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Abstract

Resonant heating of particles by an electrostatic wave propagating perpenducular to

a confining uniform magnetic field is examined. It is shown that, with a sufficiently

large wave amplitude, significant perpendicular stochastic heating can be obtained

with wave frequency at a fraction of the cyclotron frequency.
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Resonant heating of particles in a magnetic field has been examined by many authors and

is of importance in the heating of magnetically confined laboratory as well as extraterrestrial

plasmas. For a review see Lieberman and Lichtenberg1. The transition from adiabatic to

stochastic heating was first examined by Nekrasov2, Jaeger and Lichtenberg3, and Lieberman

and Lichtenberg4. Stochastic heating by a lower hybrid wave in a tokamak was investigated

by Karney5 for wave frequency much larger than the cyclotron frequency. It has also been

noted6,7 that heating with ion Bernstein waves (IBW) can be obtained at frequencies above

the cyclotron frequency Ω but below the second harmonic, at frequencies of ω/Ω = 3/2, 4/3,

etc. To our knowledge however, a breaking of the invariance of the magnetic moment at

frequencies at a fraction of the cyclotron frequency has never been reported in a theoretical

work. Neither have we been able to find a clear experimental search for such heating. In

this Letter we wish to demonstrate that, at sufficiently large wave amplitude, low-frequency

wave heating is indeed possible. To this end we consider the simplest problem possible; that

of a particle gyrating in a constant magnetic field acted upon by an electrostatic plane wave

propagating perpendicular to the field.

The Hamiltonian for this system is

H =
(~v − ~A)2

2
+ Φ(x, t) (1)

with the magnetic field given by the vector potential ~A = −Byx̂. Take the units of time

to be given by Ω, the cyclotron frequency, let the electrostatic wave be given by a single

harmonic, Φ = Φ0cos(kx−ωt), and assume zero velocity parallel to the field, vz = 0. There

are then three dimensionless parameters characterizing the heating problem. Define ρ = v/Ω

to be the instantaneous cyclotron radius. Then kρ characterizes the ratio of cyclotron radius
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to wave length, k2Φ0, characterizing the ratio of particle displacement caused by the wave

to wave length, is the nonlinearity parameter, and ω is the ratio of the wave frequency to

the cyclotron frequency. The initial particle distribution is also characterized by kρ0 with

ρ0 a mean cyclotron radius for the distribution.

The equations of motion become v̇x = vy + kΦ0sin(kx− ωt), vy = −x+ x0, giving

d2x

dt2
+ x = x0 + kΦ0sin(kx− ωt). (2)

For small wave amplitude near the cyclotron frequency it is possible to describe the

particle response to the wave in terms of oscillation at the cyclotron frequency with a

slowly varying cyclotron radius, or energy. In the case of interest here wave ampli-

tudes are large and wave frequencies different from, but comparable to, the cyclotron

frequency, so response of the particle at additional frequencies must be retained. To

treat the full problem it is necessary to include particle motion at fractions of the cy-

clotron frequency, sidebands, harmonics, etc. The particle motion must be written x =

x0 + λcos(t)− µsin(t) +
∑

m[αmcos(νmt) + βmsin(νmt)] with λ, µ, αm, βm slowly varying in

compared to 1, νm, with νm giving the set of frequencies necessary to describe the motion.

A full analytic treatment is not possible, but analytic approximations can give insight into

the nature of the solutions.

First consider Eq. 2 for ks ≡ k(x − x0) � 1. Letting 2T = kx0 − ωt and keeping only

lowest order in ks we have

d2s

dT 2
+

[
4

ω2
− 4k2Φ0

ω2
cos(2T )

]
s = kΦ0ωsin(2T ) (3)

ie, a driven Mathieu equation with unstable solutions for ω ' 2/n. Of course this equation

is valid only for small ks, but it indicates the existence of large amplitude solutions for these
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values of ω.

