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Abstract
Engineers at Sandia National Laboratories are combining entertainment industry software
with traditional data collection techniques to create an interactive visualization tool. By
replacing the usual flight simulator joystick with a telemetry data stream, experimental data is
combined with existing three-dimensional (3D) engineering models. Users are immersed in
their experiment, allowing interaction with and comprehension of complex data sets.
Software tools are currently under development for post flight data visualization, and their
usefulness and reusability have been demonstrated on numerous spaced-based programs
within Sandia. However, data from remote sensors are subject to transmission errors that
yield nonphysical behavior in real-time data visualization applications. We propose to
investigate the applicability of real-time processing algorithms and estimation theories, such
as Kalman filters, that have been successfully applied in other fields. Results will be
integrated into existing postflight visualization tools for Proof-of-Concept validation and for
potential integration of real-time applications.
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INTRODUCTION

Telemetry at Sandia National Laboratories focuses on gathering information from
inaccessible flight test bodies such as satellites, space reentry vehicles, aircraft-delivered
bombs, and earth penetrators. We help our customers acquire, process, protect, transmit,
receive, and display scientific and engineering data using sensor-based information systems.
Increased transmission rates from complex sensors are yielding ever larger data sets.
Presenting results from these experiments as traditional numerical lists or two-dimensional
plots is non-intuitive and time consuming.

TeleKnoSys™ (distant knowledge) changes the way that analysts, engineers and scientists
explore and understand complex data sets. Telemetry data is fused with 3D solid models in
an interactive pseudo-real environment that immerses users in their flight tests. Data viewed
in its experimental context can be understood faster and more completely.

Combining commercial visualization and data acquisition software with mission specific
analysis code allows us to generate rapid, cost effective data visualization applications.

CURRENT NEEDS

A real-time, field deployable, advanced visualization system is needed to enhance vital
mission monitoring during missile launch and target deployment windows.  Real-time
visualization of deployed-instrumentation data would allow mission controllers, range safety
and system engineers to quickly see, comprehend, and react to mission events in an
interactive 3D environment that is compatible with very short decision timetables.

Software tools are currently under development for post flight data visualization, and their
usefulness and reusability have been demonstrated on numerous spaced-based programs
within Sandia. Unfortunately with currently available processes, technologies and software
tools, data manipulation and visualization can only begin once data tapes are recovered after
each specific mission has flown. A number of research and development issues must be
addressed before a real-time capability can be fully defined and implemented. This LDRD
focused on one of these issues,  real-time display of information from conflicting, noisy data
inputs.

TECHNICAL ISSUES

Data from remote sensors are subject to transmission errors that yield, if unfiltered,
nonphysical behavior in real-time data visualization applications.  Transmission errors arise
from a number of different causal events and result in lost, inaccurate and conflicting data
that can quickly lead to misinformation. For example, an uncorrected bit error may indicate
an invalid spin rate for a body during deployment and free flight and could dramatically
affect the visualized orientation of the body. Filtering of transmission errors is the key to a
trusted visualization environment.
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Real-time data interpretation can be computationally intensive. Some preliminary work has
been completed to verify that sufficient computational resources are available to support a
real-time application.  These initial applications visualized the motions of exoatmospheric
reentry vehicles and used simple rigid body dynamics equations to bridge transmission errors.
These results demonstrated the data correction algorithm took only a few milliseconds of the
tens of milliseconds available between data points. The applications made strong use of
multiple processors, and demonstrated the feasibility of a more robust set of real-time data
correction algorithms for visualization.

INVESTMENT RETURN

The above efforts are a firm foundation for moving forward with real-time visualization of
data intensive scenarios where time critical decisions must be made.  Knowledge from this
effort will feed into ongoing data visualization efforts and will directly effect the efficiency
and effectiveness of a number of ongoing tests.  In addition, Sandia’s customers have
expressed an interest in the deployment of a real-time data visualization system and are
considering a proposal for developing and fielding an early prototype upon the successful
demonstration of real-time capabilities.  If successful, this could lead to a new area of Sandia
support and technology development for a large number of missile tests already planned for
the future.

This proposal is considered the initial stepping stone to better understanding and
development of tools to allow significantly better data to information to knowledge
translation for a wide spectrum of military and civilian applications hampered today by
intensive and conflicting data.  Applications such as battlefield oversight and learning and
critical infrastructure monitoring are expected to be major growth areas for the future.
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FILTERING TECHNIQUES

1.1 Data Generation

The set of data used as the input to the Kalman filter and to the “old code” consists of the
following sequence:

1) a 10 second segment of clean data,
2) a 30 second segment containing dropouts,
3) a 30 second segment containing spikes,
4) a 30 second segment of scale and bias errors (not activated at this point),
5) a 20 second segment containing dropouts and spikes.

