal diffusivity is given by 
 

α =
K
ρcp

. (3.2.14) 

 
This differential equation can be solved to yield the following quartic expression for the 

leading edge of the conduction front: 
 

t =
1

4α
L' 2 −

8
9αAo

Lx + Ly +Lz( )L'3 +
3

2αAo

L' 4 . (3.2.15) 

 
The linear-temperature-profile model given by Eqs. 3.2.12 and 3.2.11, using Eq. 3.2.15 

for the position of the conduction front, was scaled by dividing these equations by Eq. 2.1.7.  The 
resulting dimensional plots for the conduction rate and cumulative energy conducted are shown 
in Figs. 13 and 14 for a cubic matrix block.  For comparison, the extended-square-root model 
scaled in the same way is shown as the exact model.  The matrix block was assumed to be 1 
meter square and have a thermal diffusivity of 1.5 m2/s.   

These figures show that the linear-temperature-profile model provides an good match to 
the exact early-time model, although it begins to deviate from the exact model at 10,000 seconds.  
This is about the time the first conduction fronts reach the center of the matrix block.  It can be 
seen that this multi-dimensional linear-temperature-profile model overpredicts the cumulative 
energy conducted at the centerline time.  It was shown in Section 3.1, however, that the linear-
temperature-profile for one-dimensional geometry underpredicted the exact extended-square-root 
model.  A correction factor for this deviation that accounts for the geometry differences will be 
presented below.   

An expression for the time required for the first set of conduction fronts to reach the 
center of the matrix block for the linear-temperature profile model can also be obtained.  To be 
consistent with the previously reported one-dimensional models, this time will be called the 
centerline time.  If the dimensions are ordered such the Lx is the smallest of the three dimensions, 
the centerline time can be found from Eqs. 3.2.15 by setting L' equal to Lx/2.   

The resulting expression for the centerline time is  
 

t cl =
Lx

2 DL

576α
, (3.2.16) 

 
where a dimensionless geometry factor has been defined as 
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DL =
4LxL y + 4LxLz + 36LyLz − 5Lx

2( )
Lx Ly +Lx Lz + LyLz( ) . (3.2.17) 

 
This is the expression for the centerline time presented in Eq. 2.2.11 above.   

For very early times, i.e., when L' is very small, the position of the conduction front from 
Eq. 3.2.15 simplifies to 

 
L' = 4α t . (3.2.18) 
 
This expression is equal to the unmodified location of the conduction front in one-

dimensional geometry given by Eq. 3.1.7.  The difference between Eqs. 3.2.15 and 3.2.18 is from 
Eq. 3.2.15 allowing interference from adjacent conduction fronts in multi-dimensional 
imbibition.   

The dimensionless location of the conduction front at any time, L'/Lx, can be obtained by 
substituting Eq. 3.2.16 into Eq. 3.2.15: 

 
t

t cl

=
144
DL

L'
Lx

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

2

−
512

DLAo

Lx +Ly + Lz( )Lx
L'
Lx

�ℜ

�ℜ
�ℜ �ℜ

ℜ
�ℜ

3

+
864Lx

2

DLAo

L'
Lx

�ℜ

�ℜ
�ℜ �ℜ

ℜ
�ℜ

4

. (3.2.19) 

 
The normalized conduction rate is found by combining Eq. 3.2.5 with Eqs. 2.1.7 and 

3.2.16: 
 
qtcl

Q∞

=
1

576
DLAo

L yLz

Lx

L'
ℜ

ℜ

ℜ

ℜ

, (3.2.20) 

 
where the dimensionless location of the conduction front is given by Eq. 3.2.19.   

The normalized cumulative energy conducted can be found by dividing Eq. 3.2.11 by Eq. 
2.1.7: 
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1
2
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LyLz

L'
L x

ℜ

ℜ
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ℜ
�ℜ−
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3
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2

+ 2
Lx

2

LyLz

L'
L x

�ℜ
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ℜ
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3

. (3.2.21) 

 
The cumulative energy conducted at the centerline time, i.e., at the end of the early-time 

period, can be obtained by evaluating Eq. 3.2.21 when the position of the conduction front, L', 
reaches the minimum matrix block half-width, Lx/2: 
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Qearly

Q∞

=
1
2
+

1
6

Lx

Ly

+
1
6

Lx

Lz

−
1

12
Lx

2

LyLz

. (3.2.22) 

 
For a one-dimensional matrix block, the cumulative energy conducted at the centerline 

time is one-half, while for a cubic matrix block the cumulative energy conducted is three-
quarters.  All other matrix block dimensions will fall between those two extremes.   

Unfortunately, the above equations do not match the exact model at the centerline time as 
shown in Figs. 13 and 14.  An improved linear-temperature-profile model can be obtained by 
adding a correction factor that forces agreement with the exact model.  Such a correction factor 
was obtained by comparing the extended-square-root model evaluated at the centerline time (Eq. 
2.2.14) with Eq. 3.2.22.  The ratio of the exact normalized cumulative energy conducted at the 
centerline time to that of the linear-temperature-profile model was correlated to the 
dimensionless geometry factor given by Eq. 3.2.17 for a wide variety of parallelepiped matrix 
block shapes.  This correction factor is given by the following curve fit of this ratio: 

 

Cf =
Qexact

Qlinear− temperature−profile cl

=1.748x10−4 DL
2 −8.812x10−4 DL + 0.9326  (3.2.23) 

 
This curve fit is shown in Fig. 15.   

The corrected early-time linear-temperature-profile model can obtained simply by 
multiplying the expressions for the normalized conduction rate and cumulative energy conducted 
give above by the correction factor.  The corrected normalized conduction rate is 

 
qtcl

Q∞

=
1

576
CfD LAo

Ly Lz

Lx

L'
ℜ

ℜ

ℜ

ℜ

, (3.2.24) 

 
and the corrected normalized cumulative energy conducted is 

 
Q
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=Cf
1
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L yLz
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ℜ. (3.2.25) 

 
The corrected cumulative energy conducted at the centerline time is 

 
Qearly

Q∞

=CF
1
2
+

1
6

Lx

Ly

+
1
6

Lx

Lz

−
1

12
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2

LyLz

�

��� ��
. (3.2.26) 
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The corrected early-time, linear-temperature-profile models for the normalized 
conduction rate are compared to the exact extended square-root models in Figs. 16a through 16c 
for a one-dimensional slab, a square matchstick, and a cube, respectively.  The corresponding 
cumulative energy conducted is shown in Figs. 17a through 17c, respectively.  In all cases, the 
dimensionless position of the conduction front (L'/Lx) is obtained from Eq. 3.2.19.  The exact 
models are given by the extended-square-root models of Eqs. 2.2.13 and 2.2.14, respectively.   

These figures show that the corrected linear-temperature-profile model may provide a 
slightly better match to the exact model given by the extended-square-root model for 
dimensionless times less than one.   

 
 

Late-Time Period 
 
For the late-time period, the temperature profile for the linear-temperature-profile model 

is given by 
 

T x( ) = Ts + Tcl −Ts( ) x
Lx

2
ℜ
ℜ

ℜ
ℜ

�ℜ

�ℜ

�ℜ

�ℜ

ℜ

ℜ

�ℜ

�ℜ
, (3.2.27) 

 
where x is the distance from the surface into the matrix block and Lx/2 is the distance from the 
surface of the matrix block to its center.  It is noted that the matrix block dimensions were 
previously ordered such that Lx is the smallest dimension.   

The conduction rate during the late-time period is given by 
 

q = −KAo

Tcl −Ts( )
Lx

2
ℜ

ℜ

ℜ

ℜ

. (3.2.28) 

 
The cumulative energy conducted into the matrix block can be expressed as 
 

Q = ρcp T x( )−Ti( )dV
0

V

. (3.2.29) 

 
This integral can be rewritten as 

 



  40

Q = ρcp T x( )− Ti( )A' dx
0

Lx
2

. (3.2.30) 

 
Substituting Eqs. 3.2.27 and 3.2.10 into Eq. 3.2.30 and integrating yields the following 
expression for the cumulative energy conducted into the matrix block: 

 

Q = ρcp

1
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A o Ts − 2Ti + Tcl[ ]Lx

− Lx + Ly +Lz( )Ts −Ti( )+ 2
3
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�
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L x
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��
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. (3.2.31) 

 
The conduction rate can be found by differentiating Eq. 3.2.31 with respect to time: 

 

q =
dQ
dt

= ρcp
1
4

A oLx −
2
3

Lx +Ly +Lz( )Lx
2 +

3
4

Lx
3�

�

�

�

dTcl

dt
. (3.2.32) 

 
Equating the conduction rates given by Eqs. 3.2.28 and 3.2.32 yields the following 

differential equation for the temperature of the centerline of the matrix block: 
 
dTcl

dtlate

+ βTcl = βTs , (3.2.33) 

 
where  

 

β =
2αAo

1
4

AoLx
2 − 2

3
Lx + Ly +Lz( )Lx

3 + 3
4

Lx
4�

�

 (3.2.34) 

 
and tlate is the time since the beginning of the late-time period: 

 
t late = t − tcl . (3.2.35) 

 
This differential equation can be solved for the centerline temperature using the initial 

condition that the centerline temperature is equal to the initial temperature at the start of the late-
time period: 
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Tcl t( ) = Ts + Ti −Ts( )exp −β t − tcl( ){ }. (3.2.36) 

 
Substituting Eq. 3.2.36 into Eq. 3.2.28 yields the following equation for the conduction rate: 

 

q = 2
KAo

Lx

Ts −Ti( )exp −β t − tcl( ){ }. (3.2.37) 

 
The normalized conduction rate can be obtained by combining Eq. 3.2.37 with Eqs. 2.1.7, 

3.2.6, 3.2.16, 3.2.17, and 3.2.34: 
 
qtcl

Q∞

=
1

288
A oDL

LyLz

exp γ 1−
t
tcl

ℜ

ℜ
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ℜ
�ℜ

�ℜ
�ℜ
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, (3.2.38) 

 
where 

 

γ =
1

12
4LxL y + 4LxLz + 36LyLz − 5Lx

2( )
6LyLz +Lx

2 − 2LxLy − 2Lx Lz( ) . (3.2.39) 

 
The normalized cumulative energy conducted can be obtained by integrating Eq. 3.2.38 

from the centerline time and adding the cumulative energy conducted during the early-time 
period given by Eq. 3.2.22: 

 
Q
Q∞

=1−
Qlate

Q∞

exp γ 1−
t
tcl

ℜ

ℜ
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ℜ
�ℜ

�ℜ
�ℜ
�ℜ

, (3.2.40) 

 
where 

 
Qlate

Q∞

=1−
Qearly

Q∞

=
1
2
+

1
12

Lx
2

LyLz

−
1
6

Lx

Lz

−
1
6

L x

L y

. (3.2.41) 

 
Note that the above model uses the uncorrected expression for the cumulative fraction of energy 
conducted at the centerline time.   

If this late-time period model is corrected so that the cumulative energy conducted at the 
centerline time matches that of the corrected early-time model, the fraction of the cumulative 
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energy conducted at the centerline time is found from Eq. 3.2.26 instead of 3.2.22.  Using this 
equation, Eq. 3.2.41 can be rewritten as 

 
Qlate

Q∞

=1−CF
1
2
+

1
6

Lx

Ly

+
1
6

Lx

Lz

−
1

12
Lx

2

LyLz
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�ℜ	ℜ


ℜ

�ℜ�ℜ
 (3.2.42) 

 
and the cumulative energy conducted is still obtained using Eq. 3.2.40.   

The corresponding conduction rate is found by differentiating Eq. 3.2.40 with respect to 
time: 

 
qtcl

Q∞

=
Q late

Q∞

γ exp γ 1−
t
tcl

ℜ

ℜ
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ℜ
�ℜ

�ℜ
�ℜ
�ℜ

ℜ
ℜ
ℜ

. (3.2.43) 

 
The corrected late-time, linear-temperature-profile model for the normalized conduction 

rate, Eq. 3.2.43, and cumulative energy conducted, Eq. 3.2.40, are compared to the exact infinite-
series model in Figs. 18 and 19, respectively, for a cubic matrix block.  The infinite-series model 
is given by Eqs. 2.2.20 and 2.2.21 using 17,576 terms.   

Theses figures show that the corrected linear-temperature-profile model provides a 
modest match to the exact rate and a good match to the cumulative energy conducted model 
during the late-time period.  It is noted that the late-time linear-temperature-profile model does 
not provide a good model during the early-time period and, as previously indicated, that the 
series model with only 17,576 terms underpredicts the true late-time behavior by several percent.   

 
 

3.2.2  Extended One-Dimensional Models 

 
Another approach to modeling the behavior of multi-dimensional conduction is to extend 

the one-dimensional models using an equivalent matrix block size or a shape factor that corrects 
the one-dimensional geometry to multiple dimensions.  Kuo et al. (1977) reported shape factors 
and sphericity corrections for transient heat conduction into irregular-shaped rock fragments in 
an infinite pool of liquid.  They assumed a convective heat transfer boundary instead of a step 
temperature change at the matrix block surface.  It is believed that the step change used here 
more accurately represents fractured geothermal reservoirs because there is no infinitely large 
pool of water in which convection occurs.  
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Zimmerman et al. (1990) suggested replacing the matrix block half-width with an 
equivalent width calculated by the volume to surface area of the block: 

 
Leq

2
=

V
Ao

. (3.2.44) 

 
For a parallelepiped matrix block, the equivalent width of the matrix block becomes 

 

Leq =
1

1
Lx

+
1

L y

+
1

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

. (3.2.45) 

 
This equivalent width will be referred to as the geometric equivalent width.   