Now consider a Poincaré section of kρ, ψ = kx−ωt, by taking points when vy = 0, v̇y > 0.

This gives ψ = ψ0 − ωtj, with ψ0 = kx0, and tj given by the times at which x = x0 and

ẋ < 0. Given λ(t), µ(t), αm(t), βm(t) one can solve for the Poincaré times tj. Without loss

of generality at t = 0 we take x random, vx random negative and vy = 0; giving x = x0,

ψ(0) = ψ0. The values at t = 0 then determine one Poincaré point. Others are given by

kρ(tj), ψ(tj) = ψ0 − ωtj. Fixed points are given by dv/dt = 0 and constant phase, or

λ̇ = µ̇ = α̇m = ˙βm = 0.

In general these equations are very complicated and the Poincaré section must be exam-

ined numerically. For significant heating there must exist resonances. A complete analysis

would consist of a determination of all fixed points and then the calculation of the widths of

the islands occuring around the elliptic points, followed by an estimate of stochastic thresh-

old due to island overlap. Unfortunately this approach is not feasible, and to make any

progress analytically one must be guided by numerical results. A numerical Poincaré plot

using Eq. 2 is shown in Fig. 1 for k2Φ0 = 0.1, ω = 1/2, showing period two fixed points

occuring at small wave amplitude.

Guided by numerical results, including a Fourier analysis of the fixed point trajectories,

we illustrate the nature of the solutions for this case by considering only the cyclotron motion

and the particle response at the wave frequency of ω = 1/2. Employing multiple time scales,

express the solution to the equations of motion as x = x0 + λcos(t)− µsin(t) + αcos(ωt)−

βsin(ωt) with λ, µ, α, β slowly varying with respect to 1, ω. We then find, keeping only

leading order in the slow time scale and using e±iasin(b) =
∑

m Jm(a)e±imb,

−2
dµ

dt
cos(t)− 2

dλ

dt
sin(t) + (1− ω2)αcos(ωt) − (1− ω2)βsin(ωt) =
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kΦ0

∑
jklm

Jj(kλ)Jk(kµ)Jl(kα)Jm(kβ)sin[(j − k + lω −mω − ω)t]cos[ψ0 + (j + l)π/2]

+kΦ0

∑
jklm

Jj(kλ)Jk(kµ)Jl(kα)Jm(kβ)cos[(j − k + lω −mω − ω)t]sin[ψ0 + (j + l)π/2] (4)

Taking the frequency to be a fraction of the cyclotron frequency, ω = 1/q with q an

integer and integrating over the short time scales we have

(1− ω2)α = kΦ0

∑
jklm

Jj(kλ)Jk(kµ)Jl(kα)Jm(kβ)sin(ψ0 + (j + l)π/2)∆ω+ (5)

(1− ω2)β = kΦ0

∑
jklm

Jj(kλ)Jk(kµ)Jl(kα)Jm(kβ)cos(ψ0 + (j + l)π/2)∆ω− (6)

2
dµ

dt
= −kΦ0

∑
jklm

Jj(kλ)Jk(kµ)Jl(kα)Jm(kβ)sin(ψ0 + (j + l)π/2)∆1+ (7)

2
dλ

dt
= −kΦ0

∑
jklm

Jj(kλ)Jk(kµ)Jl(kα)Jm(kβ)cos(ψ0 + (j + l)π/2)∆1− (8)

with ∆ζ± = δj−k+(l−m−1)ω,ζ ± δj−k+(l−m−1)ω,−ζ .

To gain an intuitive understanding of the occurences of the nonlinear resonances which

permit heating at frequencies well below the cyclotron frequency we can examine the limit

of small wave amplitude, k2Φ0 � 1 analytically. Then we have kα � 1, kβ � 1.