These data were generated using a simulation of a reentry vehicle in exoatmospheric flight. A
“perfect” data stream from the simulation was corrupted by including dropouts and spikes
according to the schedule above. The uncorrupted data stream was also provided in order to show
the actual orientation of the vehicle in space.

Accelerometers MagnetometersHorizon
SensorsRate SensorsGPS Thermal

Sensors

Typical Mission - Onboard Data Set

Kalman Filter

BEV - Vega
transforms

TeleKnoSys
Visualization
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1.2 Threshold Filtering Technique

Two candidate real time telemetry data correction techniques were evaluated, Threshold filtering
and Kalman filtering.

A threshold filtering technique already implemented for post-flight processing was evaluated.
This technique utilizes three gyroscopic rate sensors and the equations of motion for a spinning
rigid body to calculate the angular rates and orientation of the body.  It is referred to as a
threshold filtering technique because limits for valid rate sensor measurements are determined by
examining the recorded telemetry data.  When the telemetry rate sensor data is processed, if the
values fall within the pre-determined threshold limits, they are accepted and the roll, pitch, and
yaw rate estimates are simply set equal to the measurements.

If they fall outside the limits, they are rejected, and instead the body’s previous good motion
measurements are propagated forward to the time of the next set of measurements.
The differential angular rate equations, which assume a spinning rigid body with no cross-
coupled moments of inertia, are:

where

RIXX is the moment of inertia about the X or roll axis,
RIYY is the moment of inertia about the Y or pitch axis, and
RIZZ is the moment of inertia about the Z or yaw axis.

Once the rates are defined, the differential equations of motion to calculate the roll, pitch, and
yaw angles in an inertial reference frame (using a Body 3-2-1 rotation sequence[1] ) are:

These equations are integrated for each time step to solve for the attitude of the vehicle.  An
initial set of orientation angles is assumed based on the vehicle’s nominal attitude at time to.
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1.3 Kalman Filter Technique

1.3.1 Discrete Kalman Filter Equations

The second technique is a Kalman filtering of data.  A Kalman filter is a set of mathematical
equations that provides a recursive solution of the least squares method of estimation in which
one tries to find a “best fit” to a set of data using all of the previously gathered data up to the
present time.  There are many excellent references to Kalman filter theory and derivation [Gelb,
etc.], so only the filter equations are presented here.

The Kalman filter solves the general problem of trying to estimate the “state” x  (where the “_”
denotes a vector) of a discrete-time controlled process described by the equations:

xk = φk-1xk-1 + wk-1   (7)

and

zk = Hkxk + vk.   (8)

where zk is a measurement vector.  The matrix φ relates the state a time step (k-1) to the state at
time step k and the matrix H relates the states at time step k to the measurements at time step k.
The random variables wk and vk represent the process and measurement noise and are assumed to
be independent of each other, white, and with normal probability distributions  p(w) = N(0,Q)

and p(v) = N(0,R).  The expected value of x(0) is given as 
^

−
x 0 and the covariance is given a P0.

Under these assumptions, the set of discrete Kalman filter equations can be written as:

^

−
x k(-) = φk-1

^

−
x k-1(+) (state estimation extrapolation)   (9)

Pk(-) = φk-1Pk-1(+)φT
k-1 + Qk-1 (error covariance extrapolation)   (10)

Kk = Pk(-)HT
k[Hk Pk(-)HT

k + Rk]-1 (kalman gain matrix calculation)   (11)

^

−
x k(+) = 

^

−
x k(-) + Kk[zk - Hk

^

−
x k(-)] (state estimate measurement update)   (12)

Pk(+) = [I – KkHk] Pk(-) (error covariance update)   (13)

where 
^

−
x  denotes the Kalman filter’s estimate of the state x, (-)k denotes the condition at time

step k before the measurement update and  (+)k is after a measurement update.
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The five recursive Kalman filter equations above operate as follows.  Equations 9 and 10
propagate the state and covariance estimates from the previous time step to the current time step,
making use of the state transition matrix  φ, and the variance of the uncertainty, in the state
transition equations, Q.