Zhang et al. (1996) proposed replacing the matrix block half-width with the following 
equivalent width: 

 
Leq

2
=

1
A i

Vx ii=1

n
, (3.2.46) 

 
where Ai is the area of the ith matrix block face and xi is the matrix block half-width associated 
with that fracture face.  For a parallelepiped matrix block, the equivalent width of the matrix 
block becomes 

 

Leq =
1

1
Lx

2 +
1

Ly
2 +

1
Lz

2

. (3.2.47) 

 
This equivalent width will be referred to as the RMS equivalent width.   

The extended one-dimensional models can be compared to the multi-dimensional models 
by inserting the equivalent width into the one-dimensional models.  The one-dimensional, early-
time square-root model for the conduction rate was given in Eq. 2.1.9 as 

 
q

Q∞

=
2
π

α
L

1
t

. (3.2.48) 

 
Using the geometric equivalent width, the multi-dimensional conduction rate becomes 
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q
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= 2
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+
1
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ℜ
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1
t

. (3.2.49) 

 
Combining this equation with Eq. 2.1.7 yields the following normalized conduction rate: 
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. (3.2.50) 

 
The normalized cumulative energy conducted can be obtained by integrating Eq. 3.2.50: 
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. (3.2.51) 

 
Using the RMS equivalent length, the conduction rate becomes 
 

q
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= 2
α
π

1
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2 +
1
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1
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2
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t

. (3.2.52) 

 
Combining this equation with Eq. 2.1.7 yields the following normalized conduction rate: 
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. (3.2.53) 

 
The normalized cumulative energy conducted can be obtained by integrating Eq. 3.2.53: 

 
Q
Q∞

=
1
6

DL

π
1

Lx
2 +

1
Ly

2 +
1

Lz
2

t
t cl

. (3.2.54) 

 
These extended one-dimensional models are compared to the exact multi-dimensional 

conduction rate (given by the extended-square-root model) in Figs. 20 and 21 for the normalized 
conduction rate and cumulative energy conducted for a cubic matrix block, respectively.  From 
these figures it can be seen that the extended one-dimensional models provide a poor match to 
the true models.  The primary difficulty arises because one-dimensional models, even though 
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they may use an equivalent width, do not correctly model the interference between the 
conduction fronts entering the matrix block from adjacent faces.   

A more accurate application of the extended one-dimensional models might be to use a 
spherical one-dimensional model rather than the parallelepiped models used in this study.  This 
approach was not taken because the solution of spherical heat diffusion equation involves an 
infinite series of complimentary error functions instead of the much simpler exponential 
functions (Carslaw and Jaeger, 1959).  Using complimentary error functions instead of 
exponential functions would prevent an analytical solution from being obtained for the advance 
of the thermal front in fracture networks.   

 
 

3.2.3  Exponential Model 

 
The exponential model is an empirical fit of a single-term exponential function to the 

cumulative energy conducted.  The exponential model assumes that the normalized cumulative 
energy conducted after an infinite time is unity and that the normalized cumulative energy 
conducted at the centerline time, i.e., at the time the first conduction front reaches the center of 
the matrix block, matches that predicted by the linear-temperature-profile model, i.e., Eq. 3.2.22 
for the uncorrected linear-temperature-profile model and Eq. 3.2.26 for the corrected model.   

The cumulative energy conducted for the exponential model is expressed as 
 
Q
Q∞

=1− exp −δ
t

tcl

�
�
�

�
�
�

, (3.2.55) 

 
where δ is the match constant for multi-dimensional conduction.  This constant is given by 

 

δ = ln
12LyLz
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for the uncorrected linear-temperature-profile model and 
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for the corrected linear-temperature-profile model. 
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The conduction rate for the exponential model is the time derivative of Eq. 3.2.55: 
 
qtcl

Q∞

= δexp −δ
t
tcl

�

�

�

�

�

�

. (3.2.58) 

 
The exponential model is compared to the true multi-dimensional conduction rate 

(infinite series and extended-square-root models) in Figs. 22 and 23 for the normalized 
conduction rate and cumulative energy conducted for a cubic matrix block, respectively.  These 
figures show that exponential models provide a poor match to the exact models during the early-
time period, but a fair match to the exact cumulative energy conducted during the late-time 
period.  This difference between the corrected and uncorrected models is insignificant and will 
not be considered further.   

 
 

3.2.4  Power-Law Model 

 
The power-law model for one-dimensional geometry was presented in Section 3.1.4.  It 

was shown that it did not yield a good model for thermal conduction.  Reis and Cil (2000) 
demonstrated that the power-law model was incomplete in multiple dimensions.  This model will 
not be considered further.   

 
 

3.2.5  VW-PW Model 

 
Another model for the conduction rate and cumulative energy conducted can be obtained 

from the assumed temperature of Vinsome and Westerveld (1980).  They assumed a priori that 
the temperature profile in a one-dimensional semi-infinite medium can be expressed as 

 

T x,t( )− Ti = Ts −Ti +P1x +P2x
2( )exp −

2x
α t

�

�

�

, (3.2.59) 

 
where P1 and P2 are time-dependent parameters.   

Pruess and Wu (1993) presented a method to extend this model to three-dimensional 
geometries.  This combined model, the VW-PW model, was published for use in a finite-
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difference, numerical simulator and was not presented in an analytical form.  Pruess and Wu 
reported that the numerical form of this model was in good agreement with the exact solution.   

The derivation of this model in analytical form is outlined below.   
The conduction rate for this model is found by inserting Eq. 3.2.59 into the conduction 

rate equation and evaluating it at the matrix block surface: 
 

q = −KAo
dT
dx x=0

, (3.2.60) 

 
or after substituting, 

 

q = −KAo P1 − 2
Ts − Ti( )

α t
��

����
��

����
. (3.2.61) 

 
The cumulative energy conducted is found by integrating Eq. 3.2.61 over time.  In this 

model x represents the distance from any point within the matrix block to the nearest surface.   
To complete this model, an expression for P1 must be obtained.  If a material balance is 

applied to a one-dimensional, differential, matrix block element that has a variable area in the 
direction of conduction, the following differential equation can be obtained for the temperature in 
the block: 

 
∂T
∂t

= α
∂2T
∂x2 + α

∂ ln A'( )
∂x

∂T
∂x

, (3.2.62) 

 
where A' is the cross sectional area of the matrix block a distance x from the surface of the 
matrix block.  For the parallelepiped matrix blocks considered here, this area is given by Eq. 
3.2.10.  Making the appropriate substitutions yields a relatively complex linear equation for P1 
and P2, the two unknowns in the assumed temperature profile.   

A second relationship between P1 and P2 can be obtained from a material balance on the 
entire matrix block.  The time derivative of the cumulative energy conducted is equal to 
conduction rate into the matrix block.  Using the cumulative energy conducted given by Eq. 
3.2.8, this energy balance can be written as  

 

dQ
dt

=
d
dt

ρcp T x( )− Ti( )A'
0

L x
2

dx = −KAo
dT
dx x=0

. (3.2.63) 
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Making the appropriate substitutions yields a second complex linear equation for P1 and P2.   
Equations 3.2.62 and 3.2.63 can be solved to obtain algebraic expressions for both P1 and 

P2.  These expressions are very complex functions of time that involve products of various 
fractional polynomials of time with the exponentiation of the inverse square-root-of-time.  The 
complexity of these functions make them impractical for use in analytical reservoir modeling.  
This model will not be considered further.   

 
 

3.2.6  Discussion of Semi-Empirical Models 

 
In this report, several semi-empirical models for thermal conduction were presented.  

Most of these models were originally developed for the problem of capillary imbibition into 
matrix blocks but were adapted for thermal conduction transients.  These models were rederived 
from basic principles using an approach that parallels that of the original imbibition problem.  In 
some cases, the models were extended beyond those for imbibition.   

The linear-temperature-profile model divides the conduction process into two periods.  
The first period is the early-time or infinite-acting period in which conduction occurs into all six 
faces (eight corners) of the parallelepiped matrix block as if each of the corners was a semi-
infinite material.  This early-time period ends when the thermal fronts from the opposing faces 
having the closest spacing approach the centerline of the matrix block and begin to interact with 
each other.  The second period is the late-time period that occurs after those thermal fronts have 
begun to interact and the conduction behavior deviates from infinite-acting behavior. The 
extended one-dimensional model is a one-dimensional model that uses an equivalent matrix 
block size to account for the three-dimensional geometry.  This model has the same functional 
form as the one-dimensional model.  The exponential model is a simple curve fit to the linear-
temperature-profile model.  The match point for the curve fit is the cumulative energy conducted 
at the centerline time.   

No single equation provided a good fit over the entire conduction period.  The early-time 
linear-temperature-profile model was in excellent agreement with the exact early-time extended-
square-root model.  The late-time linear-temperature-profile model provided a fair fit to the 
series model during the late-time period. Unfortunately, this model may not be practical for 
geothermal studies because the status of conduction relative to the transition time at every point 
in the reservoir must be monitored and the equation used for the conduction rate switched at the 
appropriate time.  The extended one-dimensional model provided a poor fit to the exact models, 
primarily because they did not account for interference between adjacent conduction fronts.  The 



  49

exponential model provided the best overall fit with a single equation to the exact model for the 
cumulative energy conducted over the entire conduction period.   

Because the difference between the exponential and exact models may be exaggerated by 
the logarithmic scale of Figs. 22 and 23, the cumulative energy conducted from these models are 
compared in Fig. 24 on a linear scale.  The exponential model predicts a cumulative energy 
conducted that is too low during the early-time period, i.e., a dimensionless time less than one, 
and too high during the late-time period, but matches the exact model at a dimensionless time 
equal to one. The effect of these deviations in reservoir models is expected to be minor as long as 
conduction comes to completion in parts of the reservoir because they will balance out.  

In summary, the exponential model provides the greatest promise for a general purpose 
conduction model for geothermal reservoirs when conduction is expected to come to completion 
in at least some parts of the reservoir.  The extended-square-root model is the best model to use 
before conduction comes to completion .   
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4.0  Review of Existing Thermal Advance Models 
 
In this section, existing analytical models for the advance of thermal fronts in geological 

formations are reviewed. In these models, water at one temperature is injected into a geologic 
layer having a different temperature.  Thermal conduction from the permeable layer to the 
impermeable overburden or matrix blocks is included.  These models have been grouped into 
three types.  First are models for water injection into a single layer, second are models for water 
injection into a fracture network, and third are models involving steam injection instead of water.   

 

4.1  Water Injection into Single Layer 
 
The first model for the advance of a thermal front through a geological formation was 

presented by Lauwerier (1955). The geometry for this model is shown in Fig. 25.  He assumed 
that the initial reservoir temperature was zero and referenced his model to that condition.   

If an energy balance is conducted on the shaded region in the permeable layer, shown in 
Fig. 25, the following equation can be obtained: 

 

−Velw
Lf

2
ρwcw

dTf

dx
+K m

dTm

dy y=
L f
2

=
Lf

2
ρfcf

dTf

dx
  , (4.1.1) 

 
where the first term is the net thermal energy carried into the shaded region from the flow of hot 
water, the second term is the thermal energy conducted out of the region into the overburden, and 
the term on the right-hand-side is the change in thermal energy stored in the shaded region.  In 
this equation, it is assumed that the local water temperature in the permeable layer is equal to the 
local rock temperature, Tw=Tf.  It is also assumed that the thermal properties of the underburden 
are the same as those of the overburden to allow for a symmetry boundary condition along the 
centerline of the permeable layer and that there is no vertical variation in temperature within the 
permeable layer.   

If a similar energy balance is applied to the layer immediately above the shaded region, 
the following equation is obtained: 

 

K m
d2 Tm

dy2 = ρmcm
dTm

dt
  . (4.1.2) 
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If the following dimensionless variables are defined, 
 

xD =
Km

Lf

2
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ℜ
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ℜ

2
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x  , (4.1.3) 
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and 
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2
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t   , (4.1.5) 

 
Eq. 4.1.2 can be written as 

 
ρf cf

ρmcm

d2 Tm

dyD
2 =

dTm

dtD

  , (4.1.6) 

 
and Eq. 4.1.1 can be written as 

 

−
dTf

dxD

+
dTm

dyD yD =1

=
dTf

dtD

  . (4.1.7) 

 
Because Tf=Tm along the edge of the permeable formation, Eq. 4.1.7 can be written as 

 

−
dTm

dxD

+
dTm

dyD

=
dTm

dtD

  . (4.1.8) 

 
The initial condition on these equations is as follows: 

 
Tf = Tm = Tinj,  xD<0 (4.1.9) 

 
and 

 
Tf = Tm = Ti  xD >0. (4.1.10) 
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Lauwerier solved these equations for the temperature difference between the overburden, 
Tm, and the injected water, Tinj using Laplace transforms.  He first took the Laplace 
transformation with respect to xD and then took the transformation with respect to tD.  He 
reported the following equations after these transformations: 

 
for the overburden, 
 

ρf cf

ρmcm

d2θ
dyD

2 = sθ −
Tinj

p
  , (4.1.11) 

 
and for the permeable layer, 

 

p + s( )θ −
dθ
dη

−
Tinj

p
= 0   , (4.1.12) 

 
where p and s are the Laplace transform variables for xD and tD, respectively, and θ is the 
transformed temperature difference.   