Now set ω = 1/2. To the leading orders in kα and kβ we then find the first delta function

of ∆ω± is limited to the values (j, k, l,m) = (s, s − 1, 0, 0) and the second delta function

to (s, s, 0, 0), with s integer. Similarly, for ∆1±, the first delta function is limited to the

values (j, k, l,m) = (s, s − 1, 1, 0), (s, s − 1, 0,−1), (s, s − 2,−1, 0), (s, s − 2, 0, 1), with

s integer, and the second delta function to the values (j, k, l,m) = (s, s + 1, 1, 0), (s, s +

1, 0,−1), (s, s,−1, 0), (s, s, 0, 1), with s integer. Note that these values are peculiar to the

case of ω = 1/2, which is a special degenerate case since q = 2 is the only solution to
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1 − 1/q = 1/q. There are fewer but different lowest order terms for other fractions. Now

in each term replacing the sum s = −∞,∞ with s = 2n, 2n + 1, n = −∞,∞, denoting

C0 = cos(ψ0), S0 = sin(ψ0), and defining Fa,b(λ, µ) =
∑∞

n=−∞(−1)nJ2n+a(kλ)J2n+b(kµ), we

have

(1− ω2)α = kΦ0[C0(F1,0 + F1,1) + S0(F0,0 + F0,−1)], (9)

(1− ω2)β = kΦ0[C0(F0,0 − F0,−1) + S0(F1,0− F1,1)], (10)

−2
dµ

dt
= kΦ0J1(kα)[C0(F0,−1 + F0,−2 + F0,1 + F0,0)− S0(F1,0 + F1,−1 + F1,2 + F1,1)]

+kΦ0J1(kβ)[C0(−F1,0 + F1,−1 − F1,2 + F1,1) + S0(−F0,−1 + F0,−2 − F0,1 + F0,0)], (11)

2
dλ

dt
= kΦ0J1(kα)[S0(F0,−1 + F0,−2 + F0,1 − F0,0) + C0(F1,0 + F1,−1 + F1,2 + F1,1)]

+kΦ0J1(kβ)[S0(−F1,0 + F1,−1 + F1,2 − F1,1) + C0(F0,−1 − F0,−2 − F0,1 + F0,0)]. (12)

These equations determine the motion of a Poincaré point in the kρ, ψ plane for small k2Φ0.

To determine the existence of resonances first look for fixed points of the Poincaré map,

with k2Φ0 � 1. In this case α and β are small, and since λ(0) = −α(0) and for a fixed

point λ must be constant, it remains small. Keeping only up to first order in λ we find for

the existence of a fixed point in the case ω = 1/2 either C0 = 0 or S0 = 0.

For C0 = 1, S0 = 0 we have

(1− ω2)α = kΦ0J1(kλ)[J2(kµ) + J0(kµ)], (13)

(1− ω2)β = −kΦ0[J1(kµ) + J0(kµ)], (14)
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0 = J1(kλ)[J0(kµ) + J2(kµ)][J2(kµ) + J0(kµ)]

−J1(kλ)[J1(kµ) + J0(kµ)][2J0(kµ) + 2J2(kµ) + J1(kµ) + J3(kµ)], (15)

0 = J2
1 (kλ)[J0(kµ) + J2(kµ)][2J0(kµ) + 2J2(kµ)− J1(kµ)− J3(kµ)]

+[J1(kµ) + J0(kµ)][−2J1(kµ) − J2(kµ) + J0(kµ)]. (16)

To lowest order in λ, µ is given by 0 = [J1(kµ) + J0(kµ)][−2J1(kµ)− J2(kµ) + J0(kµ)]. The

first root is from J0 = 2J1 + J2 giving kµ = 0.825. Equation 15 then gives λ = 0, and we

find α = 0, β = −1.62kΦ0. Since λ = α = 0, the Poincaré points are given by tj = 2jπ. The

fixed points are then kρ = k(µ− ωβ), ψ = 0 and kρ = k(µ+ ωβ), ψ = π, as seen in Fig. 1.