Equation 10 calculates that Kalman gain matrix, K, which will be used in the update equations
that follow.  The Kalman gain is a measure of the relative weighting that will be given to the new

measurements, z, and the current state estimates, 
^

−
x .  If the ratio of the uncertainty associated

with the measurements, R, is large relative to the uncertainty associated with the current state
estimates, P, then the Kalman gain will be small and the new measurements will not have a large
influence on the state estimates.  Conversely, if the uncertainty of the measurements is small with
respect to the uncertainty of the states, then the Kalman gain matrix will be larger and the new
measurements will have a greater impact on the state estimates.

Equations 11 and 12 utilize the Kalman gain matrix, K, calculated in equation 10, to update the

state and covariance estimates.  The term [zk - Hk
^

−
x k(-)] in equation 11 is called the measurement

residual.  It is the difference be the new measurements, zk and what one would expect the
measurements to be based on the state estimates.  The measurement residual is then multiplied by
the Kalman gain and the product is added to the state estimates to yield an updated state estimate.
Equation 12 updates the state estimate covariance based on the Kalman filter gain.

1.3.2 Extended Kalman Filter

Equations 9 through 13 apply if the system under consideration can be expressed as a set of
linear equations.  What about our case, however, in which the equations of motion that represent
the system are highly non-linear, as illustrated by equations 1 through 6?  One can linearize the
system and measurement equations about the current best estimate in what is called an extended
Kalman filter.

First, equations (7) and (8) are re-written to reflect the inclusion of non-linear process and
measurement equations:

 xk = f(xk-1, wk-1 )   (14)

and

zk = h(xk, vk )    (15)

where f(*) is a non-linear function that relates the states at time (k-1) to the states at time (k) and
h(*) is a non-linear function that relates the states at time (k) to the measurements at time (k).
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Now, define the following matrices which linearize the above equations about the current best

estimate of the state, 
^

−
x .

A[i,j] = 
)(
)(
jx

if

∂
∂ | x = 

^

−
x   (16)

W[i,j] = 
)(
)(
jw

if

∂
∂ | x = 

^

−
x   (17)

H[i,j] = 
)(
)(
jx

ih

∂
∂ | x = 

^

−
x   (18)

V[i,j] = 
)(
)(
jv

if

∂
∂ | x = 

^

−
x   (19)

The extended Kalman filter equations are then:

^

−
x k(-) = f (

^

−
x k-1(+)) (state estimation extrapolation)   (20)

Pk(-) = Ak-1Pk-1(+)AT
k-1 +Wk-1 Qk-1 WT

k-1 (error covariance extrapolation)    (21)

Kk = Pk(-)HT
k[Hk Pk(-)HT

k + VkRkVT
k]-1 (kalman gain matrix calculation)   (22)

^

−
x k(+) = 

^

−
x k(-) + Kk[zk – h(

^

−
x k(-))] (state estimate measurement update)   (23)

Pk(+) = [I – KkHk] Pk(-) (error covariance update)   (24)

1.3.3 Application of Kalman Filter to Telemetry Data

To apply the extended Kalman filter to the real time telemetry data problem, define

x1 = roll rate ,
x2 = pitch rate,
x3 = yaw rate,
x4 = roll angle,
x5 = pitch angle and
x6 = yaw angle.
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Then, combining equations (1-6) with equation 20, we can write the state propagation equations
and define the function f( ) as:

x1(k) = x1(k-1) + ∆ t*
RIXX

RIZZRIYY )( − *x2(k-1)*x3(k-1) + w1(k) , (roll rate)  (25)

x2(k) = x2(k-1) + ∆ t*
RIYY

RIXXRIZZ )( − *x1(k-1)*x3(k-1) + w2(k)  , (pitch rate) (26)

x3(k) = x3(k-1) + ∆ t*
RIZZ

RIYYRIXX )( − *x1(k-1)*x2(k-1) + w3(k), (yaw rate) (27)

x4(k) = x4(k-1) + ∆ t*[x1(k-1) + (x2(k-1)*sin(x4(k-1)) + x3(k-1)*cos(x4(k-1)))*tan(x5(k-1))] + w4(k)
(roll angle) (28)

x5(k) = x5(k-1) + ∆ t*[x2(k-1)*cos(x4(k-1)) - x3(k-1)*sin(x4(k-1))] + w5(k) (pitch angle) (29)

x6(k) = x6(k-1) + ∆ t*[x2(k-1)*sin(x4(k-1)) + x3(k-1)*cos(x4(k-1))] / cos(x5(k-1)) + w6(k)
(yaw angle) (30)

The matrix A(6x6) (eqn. 16) is the partial derivative of f( ), as defined by the six equations
above, with respect to each of the states evaluated at the current best estimate of the state.  The
matrix W (eqn. 17) is simply the identity matrix.