Lauwerier reported the following solution to these equations: 
 

for the overburden, 
 

Tm =Tinjerfc
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and for the permeable layer, 

 

Tm =Tinjerfc
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U tD − xD( )  , (4.1.14) 

 
where U(tD-xD) is the unit step function that is zero for tD-xD less than one and unity if greater 
than one.  

This approach cannot be used directly for flow in fractures because the formulation of 
these equations does not allow the permeable layer thickness to go to zero.  An alternative way of 
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modeling fractures with the Lauwerier model is to maintain a finite layer thickness, but assume 
that the heat capacity of that layer is zero, i.e., cf is zero.  Under this assumption, Eq. 4.1.14 can 
be written as 

 

Tm =Tinjerfc
Km

Lfρwcw Vel( )w αmt
x

�

�

�

  . (4.1.15) 

 
Bodvarsson (1969) extended the model of Lauwerier (1955) to allow for a sinusoidal 

temperature distribution for the injected water.  
 
 

4.2  Water Injection into Fracture Network 
 
Models for the advance of a thermal front in a network of parallel fractures were 

presented by Gringarten et al. (1975), Bodvarsson and Tsang (1982), and Satman (1988).   They 
extended the model of Lauwerier to finite sizes matrix blocks by imposing a symmetry boundary 
condition at the matrix block midpoint, e.g., the temperature gradient was assumed to be zero at 
the midpoint between two parallel fractures.  They obtained solutions in Laplace space, but were 
unable to analytically invert them into the time domain. Analytical and numerical solutions 
obtained during the early-time period, i.e., before the effects of finite fracture spacing became 
apparent, agreed with the Lauwerier solution.  The numerical solutions were obtained using the 
Stehfest algorithm (1970). 

A different modeling approach was taken by Moody and Horne (1988).  They assumed an 
equivalent porous media model.  The effects of the matrix on the fracture temperatures were 
modeled as a source-sink term using pseudo steady-state conduction with the lumped-capacitance 
approach.  They assumed an equivalent temperature for the matrix and an effective heat transfer 
coefficient between the matrix and fractures.  

Moody and Horne applied an energy balance to the fracture network and obtained the 
following equation for radial flow: 

 

−ρwcw
Ý V w

dTw

dr
∆r − hA Tw − Tm( )= ρwcwVw

dTw

dt
  . (4.2.1) 

 
The corresponding energy balance for the matrix blocks can be expressed as 
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hA Tw −Tm( )= ρmcmVm
dTm

dt
  . (4.2.2) 

 
The initial condition for this model is that the reservoir and fluid are at a temperature of Ti at the 
start of injection.  The boundary condition at the injection well is the temperature of the injected 
water is Tinj..   

The total volume of a differential element is given by 
 
Ve = 2πr∆rH   , (4.2.3) 

 
where r is the radius from the injection well and H is the height of the element.  The fluid 
element is large enough to contain both fractures and matrix blocks.  For one-dimensional radial 
flow, H is also the reservoir thickness.  The fluid and rock volumes are given by 

 
Vw = φfVe   , (4.2.4) 

 
and 

 
Vm = 1− φf( )Ve   , (4.2.5) 

 
respectively, where φf is the fracture porosity of the element (as a fraction of the element bulk 
volume).   

The effective area for heat transfer can be written as 
 

A =
2Vw

Lf

  . (4.2.6) 

 
Using these relationships, Moody and Horne defined the following dimensionless 

parameters: 
 

η=
φf

1− φf

  , (4.2.7) 

 

M D =
ρwcwη
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  , (4.2.8) 

 

t D =
2hηt

ρmcmLf

  , (4.2.9) 
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rD =
r

rw

  , (4.2.10) 
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2πHrw

2 rD
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Lfρfcf
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  , (4.2.11) 

 

τw =
Tw −Ti

Tinj −Ti

  , (4.2.12) 

 

τm =
Tm − Ti

Tinj −Ti

  , (4.2.13) 

 
and 

 
t D

* = TD −MDVD  . (4.2.14) 
 
Using these definitions, Moody and Horne reported the following solutions to the 

governing differential equations: 
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and the dimensionless water temperature is given by 
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where Ik is a modified Bessel function of the first kind and of order k.   

 

For 
VD

tD
* > 1, 
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the dimensionless rock temperature is given by 
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and dimensionless the water temperature is given by 
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This model has several important limitations. The authors did not provide a method for 

determining the effective matrix temperature or heat transfer coefficient, making it difficult to 
convert the solution from dimensionless parameters to dimensional parameters.  Further, the 
solution is given in terms of an infinite series of Bessel functions.  This limits the practicality of 
the method.   

 
 

4.3  Steam Injection 
 
Marx and Langenheim (1959) presented a model for the location of a thermal front during 

steam injection.  They assumed injection into a single layer and conduction into the semi-infinite 
overburden and underburden.  Their model geometry is essentially the same at that of Lauwerier 
(1955).  A key difference between the two approaches is that Marx and Langenheim assumed a 
step change in temperature at the thermal front from the initial formation temperature to the 
injected fluid temperature, while Lauwerier allowed the temperature to vary gradually with 
distance from the injection well.   

An energy balance on the permeable layer yields the following equation: 
 

h inj = 2
K m∆T
παm t − τ( )

dA
dτ

dτ
0

t

+ ρfcfLf∆T
dA
dt

  , (4.3.1) 

 
where hinj is the enthalpy injection rate, α is the thermal diffusivity of the overburden and 
underburden, τ is the time when the thermal front reaches dA, and ∆T is the difference between 
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the initial formation temperature and that of the injected steam.  The integral is the conductive 
heat loss to the overburden and underburden and the square-root form of the integrand arises 
from the assumption of one-dimensional conduction into a semi-infinite medium, i.e., Eq. 2.1.11.   

Marx and Langenheim solved Eq. 4.3.1 using Laplace transforms and obtained the area of 
the thermal zone: 

 

A t( ) = hinjρfcf Lfα
4K m

2 ∆T
exp u2{ } erfc u{ } +

2u
π
−1��

��

��

��
  , (4.3.2) 

 
where 

 

u =
2K m

ρfcfLf α
t   , (4.3.3) 

 
As shown by Hearn (1969), Eq. 3.3.2 can be simplified for flow in a fracture where Lf 

goes to zero: 
 

A t( ) = hinj α
πkm∆T

t   . (4.3.4) 

 
Closmann (1967) extended the approach of Marx and Langenheim (1959) to allow for a 

finite fracture spacing of parallel fractures.  He assumed an infinite-series model for the 
conduction rate into the overburden and underburden instead of the square-root model for 
conduction into a semi-infinite medium assumed by Marx and Langenheim.  The resulting area 
of the thermal zone for this model is given by 
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  , (4.3.5) 

 
where 

 

J n = γn
2 Lfρf cf
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+1+
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   (4.3.6) 
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and γn's are the roots of the following equation: 

 

γ +
Lρmcm

Lfρf cf

tanγ = 0   . (4.3.7) 

 
For the case of the thermal zone being a fracture having a negligible thermal capacity, the 

heated area is given by 
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Because this model is based on an infinite series and requires the use of a root finding algorithm, 
it is not practical for reservoir modeling.   

 
 

4.4  Discussion of Existing Models 
 
Although the previous studies have provided valuable models that are applicable to 

geothermal reservoirs, these models have limitations.  The models of Lauwerier and of Marx and 
Langenheim are limited to cases where conduction is from a single heated fracture into a semi-
infinite medium.  The model of Moody and Horne is too complex for practical application and 
requires an unknown effective matrix block temperature and heat transfer coefficient.  For the 
case of finite-sized matrix blocks, Closmann's model was the only one in which the extent of the 
thermal zone could be analytically calculated.  Unfortunately, that model required the use of an 
infinite series.   

From this review of existing technology the following conclusion can also be made: no 
analytical models exist that incorporate multi-dimensional effects of real fracture networks and 
fracture spacing distributions on the crossflow of heat between the matrix blocks and fractures.  

 



  59

5.0  New Models for Thermal Advance 
 
In this section, new methods for modeling the advance of a thermal front in a fractured 

geothermal reservoir will be developed.  This analysis parallels that of Marx and Langenheim 
(1959), but is generalized to allow multiple matrix domains having different matrix block sizes 
and shapes, as well as and different matrix-fracture crossflow conduction rate models.   

The new models for the advance of a thermal front in a geothermal reservoir are based on 
an energy balance on the water injected into the fractures.  The enthalpy of the injected water is 
modeled as either being lost to the formation matrix by conduction or as advancing the boundary 
of the heated zone.  Two geometries are considered for the formation matrix blocks.  First is a 
one-dimensional geometry consisting of a single fracture or set of parallel fractures.  Second is a 
multi-dimensional geometry consisting of an interconnecting fracture network with 
parallelepiped matrix blocks.  For each of these geometries, conduction models for the early- and 
late-time periods will be used.   

 
 

5.1  One-Dimensional Geometry 
 
The new models for the advance of thermal fronts in geothermal reservoirs are based on 

an energy balance on the injected water. This energy balance can be written as 
 
h inj = qacc + qloss   , (5.1.1) 

 
where hinj is the enthalpy injection rate into the high-permeability layer (fracture), qacc is the 
rate at which energy accumulates in the permeable layer, and qloss is the sum of the energy loss 

rates to the two adjacent layers from thermal conduction.  The geometry for the one-dimensional 
case is shown in Fig. 26.   

The rate at which energy accumulates in the permeable layer can be expressed by  
 

qacc = Lfρfcf Tw −Ti( )dA
dt

= Lfρf cf∆T
dA
dt

  , (5.1.2) 

 
where Lf is the thickness of that layer or aperture if it is a fracture, ρfcf is the volumetric heat 
capacity of the layer, Tw is the local water temperature, Ti is the initial temperature of the 
formation, and A is the areal coverage of the advancing thermal front (the contact area of the hot 
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zone with one of the adjacent layers).  Piston-like advance of the thermal front in the permeable 
layer is assumed.  It is also assumed that the local layer temperature is equal to the local water 
temperature.   

The rate of energy loss to the two adjacent layers is given by 
 

q loss = qA,1(t − τ) dA
0

A(t )

+ qA ,2 (t − τ) dA
0

A(t )

  , (5.1.3) 

 
where qA,1 and qA,2 are the local conduction fluxes (energy conduction per unit surface area) into 
layers 1 and 2, respectively, and τ is the time when the thermal front in the permeable layer 
passes the local area dA.   

Substituting Eqs. 5.1.2 and 5.1.3 into Eq. 5.1.1 yields the following integro-differential 
equation for the areal coverage of the thermal front in the high permeability layer (fracture): 

 

h inj = Lfρfcf∆T
dA
dt

+ qA,1(t − τ) dA
0

A(t )

+ qA,2 (t − τ) dA
0

A(t )

  . (5.1.4) 

 
Converting Eq. 5.1.4 from integrals over area to integrals over time yields 

 

h inj = Lfρfcf∆T
dA
dt

+ qA,1(t − τ) 
dA
dτ

dτ
0

t

≠
≠

+ qA,2 (t − τ) 
dA
dτ

dτ
0

t

�≠
≠

  . (5.1.5) 

 
If the area in Eq. 5.1.5 is replaced with the layer width or fracture height, H, times the penetration 
distance of the water front in the high-permeability layer, X(t), i.e.,  

 
A t( ) = HX t( ), (5.1.6) 
 

that equation can be written in terms of the penetration distance of the thermal front in the 
fracture: 

 

h inj = HL fρfcf∆T
dX
dt

+H qA ,1 (t − τ) 
dX
dτ

dτ
0

t

≠
≠

+H qA,2 (t − τ) 
dX
dτ

dτ
0

t

�≠
≠

  . (5.1.7) 

 
For the case of the fracture aperture being very small and the energy accumulating in the 

fracture being negligible, the first term on the right-hand side of Eq. 5.1.7 can be deleted and the 
equation for the position of the thermal front in the fracture is 
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hinj = H qA ,1( t − τ) 
dX
dτ

dτ
0

t

≠
≠

+H qA ,2 (t − τ) 
dX
dτ

dτ
0

t

�≠
≠

  . (5.1.8) 

 
The location of the thermal front in the fracture can be obtained by solving Eq. 5.1.7 or 

5.1.8 for X(t) after a suitable expression for the conduction rate per unit area has been selected.   
 