No solution is found for C0 = 0, S0 = 1. The second pair of fixed points in Fig. 1 at

ψ = ±π/2 and kρ = 1.84 is more complex, due to a combination of motion at ω and 3ω. It

should be obvious from the above that by including particle response at more frequencies,

and allowing larger values of k2Φ0 the number of fixed points in the map will increase

enormously.

For ω = 1/q, with q > 2 the situation is qualitatively different. To leading order there

do not exist any fixed points; rather the fixed points of the map emerge from ρ = 0 as

Φ0 is increased. Nevertheless, such fixed points exist for all integer q, associated with the

unstable domains of the associated Mathieu equation, which are much narrower for q > 2.

A numerical Poincaré plot is shown in Fig. 2 for k2Φ0 = 0.1, ω = 1/3, showing period three

fixed points which move upward as k2Φ0 increases.

Now investigate the approach to chaos and the extent of the chaotic domain, which limits

the possible heating obtained. Figure 3 shows an example of the extent of the stochastic

domain for ω = 1/2, bounded by good KAM surfaces at large kρ. The initial particle
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distribution was random with kρ < 0.1. In the domain of the good KAM surfaces the

perpendicular energy is only oscillatory, described by the magnetic moment, becomes an

adiabatic invariant for large energy and relatively weak wave amplitude3. The extent of

the stochastic domain increases in discrete jumps as new resonances overlap and domains

around them become stochastic, and Fig. 3 shows the occurence of such a step, as the

stochastic domain sweeps around a new period three resonance. Heating of an initially cold

distribution proceeds to the maximum limit given by the good KAM surfaces in a rather

short time; on the order of one to two hundred cyclotron periods. Even at a wave frequency

of 1/10 of the cyclotron frequency a Poincaré plot is quite stochastic for k2Φ0 = 1. Note

that this is a collisionless result.

Figure 4 shows the variation of the extent of the heating domain in kρ versus k
√

Φ0

for three different wave frequencies. Curve a) is heating at the cyclotron frequency, b) at

half the cyclotron frequency, and c) at 1/5 the cyclotron frequency. Note that, for small

wave amplitude, heating at the cyclotron frequency is clearly more efficient, but that as the

amplitude increases, heating at a lower frequency can be almost as effective.

Finally Figure 5 shows the variation of the extent of the heating domain in kρ versus

wave frequency for k
√

Φ0 = 0.6, 0.9, and 1.6. For smaller wave amplitude some peaking can

indeed be seen at low-order (small) integer fractions, as predicted by the Mathieu equation

approximation. As the amplitude increases, however, nonlinear generation of many fixed

points smooths out the resonance structures and makes the extent of the domain almost

linear in ω.

In conclusion, we have demonstrated that significant perpendicular heating can be ob-

tained at a fraction of the cyclotron frequency. Although we have investigated only the case
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of a longitudinal wave propagating across a constant magnetic field, the nonlinear resonance

phenomenon should be more fundamental, and may have application in high power radio-

frequency heating schemes in laboratory as well as in astrophysical plasmas. Furthermore,

we expect similar heating mechanisms to be operative for large amplitude Alfvèn waves, and

will explore this effect in a separate publication.

This work was supported by the U.S. Department of Energy Grant DE-FG03-94ER54271 and under

contract number DE-AC02-76-CHO3073 and NSF Grant ATM-9971529. The authors acknowledge useful

discussions with Fulvio Zonca.
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FIGURES

Fig. 1. Poincaré, k2Φ0 = 0.1, ω = 1/2

Fig. 2. Poincaré, k2Φ0 = 0.1, ω = 1/3
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Fig. 3. Poincaré, k
√

Φ0 = 1.75, ω = 1/2

Fig. 4. Heating Domain vs k
√

Φ0, a) ω = 1, b) ω = 1/2, c) ω = 1/5.
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Fig. 5. Heating Domain vs ω for k
√

Φ0 = a)0.6, b) 0.9 c) 1.6
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