1.3.4 Kalman Filter Measurements

The Kalman filter measurements, z, are of the form zk = h(xk, vk ).  For this telemetry application,
six measurements were chosen to be processed.  Three are the angular rate measurements given
by the three gyroscopes that measure the rate about the x, y, and z axis of the body.  The second
group of three measurements are magnetometer measurements which measure the pull of the
earth’s magnetic field along the three body axes.  Therefore, the measurement function h( ) for z
as a function of the states x  can be written as:

z1(k) = x1(k) + v1(k) (x or roll gyro measurement) (31)
z2(k) = x2(k) + v2(k) (y or pitch gyro measurement) (32)
z3(k) = x3(k) + v3(k) (z or yaw gyro measurement) (33)
z4(k) = -sin(x5(k)) + v4(k) (x magnetometer measurement) (34)
z5(k) = cos(x5(k))*sin(x4(k)) + v5(k) (y magnetometer measurement) (35)
z6(k) = cos(x5(k))*cos(x4(k)) + v6(k) (z magnetometer measurement). (36)

The matrix H(6x6) (eqn. 18) is the partial derivative of h( ), as defined by the six equations
above, with respect to each of the states evaluated at the current best estimate of the states.  The
matrix V (eqn. 19) is the identity matrix.
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RESULTS

To evaluate the operation of the extended Kalman filter defined above, a set of telemetry data
was simulated and noise and dropouts were added to mimic effects seen in actual real time
telemetry data.  Simulated data was used to avoid any possible classification problems with using
real data and to assist in the development and debugging of the software since the “true” vehicle
rotational rates and orientations would be known and could be compared to those estimated by
the Kalman filter and the threshold filtering techniques.

Both the Kalman filter and threshold filtering equations were coded in “C” and the functions
were integrated with the TeleKnoSys visualization tool so the comparisons between the truth,
Kalman, and threshold outputs could be visualized.  In addition, the outputs of each filter were
written to files for further detailed analysis.

The simulated telemetry data consisted of 120 seconds of 263 Hz data which included a time tag,
gyro measurements, and magnetometer measurements.  The data stream included periods of
dropouts and additive noise.  A sample of the simulated input data is given in figure 1.

Figure 1. Simulated Telemetry Data
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The threshold technique and the equations of motions work well to fill in the dropouts and
remove the large noise spikes as shown in the output of the threshold technique for the same time
period as shown in figure 1.

Figure 2. Output of Threshold Technique
However, if one zooms in on the data between 330 and 340 seconds, additive noise that does not
exceed the preset thresholds is seen to still remain.

Figure 3. Threshold Technique Leaves Noisy Data
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The extended Kalman filter, however, does a better job of blending the noisy gyro measurements
with the current estimates of the states to remove much of the noise.

Figure 4.  Extended Kalman Filter Removes Noise

The effect of not filtering out the noise on the gyro rate data as it is integrated to arrive at vehicle
orientation is shown in the following figure.  Figure 5 shows the estimate of the vehicle’s pitch
angle using the threshold technique.  The noise spikes that remain in the rate data are integrated
to yield errors in the pitch angle.  The “truth” is that the vehicle is coning about a fixed
orientation in inertial space whereas the output using the threshold technique shows noticeable
errors.

Figure 5. Pitch Angle As Determined By Threshold Technique
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Since the extended Kalman filter does a better job at removing the noise spikes, the resulting
orientation angles are smoother as well.  However, the extended Kalman filter implementation
also makes use of an additional set of measurements, the simulated magnetometer data.  These
measurements are in a geodetic or earth-fixed frame and the results must be transformed to an
inertial frame for comparison with the results shown above.  A set of transformation equations
was written to do that.  The resulting pitch angle estimate, in inertial coordinates, from the
extended Kalman filter is shown in Figure 6.

Figure 6. Pitch Angle From Extended Kalman Filter

As can be seen the errors seen in the threshold technique output have been removed, but there is
a slow drift of the nominal angle away from the true value.  The same effect is seen in the yaw
angle result.  It has not been determined if the drift is due to an error in the transformation from
geodetic to inertial coordinates or an error in the equations incorporating the magnetometer
measurements into the extended Kalman filter.

CONCLUSION

In summary, this LDRD illustrated that the addition of a Kalman filter and magnetometer
measurements to the current approach for processing telemetry data results in an improved, less
noisy estimate of the vehicle’s angular rates and orientation.  Work still needs to be done to
investigate the reason for the slow drift in the estimates of pitch and yaw angles. We would also
like to explore the incorporation of additional data sources such as sun sensors, star trackers, and
GPS into the Kalman filter algorithm.
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