 

5.1.1  Early-Time Period 

 
For the early-time period, i.e., for the case when the thermal front in the matrix does not 

reach the centerline of the matrix block before the thermal front in the permeable layer reaches 
the production well, the conduction rate per unit area from the permeable layer into the 
impermeable matrix can be obtained from Eq. 2.1.11.  The conduction rate into one face along 
the fracture is one-half of that given by that equation.  This conduction rate per unit area into one 
face is given by 

 

qA =
q

dA
=

q
Hdx

=
Vmρmcm∆T

8t clHdx
tcl

t
, (5.1.9) 

 
where the subscript m refers to the matrix properties. For this model, the one-dimensional time 
for the conduction front to reach the center of the matrix is given by Eq. 2.1.10.  The volume of 
the matrix block is given by  

 
Vm = HLmdx . (5.1.10) 
 
Substituting Eq. 5.1.9 into Eq. 5.1.7 and solving for X(t) using Laplace transforms yields 

the following expression for the position of the water front in the fracture: 
 

X(t)=
hinj

m2Lf Hρf cf∆T
exp m2t{ }  erfc m t{ } +

2
π

m t −1��

��

��

��
, (5.1.11) 

 
where 

 

m =
π β1 +β2( )

L fρf cf∆T
, (5.1.12) 
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β1 =
L1ρ1c1∆T

8 tcl,1

, (5.1.13) 

 
and 

 

β2 =
L2ρ2c2∆T

8 tcl ,2

, (5.1.14) 

where the subscripts 1 and 2 refer to the matrix properties of the two layers adjacent to the 
permeable layer.   

For the case of the permeable layer being a fracture and its aperture going to zero, Eq. 
5.1.11 simplifies to:   

 

X(t)=
2hinj

πH β1 + β2( ) t , (5.1.15) 

 
Alternatively, an expression for the position of the water front in a fracture can be found 

by substituting Eq. 5.1.9 into Eq. 5.1.8 and solving for X(t): 
 

X(t)=
2hinj

πH β1 + β2( ) t . (5.1.16) 

 
This latter approach yields the same result as including the accumulation term in the permeable 
layer in the original solution and taking the limit as the formation thickness goes to zero.   

If the matrices on the two sides of the fracture have the same properties, Eqs. 5.1.15 and 
5.1.16 simplify to 

 

X(t)=
hinj

πH αρmcm∆T
t . (5.1.17) 

 
Although these models have been written in terms of the matrix block thicknesses, those 

thicknesses cancel algebraically, as they must in the early-time, infinite-acting period.  The 
matrix block thicknesses were left in the models to allow for an easier comparison with the late-
time models discussed below.   

This early-time model is similar to the previously discussed model of Marx and 
Langenheim (1959) and of Hearn (1969).  It differs only in that it allows different thermal 
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properties on either side of the permeable layer.  For the case of identical properties on either 
side, this model is identical to that those models.   

 
 

5.1.2  Late-Time Period 

 
For the late-time period, i.e., for the case when the conduction front in the matrix reaches 

the centerline of the matrix blocks before the thermal front in the permeable layer reaches the 
production well, the conduction rate per unit area of permeable layer face can be obtained from 
Eqs. 3.1.34.  Unlike the early-time period, the thicknesses of the two matrix layers adjacent to the 
permeable layer are important during the late-time period and must be accounted for.   

The conduction rate per unit area is given by 
 

qA =
q

dA
=

ln 2( )
2

Q∞

tcldA
exp − ln 2( ) t

tcl

��
	�

�

��
��. (5.1.18) 

 
Substituting for Q∞ from Eq. 2.1.7 yields 

 

qA =
q

dA
=

ln 2( )
2

Lmρm cm∆T
t cl

exp − ln 2( ) t
tcl

�

�

�

. (5.1.19) 

 
Substituting Eq. 5.1.19 into Eq. 5.1.7 and solving for X(t) using Laplace transforms yields the 
following expression for the position of the water front in the fracture: 

 

X t( )= hinj

HLf ρfcf∆T
K + Jt +L exp Ft{ } +Mexp Gt{ }[ ], (5.1.20) 

 
where 

 

K = D −
EB
C

�

�

�

�

1
C

, (5.1.21) 

 

J =
E
C

, (5.1.22) 

 



  64

M =
1−

E
C
+F D −

EB
C

�

�

�

�

1
C

G −F
, (5.1.23) 

 
L = −M −K , (5.1.24) 
 

with 
 

B =
ln 2( )
tcl, 2

+
ln 2( )
tcl,1

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ+

γ1 + γ2( )
Lf ρf cf∆T

, (5.1.25) 

 

C =
ln 2( )
tcl ,1

ln 2( )
tcl,2

+
γ1

ln 2( )
t cl,2

+ γ2
ln 2( )
tcl ,1

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

Lf  ρfcf∆T
, (5.1.26) 

 

D =
ln 2( )
tcl,1

+
ln 2( )
tcl,2

, (5.1.27) 

 

E =
ln 2( )
tcl,1

ln 2( )
t cl,2

, (5.1.28) 

 

F = −
B
2
−

B
2

ℜ

ℜ

ℜ

ℜ

2

−C , (5.1.29) 

 

G = −
B
2
+

B
2

ℜ

ℜ

ℜ

ℜ

2

−C , (5.1.30) 

 
and 

 

γ 1 =
ln 2( )

2
L1ρ1c1∆T

tcl,1

, (5.1.31) 

 

γ 2 =
ln 2( )

2
L2ρ2c2∆T

tcl ,2

, (5.1.32) 

 
For the case of the permeable layer being a fracture and its aperture going to zero, Eq. 

5.1.20 can be written as: 
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X t( )= hinj

H
K

Lf ρfcf∆T
+

J
L f ρfcf∆T

t +
L

Lf ρfcf∆T
exp Ft{ } +

M
Lf  ρf cf∆T

exp Gt{ }�

���
�

���
, (5.1.33) 

 
where 

 

K
Lf  ρfcf∆T

=
γ1

ln 2( )
tcl ,2

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

2

+ γ2
ln 2( )
t cl,1

�ℜ

�ℜ
�ℜ �ℜ

ℜ
�ℜ

2

γ1
ln 2( )
t cl,2

+ γ2
ln 2( )
tcl ,1

�ℜ

�ℜ
�ℜ

�ℜ

ℜ
�ℜ

2
, (5.1.34) 

 
J

Lf  ρfcf∆T
=

1

γ1
tcl,1

ln 2( ) + γ2
tcl,2

ln 2( )
ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

, (5.1.35) 

 
L

Lf  ρfcf∆T
= −

1
γ1 + γ2( )

, (5.1.36) 

 

M
Lf  ρfcf∆T

=
1

γ1 + γ2( ) −
γ1

ln 2( )
tcl ,2

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

2

+ γ2
ln 2( )
tcl,1

�ℜ

�ℜ
�ℜ �ℜ

ℜ
�ℜ

2

γ1
ln 2( )
t cl,2

+ γ2
ln 2( )
t cl,1

�ℜ

�ℜ
�ℜ

�ℜ

ℜ
�ℜ

2
, (5.1.37) 

 

F = −
γ1 + γ2( )

Lfρf cf∆T
, (5.1.38) 

 
and 

 
G = 0. (5.1.39) 
 
Alternatively, an expression for the position of the water front in a fracture can be found 

by substituting Eq. 5.1.19 into Eq. 5.1.8 and solving for X(t): 
 

X t( )= hinj

H γ1 + γ2( )
D −

E
I

I

ℜ

ℜ

�ℜ
�ℜ

ℜ

ℜ

�ℜ
�ℜ
+

E
I

t + 1−
D −

E
I

I

�ℜ

�ℜ

�ℜ
�ℜ

�ℜ

ℜ

�ℜ
�ℜ

�ℜ

�ℜ

	ℜ

	ℜ

ℜ

ℜ


ℜ


ℜ
exp −It{ }

�ℜ

�ℜ

	ℜ

	ℜ

�ℜ


ℜ


ℜ
, (5.1.40) 

 
where 
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I =
γ1

ln 2( )
tcl,2

+ γ2
ln 2( )
t cl,1

γ1 + γ2( )
  . (5.1.41) 

 
If the matrices on the two sides of the fracture are identical, Eqs. 5.1.33 and 5.1.40 

simplify to 
 

X t( )= hinjtcl

ln 2( )HL mρmcm∆T
1+ ln 2( ) t

tcl

�

��� ��
, (5.1.42) 

 
where the properties and dimensions are those associated with one matrix block on one side of 
the fracture. The thermal front advances linearly with time if the two matrix blocks are identical.  
It is noted that this model predicts a finite advance of the thermal front at the start of injection.  
This behavior at very early times is an artifact of using a late-time conduction model during the 
early-times of thermal front advance.  Because of this, this late-time model is not valid during 
early times, i.e., times before tcl (Eq. 2.1.10).   

 
 

5.1.3  Discussion of One-Dimensional Models 

 
This analysis has presented new models for quantifying the effect on the advance of a 

thermal front down a single fracture when the matrix properties on either side of the fracture 
differ.  The early-time period model is similar to the previously published model of Marx and 
Langenheim (1959), except that it has been extended to allow different matrix properties on 
either side of the fracture.   

The effect of different thermal properties on the location of the thermal front in the 
fracture can be seen in Figs. 27 and 28, for the early- and late-time models, respectively.  For 
these models, the matrix block sizes are identical, but the thermal conductivity on one side of the 
fracture, i.e., of one matrix block, has been reduced by one-half.  The relevant thermal properties 
for the base case of identical properties are given in Table 1.  For the early-time period figure, 
Eqs. 5.1.16 and 5.1.17 were used for the cases of different and identical properties, respectively. 
For the late-time period figure, Eqs. 5.1.40 and 5.1.42 were used for the cases of different and 
identical properties, respectively.  These figures show that a reduction of the thermal conductivity 
by a factor of two in one matrix block increases the advance rate of the front by 17% during the 
early-time period and by a constant amount during the late-time period.   
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Figures 29 and 30 compare the early-  and late-time models for the case of identical and 
different properties, respectively.  For Fig. 30, the thermal conductivity of one matrix block was 
reduced by a factor of two, consistent with Figs. 27 and 28.  As indicated in Table 1, the time for 
the conduction front in the matrix blocks to reach the centerline, tcl, is 42 days.  For much earlier 
times, the early-time period model is valid.  For later times, the late-time period model is valid.  
There is a significant period of overlap between the two models.   

The effect of different matrix block sizes is shown in Figs. 31 and 32.  Fig. 31 shows the 
effect of matrix block size on the late-time model and Fig. 32 compares the early- and late-time 
models.  In these figures, the size of one of the matrix block is increased by a factor of two.  The 
thermal conductivity for these figures is the same for all matrix blocks.  From these figures it can 
be seen that changing the matrix block size changes the advance rate of the thermal front.  It can 
also be seen that there is not necessarily an overlap between the early-and late-time period 
models. 

 
 

5.2  Multi-Dimensional Geometry 
 
For water advancing through a fracture network, the development of the governing 

equation is similar to that of water advancing through a single fracture.  There are some 
important differences, however.   

For a fracture network, the accumulation term is expressed as 
 

qacc = Hφfρwcw Tw − Ti( )dA
dt

= Hφfρwcw∆T
dA
dt

  , (5.2.1) 

 
where H is the formation thickness, φf is the fracture porosity (as a fraction of the formation bulk 
volume), and the area is the areal extent of the heated zone as observed from the surface, i.e., the 
area in contact with the overburden.   

This accumulation term expresses an important difference between the geometries of the 
one-dimensional, single fracture system and the multi-dimensional fracture network.  For the 
single fracture, the fracture aperture or permeable layer thickness, Lf, was used.  For the fracture 
network, the formation thickness, H, is used.  For the single fracture, the area is the surface area 
of the matrix block in contact with the fracture, while for the fracture network the area is the 
planform or bulk area of the thermal zone as seen from the surface.  These dimensions are 
orthogonal to each other.  Conceptually, this can be visualized by considering the permeable 
layer or fracture of the one-dimensional model to be oriented vertically and heat conduction to 
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the matrix to be horizontal.  In this conceptualization, the layer thickness and fracture aperture, 
Lf, is the horizontal width of that layer or fracture while the formation thickness, H, is the vertical 
height of the formation containing the vertical feature.   

The energy stored in the matrix blocks is accounted for in the flux integrals given by Eq. 
5.1.3.  As mentioned above, the area in the flux integrals is the areal sweep of the thermal front, 
i.e., the contact area of the heated zone with the overburden.  The area is not the actual surface 
area of the matrix blocks in contact with the fractures that was used in the one-dimensional 
models.  In the multi-dimensional models, it is assumed that the formation is thick and that the 
thermal losses out of the fractured layer have a negligible impact on the advance of the thermal 
front relative to that of the heating of the matrix blocks within the reservoir.   

The governing integro-differential equation for the area of the heated zone within a 
fracture network is obtained by substituting Eqs. 5.2.1 and 5.1.3 into Eq. 5.1.1, and converting 
from integrals over area to integrals over time: 

 

h inj = Hφfρwcw∆T
dA
dt

+ qA ,1(t − τ) 
dA
dτ

dτ
0

t

≠
≠

+ qA ,2 (t − τ) 
dA
dτ

dτ
0

t

�≠
≠

  . (5.2.2) 

 
For the case of the fracture porosity (as a function of bulk formation volume) being negligible, 
i.e., the fluid in the fractures have a negligible thermal capacity, Eq. 5.2.2 can be written as 

 

h inj = qA ,1(t − τ) 
dA
dτ

dτ
0

t

�≠
≠

+ qA ,2 (t − τ) 
dA
dτ

dτ
0

t

�≠
≠

  . (5.2.3) 

 
As with the cased of one-dimensional conduction, two conduction models will be used: 

one for the early-time period and one for the late-time period.  
 
 

5.2.1  Early-Time Period 

 
In this section, a model for determining the area of the thermal zone, i.e., the area affected 

by the injected water, will be determined for the early-time period in which the conduction fronts 
within individual matrix blocks are not expected to meet at the center of the matrix blocks.   

The governing integro-differential equation for the area of the thermal zone is given by 
Eq. 5.2.2: 
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h inj = Hφfρwcw∆T
dA
dt

+ qA ,1(t − τ) 
dA
dτ

dτ
0

t

�≠
≠

+ qA ,2 (t − τ) 
dA
dτ

dτ
0

t

�≠
≠

  . (5.2.4) 

 
For the case of the fracture porosity (as a function of bulk formation volume) being negligible, 
i.e., the fluid in the fractures have a negligible thermal capacity, Eq. 5.2.4 can be written as 

 

h inj = qA ,1(t − τ) 
dA
dτ

dτ
0

t

�≠
≠

+ qA ,2 (t − τ) 
dA
dτ

dτ
0

t

�≠
≠

  . (5.2.5) 

 
The integrals in these equations account for the conductive energy transfer between the fracture 
network and the matrix blocks.   

For the early-time period, the multi-dimensional conduction rate per unit area can be 
expressed through Eq. 2.2.13: 

 

qA =
q

dA
=

Q∞

tcldA
J

t cl

t
− K +M

t
tcl

�

��� ��, (5.2.6) 

 
where 

 

J =
1
12

1+
Lx

Ly

+
Lx

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

D L

π , (5.2.7) 

 

K =
1

36
Lx

Ly

+
Lx

Lz

+
Lx

2

LyLz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

DL

π
, (5.2.8) 

 
and 

 

M =
1

144
Lx

2

Ly Lz

DL

π
ℜ

ℜ

ℜ

ℜ

3

. (5.2.9) 

 
In these equations, a dimensionless geometry factor has been defined as 

 

DL =
4LxL y + 4LxLz + 36LyLz − 5Lx

2( )
Lx Ly +Lx Lz + LyLz( ) , (5.2.10) 
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the time for the conduction fronts within the matrix blocks to reach the matrix block centers is 
given by 

 

t cl =
Lx

2

576α
DL , (5.2.11) 

 
and the cumulative amount of thermal energy conducted into a matrix domain after an infinite 
time is 

 
Q∞ = χ iρmcm Tw −Ti( )HdA = χiρmcm∆THdA, (5.2.12) 

 
where χi is the volume fraction of the ith matrix domain, and HdA is the volume of a differential 
area of the geothermal reservoir.  The volume fractions for the two matrix domains are related 
through the following expression: 

 
χ1 +χ2 =1. (5.2.13) 
 
Using these definitions, Eq. 5.2.6 can be rewritten as 
 

qA = χω J
tcl

t
−K +M

t
t cl

�

��� ��, (5.2.14) 

 
where 

 

ω =
Hρmcm∆T

t cl

. (5.2.15) 

 
Substituting Eq. 5.2.14 into Eq. 5.2.5, taking the Laplace transform of the equation, and 

solving for the area of the thermal zone in Laplace space yields 
 

A s( ) = hinj

E1

1

s s −
E2

E1

s +
E3

E1

�

��� ��

  . (5.2.16) 

 
where 
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E1 = χ1ω1J1 πtcl,1 + χ2ω2J2 πtcl ,2   , (5.2.17) 

 
E2 = χ1ω1K1 +χ2ω2K 2   , (5.2.18) 
 

and 
 

E3 =
χ1ω1M1

tcl,1

π
2

+
χ2ω2M2

t cl,2

π
2

  . (5.2.19) 

 
Unfortunately a general inversion for Eq. 5.2.16 is not known.  However, if the matrix 

block dimensions for a double porosity reservoir (single matrix domain) obey the following 
inequality: 

 
Lz

Ly

+
Ly

Lz

+ 2 −
3π
2

ℜ
ℜ

ℜ
ℜ 1+

Lx

Ly

+
Lx

Lz

�ℜ

�ℜ�ℜ

ℜ

ℜ�ℜ
+

Lx
2

Ly Lz

> 0   , (5.2.20) 

 
the bracketed term in the denominator of Eq. 5.2.16 can be factored and a partial fraction 
expansion applied.  In this case, Eq. 5.2.16 can be inverted to the time domain to yield the 
following expression for the area of the thermal zone: 

 

A t( ) = hinj

E1

f1

πt
+ f2

1
πt

− a exp a2t{ } erfc a t{ }ℜ
ℜ

ℜ
ℜ
+ f3

1
πt

− bexp b2 t{ } erfc b t{ }�ℜ
�ℜ

�ℜ
ℜ

�ℜ

�ℜ�ℜ
ℜ

ℜ�ℜ
 , (5.2.21) 

 
where 

 
f1 =

1
ab

  , (5.2.22) 

 
f2 = −

1
a b − a( )

  , (5.2.23) 

 
f3 =

1
a b − a( ) −

1
ab

  , (5.2.24) 

 

a =
1
2

E2

E1

+

E2

E1

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

2

− 4
E3

E1

2
  , (5.2.25) 



  72

 
and 

 

b =
1
2

E2

E1

−

E2

E1

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

2

− 4
E3

E1

2
  . (5.2.26) 

 
An inspection of Eqs. 5.2.22 through 5.2.24 reveals that 

 
f1 + f2 + f3 = 0  . (5.2.27) 

 
Using this relationship, the expression for the area of the thermal zone, given by Eq. 

5.2.21, can be simplified to 
 

A t( ) = h inj

E1

−f2a exp a2 t{ } erfc a t{ } − f3bexp b2 t{ } erfc b t{ }[ ]  . (5.2.28) 

 
The restriction on the matrix block shape required by Eq. 5.2.20 limits the shapes of 

matrix blocks in which this solution applies.  Acceptable values for the matrix block size can be 
obtained from the following equations:  

 
Ly ≥ Lx   (5.2.29) 
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A conservative linear approximation to Eq. 5.2.30 is given by 

 

Lz ≥
1
2

3π
2

− 2ℜ
ℜ

ℜ
ℜ + 3π

3π
4

− 2�ℜ
�ℜ

�ℜ
ℜ

�ℜ

�ℜ�ℜ

ℜ

ℜ�ℜ
Ly + 4.84425Lx  . (5.2.31) 

 
Equations 5.2.30 and 5.2.31 are plotted in Figs. 33 through 35 as a function of Ly for 

values of Lx of 10 m, 20 m, and 50 m, respectively.  Acceptable values for matrix block geometry 
are those in the upper triangle.  As long as Lz is greater than about 7Ly, a solution probably exists.  
The matrix block shapes excluded in this solution are those that are nearly cubic.   
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The effect of matrix block size and shape on the swept thermal area is shown in Fig. 36.  
The three curves in this figure are for Ly = Lx, Ly = 2Lx, Ly = 5Lx, respectively, where Lx = 10 m.  
The value of Lz was determined from Eq. 5.2.31.  The relevant properties are shown in Table 1.  
This figure shows that the thermal area grows faster for larger matrix blocks when the smallest 
dimension remains constant.  This effect is from the reduced surface area for heat transfer 
associated with the matrix blocks having a larger aspect ratio.  Larger matrix blocks slow energy 
transport between the fluid in the fractures and the matrix because of the reduced surface area per 
volume.  This slower transport allows the fracture fluid to retain more of its original energy as it 
advances through the fracture network and results in a larger affected area.   

The effect of two matrix domains having different matrix block sizes but identical 
thermal properties is shown in Fig. 37.  In this figure the matrix blocks in each domain have Ly = 
2Lx, with Lz being given by Eq. 5.2.31.  One curve in the figure is for one matrix domain with Lx 
= 10 m and the second curve is for two matrix domains with one domain having Lx = 10 m and 
the other having Lx = 20 m.  For the second curve, the volume fraction of the two matrix domains 
are one-half for each domain.  Having some matrix blocks that are larger than others results in a 
more rapid advance of the thermal fronts through the reservoir because of the longer time 
required to heat the larger matrix blocks.   

 
 

5.2.2  Late-Time Period 

 
For the late-time period, i.e., for the case of water advance through a fracture network 

after conduction fronts reach the center of matrix blocks near the injection well, the conduction 
rate per unit surface area can be obtained from the multi-dimensional conduction model given by 
Eq. 3.2.58.  This imbibition rate per unit area is given by 

 

qA =
q

dA
=

Vmρmcm∆Tδ
tcldA

exp −δ
t
tcl

�

�

�

. (5.2.32) 

 
For this model, the multi-dimensional time for the conduction front to reach the center of the 
matrix is given by Eq. 2.2.11.   

For the case of two matrix domains, the volume to be used in Eq. 5.2.32 is the volume 
fraction of the reservoir associated with each respective matrix domain:  

 
Vm = χ iHdA , (5.2.33) 
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where χi is the volume fraction of the ith matrix domain.  The volume fractions for the matrix 
domains within the fractured layer are related through the following expression: 

 
χ1 +χ2 =1. (5.2.34) 
 

The conduction rate per unit area can then be written as 
 

qA =
q

dA
=
χ iHρmcm∆Tδ

tcl

exp −δ
t
tcl

�≠
�≠
�≠

. (5.2.35) 

 
Substituting Eq. 5.2.35 into Eq. 5.2.2 and solving using Laplace transforms yields the 

following expression for the total area behind the thermal front in the fracture network: 
 

A t( ) = hinj

Hφfρwcw∆T
K + Jt +L exp Ft{ } +Mexp Gt{ }[ ] , (5.2.36) 

 
where 
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L = −M −K , (5.2.40) 
 
with 
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, (5.2.43) 
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and 
 
� EMBED Equation.3  ���, (5.2.47) 
 
� EMBED Equation.3  ���. (5.2.48) 
 
For the case of the fracture porosity, φf, going to zero, Eq. 5.2.36 can be written as: 
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L
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, (5.2.52) 
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Alternatively, an expression for the water swept area when the fracture porosity is 

negligible can be found by substituting Eq. 5.2.35 into Eq. 5.2.3: 
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where 
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Eq. 5.2.54 is identical to Eq. 5.2.49.   

If the two matrix domains in the fractured layer are identical, Eqs. 5.2.49 and 5.2.54 
simplify to 

 

A t( ) = hinjtcl

Hρmcm∆Tδ
1+ δ

t
tcl

�

���
�

���
. (5.2.56) 

 
This linear advance rate for the area of the thermal zone is analogous to that for a single 

fracture given by Eq. 5.1.42.  A linear advance rate occurs when conduction has come to 
completion around the injection point and the zone of thermal transients is pushed away from the 
injection point.   

 
 

5.2.3  Discussion of Late-Time Period Models 

 
This analysis has presented new models for quantifying the effect of the advance of a 

thermal front through a fracture network when two matrix domains exist.  
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The effect of different thermal properties on the areal sweep of the thermal zone can be 
seen in Fig. 38.  In this figure, the matrix blocks are all cubes.  The relevant properties are given 
in Table 1.  Equation 5.2.54 is used for the case of different properties and Eq. 5.2.56 is used for 
identical properties.  The volume fractions for the two matrix domains are equal at 50% each.  It 
can be seen that lowering the thermal conductivity of one matrix domain resulted in the thermal 
area to grow faster than otherwise.  This is from the resulting delay in heating the matrix blocks 
behind the thermal front from slower conduction.   

The effect of different matrix block sizes on the areal sweep can be seen in Fig. 39.  In 
this figure, the thermal properties of the two matrix domains are equal, but the size of the matrix 
blocks in one domain is doubled.  As with Fig. 38, the matrix blocks are cubes.  It can be seen 
that having one matrix domain containing larger matrix blocks resulted in a faster expansion of 
the thermal zone.  With one matrix domain having larger matrix blocks than the other, it will take 
longer for conduction to come to completion within the matrix blocks in that domain.  Thus, 
more thermal energy will be available to expand the thermal zone as conduction proceeds.   

A comparison to the early-time model, given by Eq. 5.2.28, with the late-time model, 
given by Eq. 5.2.54, is shown in Figs. 40 and 41 for the case of a single matrix domain.  The 
matrix block domain dimensions for Fig. 40 are Lx = 10 m, Ly = Lx, and Ly given by Eq. 5.2.31.  
This gives a three-dimensional shape to the matrix block domain.  For this case, the time for the 
conduction front within the matrix block to reach the its centerline is about 30 days and the early-
time model is probably valid for about 150 days.  The matrix block domain dimensions for Fig. 
41 are Lx = 10 m and Ly = 1,000 m Lz = 10,000m. This gives a one-dimensional, slab shape to the 
matrix block domain.  For this case, the time for the conduction front within the matrix block to 
reach the its centerline is about 50 days and the early-time model is probably valid for about 250 
days.  These figure show that the two models overlap for one-dimensional geometry, but do not 
for three-dimensional geometry.  The problem lies in the late-time model that assumes a late-time 
conduction model through the early-time period.   

The difference in the estimated time for the conduction front to reach the centerline of the 
matrix block, even though the smallest dimension is the same, is an artifact of the model.  This 
artifact arose from using the linear-temperature-profile model to determine the centerline time.  
The primary effect of this artifact is in establishing a time to switch from the early-time to late-
time period models for the area of the thermal zone.  Because of the difficulty in using the late-
time period model during the early-time period, this artifact is not considered significant.   
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6.0  Fracture Spacing Distributions 
 
In naturally fractured geothermal reservoirs, fracture properties can govern fluid flow 

through the reservoir.  Although exact information about the fracture locations, distributions, 
spacings, and apertures in the reservoir can never be completely known, relevant statistical 
fracture properties can often be obtained from outcrop and/or wellbore measurements.  These 
statistical fracture properties can then be used in reservoir models to determine the probable 
reservoir behavior.   

Fracture spacings are typically measured using a scanline along an outcrop or a core, 
where the successive spacings between fractures as they intersect the scanline are recorded.  A 
variety of fracture spacing studies have been reported.  In some studies, the spacing between 
successive fractures was recorded without regard to the fracture orientation (Priest and Hudson, 
1976; Baecher et al., 1977; Einstein et al., 1979; Wallis and King, 1980; and Sen and Eissa, 
1992).  Although that method of measuring fracture spacing provides a qualitative measure of 
how fractured a formation may be, it does not provide a quantitative measure of the true spacing 
between fractures.  The true spacing is the perpendicular spacing between parallel fractures.   

In most fracture spacing studies, both the spacing between fractures and the fracture 
orientation (attitude) has been measured (Mahtab et al., 1973; Steffen, 1975; Bridges, 1975; Call 
et al., 1976; Barton, 1977; Baecher et al., 1977; Sen and Kazi, 1984; Rouleau and Gale, 1985; 
Huang and Angelier, 1989; Bardsley et al., 1990).  The fractures are then subdivided into 
subparallel sets using the orientation data.  The spacing between the scanline intersections of the 
fractures in each set is determined by ignoring all fractures not belonging to that set.  The true 
spacing is then determined for each set using a trigonometric correction to correct for the 
scanline not being perpendicular to the set.   

Once fracture spacing information has been obtained, the spacings for an individual set 
can be curve fit to a variety of mathematical models, including a negative exponential, log-
normal, Weibull, gamma, power law (fractal), and normal distributions.  Having such a 
mathematical model for the spacing distribution allows the data to be concisely summarized and 
simplifies subsequent simulation studies involving the spacing.   

The simplest fracture spacing distribution is the negative exponential model (Mahtab et 
al., 1973; Call et al., 1976; Priest and Hudson, 1976; Baecher et al., 1977; Einstein et al., 1979; 
Wallis and King, 1980; Einstein and Baecher, 1983; and Sen and Eissa, 1992).  This model has 
been shown to be related to the power law or fractal model (Poulton et al., 1990).   Priest and 
Hudson (1976) reported that a negative exponential distribution is obtained if fractures are 
randomly distributed along the scanline, e.g., the presence of a fracture at one location is 
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independent of whether another fracture is present near that location.  For such a distribution, the 
probability of having a fracture in a particular interval along the scanline has a Poisson 
distribution.   

The most widely used fracture spacing distribution is the log-normal model (Steffen, 
1975; Bridges, 1975; Barton, 1977; Baecher et al., 1977; Sen and Kazi, 1984; Rouleau and Gale, 
1985; and Huang and Angelier, 1989).  Bardsley et al. (1990) and Lorenz and Hill (1994) 
successfully matched oriented fracture spacing data a Weibull distribution.  Huang and Angelier 
(1989) claimed that a gamma distribution fit their oriented fracture spacing better than a log-
normal distribution and that a negative exponential distribution did not match the data at all.  
There is evidence that the fracture spacing distribution evolves as the joint sets become better 
developed (Rives et al., 1992).   

Mathab, et al. (1995) conducted a systematic evaluation of fracture spacing distribution 
models by comparing them to various sets of published fracture spacing data.  The models 
evaluated included negative exponential, log-normal, Weibull, normal, and gamma distributions.  
The fracture spacing data analyzed had been corrected for fracture orientation.  They reported 
that the best overall fit was obtained using a log-normal distribution.   

As discussed above, the two most common fracture spacing distributions observed in the 
field are the negative exponential and log-normal distributions.  The probability density function 
for the negative exponential fracture spacing distribution is expressed as 
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L
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L
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 , (6.1) 

 
where L is the fracture spacing and <L> is the average fracture spacing.  The cumulative 
probability density function is the integral of the probability density function and is expressed as 
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For the negative exponential distribution, the cumulative probability density function becomes 

 

PNE L( ) =1− exp −
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For a negative exponential distribution, the standard deviation of the fracture spacing about the 
average fracture spacing is equal to the average spacing.   
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The probability density function for the log-normal fracture spacing distribution is 
expressed as 

 

fLN L( ) = 1
σL 2π

exp −
ln L( )− µ( )2

2σ2

�

�

�

 , (6.4) 

 
where µ is the average of the logarithms of the fracture spacings and σ is the standard deviation 
of the logarithms of the fracture spacings.  The cumulative probability density function is the 
integral of the probability density function and is expressed as 
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or 
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where 

 

u =
ln L( )− µ

σ
 . (6.7) 

 
The cumulative probability density function for a log-normal fracture spacing distribution is the 
normal probability integral in the variable (ln(L)-µ)/σ.   
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7.0  Incorporation of Fracture Data in Models 
 
In this section, methods for incorporating statistical parameters from measured fracture 

spacing distributions into the models for the area of the thermal zone are developed.  The 
objective of this analysis is to determine the appropriate values of Lx, Ly, and Lz to be used in the 
thermal advance models.   

 

7.1  Early-Time Period: Single Matrix Domain 
 
During the early-time period, the energy transfer between the fluid in the fracture network 

and the associated matrix blocks is proportional to the surface area of the matrix blocks available 
for heat transfer.  The greater the surface area, the more rapid the energy transfer and the more 
slowly the areal extent of the thermal zone will grow.  Large matrix block surface areas result 
from many small matrix blocks with close fracture spacings.  Large matrix blocks have high 
surface areas per matrix block, but lower surface areas per volume, resulting in a lower overall 
surface area in the reservoir for heat transfer.  This behavior was observed in Fig. 36.   

The relationship between the thermal zone area and the surface area of individual matrix 
blocks is shown in Fig. 42.  In this figure, the values of Lx, and Ly were varied from 1 m to 50 m 
in accordance with Eq. 5.2.29 while Lz was determined from Eq. 5.2.31.  The area of the thermal 
zone is shown after one year for the properties given in Table 1.  This figure shows that there is a 
very good correlation between the surface area of an individual matrix blocks comprising the 
formation and the areal extend of the thermal zone.  Consistent with the previous discussion, 
large matrix blocks yield large thermal zone areas because of the lower overall heat transfer 
between the fluid and matrix blocks.   

The next step to incorporate fracture spacing data into the model is to relate measured 
fracture spacing statistical data to the individual matrix block surface areas.  Because of its 
relative simplicity, a negative exponential fracture spacing distribution was used.  For each of the 
three orthogonal directions, fracture spacings were randomly generated that obeyed the negative 
fracture spacing distribution.  These fracture spacing realizations were generated independently 
for each of the three directions and each had their own average fracture spacing.  Typically over 
10,000 individual realizations were obtained for each fracture set.  For each set of three random 
fracture spacings, the spacings were sorted and labeled such that Lx < Ly < Lz.   

The surface area of each individual matrix block was then calculated for those sets that 
satisfied Eq. 5.2.31.  The average surface area per matrix block was then determined.  These 
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Monte Carlo generated surface areas were then compared to the matrix block surface areas 
calculated from the average fracture spacings in the three directions and are shown in Fig. 43.  
Each data point in this figure corresponds to a complete Monte Carlo analysis for different sets of 
assumed average fracture spacings. The average spacings in two of the directions were varied 
from 1 m to 50 m, while that of the third direction was calculated by substituting the assumed 
fracture spacings from the first two directions into Eq. 5.2.31.  It can be seen that the surface area 
calculated from the average fracture spacing is virtually equal to that calculated from the average 
of the areas obtained from the Monte Carlo analysis.  Because the fracture spacings in the three 
directions are independent of each other, this result is to be expected.   

The fracture spacing distribution data are incorporated into the one matrix domain, early-
time period model by using the average fracture spacings in each direction in Eq. 5.2.28.  These 
spacings are ordered such that Lx < Ly < Lz.  Since there is only one matrix domain, χ1 =1 and 
χ2=0. 

 
 

7.2  Early-Time Period: Two Matrix Domains 
 
The fracture spacing data for two matrix domains is incorporated into the early-time 

period model by finding an appropriate average matrix block surface area for each matrix domain 
and then selecting appropriate fracture spacings for each domain that yield the desired average 
matrix block surface area.  One domain will tend to have the smaller matrix blocks and the other 
will have the larger matrix blocks.   

The first step is to select the volume fractions associated with each domain.  This is a 
choice made by the user.  Then the midrange cumulative volume fractions for each matrix 
domain are determined.  The midrange volume fraction is the characteristic cumulative volume 
fraction for each domain.  If the matrix domains are assumed to each occupy 50% of the 
reservoir, the midrange cumulative volume fractions are 25% (midrange between 0 and 50%) and 
75% (midrange between 50 and 100%).  If the matrix domains are assumed to be 25% and 75% 
of the reservoir volume, the midrange cumulative volume fractions are 12.5% and 62.5%, 
respectively.  

Next the surface area for matrix blocks in each domain is obtained from the midrange 
volume fraction.  A relationship between the matrix block volume and surface area was obtained 
through a Monte Carlo analysis.  For a particular set of average fracture spacings in three 
orthogonal directions, thousands of realizations of specific fracture spacings were generated and 
the surface area and volume of each corresponding matrix block was calculated.  These data were 
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then sorted by increasing matrix block volume.  The cumulative surface area was then calculated 
as a function of cumulative matrix block volume for the entire set of matrix blocks realizations.  
These curves were normalized by the total surface area and volume yielding the fractional 
cumulative surface area in the reservoir as a function of fractional cumulative volume of the 
reservoir, sorted by increasing matrix block volume.  This process was repeated for a wide 
variety of average fracture spacings.  Figure 44 shows this relationship for three arbitrary sets of 
average fracture spacings.  It can be seen that there is little difference between these curves for 
different fracture spacings.  This relationship can be approximated by the following equation: 

 
A frac =Vfrac

0.47
 . (7.2.1) 

 
This curve is shown in Fig. 44 without plot symbols.   

The characteristic fractional cumulative surface areas for each matrix domain are 
obtained by substituting the midrange cumulative volume fractions for the matrix domains into 
Eq. 7.2.1.  The characteristic fractional cumulative matrix domain surface areas for each of the 
two domains are then normalized by dividing them by the characteristic fractional area of the 
reservoir if the reservoir were modeled as having only a single matrix domain, i.e., they are 
divided by the fractional cumulative area from Eq. 7.2.1 at a mid-range fractional cumulative 
volume fraction of 0.5.  This fractional area is 0.72.  This gives the normalized fractional 
cumulative surface area for each domain relative to that of a reservoir with a single matrix 
domain.   

The final step is to relate the normalized fractional cumulative surface areas to the 
measured average fracture spacings.  This is done by multiplying the values of average fracture 
spacings by the square root of the normalized fractional cumulative surface area for each domain 
and using those values in Eq. 5.2.28.  This approach extends the method for a single matrix 
domain to two matrix domains.  The square root is used because it yields the proper adjusted 
surface area for each domain when two lengths are multiplied to get an area.   
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7.3  Late-Time Period 
 
Fracture spacing data can be incorporated into the late-time period model for the thermal 

area that was presented in Eq. 5.2.54.  In this model, the area of the affected region was given as 
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where 
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λ 1 =
Hρ1c1∆T
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δ1 , (7.3.5) 

 

λ 2 =
Hρ2c2∆T

tcl ,2

δ2 , (5.3.6) 

and 
 
 

δ = ln
12LyLz

Lx
2 + 6LyLz − 2Lx Ly − 2Lx Lz

�

��� �� . (7.3.7) 

 
An examination of the model reveals that all of the information about the matrix block 

size is provided in the ratio of δ/tcl.  This ratio can be written as 
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If a matrix block size parameter is defined such that  
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2 + 6LyLz − 2Lx Ly − 2L xLz

�

���

�

���
, (7.3.9) 

 
then the ratio can be written as 

 
δ
t cl

= αR . (7.3.10) 

 
With this definition, the equation for the area of the thermal zone, Eq. 7.3.1, can be 

rewritten as 
 

A t( ) = hinj

Hρc∆Tα

R1 +R2( )− χ1R1 + χ2R2( )
R1R 2
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 , (7.3.11) 

 
where it has been assumed that the thermal properties of the matrix blocks in the two domains 
are equal, i.e., the fractures cut homogeneous rock.   

For the case of a double porosity reservoir, i.e., one matrix domain, R1 = R2 and Eq. 
7.3.11 simplifies to 

 
A t( ) = hinj

Hρc∆Tα
1
R

+ αt�

�

�

�

 . (7.3.12) 

 
A relationship between the matrix block size parameter, R, and the statistical parameters 

governing the fracture spacing distribution was obtained through Monte Carlo analysis.  The 
matrix block size parameter was determined stochastically from Eq. 7.3.9 through independent 
realizations of the fracture spacings (matrix block sizes).  Using the assumed negative-
exponential fracture spacing distribution and three random numbers, three fracture spacings 
(orthogonal matrix block dimensions) were obtained that obeyed that distribution.  The three 
orthogonal fracture spacings were then ordered such that Lx < Ly < Lz.  These values were then 
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substituted into Eq. 7.3.9 to obtain one realization of the matrix block size parameter.  The 
associated matrix block volume was also determined by multiplying the three fracture spacings.  
This process was then repeated with different random numbers having the same statistical 
parameters to obtain corresponding values for a large number of matrix blocks.  Typically over 
8,000 individual realizations were obtained for each fracture spacing distribution.   

Once the multiple realizations of the matrix block size parameter and associated matrix 
block volume were obtained for a fracture spacing distribution, they were sorted in order of 
increasing matrix block size parameter and the cumulative volume fraction determined.  These 
values were then curve-fit to a log-normal distribution of the cumulative matrix block volume as 
a function of increasing matrix block size parameter: 

 

P Vfrac( )= 1
2π

exp −
u2

2
�
�
�

�
�
�
du

−∞

ln R( )−µ R
σR

��

��
��  . (7.3.13) 

 
For a negative-exponential fracture spacing distribution, it was found that the statistical 

parameters for the cumulative matrix block volume probability density function as a function of 
the matrix block size parameter can be obtained using the following values: 

 

µR = 2 ln
1
Lx

+
1
Ly

+
1
Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ+1.41 (7.3.14) 

 
and  

 
σR = 1.45  , (7.3.15) 
 

where <Lx>,  <Ly>, and <Lz> are the respective average fracture spacings for the three orthogonal 
fracture sets defining the fracture network.  One typical data set is compared to a log-normal 
distribution in Fig. 45.  The validity of using Eq. 7.3.14 to relate the measured fracture spacing to 
the log-normal distribution statistical parameter, µR, is demonstrated in Fig. 46.  In this latter 
figure, the values of µR computed from the Monte Carlo analysis are compared to those 
calculated with Eq. 7.3.14.  These figures show that the matrix block size distribution can be 
reasonably modeled with this log-normal model.   

A dimensionless matrix block size parameter can be defined as 
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X R =
ln R( )− µR

σR

 . (7.3.16) 

 
The cumulative matrix block volume fraction given by Eq. 7.3.13 is plotted as a function of this 
dimensionless matrix block size parameter in Fig. 47.  The matrix block size parameter, R, can 
be determined from the dimensionless matrix block size parameter given by Fig. 47 by inverting 
Eq. 7.3.16:   

 
R = exp XRσR + µR{ }   . (7.3.17) 
 

where µR and σR are obtained from Eqs. 7.3.16 and 7.3.15, respectively.   
The late-time period model is used by first selecting the matrix domain volume fractions 

and corresponding midrange volume fractions, determining the dimensionless matrix block size 
parameter from Fig. 47 using the midrange volume fractions, calculating the matrix block size 
parameter from Eq. 7.3.17 with the measured average fracture spacings, and then using those 
parameters in Eq. 7.3.12 for the case of a single matrix domain or Eq. 7.3.11 for two matrix 
domains.   

 
 

7.4  Comparison on Models 
 
The effect of using fracture spacing information in the models for the area of the thermal 

zone is demonstrated in this section.  For this example, three orthogonal sets of fractures are 
assumed.  The fracture spacing distribution for each set is assumed to follow the negative-
exponential distribution, with average spacings of 10 m, 20 m, and 100 m, respectively.  The 
other properties are given in Table 1.   

 

7.4.1  Early-Time, One Matrix Domain (Double Porosity Reservoir) 

 
For this case, the methodology presented in Section 5.2.1 is to be followed.  The values of 

Lx, Ly, and Lz to be used in Eq. 5.2.28 are the average fracture spacings, 10 m, 20 m, and 100 m, 
respectively.  The resulting area of the thermal zone is plotted in Fig. 48 as a function of time.   

 
 



  88

7.4.2  Early-Time, Two Matrix Domains (Triple Porosity Reservoir) 

 
For this case, the methodology presented in Section 5.2.1, is to be followed.  It will be 

assumed that the two matrix domains have equal volume fractions.  The midrange volume 
fractions are 0.25 and 0.75, respectively for the two domains.  The corresponding area fractions 
from Eq. 7.2.1 are 0.52 and 0.87, for the respective domains.  The normalized area fractions are 
0.72 and 1.21, respectively.  The average fracture spacings for the two domains are then obtained 
by multiplying the measured average fracture spacing by the square root of the normalized area 
fraction.  The values of Lx, Ly, and Lz to be used in Eq. 5.2.28 are then 8.5 m, 17.0 m, and 85 m 
for the first domain and 11 m, 22 m, and 110 m for the second domain.  The resulting area of the 
thermal zone is plotted in Fig. 48 as a function of time. 

 
 

7.4.3  Late-Time, One Matrix Domains (Double Porosity Reservoir) 

 
For this case, the methodology presented in Section 5.2.2, is to be followed.  If all matrix 

blocks are identical and have the same dimensions as the average fracture spacing, the value of 
the matrix size parameter can be determined from Eq. 7.3.9.  However, uniform matrix blocks 
are not consistent with the assumption of a negative-exponential fracture spacing distribution.  
For the assumed fracture spacing distribution, the dimensionless matrix block size parameter is 
determined from Fig. 47 at the midrange volume fraction.  Because there is only one matrix 
domain, the midrange volume fraction is 0.5, yielding dimensionless matrix block size parameter 
of 1.  The statistical values for the mean and standard deviation of the logarithm of the fracture 
spacings given by Eqs. 7.3.14 and 7.3.15 are -2.26 and 1.45, respectively.  The resulting matrix 
block size parameter is given by Eq. 7.3.17 as 0.44 m-2. This matrix block size parameter is then 
used in Eq. 7.3.12.  The resulting area of the thermal zone is plotted in Fig. 48 as a function of 
time.   

 
 

7.4.4  Late-Time, Two Matrix Domains (Triple Porosity Reservoir) 

 
For this case, the methodology presented in Section 5.2.2, is to be followed. It will be 

assumed that the two matrix domains have equal volume fractions.  The midrange volume 
fractions are 0.25 and 0.75, respectively for the two domains.  The corresponding logarithms of 
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the dimensionless matrix block size parameter from Fig. 47 are -0.67 and 0.67, for the respective 
domains, yielding dimensionless matrix block size parameters of 0.512 and 1.95, for the two 
domains, respectively.  The statistical values for the mean and standard deviation of the 
logarithm of the fracture spacings given by Eqs. 7.3.14 and 7.3.15 are -2.26 and 1.45, 
respectively.  The resulting matrix block size parameters are given by Eq. 7.3.17 as 0.22 m-2 and 
1.76 m-2 for the two domains, respectively. These matrix block size parameters are then used in 
Eq. 7.3.11.  The resulting area of the thermal zone is plotted in Fig. 48 as a function of time.   

 

7.4.5  Discussion 

 
The four models demonstrated in this section are shown in Fig. 48.  This figure shows 

that the difference between the double-porosity and triple-porosity models, i.e., one or two matrix 
domains, is minor.  Within the typical accuracy of most fracture spacing data, the additional 
complication of using models having multiple matrix domains is probably not justified.  The 
reason that there is not a significant difference between the double and triple porosity systems is 
that the fracture spacings used for the two matrix domains are not radically different from each 
other.  Because the fracture spacings used in the models are based on the assumption of a 
negative exponential fracture spacing distribution and because such a fracture spacing 
distribution has been shown to represent actual fracture spacings in many geothermal reservoirs, 
the use of more extreme fracture spacings to force a difference between the double and triple 
porosity models is expected to yield a physically unrealistic model.   

The difference in the early- and late-time period models is from the bias of using a late-
time period conduction model through the early-time period.  The centerline time for these data 
are about 40 days.   
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8.0  Conclusions 
 
In this project, new models were developed for estimating the size of the zone in a 

geothermal reservoir that has an altered temperature caused by the injection of a fluid into the 
fracture network at a temperature different from that of reservoir.  The project was divided into 
two parts: thermal conduction into matrix blocks and thermal convection through the fracture 
network.  One- and three-dimensional conduction models were developed for conduction into the 
matrix blocks.  One- and three-dimensional convection models were developed for the advance 
of the thermally affected zone through the reservoir that utilize those conduction models for the 
thermal cross flow between the fractures and matrix blocks.   

The key accomplishments of this project are summarized below. 
 

1. A variety of one- and three-dimensional models for the transient conductive heating of 
parallelepiped matrix blocks were developed and compared to the classical models based 
on the solution to the constant thermal property heat diffusion equation.   

 
2. Two conduction periods were identified: an early-time period in which conduction occurs 

as if into a semi-infinite medium and a late-time period in which conduction fronts from 
opposing faces merge at the center of the matrix block and interfere with each other.  
Interference from adjacent faces is allowed in both early- and late-time period three-
dimensional models.   

 
3. The best conduction model for the early-time period was found to be the classical model 

obtained from a similarity solution of the heat diffusion.  This model is the square-root 
solution in one-dimensions and the extended square-root solution in three dimensions.   

 
4. The best conduction model for the late-time period was found to be a semi-empirical 

exponential model.  Although not exact, this model provides a reasonably accurate, 
relatively simple model that can be easily employed in simulators or spreadsheets.  
Unfortunately, this model is not accurate at very early times.   

 
5. No simple model was found that was accurate over the entire conduction period.   
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6. A simple method was developed for estimating the centerline time, i.e., the time when the 
conduction fronts from opposing faces of the matrix block reach the center of the matrix 
block and begin to interfere with each other.   

 
7. New models were developed for the advance of a thermal front in a single fracture (or set 

of parallel fractures) using the early- or late-time one-dimensional conduction models 
discussed above.   

 
8. New models were developed for the advance of a thermal front in a fracture network 

using the early- or late-time three-dimensional conduction models discussed above.  
Models for both a double- and triple-porosity reservoir (one and two matrix domains) 
were also developed.   

 
9. Methods for incorporating fracture spacing distribution data into all of the new thermal 

advance models were developed.  The standard assumption of uniform fracture spacing is 
not required to use the new thermal advance models.  A negative exponential fracture 
spacing distribution was assumed.   

 
10. For an example reservoir, the use of a triple-porosity model (two matrix domains and one 

fracture domain) yielded results not significantly different from a double-porosity model 
(one matrix and one fracture domain).  This result is expected to be valid for all reservoirs 
having a negative-exponential fracture spacing distribution.  Given the usual uncertainties 
in fracture spacing and matrix properties, using the more sophisticated triple-porosity 
models is probably not warranted.  This conclusion is based on the observation that many 
measured fracture spacing distributions follow the negative exponential behavior 
assumed in this study.   
 
The results of this study have been condensed into two papers and presented at 

geothermal conferences: Reis (2000 and 2001).   
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Nomenclature 
 
A Area of matrix block face or heat transfer area 
Afrac Cumulative surface area fraction 
Ao Total surface area of one matrix block 
Ax Surface area of one matrix block face perpendicular to the x-direction 
Ay Surface area of one matrix block face perpendicular to the y-direction 
Az Surface area of one matrix block face perpendicular to the z-direction 
A' Area of conduction front within matrix block 
cp Specific heat 
cf Heat capacity of fracture or permeable formation 
cm Heat capacity of matrix 
cw Heat capacity of water 
Cf Correction factor given by Eq. 3.2.23 
D Diffusion coefficient for imbibition 
DL Dimensionless geometry factor in conduction models 
h Heat transfer coefficient 
hinj Enthalpy injection rate 
H Height of formation or width of permeable layer 
k Permeability 
kro Relative permeability for oil 
krw Relative permeability for water 
K Thermal conductivity 
Km Thermal conductivity of impermeable matrix 
L Matrix block or distance between evenly-spaced, parallel fractures 
Leq Equivalent size of matrix block 
Lf Fracture aperture or formation thickness in direction of conduction 
Lx Matrix block dimension in x direction (three dimensional geometry) 
Ly Matrix block dimension in y direction (three dimensional geometry) 
Lz Matrix block dimension in z direction (three dimensional geometry) 
L' Distance of leading edge of thermal front from matrix block face 
Pc Capillary pressure 
P1 Parameter in VW-PW model 
P2 Parameter in VW-PW model 
q Thermal conduction rate 
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qacc Energy accumulation rate in permeable layer or fracture 
qloss Energy loss rate to matrix from conduction 
qA,i Conduction rate per unit area into ith matrix domain 
qx Conduction rate in x-direction 
qy Conduction rate in y-direction 
qz Conduction rate in z-direction 
Q Cumulative energy conducted 
Qearly Cumulative energy conducted during early-time period 
Qlate Cumulative energy conducted during late-time period 
Q∞ Cumulative energy conducted after an infinite time 
R Matrix block size parameter 
Sw Water saturation 
r Radius from wellbore 
rw Radius of wellbore 
t Time 
tcl Time when conduction front reaches the centerline of matrix block 
tD Dimensionless time 
ttr Transition time 
tlate Time since beginning of late-time period 
T Temperature 
Tcl Temperature at centerline of matrix block 
Tf Temperature of fracture or permeable formation 
Ti Initial temperature  
Tinj Injection temperature of water 
Tm Temperature of matrix 
Ts Surface temperature 
Tw Temperature of water 
T  Average Temperature 
∆T Tw-Ti 

U(x) Unit step function 
V Volume of matrix block 
Vcorner Volume of one corner of multi-dimensional matrix block 
Ve Volume of differential element 
Vfrac Cumulative volume fraction 
Vm Volume of matrix block 
Vw Volume of water within fracture network 
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Velw Velocity of water in fracture 
Ý V w  Volumetric water injection rate 

V' Volume of matrix block between conduction front and surface 
x Coordinate direction, distance from matrix block surface 
xD Dimensionless distance 
X Location of thermal front in fracture 
XR Dimensionless matrix block size parameter 
y Coordinate direction, distance 
yD Dimensionless distance 
z Coordinate direction 
 

Greek Symbols 
 
α Thermal diffusivity 
αm Thermal diffusivity of matrix 
β Pre-exponential constant in late-time power-law model 
β Geometric parameter in linear temperature-profile model 
β Parameter in one-dimensional, early-time period thermal advance model 
γ Exponent in late-time power-law model 
γ Geometric parameter in linear temperature-profile model 
γ Parameter in one-dimensional, late-time period thermal advance model 
δ Geometric parameter given in exponential model 
φ Matrix block porosity 
φf Fracture porosity 
λ Parameter in three-dimensional, late-time period thermal advance model 
µo Oil viscosity 
µw Water viscosity 
ρ Density 
ρf Density of fracture or permeable formation 
ρm Density of matrix 
ρw Density of water 
ω Parameter in three-dimensional, early-time period thermal advance model=
χi= Matrix domain volume fraction 
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Table 1.  Properties of Example Reservoir 
Property Value 

Lm 10 m 
hinj 1.0x106 J/s 
H 100 m 
km 2.8 W/m/K 
ρm 2630 kg/m3 
cm 800 J/kg/K 

tcl (one-D) 3.69x106 s 
tcl (multi-D) 1.70x106 s 

∆T 200 K 
β= 2.74x105 J/s1/2/m2 

γ= 395 J/s/m2 
λ= 3.44x104 J/s/m2 

 



  100

Appendix: Summary of Thermal Growth Models 
 
Two models were developed in this study for the areal extent of the thermal zone 

following reinjection in a geothermal reservoir: one for early-time behavior and one for late-time 
behavior.  These models are summarized in this appendix.  Because it has been shown that the 
difference between dual- and triple-porosity models is small, only the dual porosity models will 
be described here.  The data required by these models is also summarized.   

 

Early-Time Model 

 
The thermal area is given by  
 

A t( ) = h inj

E1

−f2a exp a2 t{ } erfc a t{ } − f3bexp b2 t{ } erfc b t{ }[ ]  . (5.2.28) 

 
where 

 
f2 = −

1
a b − a( )

  , (5.2.23) 

 
f3 =

1
a b − a( ) −

1
ab

  , (5.2.24) 

 

a =
1
2

E2

E1

+

E2

E1

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

2

− 4
E3

E1

2
  , (5.2.25) 

 

b =
1
2

E2

E1

−

E2

E1

ℜ

ℜ
�ℜ ℜ

ℜ
�ℜ

2

− 4
E3

E1

2
  . (5.2.26) 

 
E1 =ωJ πtcl   , (5.2.17) 

 
E2 =ωK  , (5.2.18) 
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E3 =
ωM

tcl

π
2

  . (5.2.19) 

 

ω =
Hρmcm∆T

t cl

, (5.2.15) 

 

J =
1
12

1+
Lx

Ly

+
Lx

Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

D L

π , (5.2.7) 

 

K =
1

36
Lx

Ly

+
Lx

Lz

+
Lx

2

LyLz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ

DL

π
, (5.2.8) 

 

M =
1

144
Lx

2

Ly Lz

DL

π
ℜ

ℜ

ℜ

ℜ

3

, (5.2.9) 

 

DL =
4LxL y + 4LxLz + 36LyLz − 5Lx

2( )
Lx Ly +Lx Lz + LyLz( ) , (5.2.10) 

 
and 

 

t cl =
Lx

2

576α
DL . (5.2.11) 

 
The data required for this model are 

 

hinj Enthaply of injected water (relative to water at formation temperature) 

H Formation thickness 

Lx  Smallest average fracture spacing in any direction 

Ly , Lz  Average fracture spacings in the other two orthogonal directions 

∆T  Temperature Difference between formation and injected water 

α  Formation thermal diffusivity 

ρmcm  Formation volumetric heat capacity 

 
The fracture spacings are constrained such that 
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Lz ≥
1
2

3π
2

− 2ℜ
ℜ

ℜ
ℜ Lx + Ly( )± 1

2
2 −

3π
2

�ℜ
�ℜ

�ℜ
ℜ Lx +Ly( )�ℜ

�ℜ�ℜ
ℜ

ℜ�ℜ

2

− 4 2−
3π
2

�ℜ
�ℜ

�ℜ
	ℜLxLy + Ly

2 +L x
2�ℜ

�ℜ�ℜ

ℜ

ℜ�ℜ
 , (5.2.30) 

 
or, more conservatively, by 

 

Lz ≥
1
2

3π
2

− 2ℜ
ℜ

ℜ
ℜ + 3π

3π
4

− 2�ℜ
�ℜ

�ℜ
ℜ

�ℜ

�ℜ�ℜ

ℜ

ℜ�ℜ
Ly + 4.84425Lx  . (5.2.31) 

or 
 
Lz ≥ 2.272Ly + 4.84425Lx  .  

 

Late-Time Model 

 
The thermal area is given by  
 
A t( ) = hinj

Hρmcm∆Tα
1
R
+ αt�

�

�

�

 , (7.3.12) 

 
R = exp XRσR + µR{ }   , (7.3.17) 
 

µR = 2 ln
1
Lx

+
1
Ly

+
1
Lz

ℜ

ℜ
�ℜ

ℜ

ℜ
�ℜ+1.41 , (7.3.14) 

 
σR = 1.45  , (7.3.15) 
 

and  
 

X R =1  . 
 
The data requirements for the late-time model are identical to that of the early-time 

model, except that there are no constraints on the matrix block dimensions:  
 

hinj Enthaply of injected water (relative to water at formation temperature) 

H Formation thickness 

Lx  Smallest average fracture spacing in any direction 
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Ly , Lz  Average fracture spacings in the other two orthogonal directions 

∆T  Temperature Difference between formation and injected water 

α  Formation thermal diffusivity 

ρmcm  Formation volumetric heat capacity 

 

Transition from Early-Time to Late-Time Behavior 

 
Transition from early-time behavior, when conduction fronts into individual matrix 

blocks have not reached the center of the matrix blocks, to late-time behavior when the 
conduction fronts from opposing faces of the matrix block have merged with the matrix block 
occurs when the conduction fronts are modeled to reach the center of the matrix block: 

 

t cl =
Lx

2

576α
DL . (5.2.11) 
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Figure 1. Geometry for One-Dimensional Conduction Model 
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Figure 2.  One-Dimensional Conduction Rate: Exact Models 
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Figure 3. One-Dimensional Cumulative Energy Conducted: Exact Models 



  107

1E-05

0.0001

0.001

0.01

0.1

1

10

100

Dimensionless Time

Series: 17,576 Terms

Series: 1,331 Terms

Series: 8 Terms

Series: 1 Term

Square-Root

Extended-Square-Root

 
Figure 4. Multi-Dimensional Conduction Rate: Exact Models 
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Figure 5. Multi-Dimensional Cumulative Energy Conducted: Exact Models 
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Figure 6.  Comparison of Linear-Temperature-Profile Rate Models 
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Figure 7.  Comparison of Linear-Temperature-Profile Cumulative Models 
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Figure 8.  Comparison of Exponential Rate Models 
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Figure 9.  Comparison of Exponential Cumulative Models 
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Figure 
10.  Comparison of Power-Law Rate Models 
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Figure 11.  Comparison of Power-Law Cumulative Models 
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Figure 12. Comparison of Exponential Cumulative Models Linear Scale 
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Figure 13.  Comparison of Early-Time, Dimensional, Linear-Temperature-Profile Rate Model: 
Cubic Geometry 
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Figure 14.  Comparison of Early-Time, Dimensional, Linear-Temperature-Profile Cumulative 
Model: Cubic Geometry 
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Figure 15.  Correction Factor for Linear-Temperature-Profile Model 
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Figure 16a.  Comparison of Early-Time Linear-Temperature-Profile Rate Model: Slab Geometry 
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Figure 16b.  Comparison of Early-Time Linear-Temperature-Profile Rate Model: Matchstick 
Geometry 
 



  121

0.001

0.01

0.1

1

10

100

Dimensionless Time

Extended-Square-Root

Linear-Temperature-Profile

 
Figure 16c.  Comparison of Early-Time Linear-Temperature-Profile Rate Model: Cubic 
Geometry 
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Figure 17a.  Comparison of Early-Time Linear-Temperature-Profile Cumulative Model: Slab 
Geometry 
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Figure 17b.  Comparison of Early-Time Linear-Temperature-Profile Cumulative Model: 
Matchstick Geometry 
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Figure 17c.  Comparison of Early-Time Linear-Temperature-Profile Cumulative Model: Cubic 
Geometry 
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Figure 18.  Comparison of Late-Time Linear-Temperature-Profile Rate Model: Cubic Geometry 
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Figure 19.  Comparison of Late -Time Linear-Temperature-Profile Cumulative Model: Cubic 
Geometry 
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Figure 20.  Comparison of Extended One-Dimensional Rate Model: Cubic Geometry 
 
 



  128

0

0.25

0.5

0.75

1

1.25

Dimensionless Time

RMS Extended One-Dimensional

Geometric Extended One-Dimensional

Extended Square Root

 
Figure 21.  Comparison of Extended One-Dimensional Cumulative Model: Cubic Geometry 
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Figure 22.  Comparison of Exponential Rate Model: Cubic Geometry 
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Figure 23.  Comparison of Exponential Cumulative Model: Cubic Geometry 
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Figure 24.  Comparison of Exponential Cumulative Model, Linear Scale: Cubic Geometry 
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Figure 25.  Geometry of Lauwerier Model 
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Figure 26.  Geometry of New One-Dimensional Thermal Model 
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Figure 27.  Effect of Matrix Properties for One-Dimensional, Early-Time Models 
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Figure 28.  Effect of Matrix Properties for One-Dimensional, Late-Time Models 
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Figure 29.  Comparison of One-Dimensional Thermal Advance Models: Identical Properties 
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Figure 30.  Comparison of One-Dimensional Thermal Advance Models: Different Properties 
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Figure 31.  Effect of Matrix Size for One-Dimensional, Late -Time Models 
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Figure 32.  Comparison of One-Dimensional Thermal Advance Models: Different Size 
 



  140

0

25

50

75

100

125

150

175

200

225

250

Ly (m)

Linear Approximation

Full Equation

acceptable values

 
Figure 33.  Acceptable Matrix Block Dimensions for Lx = 10 m 
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Figure 34.  Acceptable 
Matrix Block Dimensions for Lx = 20 m 
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Figure 35.  Acceptable 
Matrix Block Dimensions for Lx = 50 m 
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Figure 36.  Effect of Matrix Block Shape on Thermal Area, Lx=10 m 
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Figure 37.  Effect of Multiple Matrix Domains having Different Sized Matrix Blocks 
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Figure 38.  Effect of Matrix Properties for Multi-Dimensional, Late-Time Models 
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Figure 39.  Effect of Matrix Size for Multi -Dimensional, Late -Time Models 
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Figure 40.  Comparison of Early- and Late-Time Models for 3-D Matrix Blocks 
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Figure 41.  Comparison of Early- and Late-Time Models for 1-D Matrix Blocks 
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Figure 42.  Effect of Matrix Block Surface Area on Extent of Thermal Area 
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Figure 43.  Relationship between Matrix Block Surface Area Generated from Monte Carlo 
Analysis and from Average Fracture Spacings.   
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Figure 44.  Fractional Cumulative Matrix Block Surface Area as a Function of Fractional 
Cumulative Matrix Block Volume 



  152

0

0.2

0.4

0.6

0.8

1

Matrix Block Size Parameter, R

Log-Normal Model

Monte Carlo Data

 
Figure 45.  Comparison of Monte Carlo and Curve-Fit Matrix Block Size Parameters, Late-Time 
Model 
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Figure 46.  Validity of Eq. 7.3.14 for Modeling Logarithm of µR. 
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Figure 47.  Dimensionless Relationship Between Matrix Block Size Parameter, R, and Matrix 
Block Volume Fraction 
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Figure 48.  Comparison of Models 
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